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Abstract. We consider Schrödinger operators with dynamically defined potentials arising from
continuous sampling along orbits of strictly ergodic transformations. The Gap Labeling Theorem
states that the possible gaps in the spectrum can be canonically labelled by an at most countable
set defined purely in terms of the dynamics. Which labels actually appear depends on the choice of
the sampling function; the missing labels are said to correspond to collapsed gaps. Here we show
that for any collapsed gap, the sampling function may be continuously deformed so that the gap
immediately opens. As a corollary, we conclude that for generic sampling functions, all gaps are
open. The proof is based on the analysis of continuous SL(2,R) cocycles, for which we obtain
dynamical results of independent interest.
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1. Introduction

1.1. Gap opening

LetX be a compact metric space and let f : X→ X be a strictly ergodic homeomorphism
(hence all orbits are dense and equidistributed with respect to an invariant probability
measure µ). We will also assume that f has a non-periodic finite-dimensional factor.1

Here we are interested in the one-dimensional discrete Schrödinger operator H =
Hf,v,x whose potential is obtained by continuous sampling along an orbit of f . Thus H
is a bounded self-adjoint operator on `2(Z) given by

[Hψ](n) = ψ(n+ 1)+ ψ(n− 1)+ V (n)ψ(n), (1)

where the potential V is given by V (n) = v(f n(x)) for some x ∈ X and some continuous
sampling function v : X→ R.

Since f is minimal, the spectrum of H turns out to depend only on f and v, but
not on x, and hence may be denoted by 6f,v; it is a perfect compact subset of R. Strict
ergodicity implies that the integrated density of states is well defined and only depends
on f and v: it is a continuous non-decreasing surjective function Nf,v : R→ [0, 1]. (See
§1.5 for details.) The basic relation between 6f,v and Nf,v is that E /∈ 6f,v if and only if
Nf,v is constant in a neighborhood of E. Hence, in each bounded connected component
of R r 6f,v (called a gap of 6f,v), Nf,v assumes a constant value ` ∈ (0, 1), called the
label of the gap. A basic question is thus: which values of ` appear as labels of gaps?

There is a well known general partial answer to this problem known as the Gap La-
beling Theorem. LetG ⊂ R be the subgroup of all t such that there exist continuous maps
φ : X → R and ψ : X → R/Z with t =

∫
φ dµ and ψ(f (x)) − ψ(x) = φ(x) mod 1.

Thus G only depends on f and it is called the range of the Schwartzman asymptotic
cycle.2 Often G is a non-discrete group: this happens for instance whenever X has in-
finitely many connected components.

Gap Labeling Theorem. If ` is the label of some gap, then ` ∈ L = G ∩ (0, 1).

Of course, the Gap Labeling Theorem does not guarantee that any particular ` ∈ L actu-
ally is the label of some gap: it is quite easy to see that the specific choice of the sampling
function is also important. A missing label, that is, some ` ∈ L which is not the label of
an actual gap, is usually said to correspond to the collapsed gap N−1

f,v (`) (actual gaps are
sometimes called open gaps for this reason).

Describing which gaps are open in specific situations (and in particular, whether the
converse of the Gap Labeling Theorem holds) is usually a very difficult problem. The
well known “Dry Ten Martini Problem” (cf. [Si2]) is an instance of this: it asks one to
show that all gaps are open for the almost Mathieu operator (X = R/Z, f (x) = x + α
for some α ∈ R r Q and v(x) = 2λ cos 2πx for some λ > 0). This problem is still open,
despite considerable attention (for partial progress, see [CEY], [Pu], [AJ1], and [AJ2]).

1 That is, there is a homeomorphism g : Y → Y , where Y is an infinite compact subset of some
Euclidean space Rd , and there is an onto continuous map h : X→ Y such that h ◦ f = g ◦ h.

2 See [Sc], [Pa, §5.2], [At]; Theorem 4.2 from [At] justifies this terminology.
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Here we are concerned with the more general problem of whether the dynamics, by
itself, could force the closing of (many) gaps. Questions in this direction arose early in the
development of the theory: in a 1982 paper, Belissard asks whether the mixing property
would prevent the set of labels of open gaps to be dense in (0, 1) (or equivalently, whether
“mixing avoids Cantor spectrum” [Be1, Open Problem 5]).

We will show that the dynamics in fact does not obstruct the opening of gaps, and
indeed the converse of the Gap Labeling Theorem holds for generic sampling functions.
This is obtained as a consequence of the following result, which shows that any collapsed
gap can be opened by deformation:

Theorem 1 (Gap opening). For every v ∈ C(X,R) and any ` ∈ L, there exists a contin-
uous path vt ∈ C(X,R), 0 ≤ t ≤ 1 with v0 = v such that for every t > 0, the spectrum
6f,vt has an open gap with label `.

Since the sampling functions for which the gap with label ` is open form an open subset
of C(X,R), we have the following:

Corollary 2 (Generic converse to the Gap Labeling Theorem). For a generic v ∈
C(X,R), all gaps are open, that is, for every gap label ` ∈ L, the spectrum 6f,v has
an open gap with label `.

In particular, this gives, in our setting, an affirmative answer to another question of Bel-
lissard, who asked in [Be2, Question 4] whether Cantor spectrum is generic whenever it
is not precluded by the Gap Labeling Theorem. (A specific mixing example falling in this
category is discussed below, answering his earlier question as well.) On the other hand,
as we will show in Appendix B, the answer to Bellissard’s question becomes negative if
one considers slightly more general base dynamics f .

Remark 1.1. We do not know whether for v ∈ C(X,R) given, it is possible to find a
continuous path vt ∈ C(X,R), 0 ≤ t ≤ 1, with v0 = v and such that for every t > 0 all
gaps of 6f,vt are open.3

1.2. Examples

One important class of examples (which includes the almost Mathieu operator) is given by
almost periodic Schrödinger operators, for which X is an infinite compact Abelian group
and f is a minimal translation: in this case L is a dense subset of (0, 1). Two important
subclasses are given by quasi-periodic Schrödinger operators, where X = Rd/Zd for
some d ≥ 1, and by limit-periodic Schrödinger operators, where X is a product of finite
cyclic groups.

If L is not dense in (0, 1), it is impossible for 6f,v to be nowhere dense. On the other
hand, when L is dense in (0, 1), particularly in the almost periodic case, much effort has
been dedicated to establishing Cantor spectrum (which means that a dense set of gaps are

3 The difficulty is that we deduce Theorem 1 from Theorem 3, and that result does not hold with
an extra parameter—see Remark A.4.
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open). For limit-periodic Schrödinger operators, this issue was studied by various authors
in the 1980’s (e.g., [M], [AS1] , [Ch] , [PT]) and, in fact, Corollary 2 is known in this
particular case (see [Si1] for an earlier account in the periodic case). However, already
for quasi-periodic Schrödinger operators, the problem is much harder.

For the almost Mathieu operator, proving Cantor spectrum corresponds to the Ten
Martini Problem, which is now completely solved [AJ1], after several partial results
([BSi], [HS], [CEY], [L], [Pu], [AK]). More generally, the case of non-constant ana-
lytic sampling functions along translations of tori has been considered, first by KAM-like
methods and more recently by non-perturbative approaches. For Diophantine translations
on tori, in any dimension, Eliasson [E] has shown that for sufficiently small generic ana-
lytic potentials, all gaps are open. For general non-constant analytic sampling functions v,
Goldstein and Schlag [GS] showed that a dense set of gaps can be opened “almost surely”
by changing α, in the case where the Lyapunov exponent is positive (which includes the
case of large v).

Previous to this work, we showed in [ABD]4 that generically, a dense set of gaps
are open, but only for a more restricted set of dynamics (“generalized skew-shifts”):
those are the dynamics which fiber over an almost periodic dynamical system. They also
have dense L. An example in this class of particular interest is the skew-shift (x, y) 7→
(x + α, y + x). However, generalized skew-shifts still form a somewhat restricted class;
for instance, they are never weakly mixing. Moreover, the work [ABD] was not able to
control the labels of the open gaps produced and in particular could not guarantee the
opening of a gap with a prescribed label.

With respect to mixing properties, we would like to mention Fayad’s analytic map f
on X = R3/Z3 from [Fa] which is strictly ergodic, mixing (hence not a generalized
skew-shift), and has dense L.5 Applying our results to this example yields, to the best of
our knowledge, the first example of Cantor spectrum for Schrödinger operators arising
from mixing dynamics. Of course, an interesting example of a strictly ergodic dynamical
system is given by the time one map of the horocycle flow for a compact hyperbolic
surface. This is again mixing, but in this case L is empty!

Other interesting examples of “strictly ergodic dynamics” which are weakly mixing
are given by typical interval exchange transformations [AF]. They are not actually strictly
ergodic according to the usual definition since they are not homeomorphisms, but this can
be bypassed by going to a symbolic setting (blowing up procedure; see [MMY]).

Of course, in the symbolic context, and more generally, among Cantor set maps, there
is a wealth of examples, and all have dense L. See also [BCL] for related examples of
homeomorphisms of manifolds.

Remark 1.2. In the analytic setting, it is far from clear whether one should expect that
the generic converse of the Gap Labeling Theorem, or even generic Cantor spectrum,
remains true for translations on tori in higher (at least 2) dimensions; compare [CS]. We
do expect it to be true in one dimension, which is supported by recent advances such as

4 Results related to [ABD] can be found in the papers [CF], [FJ], [FJP].
5 Details are provided in Appendix E.
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[AJ2] and [GS], but despite this progress, it is not yet known whether the “analytically
generic” spectrum is a Cantor set (even restricting to Diophantine translations).

1.3. A brief history of gap labeling

Gap labeling theorems were first established in the early 1980’s. In 1982, Johnson and
Moser [JM] considered continuum Schrödinger operators, H = −d2/dx2

+ V , with
almost periodic potential V . For E ∈ R, if u = u(x,E) is a non-trivial real solution of
the associated differential equation −u′′ + V u = Eu, then u′(x, E) + iu(x, E) never
vanishes; this allowed them to define the rotation number by

ρ(E) = lim
x→∞

1
x

arg(u′(x, E)+ iu(x, E)).

They showed that the limit exists, is independent of the solution chosen, and defines a con-
tinuous non-decreasing function of E. They also pointed out that due to Sturm oscillation
theory, there is a simple relation between the rotation number and the integrated density
of states. Since V is almost periodic, MV (λ) = limx→∞ x

−1 ∫ x
0 V (y)e

−iλy dy exists for
every λ ∈ R and there are at most countably many λ’s for which MV (λ) 6= 0. The set
M(V ) of finite integer linear combinations of these λ’s is called the frequency module
of V . Johnson and Moser then showed that the function ρ is constant precisely on the
complement of the spectrum H and, moreover, if E ∈ R r σ(H), then 2ρ(E) ∈M(V ).
Thus, one can label the gaps of the spectrum by elements of the frequency module of V .

The analogue of the Johnson–Moser results for ergodic discrete Schrödinger operators
(and Jacobi matrices) can be found in the 1983 paper [DS] by Delyon and Souillard. In
essence, they used Sturm oscillation theory and the easy existence proof for the integrated
density of states to define the rotation number in their setting. The relation between the
rotation number and the integrated density of states is therefore built into this approach
and continues to hold trivially. Moreover, in the case of almost periodic potential, the
gaps in the spectrum may again be labeled by elements of the frequency module of the
potential.

Around the same time, Bellissard, Lima, and Testard began to develop an approach
to gap labeling based on K-theory of C∗-algebras; see [Be1] for the earliest account and
[Be2, Be3, Be4, BLT] for extensive discussions. A major advantage of this approach is
that it is not restricted to one space dimension. Let us discuss it in the one-dimensional
discrete setting relevant to our present study, but emphasize that the results hold in greater
generality. Given a compact space X and a homeomorphism f of X, one can define an
associated C∗-algebra C∗(X, f ). An f -ergodic probability measure µ induces a trace τ
on C∗(X, f ). Consider the K0 group associated with C∗(X, f ) and the induced map τ∗ :
K0(C

∗(X, f )) → R. The abstract gap labeling theorem now reads as follows: Suppose
H is a self-adjoint operator affiliated to C∗(X, f ) such that its integrated density of states
exists with respect to the f -ergodic measure µ. Then the value of the integrated density
of states in a gap of the spectrum belongs to τ∗(K0(C

∗(X, f ))) ∩ (0, 1). This set of
labels is not quite easy to compute, in general. For the case of an irrational rotation of
the circle, this was accomplished using the Pimsner–Voiculescu cyclic six-term exact
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sequence [PV]. This and other computational aspects of the theory are discussed in the
references given above. In this context, we would like to also mention the paper [X] by
Xia, which shows that the integers in the quasi-periodic gap labeling can be expressed as
Chern characters.

The direct relation between taking the image under the trace homomorphism of the
K0 group of C∗(X, f ) and taking the image under Schwartzman’s asymptotic cycle of
the first Čech cohomology group Ȟ 1(Yf ,Z), where Yf is the suspension space of (X, f ),
was pointed out by Johnson [J] in 1986; compare also Connes [Co] and the discussions
by Bellissard [Be2] and Kellendonk–Zois [KZ]. On the other hand, as pointed out by
Bellissard and Scoppola in 1982 [BSc], a naive extension of gap labeling by means of
the frequency module to discontinuous sampling functions may not work. Indeed, they
exhibited an example where the potential arises by coding the rotation of the circle by α
irrational with respect to two intervals whose lengths are irrational with respect to α and
showed that the integrated density of states takes values not belonging to Z+ αZ.

In recent years, most of the literature on gap labeling has focused on aperiodic tilings
and Delone sets in higher dimensions. While this is not immediately related to the sub-
ject of this paper, we do want to point out that a recent highlight was accomplished in
three simultaneous and independent works by Bellissard–Benedetti–Gambaudo [BBG],
Benameur–Oyono–Oyono [BO], and Kaminker–Putnam [KP]. They proved a version of
the gap labeling theorem for aperiodic, repetitive tilings or Delone sets of finite local
complexity.

1.4. Cocycle dynamics

It is well established that spectral properties of one-dimensional Schrödinger operators
are intimately connected to a study of the solutions to the time-independent Schrödinger
equation. This equation in turn can be reformulated in terms of transfer matrices. Since
the potential is generated by sampling along the orbits of f and the dependence of the
transfer matrices on the potential is local, it turns out that these matrices have a so-called
cocycle structure. In particular, the dynamics of these SL(2,R)-valued cocycles describe
the behavior of solutions and hence are closely related to spectral information. We will
make this connection more explicit in the next subsection. Here, we discuss basic notions
related to SL(2,R)-valued cocycles and present a relative of Theorem 1 in this context.

Given a continuous map A : X → SL(2,R), we consider the skew-product X ×
SL(2,R) → X × SL(2,R) given by (x, g) 7→ (f (x), A(x) · g). This map is called the
cocycle (f,A).6 For n ∈ Z,An is defined by (f,A)n = (f n, An). The Lyapunov exponent
of the cocycle is the non-negative number

L(A) = lim
n→∞

1
n

log ‖An(x)‖.

(The limit exists for µ-almost every x.)

6 Since f is fixed, we sometimes call A a cocycle.
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We say that a cocycle (f,A) is uniformly hyperbolic if there exist constants c > 0
and λ > 1 such that ‖An(x)‖ > cλn for every x ∈ X and n > 0.7 This is equivalent to
the usual hyperbolic splitting condition: see [Y]. Thus uniform hyperbolicity is an open
condition in C(X,SL(2,R)). Denote

UH = {A ∈ C(X,SL(2,R)) : (f,A) is uniformly hyperbolic}.

We say that two cocycles (f,A) and (f, Ã) are conjugate if there exists a conjugacy
B ∈ C(X,SL(2,R)) such that Ã(x) = B(f (x))A(x)B(x)−1. Uniform hyperbolicity is
invariant under conjugation.

Next suppose A ∈ C(X,SL(2,R)) is homotopic to a constant. Then one can define a
homeomorphism F : X×R→ X×R so that F(x, t) = (f (x), F2(x, t)) and e2πiF2(x,t)

is a positive real multiple of A(x) · e2πit , with the usual identification of C with R2. We
call F2(x, t) a lift of A. The lift is not uniquely defined, since for any continuous function
φ : X→ Z, (x, t) 7→ F2(x, t)+φ(x) is also a lift, but this is the only possible ambiguity.

Write F n2 (x, t) for the second component of F n(x, t). Then the limit

ρf,A = lim
n→∞

F n2 (x, t)− t

n

exists uniformly and is independent of (x, t), it is called the fibered rotation number of
the cocycle (f,A); compare [H]. Due to the ambiguity in the choice of F2, ρ is only
defined up to addition of an element of the group G′ = {

∫
X
φ dµ : φ ∈ C(X,Z)}.

Clearly, Z ⊂ G′ ⊂ G. Moreover, if X is connected, then G′ = Z, while if it is totally
disconnected, then G′ = G.

We will be interested in the variation of the fibered rotation number. For any map
A0 : X → SL(2,R) that is homotopic to a constant, there is a neighborhood V of it in
C(X,SL(2,R)) such that for eachA ∈ V , we can continuously select a lift FA : X×R→
X×R. Using those lifts, we define a mapA ∈ V 7→ ρf,A ∈ R, which is in fact continuous
(see [H, §5.7]), and is called a continuous determination of the fibered rotation number.

It turns out that (see [J])

A ∈ UH ⇒ 2ρf,A ∈ G. (2)

We will establish the following variant of Theorem 1 for SL(2,R)-cocycles:

Theorem 3 (Accessibility by uniformly hyperbolic cocycles). Suppose A ∈

C(X,SL(2,R)) is homotopic to a constant and obeys 2ρf,A ∈ G. Then there exists a
continuous path At ∈ C(X,SL(2,R)), 0 ≤ t ≤ 1, with A0 = A and such that At ∈ UH
for every t > 0. (In particular, ρf,At is independent of t .)

In fact, as we will see in the next subsection, Theorem 1 may be derived from Theorem 3.

7 If A is a real 2×2 matrix then ‖A‖ = sup‖v‖6=0 ‖A(v)‖/‖v‖, where ‖v‖ is the Euclidean norm
of v ∈ R2.
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1.5. Schrödinger operators and relation to dynamics

Let us now review in more detail the basic objects introduced at the beginning and their
relation to the dynamics of cocycles.

Consider the operator H = Hf,v,x given by (1). Since f is minimal and v is continu-
ous, the x-independence of the spectrum 6f,v of H can be obtained from strong operator
convergence modulo conjugation with shifts. This common spectrum has a convenient
description in terms of the integrated density of states, which is defined as follows. There
is a probability measure dNf,v that obeys∫

〈δ0, g(H)δ0〉 dµ(x) =

∫
g(E) dNf,v(E)

for every bounded, measurable function g. Indeed, by the spectral theorem, dNf,v is given
by the µ-average of the x-dependent spectral measures associated withH and δ0. The dis-
tribution function of dNf,v is called the integrated density of states and denoted by Nf,v .
By construction, it is a non-decreasing function from R onto [0, 1], which is constant
in every connected component of R r 6f,v . Moreover, it is not hard to show that it is
continuous and strictly increasing on 6f,v . That is, the measure dNf,v is non-atomic and
its topological support is equal to 6f,v . There is an alternative way to define Nf,v(E) by
restricting H to finite intervals, counting the eigenvalues below E, and taking a thermo-
dynamic limit; compare [AS2]. A third way is explained below.

Spectral properties of general Schrödinger operators of the form (1) are most conve-
niently studied in terms of the solutions to the one-parameter family of difference equa-
tions

u(n+ 1)+ u(n− 1)+ V (n)u(n) = Eu(n), (3)

where the energy E belongs to R. Equivalently,(
u(n+ 1)
u(n)

)
=

(
E − V (n) −1

1 0

)(
u(n)

u(n− 1)

)
.

Since in our situation, we have V (n) = v(f nx), we may consider the cocycle (f,AE,v),
where

AE,v(x) =

(
E − v(x) −1

1 0

)
,

and observe that u solves (3) if and only if(
u(n)

u(n− 1)

)
= AnE,v

(
u(0)
u(−1).

)
.

Consequently, (f,A) is called a Schrödinger cocycle if A takes its values in the set

S =
{(
t −1
1 0

)
: t ∈ R

}
⊂ SL(2,R). (4)
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One of the fundamental results linking the spectral theory of H and the dynamics of
the family of Schrödinger cocycles (f,AE,v) is that 6f,v consists of those energies E for
which (f,AE,v) is not uniformly hyperbolic:

R r6f,v = {E ∈ R : (f,AE,v) is uniformly hyperbolic}; (5)

see Johnson [J].
The maps AE,v are homotopic to a constant and hence the cocycle (f,AE,v) has an

associated rotation number which we denote by ρf,v(E). For Schrödinger cocycles, there
is a canonical way to remove the ambiguity in the definition of ρ,8 so that it can be
interpreted as an element of [0, 1/2] (and not of R/G′ as in the general case). There is a
simple relation between Nf,v and ρf,v which follows from Sturm oscillation theory:

Nf,v(E) = 1− 2ρf,v(E). (6)

It follows from (2), (5), and (6) that the gaps of 6f,v (i.e., the bounded connected com-
ponents of R r6f,v) may be labeled by elements of L = G∩ (0, 1) so that the label of a
gap corresponds to the constant value Nf,v takes on it.

To deduce Theorem 1 from Theorem 3, we use the following result, which is an im-
proved version of [ABD, Lemma 9] and is proved in Appendix D. (Recall that S ⊂
SL(2,R) indicates the set of Schrödinger matrices, as in (4).)

Lemma 1.3 (Projection Lemma). Let f : X → X be a minimal homeomorphism of a
compact metric space with at least four points, and let A ∈ C0(X,S). Then there exist a
neighborhood W ⊂ C0(X,SL(2,R)) of A and continuous maps

8 = 8A : W → C0(X,S) and 9 = 9A : W → C0(X,SL(2,R))

satisfying

9(B)(f (x)) · B(x) · [9(B)(x)]−1
= 8(B)(x),

8(A) = A and 9(A) = id.

In particular, an SL(2,R)-valued perturbation of a Schrödinger cocycle is conjugate to an
S-valued perturbation.

Proof of Theorem 1. Take a sampling function v ∈ C(X,R) and a label ` ∈ L = G ∩
(0, 1). Assume the gap of 6f,v of label ` is collapsed, that is, there is a unique E0 ∈ R
such that Nf,v(E0) = `. Let

A(x) =

(
E0 − v(x) −1

1 0

)
.

By (6), ρ(A) = (1 − `)/2. So we can apply Theorem 3 and find a continuous family of
cocycles At , t ∈ [0, 1], with A0 = A and At ∈ UH for t > 0.

8 Namely, one can uniquely choose the lift F2 so that F2(x, 1/4) = 1/2 for every x ∈ X.
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Apply Lemma 1.3 and define Ãt = 8A(At ) for small t . Since Ãt ∈ C(X,S), there is
a continuous path vt ∈ C(X,R) so that

Ãt (x) =

(
E0 − vt (x) −1

1 0

)
.

For t > 0, we have Ãt ∈ UH and so, by (5), E0 6∈ 6f,vt . Thus Nf,vt (E0), which equals
1− 2ρ(Ãt ) = `, is a label of an open gap. ut

2. Statement of further results for SL(2,R)-cocycles

This paper actually contains more refined results on cocycles, and Theorem 3 is obtained
as a corollary of one of them, as we now explain.

A cocycle (f,A) is called bounded if there exists C > 1 such that ‖An(x)‖ ≤ C for
every x ∈ X and n ∈ Z. It is known that a cocycle is bounded if and only if it is conjugate
to a cocycle of rotations, that is, to (f, Ã) with Ã : X→ SO(2,R); see [Ca], [EJ], [Y].

Our next main result is:

Theorem 4 (Accessibility by bounded cocycles). If A ∈ C(X,SL(2,R)) r UH, then
there exists a continuous path At ∈ C(X,SL(2,R)), t ∈ [0, 1], such that A0 = A and
(f,At ) is conjugate to an SO(2,R)-valued cocycle for every t ∈ (0, 1]. Moreover, the
conjugacy can be chosen to depend continuously on t ∈ (0, 1].

In particular, bounded cocycles are dense in the complement of UH. In fact, we are able
to prove this fact directly and with weaker hypotheses on the dynamics:

Theorem 5 (Denseness of bounded cocycles). Assume that f is a minimal homeomor-
phism of a compact metric space X such that at least one of the following holds:

(a) X is finite-dimensional;
(b) f has at most countably many distinct ergodic invariant measures, and f has a non-

periodic finite-dimensional factor.

Then the bounded cocycles form a dense subset of C(X,SL(2,R))r UH.

We now focus on the case of cocycles that are homotopic to a constant, which form a
subset of C(X,SL(2,R)) that we indicate by C0(X,SL(2,R)).

Given A ∈ C0(X,SL(2,R)), fix a continuous determination ρ of the fibered rotation
number on a neighborhood of it. We say that the cocycle A is locked if ρ is constant on a
neighborhood ofA. We say thatA is semi-locked if it is not locked and it is a point of local
extremum for the function ρ. Otherwise we say that A is unlocked. This classification is
obviously independent of the chosen determination of ρ.

In fact, a cocycle is locked if and only if it is uniformly hyperbolic, and any semi-
locked cocycle A can be accessed by uniformly hyperbolic cocycles. The proof of these
statements and some related facts may be found in Appendix C. (Similar results for “non-
linear cocycles” over rotations can be found in [BJ].)
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For unlocked cocycles, we can strengthen the conclusion of Theorem 4 considerably:

Theorem 6 (Accessibility by cocycles conjugate to a rotation). LetA∈C0(X,SL(2,R))
be an unlocked cocycle. Let α ∈ R be such that α = ρf,A mod G. Then there exist
continuous paths At ∈ C(X,SL(2,R)), t ∈ [0, 1], and Bt ∈ C(X,SL(2,R)), t ∈ (0, 1],
such that A0 = A and Bt (f (x))−1At (x)Bt (x) = R2πα for t ∈ (0, 1].

The assumption that the cocycle be unlocked is necessary: see Remark 10.6.
It is useful to consider also a weaker notion of conjugacy: We say that two cocy-

cles (f,A) and (f, Ã) are projectively conjugate if there exists a projective conjugacy
B ∈ C(X,PSL(2,R)) such that Ã(x) = B(f (x))A(x)B(x)−1 modulo sign. The corre-
sponding version of Theorem 6 is:

Theorem 7 (Accessibility by cocycles projectively conjugate to a rotation). Let A ∈
C0(X,SL(2,R)) be an unlocked cocycle. Let α ∈ R be such that 2α = 2ρf,A mod G.
Then there exist continuous paths At ∈ C(X,SL(2,R)), t ∈ [0, 1], and Bt ∈

C(X,PSL(2,R)), t ∈ (0, 1], such that A0 = A and Bt (f (x))−1At (x)Bt (x) = R2πα
(modulo sign) for t ∈ (0, 1].

This result easily yields Theorem 3:

Proof of Theorem 3. Suppose A ∈ C(X,SL(2,R)) is homotopic to a constant with
2ρf,A ∈ G; we want to access A by a path At in UH. As mentioned above, if A is
locked, then A is in UH and thus we can take a constant path. If A is semi-locked, then
a path of the form At = RεtA (for some small ε 6= 0) works; see Proposition C.1. Thus
assume that A is unlocked.

Apply Theorem 7 with α = 0 and find continuous paths At ∈ C(X,SL(2,R)),
t ∈ [0, 1], and Bt ∈ C(X,PSL(2,R)), t ∈ (0, 1], such that A0 = A and At (x) =
Bt (f (x))Bt (x)

−1 (modulo sign) for t ∈ (0, 1]. Let τ : (0, 1]→ (1,∞) be a continuous
function. Take Ãt ∈ C(X,SL(2,R)) such that

Ãt (x) = Bt (f (x))

(
τ(t) 0

0 1/τ(t)

)
Bt (x)

−1 (modulo sign).

Choosing a function τ(t) that goes sufficiently fast to 1 as t → 0, we have limt→0 Ãt (x)

= A(x). This path has the desired properties. ut

As for uniformly hyperbolic cocycles, they cannot, in general, be approximated by cocy-
cles that are conjugate to a constant (see Remark 3 in [ABD]). But for projective conju-
gacy there is no obstruction; indeed we show:

Theorem 8 (Accessibility by cocycles projectively conjugate to a hyperbolic matrix).
Let A ∈ UH, and let D ∈ SL(2,R) be such that L(A) = L(D). Then there exist contin-
uous paths At ∈ C(X,SL(2,R)), t ∈ [0, 1], and Bt ∈ C(X,PSL(2,R)), t ∈ (0, 1], such
that A0 = A and Bt (f (x))At (x)Bt (x)−1

= D (in PSL(2,R)) for t ∈ (0, 1].
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Remark 2.1. Cocycles that are projectively conjugate to a constant are called reducible.
Theorems 7 and 8 (together with the fact that the set of semi-locked cocycles has empty
interior) imply that reducibility is dense in C0(X,SL(2,R)). As for uniform hyperbol-
icity, it is dense in C0(X,SL(2,R)) if and only if G is a non-discrete subgroup of R,
by Theorem 3 (and the basic fact (2)). This statement cannot be significantly improved;
compare Theorem 9 in Appendix B.

More generally, as in [ABD], we can let Ruth be the set of all cocycles that are
reducible up to homotopy (or, equivalently, are projectively conjugate to a cocycle
C0(X,SL(2,R)); see Lemma 8 in [ABD]). Any uniformly hyperbolic cocycle is reducible
up to homotopy, and in [ABD] it is shown that reducible uniformly hyperbolic cocycles
are dense in Ruth in the particular case where f is a generalized skew-product. Our results
imply that in our more general context, reducibility is still dense in Ruth, and uniformly
hyperbolic cocycles are dense in Ruth if and only if G is non-discrete.

Remark 2.2. We also notice the following consequence of our methods: any continu-
ous cocycle A that is not uniformly hyperbolic admits arbitrarily small neighborhoods in
C(X,SL(2,R))rUH that are path connected (and even have trivial homotopy groups in
all dimensions). See the comment after Proposition 9.2.

3. Outline of the paper and discussion of the methods

Most of the paper is dedicated to building up the tools that will be involved in the proof
of cousin Theorems 6 and 7, with the other results being obtained on the side. These tools
can be split into two classes of results which produce families of cocycles with certain
features. The input in either case is always some initial family of cocycles, but while the
first kind of result is only concerned with outputting a suitable perturbation of the family,
the second is primarily concerned with the extension of the parameter space.

The perturbation arguments are developed in Sections 4 to 7: they refine the ideas
introduced in [ABD] to deal with individual cocycles over generalized skew-shifts, both
to address a more general class of dynamical systems and to allow us to work in the con-
text of parameterized families. Since many problems about cocycles can be rephrased in
terms of the existence of invariant sections for an associated skew-product (for instance,
conjugacy to rotations is equivalent to the existence of an invariant section for the associ-
ated skew-product arising from the disk action of SL(2,R)), we first (Section 4) discuss
in a more abstract setting the problem of existence of almost invariant sections, satisfying
the invariance condition except in some specific set. The actual estimates for the section
depend on the recurrence properties of the set and the existence of sets with good recur-
rence properties is the topic of Section 5. Those results are used in Section 6 to show that
a family of SL(2,R)-cocycles with small Lyapunov exponents can be perturbed to be-
come continuously conjugate to a family of cocycles of rotations (Proposition 6.3); hence
Theorem 5 follows as a particular case. A similar result (Lemma 7.1), regarding the co-
homological equation (which plays a role when conjugating a cocycle of rotations to a
constant), is obtained in Section 7, and permits us to establish Theorem 8.
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The extension arguments are developed in Sections 8 and 9: the questions considered
are rather novel, and their proofs need the introduction of several ideas. In Section 8 we
show that a family of cocycles with zero Lyapunov exponent, defined over the boundary
of a cube, can be extended to a family of cocycles with small Lyapunov exponents, defined
over the whole cube, provided there is no topological obstruction (Lemma 8.1). The proof
is technically quite involved, jumping from the continuous to the measurable category and
back, and is mostly independent of the rest of the paper (which never departs from the
continuous category): it is also the only place where ergodic theory plays a significant
role. In Section 9, Lemma 8.1 is used to bootstrap a considerably more refined result
(Proposition 9.2): under the weaker condition that the boundary values are not uniformly
hyperbolic, one gets the stronger conclusion that the extended family can be continuously
conjugated to cocycles of rotations in the interior of the cube. In particular, we obtain
Theorem 4.

In Section 10, everything is put together in the proof of Theorems 6 and 7. We first
show (Lemma 10.3) that given A unlocked, it is possible to construct a two-parameter
family As,t , (s, t) ∈ [0, 1]2 with A0,0 = A, such that ρ(A0,s) < ρ(A) < ρ(As,0),
and which is continuously conjugate to rotations (except possibly at (0, 0)). This almost
implies that A is accessible from the interior of the square [0, 1]2 through a path with
constant rotation number. The actual accessibility of A by cocycles conjugate to a fixed
rotation is obtained with a little wiggling involving in particular the solution of the coho-
mological equation.

The following diagram gives the logical dependence between the sections:

4 //

��======= 6 //

��======= 8

��

10

5 //

@@�������
7

77oooooooooooooo
9

??��������

The paper also contains five appendices. The first contains complementary results
and examples concerning connectedness of some sets of cocycles. The second shows
that complete gap labeling, and even just the Cantor structure of the spectrum, ceases
to be generic when the assumption of unique ergodicity is dropped. The third presents
some facts on locked / semi-locked / unlocked cocycles. The fourth proves the projection
lemma that was used to realize SL(2,R) perturbations by Schrödinger matrices. Finally,
in the last appendix we show how Fayad’s results can be applied to obtain a mixing strictly
ergodic example with a dense set of labels.

4. Construction of almost invariant sections

In this section and in the next section, f : X → X is an arbitrary homeomorphism of a
compact metric space. In fact, even if we are ultimately interested in minimal dynamical
systems, in order to obtain “parameterized” results in the later sections, we will apply
the results obtained here to maps of the form f̂ (x, t) = (f (x), t) (the second coordinate
representing the parameter).
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Let Y be a topological space and let F : X×Y → X×Y be an invertible skew-product
over f , that is, a homeomorphism of the form (x, y) 7→ (f (x), Fx(y)). An invariant sec-
tion for F is a continuous map y : X → Y such that Fx(y(x)) = y(f (x)). Throughout
the paper, a common theme will be the construction of almost invariant sections, which
satisfy Fx(y(x)) = y(f (x)) in much of X. We define the support of an almost invariant
section as the set of all x such that Fx(y(x)) 6= y(f (x)). We will also be interested in es-
timating “how large” such almost invariant sections are. In the abstract setting considered
here, this largeness will be measured by a continuous function M : Y → [0,∞).

We say that the pair (Y,M) has the Tietze property if for any metric space L, every
continuous function y : K → Y defined on a compact subset K ⊂ L can be extended to
a continuous map y : L→ Y such that

sup
x∈L

M(y(x)) = sup
x∈K

M(y(x)).

The following are the examples of pairs (Y,M) that we will use:

• Y = R and M(y) = |y|;
• Y is the unit disk D andM(y) = d(y, 0), where d is the hyperbolic distance (see §6.1).

Using Tietze’s Extension Theorem, we see that the Tietze property holds in these two
examples.

We denote

|||F |||M = sup
(x,y)∈X×Y

|M(Fx(y))−M(y)| ∈ [0,∞].

Notice that |||F−1
|||M = |||F |||M .

To construct and estimate almost invariant sections whose support is contained in the
interior of a compact set K , we will need only a few aspects of the recurrence of the
dynamics to K , which we encode in the following notions. We say that K ⊂ X is n-good
if its first n iterates are disjoint, that is, f i(K) ∩ K = ∅ for 1 ≤ i ≤ n − 1. Let us say
that K ⊂ X is N -spanning if the first N iterates cover X, that is,

⋃N−1
i=0 f i(K) = X. We

say that K ⊂ X is d-mild if the orbit {f nx : n ∈ Z} of each point in X enters ∂K at most
d times. The construction of sets with appropriate recurrence properties, under suitable
dynamical assumptions, will be carried out in the next section.

The following abstract lemma is the main result of this section. (A simple particular
case of it, where the dynamics fibers over an irrational rotation, corresponds to Lemma 2
from [ABD].)

Lemma 4.1. Let f : X→ X be a homeomorphism of a compact metric spaceX, and let
K ⊂ X be a d-mild, n-good, N -spanning set. Let 3 ⊂ X be a compact (possibly empty)
f -invariant set. Let (Y,M) be a pair with Tietze property, and let F : X × Y → X × Y

be an invertible skew-product over f . Let y0 : X → Y be an almost invariant section
supported outside 3. Then there exists an almost invariant section y : X→ Y supported
in intK with the following properties:

(a) y equals y0 on 3;
(b) supx∈XM(y(x)) ≤ supx∈XM(y0(x))+ d maxj∈[n,N ] |||F

j
|||M .
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Proof. We begin by using the set K and the dynamics f to decompose the space X.
For each x ∈ X, let

`+(x) = min{j ≥ 0 : f j (x) ∈ intK}, `−(x) = min{j > 0 : f−j (x) ∈ intK},

T (x) = {j ∈ Z : −`−(x) < j < `+(x)}, TB(x) = {j ∈ T (x) : f j (x) ∈ ∂K}.

Notice T and TB are upper-semicontinuous. Define N(x) = #TB(x) and Xi = {x ∈ X :
N(x) ≥ d − i}. The sets Xi are closed and

X = Xd ⊃ Xd−1
⊃ · · · ⊃ X0

⊃ X−1
= ∅.

Let also Zi = Xi rXi−1
= {x : N(x) = d − i}.

Claim. `+ is locally constant on the set Zi .

Proof. We will show that TB and T are locally constant on Zi . Fix x ∈ Zi and let y ∈ Zi

be very close to x. We have TB(y) ⊂ TB(x). Since y is also in Zi , we must have equality.
Now, if j ∈ T (x), then either f j (x) ∈ ∂K or f j (x) ∈ X r K . In the former case,
f j (y) ∈ ∂K (because TB(y) = TB(x)), and in the latter, f j (y) is also inXrK (because
y is close to x). Since f `

+(x)(y), f−`
−(x)(y) /∈ intK , we conclude that T (y) = T (x). ut

Let Zi` = {x ∈ Z
i : `+(x) = `}; by the claim this is a (relatively) open subset ofXi . Also

notice the following facts:

Xi = Xi−1
t Zi0 t Z

i
1 t · · · t Z

i
N , Zi` r Zi` ⊂ X

i−1,

Zi0 = Z
i
∩ intK, f (Zi`) = Z

i
`−1 if ` > 0.

Now let (Y,M), F , 3, y0 be as in the assumptions of the lemma. We will describe a
procedure to successively define y on the set 3 ∪ (X0

∩ intK), then on 3 ∪X0, then on
3 ∪ X0

∪ (X1
∩ intK), then on 3 ∪ X1, then on 3 ∪ X1

∪ (X2
∩ intK), . . . , then on

3 ∪Xd−1
∪ (Xd ∩ intK), and finally on 3 ∪Xd = X.

We begin by defining y on 3 ∪ (X0
∩ intK) as equal to y0.

Let i ∈ {0, . . . , d}. Assume, by induction, that the map y has already been continu-
ously defined on the set 3 ∪Xi−1

∪ (Xi ∩ intK), and has the two properties below:

F(x, y(x)) = (f (x), y(f (x))) for every x in the domain and not in intK , (7)
sup

x∈3∪Xi−1∪(Xi∩intK)
M(y(x)) ≤ sup

x∈X

M(y0(x))+ iA, (8)

where A = maxj∈[n,N ] |||F
j
|||M .

Now, for each ` = 1, . . . , N , the map y is already defined on f `(Zi`) ⊂ X
i
∩ intK .

Naturally, we define y on Zi` by

y(x) = (F `x )
−1(y(f `(x))).

This defines y on the set 3 ∪Xi in such a way that (7) holds, and moreover

sup
x∈3∪Xi

M(y(x)) ≤ sup
x∈3∪Xi−1∪(Xi∩intK)

M(y(x))+ A.
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Let us check that the map y so defined on 3 ∪ Xi is continuous. Since 3 and Xi are
closed sets and y|3 = y0|3 is continuous, we only need to check that y|Xi is continuous.
Take a sequence xj in Xi converging to some x and let us show that y(xj ) → y(x). If
x ∈ Zi , convergence follows from the claim above and the continuity of y|Xi ∩ intK .
Next assume x ∈ Xi−1. SinceXi = Xi−1

tZi0tZ
i
1t· · ·tZ

i
N , and y|Xi−1 is continuous, it

suffices to consider the case where the sequence xj is contained in some Zi`. Then f `(xj )
and f `(x) all belong to (Xi ∩ intK) ∪ Xi−1, where y is continuous. So, applying F−`,
we obtain y(x) = lim y(xj ), as desired.

At this point, y is continuously defined on 3 ∪Xi . If i = d , we are done. Otherwise,
we use the Tietze property to extend continuously y to 3∪Xi ∪ (Xi+1

∩ intK) in a way
such that

sup
x∈3∪Xi∪(Xi+1∩intK)

M(y(x)) = sup
x∈3∪Xi

M(y(x)).

Then the hypotheses (7) and (8) hold with i+1 in place of i; thus we can increment i and
continue the procedure. ut

5. Construction of sets with controlled return times

In the applications of Lemma 4.1, it would be bad if N was much larger than n (because
then we would not get a useful estimate for the M-size of the almost invariant section).
This issue is settled by means of the following result:

Proposition 5.1. Let f : X → X be a homeomorphism of a compact metric space that
admits a non-periodic minimal finite-dimensional factor. Then there is d ∈ N such that
for every n ∈ N, there is a compact set K ⊂ X that is n-good, (d + 2)n − 1-spanning,
and d-mild.

We mention that in the case where f fibers over an irrational rotation, the proposition can
be proven (with d = 1) by a simple explicit construction based on continued fractions—
see Figure 1 from [ABD].

If f̃ : X̃ → X̃ is a factor of f : X → X and K̃ ⊂ X̃ is d-mild, n-good and N -
spanning for f̃ , then π−1(K̃) is d-mild, n-good andN -spanning for f̃ , where π : X→ X̃

is a continuous surjective map such that π ◦ f = f̃ ◦ π . Thus it suffices to prove this
statement for the minimal non-periodic finite-dimensional factor of f . For the remainder
of this section, it will therefore be assumed that X is finite-dimensional and infinite and
that f is minimal.

Lemma 5.2. There exists d ∈ N such that for every compact set K ⊂ X and every
neighborhood U of K , there exists a compact neighborhood K ′ ⊂ U of K that is d-mild.

Proof. This follows easily from Lemmas 4 and 5 in [AB]. ut

Let now d given by Lemma 5.2 be fixed.

Lemma 5.3. Let K ⊂ X be an n-good, N -spanning compact set. Then there exists a
compact neighborhood K ′ of K that is n-good, N -spanning and d-mild.
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Proof. If K ′ is a compact neighborhood of K sufficiently close to K , then it is still n-
good and N -spanning. So the result follows from Lemma 5.2. ut

Lemma 5.4. For every n ∈ N, there exists an n-good, (d + 2)n − 1-spanning compact
set K ⊂ X.

Proof. Let n be fixed. Let us start with a compact set K with non-empty interior whose
first n iterates are disjoint (a small compact neighborhood of any point will do). By mini-
mality, K is n-good and N -spanning for some N . Let us show that if N ≥ (d + 2)n, then
there exists an enlargement of K that is n-good and N − 1-spanning.

Assume K is not N − 1-spanning. Let K ′ be a compact neighborhood of K that is
n-good, N -spanning and d-mild, and also not N − 1-spanning. Let K∗, resp. K ′∗, be the
set of x in K , resp. K ′, such that for each i with 1 ≤ i < N , the point f i(x) does not
belong to K , resp. K ′. Let Y be the non-empty set K ′∗. Notice that Y is contained in K∗
and thus is N -good. To simplify notation, replace K with K ′.

If x ∈ Y and f j (x) ∈ K with 1 ≤ j ≤ N − 1, then f j (x) ∈ ∂K . For x ∈ Y , let
J (x) be the set of all j with 1 ≤ j ≤ N − 1 and f j (x) /∈ K . Let I (x) be the set of all i
with 1 ≤ i ≤ d + 1 such that {in, in+ 1, . . . , (i + 1)n− 1} ⊂ J (x). Since K is d-mild,
{1, . . . , N − 1}r J (x) has at most d elements and I (x) 6= ∅ for every x ∈ Y .

If for each x ∈ Y we choose a non-empty subset Ĩ (x) of I (x), then the formula

K ′ = K ∪
⋃
x∈Y

⋃
i∈Iε(x)

f in(x)

defines an n-good and N − 1-spanning set. For K ′ to be compact, we need to guarantee
that

for any i, the set {x ∈ Y : Ĩ (x) 3 i} is closed. (9)

For x ∈ Y and ε > 0, let B(x, ε) = {y ∈ Y : d(y, x) < ε}. Let Jε(x) =⋂
y∈B(x,ε) J (y) and Iε(x) =

⋂
y∈B(x,ε) I (y). For any x ∈ Y , there is ε(x) > 0 such

that Jε(x)(x) = J (x), and hence Iε(x)(x) = I (x). Since Y is compact, it can be covered
by finitely many balls B(xk, ε(xk)). Let ε be a Lebesgue number for this cover. Then, for
each x ∈ Y , there exists some k such that B(x, ε) ⊂ B(xk, ε(xk)) and therefore

Iε(x) =
⋂

y∈B(x,ε)

I (y) ⊃
⋂

y∈B(xk,ε(xk))

I (y) = Iε(xk)(xk) = I (xk) 6= ∅.

Defining Ĩ (x) = Iε(x), it is easy to see that (9) is satisfied. Thus there exist an n-good
and N − 1-spanning compact set, as we wanted to show. ut

Remark 5.5. Motivated by this result, we pose the following question: If f is a homeo-
morphism of a compact space (possibly of infinite dimension) without periodic points, is
it true that for every n ∈ N, there exists a compact set whose first n iterates are disjoint
and such that finitely many iterates cover the whole space? A related result is Theorem 3.1
in [BC].

Proposition 5.1 follows readily from the previous lemmas.
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6. From slow growth to invariant sections for the disk action

6.1. The disk action and the adjustment lemma

The group SL(2,R) acts on the upper half-plane H = {w ∈ C : Im z > 0} as follows:

A =

(
a b

c d

)
∈ SL(2,R) ⇒ A · w =

aw + b

cw + d
.

(In fact, the action factors through PSL(2,R).) We fix the following conformal equiva-
lence between H and the disk D = {z ∈ C : |z| < 1}:

w =
−iz− i

z− 1
∈ H ↔ z =

w − i

w + i
∈ D.

Conjugating through this equivalence, we get an action of SL(2,R) on D, which we also
denote as (A, z) 7→ A · z.

The disk is endowed with the Riemannian metric

v ∈ TzD ⇒ ‖v‖z =
2|v|

1− |z|2
.

Let d(·, ·) denote the induced distance function. The group SL(2,R) acts on D by isome-
tries.

It can be shown that

‖A‖ = ed(A·0,0)/2 for all A ∈ SL(2,R). (10)

In particular, A ∈ SO(2,R) iff A · 0 = 0.
Let us recall Lemmas 5 and 6 from [ABD]:

Lemma 6.1. There exists a continuous map8 : D×D→ SL(2,R) such that8(p1, p2)·

p1 = p2 and ‖8(p1, p2)− Id‖ ≤ ed(p1,p2) − 1.

Lemma 6.2 (Disk Adjustment). For every n ≥ 1, there exists a continuous map 9n :
SL(2,R)n × D2

→ SL(2,R)n such that if 9n(A1, . . . , An, p, q) = (Ã1, . . . , Ãn), then

(a) Ãn · · · Ã1 · p = q;
(b) ‖ÃiA−1

i − Id‖ ≤ exp
( 1

2nd(An · · ·A1 · p, q)
)
− 1 for 1 ≤ i ≤ n.

6.2. Construction of an invariant section

Let f : X→ X be a homeomorphism of a compact metric space. IfA ∈ C(X,SL(2,R)),
the cocycle (f,A), as defined in the introduction, is a skew-product on X × SL(2,R).
The disk action of SL(2,R) allows us to consider also another skew-product denoted by
FD
f,A : X × D → X × D and given by FD

f,A(x, z) = (x,A(x) · z). The existence of an
invariant section for FD

f,A is easily seen to be equivalent to (f,A) being conjugate to a
cocycle of rotations. Indeed, if 8 is given by Lemma 6.1 and B(x) = 8(z(x), 0), then
B(f (x))A(x)B(x)−1 is a rotation for every x.

If A ∈ C(X,SL(2,R)) (or, more, generally, A(x) is a 2 × 2 real matrix depending
continuously on x ∈ X), we denote ‖A‖∞ = supx∈X ‖A(x)‖.
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Proposition 6.3. Let f : X → X be a homeomorphism of a compact metric space that
admits a minimal non-periodic finite-dimensional factor, and let 3 ⊂ X be a (possibly
empty) compact invariant set. For every C, ε > 0, there exists γ > 0 such that the
following holds. Suppose that A : X→ SL(2,R) is continuous,

‖A‖∞ < C and lim
n→∞

sup
x∈X

1
n

log ‖An(x)‖ < γ,

and that FD
f |3,A|3 admits an invariant section z. Then A|3 extends to a continuous map

Ã : X → SL(2,R) such that ‖Ã − A‖∞ < ε and z extends to an invariant section z̃
for FD

f,Ã
.

Proof. Let d be given by Proposition 5.1. Let γ > 0 be such that e[1+2d(d+1)]γ < 1+ε/C.
Let n0 be such that n ≥ n0 implies ‖An(x)‖ ≤ enγ for every x ∈ X.

Let M : D → [0,∞) be the hyperbolic distance to 0. Fix some extension of z to
an element of C(X,D) and set C1 = supx∈XM(z(x)). Choose n ∈ N so that n >

max{n0, γ
−1 logC,C1/γ }. Let K be the corresponding d-mild, n-good, N -spanning set

given by Proposition 5.1, where N = (d + 2)n− 1.
We have

|||(FD
f,A)

j
|||M = sup

x∈X

sup
w∈D
|d(Aj (x) · w, 0)− d(w, 0)| (by definition)

≤ sup
x∈X

∣∣∣d(Aj (x) · 0, 0)
∣∣∣ (since d is SL(2,R)-invariant)

≤ 2 sup
x∈X

log ‖Aj (x)‖ (by (10))

≤ 2jγ, provided j ≥ n > n0.

Applying Lemma 4.1 we obtain an almost invariant section ẑ for FD
f,A, which is supported

in intK and satisfies

sup
x∈X

M(ẑ(x)) ≤ sup
x∈X

M(z(x))+ d max
n≤j≤N

|||(FD
f,A)

j
|||M .

Thus we obtain M(ẑ(x)) ≤ C1 + 2dNγ for every x ∈ X.
Let 9n be given by Lemma 6.2 and put(
Ã(x), Ã(f (x)), . . . , Ã(f n−1(x))

)
= 9n

(
A(x),A(f (x)), . . . , A(f n−1(x)), ẑ(x), ẑ(f n(x))

)
for each x ∈ K . This defines Ã on

⊔n−1
m=0 f

m(K). We let Ã = A on the rest of X. Clearly
Ã is a continuous extension of A|3.

For each x ∈ K , and 1 ≤ m ≤ n − 1, let z̃(fm(x)) = Ãm(x) · ẑ(x). This defines z̃
on
⊔n−1
m=1 f

m(K). We let z̃ = ẑ on the rest of X. It is easy to see that z̃ is a continuous
extension of z|3 and that z̃ is an invariant section for Ã.
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To complete the proof, we need to check that Ã and A are ‖ · ‖∞-close. We have

d
(
An(x) · ẑ(x), ẑ(f nx)

)
≤ d

(
An(x) · ẑ(x), 0

)
+ d

(
0, ẑ(f nx)

)
≤ d(ẑ(x), 0)+ 2 log ‖An(x)‖ + d(0, ẑ(f nx))
≤ 2(C1 + 2dNγ )+ 2nγ ≤ [4+ 2d(d + 2)]nγ.

Hence, using Lemma 6.2,

‖Ã− A‖∞ ≤ C‖ÃA
−1
− Id‖∞ ≤ C sup

x∈X

[
exp

[ 1
2nd(An(x) · ẑ(x), ẑ(f nx))

]
− 1

]
≤ C(e[2+d(d+2)]γ

− 1) < ε. ut

Let us obtain Theorem 5 from the proposition just proved:

Proof of Theorem 5. Assume that f : X → X is a minimal homeomorphism with
a finite-dimensional non-periodic factor. We claim that if X is finite-dimensional, or
there exist at most countably many ergodic invariant measures for f , then a generic
A ∈ C(X,SL(2,R))r UH satisfies

lim
n→∞

sup
x∈X

1
n

log ‖An(x)‖ = 0. (11)

In the first case, this is the main result of [AB]. In the second case, [Bo] shows that for each
ergodic invariant measure µ, for a generic A ∈ C(X,SL(2,R)), the Lyapunov exponent
relative to µ vanishes, so taking the (at most countable) intersection, we conclude that for
a generic A ∈ C(X,SL(2,R)), the Lyapunov exponent vanishes simultaneously for all
ergodic invariant measures, and it follows from Proposition 1 in [AB] that (11) holds.

Applying Proposition 6.3 with 3 = ∅, we conclude that any cocycle A ∈

C(X,SL(2,R)) r UH can be approximated by some Ã that is conjugate to a cocycle
of rotations. ut

7. Solving the cohomological equation

From now on, we assume as usual that f : X → X is strictly ergodic with invariant
probability measure µ and has a non-periodic finite-dimensional factor.

Lemma 7.1. Let T be a locally compact separable metric space and let T ∗ ⊂ T be a
closed subset (possibly empty). Let ϕ ∈ C0(T × X,R) and ψ ∈ C(T ∗ × X,R) be such
that ϕ(t, x) = ψ(t, f (x))−ψ(t, x)+c(t) for (t, x) ∈ T ∗×X, where c(t) =

∫
ϕ(t, ·) dµ.

Then, for every continuous function ε : T → R+, there exist ϕ̃ ∈ C(T×X,R), coinciding
with ϕ on T ∗ × X, and ψ̃ ∈ C(T × X,R), coinciding with ψ on T ∗ × X, such that
|ϕ̃(t, x)−ϕ(t, x)| < ε(t) and ϕ̃(t, x) = ψ̃(t, f (x))−ψ̃(t, x)+c(t) for all (t, x) ∈ T ×X.

The proof of this proposition is somewhat similar to Proposition 6.3, using the abstract
Lemma 4.1 and Proposition 5.1.
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Proof. Let us assume first that T is compact. In this case, we may replace the func-
tion ε by a positive number. Let the functions ϕ and ψ be given. Let Sj (t, x) =∑j−1
m=0 ϕ(t, f

m(x)) and c(t) =
∫
ϕ(t, x) dµ(x). Using that T is compact, it is easy to

see that j−1Sj (t, x) converges to c(t) uniformly over (t, x) ∈ T ×X.
Let d be given by Proposition 5.1. Choose δ > 0 with [2d(d + 2) + 1]δ < ε, and

choose j0 such that |j−1Sj (t, x) − c(t)| < δ uniformly for (t, x) ∈ T × X, and j ≥ j0.
Then choose n ≥ j0 such that 2‖ψ‖∞/n+[2d(d+2)+1]δ < ε. (Here ‖ψ‖∞ is meant to
be 0 in the case that T ∗ = ∅.) By Proposition 5.1, there is a compact set K that is d-mild,
n-good, and N -spanning, where N = (d + 2)n− 1.

Let X̂ = T × X, and f̂ : X̂ 3 (t, x) 7→ (t, f (x)). Consider the skew-product on
X̂ × R over f̂ given by

F = FR
f̂ ,ϕ

: (t, x,w) 7→ (t, f (x), w + ϕ(t, x)− c(t)).

Let 3 = T ∗ × X. By assumption, the map ψ ∈ C(3,R) is an invariant section of the
skew-product F |3 × R over f̂ |3. Let ψ0 ∈ C(X̂,R) be a continuous extension of ψ ,
so that ‖ψ0‖∞ = ‖ψ‖∞. (If T ∗ = ∅, take ψ0 ≡ 0.) Then ψ0 is an almost invariant
section for the skew-product F supported outside 3. Applying Lemma 4.1 with the pair
(Y,M) = (R, |·|), we obtain an almost invariant section ψ̂ ∈ C(X̂,R) supported in intK
(i.e., ϕ(t, x) = ψ̂(t, f (x))− ψ̂(t, x)+ c(t), provided x 6∈ intK) that coincides with ψ0
(and hence with ψ) on 3, and

‖ψ̂‖∞ ≤ ‖ψ0‖∞ + d max
j∈[n,N ]

|||F j |||M = ‖ψ‖∞ + d max
j∈[n,N ]

sup
(t,x)

∣∣Sj (t, x)− jc(t)∣∣
< ‖ψ‖∞ + dNδ.

Let us define a function ϕ̃ : X̂→ R. For each t ∈ T , x ∈ K , and 0 ≤ m < n, set

ϕ̃(t, fm(x)) = ϕ(t, fm(x))+
ψ̂(t, f n(x))− ψ̂(t, x)− Sn(t, x)+ nc(t)

n
.

This defines ϕ̃ on T ×
⊔n−1
m=0 f

m(K); let it equal ϕ in the complement of this set. Then ϕ̃
is continuous and

‖ϕ̃ − ϕ‖∞ ≤ 2‖ψ‖∞/n+ [2d(d + 2)+ 1]δ < ε.

Notice that if t ∈ T ∗, then ψ̂(t, x) = ψ0(t, x) = ψ(t, x) and thus ϕ̃(t, x) = ϕ(t, x).
Let us define another function ψ̃ : X̂ → R. For each t ∈ T , x ∈ K , and 0 ≤ m < n,

set

ψ̃(t, fm(x)) = ψ̂(t, x)+

m−1∑
j=0

[ϕ̃(t, f j (x))− c(t)].

This defines ψ̃ on T ×
⊔n−1
m=0 f

m(K); let it equal ψ̂ in the complement of this set. Then
ψ̃ is continuous and ϕ̃(t, x) = ψ̃(t, f (x))− ψ̃(t, x)+ c(t) for all (t, x) ∈ T ×X. Also,
ψ̃(t, x) = ψ(t, x) when t ∈ T ∗. So the functions ϕ̃ and ψ̃ have all the desired properties.
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This concludes the proof in the case where T is compact. Let us now consider the
general case. The hypotheses on T imply that there exists an exhaustion of T in the sense
that T =

⋃
∞

i=1 Ti with Ti compact and Ti ⊂ int Ti+1.
We initially define ϕ̃ and ψ̃ on T1 × X, by applying the compact case with the data

Tnew = T1, T ∗new = T1 ∩ T
∗, ϕnew = ϕ|T1, ψnew = ψ |(T1 ∩ T

∗), εnew = ε|T1: this yields
functions ϕ̃new, ψ̃new : T1 × X → R, which we take as the definition of ϕ̃ and ψ̃ on
T1×X. By construction, all requirements are satisfied when we restrict considerations to
T1 ×X.

Assume we have already defined ϕ̃ and ψ̃ on Ti × X so that all requirements are
satisfied when considerations are restricted to Ti ×X. Choose a continuous function ϕi :
Ti+1 × X → R that coincides with ϕ̃ on Ti × X and with ϕ on (T ∗ ∩ Ti+1) × X, such
that

∫
ϕi(t, x) dµ(x) = c(t) for every t ∈ Ti+1 and satisfying |ϕi(t, x)− ϕ(t, x)| < ε(t)

for every (t, x) ∈ Ti+1 × X. Now apply the compact case again with data Tnew = Ti+1,
T ∗new = Ti ∪ (Ti+1 ∩ T

∗), ϕnew = ϕi , ψnew = ψ̃ |(Ti ∪ (Ti+1 ∩ T
∗)) and εnew(t) =

ε(t) − supx∈X |ϕi(t, x) − ϕ(t, x)|. This yields functions ϕ̃new, ψ̃new : Ti+1 × X → R,
which we take as the definitions of ϕ̃ and ψ̃ on Ti+1 × X. Notice that, by construction,
the new definitions extend the previous ones, and satisfy all the requirements when we
restrict considerations to Ti+1 ×X.

By induction, this procedure yields functions ϕ̃, ψ̃ : T ×X→ R. These functions are
continuous since they locally coincide with a continuous function obtained in a finite stage
of the induction (here we use that

⋃
int Ti = T ), and satisfy all the other requirements

over T ×X (since those can also be verified at a finite stage of the induction). ut

Proof of Theorem 8. Let A ∈ UH, and let D ∈ SL(2,R) be such that L(D) = L(A). Set

1(r) =

(
er 0
0 e−r

)
.

We can assume that D = 1(c) for some c ∈ R. It is not difficult (see, e.g., the proof of
Lemma 4 in [ABD]) to show that there are continuous maps B : X → PSL(2,R) and
ϕ : X→ R such that A(x) = B(f x)−11(ϕ(x)) B(x) (in PSL(2,R)) and

∫
ϕ dµ = c.

Apply Lemma 7.1 (with T = (0, 1] and T ∗ = ∅) to find continuous functions ϕ̃, ψ̃ :
(0, 1]×X→ R such that

|ϕ̃(t, x)− ϕ(x)| < ε(t) where ε(t)→ 0 as t → 0,

ϕ̃(t, x) = ψ̃(t, f x)− ψ̃(t, x)+ c.

Define

At (x) = B(f x)
−11(ϕ(t, x)) B(x) and Bt (x) = 1(−ψ̃(t, x)) B(x).

Then At → A as t → 0 and At (x) = Bt (f x)D Bt (x)−1, as desired. ut
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8. Extending families of cocycles: small Lyapunov exponents

Let T be a topological space. We say that At , t ∈ T , is a continuous family of cocycles
if At ∈ C(X,SL(2,R)) for every t ∈ T and the map T 3 t 7→ At ∈ C(X,SL(2,R)) is
continuous. If B is a subset of C(X,SL(2,R)) that contains {At : t ∈ T } and such that
the map T 3 t 7→ At ∈ B is homotopic to a constant, then we say that that the family
of cocycles At is contractible in B. For example, a continuous family of cocycles At ,
t ∈ ∂[0, 1]p, taking values in a set B is contractible in B if and only if there is an extended
continuous family of cocycles At , t ∈ [0, 1]p, also taking values in B.

Given a continuous family of cocyclesAt , t ∈ T , we say that zt , t ∈ T , is a continuous
family of sections if each t ∈ T corresponds to an invariant section zt ∈ C(X,D) for the
skew-product FD

f,At
(see §6.2), and the map T 3 t 7→ zt ∈ C(X,D) is continuous.

The parameter spaces that we use next are the p-dimensional cube [0, 1]p and its
boundary ∂[0, 1]p. The goal of this section is to prove the following result:

Lemma 8.1. Let p ≥ 1 and let B ⊂ C(X,SL(2,R)) be a bounded open set. Let At ,
t ∈ ∂[0, 1]p, be a continuous family of cocycles that is contractible in B, and such that
L(At ) = 0 for all t ∈ ∂[0, 1]p. Then, for any γ > 0, we can find a continuous family of
cocycles Ât , t ∈ [0, 1]p, taking values in B and extending the family At , t ∈ ∂[0, 1]p,
such that L(Ât ) < γ for every t ∈ [0, 1]p.

The proof of Lemma 8.1 requires several preliminaries. A measurable set Y ⊂ X is called
a coboundary if there is a measurable set Z such that Y = Z M f−1(Z) µ-mod 0. Non-
coboundaries are relatively easy to find:

Lemma 8.2 (Corollary 3.5 from [K]). If Z ⊂ X is a positive measure set, then there is
a measurable set Y ⊂ Z that is not a coboundary.

Our interest in non-coboundaries is due to the following fact, already used in [K]:

Lemma 8.3. Let A : X → SL(2,R) be such that log ‖A‖ is µ-integrable. Assume that
there exist two measurable maps e1, e2 : X→ P1 such that

e1(x) 6= e2(x), A(x) · {e1(x), e2(x)} = {e1(f x), e2(f x)} for µ-almost every x.

If the set Y = {x ∈ X : A(x) · e1(x) = e2(f x)} is not a coboundary, then the Lyapunov
exponent L(A) vanishes.

Proof. Assume that L(A) > 0, and consider the two Oseledets directions e+, e− :
X → P1. It follows from Oseledets’s Theorem that {e1(x), e2(x)} = {e+(x), e−(x)}

for almost every x. Let W be the set of x where e1(x) = e+(x). Then W M f−1(W) is
precisely the set Y . Hence it is a coboundary. ut

If Z ⊂ X is a measurable set of positive measure, the first-return map fZ : Z → Z

is defined as fZ(x) = f rZ(x)(x), where rZ(x) is the least positive integer n such that
f n(x) ∈ Z. The probability measure µ/µ(Z) is invariant and ergodic with respect to fZ .
If A : X → SL(2,R) is such that log ‖A‖ ∈ L1(µ), then we define the induced cocycle
AZ : Z→ SL(2,R) by AZ(x) = ArZ(x)(x).
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Lemma 8.4 (cf. Lemma 2.2 from [K]). The Lyapunov exponent of the cocycle AZ over
the dynamics fZ and with respect to the ergodic measureµ/µ(Z) is equal toL(A)/µ(Z).

A well-known theorem by Lusin states that a measurable function can be altered in a set
of arbitrarily small measure so that it becomes continuous. We will need a parameterized
version of this:

Lemma 8.5. Assume T is a compact metric space. Let ψ : T ×X→ R be a Borel mea-
surable function such that for every t ∈ T , there is a full measure subset of X consisting
of points x with the property that the function t ′ 7→ ψ(t ′, x) is continuous on a neighbor-
hood of t . Then for every β > 0, there exists a continuous function φ : T ×X→ R such
that for every t ∈ T , the points x ∈ X where φ(t, x) 6= ψ(t, x) form a set of measure less
than β.

Proof. For each t ∈ T and r > 0, let B̄(t, r) be the closed ball of radius r centered at t ,
and

G(t, r) = {x ∈ X : t ′ 7→ ψ(t ′, x) is continuous on B̄(t, r)}.

For every t ∈ T , there is ρ(t) > 0 such that µ(G(t, ρ(t))) > 1 − β/3. Take a cover
of T by finitely many balls Bi = B̄(ti, ρ(ti)). Now, for each i, let Ki ⊂ G(ti, ρ(ti)) be
compact with µ(Ki) > 1 − 2β/3. Consider the mapping 9i : Ki → C(Bi,R) given by
t ′ 7→ (x ∈ Bi 7→ ψ(t ′, x)). Take a subset K ′i ⊂ Ki with µ(K ′i) > 1− β such that 9i |K ′i
is continuous. Let L =

⋃
i Bi ×K

′

i . Then L is compact, ψ restricted to L is continuous,
and for each t , the set of x such that (t, x) belongs to L has measure at least 1 − β. Let
φ : T ×X→ R be a continuous extension of ψ |L, given by Tietze’s Extension Theorem.
Then φ has the required properties. ut

We say that At , t ∈ T , is an L∞ family of cocycles if At ∈ L∞(X,SL(2,R)) for every
t ∈ T , the map (t, x) 7→ At (x) is measurable and supt ‖At‖∞ is finite.

We say thatAt , t ∈ T , is an almost-continuous family of cocycles if it is anL∞ family,
T is a compact metric space, and for every t ∈ T , there is a full measure setGt ⊂ X such
that for each x ∈ Gt , the mapping t ′ 7→ At ′(x) is continuous in a neighborhood of t .

We define a weak metric on the set L∞(X,SL(2,R)) as follows:

dw(A,B) = inf
{
β > 0 : µ{x ∈ X : ‖A(x)− B(x)‖ > β} < β

}
.

Lemma 8.6. Assume At , t ∈ T , is an almost-continuous family of cocycles. Let λ =
supt∈T L(At ), and fix M > supt ‖At‖∞. Then:

(a) limn→∞ supt∈T n
−1 ∫

X
log ‖Ant ‖ dµ = λ;

(b) for every γ > λ, there exists β > 0 with the following properties. Assume that Bt ,
t ∈ T , is an L∞ family of cocycles such that ‖Bt‖∞ < M and dw(Bt , At ) < β for
every t ∈ T . Then L(Bt ) < γ for every t .

Proof. The limit in part (a) exists by subadditivity, and is obviously larger than or equal
to λ. Let us prove the reverse inequality.
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Fix η > 0 and take t ∈ T . Let m ∈ N be such that m−1 ∫ log ‖Amt ‖ dµ < λ + η.
SinceAt is an almost-continuous family of cocycles, so isAmt . Hence for any ε > 0, there
exists δ > 0 such that

µ
{
x ∈ X : ‖Amt ′ (x)− A

m
t (x)‖ < ε for all t ′ ∈ B(t, δ)

}
> 1− ε.

Since the family is essentially bounded, we can find δ = δ(t) > 0 such that
m−1 ∫ log ‖Am

t ′
‖ dµ < λ + 2η for every t ′ ∈ B(t, δ). It follows from subadditivity that

there exists m̄ = m̄(t) ∈ N such that

1
n

∫
log ‖Ant ′‖ dµ < λ+ 3η for all t ′ ∈ B(t, δ) and n ≥ m̄.

Now take a cover of T by finitely many balls B(ti, δ(ti)). Let n0 = maxi m̄(ti). Then

1
n

∫
log ‖Ant ‖ dµ < λ+ 3η for every t ∈ T and n ≥ n0. (12)

Since η > 0 is arbitrary, part (a) of the lemma follows.
Let ε > 0 be small. There exists β > 0 such that if Bt , t ∈ T , is an L∞ family of

cocycles with dw(Bt , At ) < β for each t , then dw(B
n0
t , A

n0
t ) < ε. Now, if in addition

‖Bt‖∞ < M and ε was chosen small enough, it follows from (12) that

1
n0

∫
log ‖Bn0

t ‖ dµ < λ+ 4η,

which implies L(Bt ) < λ+ 4η for every t ∈ T . This proves part (b). ut

After these preliminaries, we can prove Lemma 8.1.

Proof of Lemma 8.1. Let us first explain informally the steps of the proof:

(a) We select a bounded cocycle D in B and a small tower for f along which some
products of D are rotations.

(b) By assumption, the given family At of cocycles can be extended to a family defined
in the whole cube, which we also denote by At .

(c) In the crucial step, we find an almost-continuous family of cocycles Bt that has zero
exponents for all values of the parameter and is uniformly very close to At every-
where except in the tower. This is done using Lemma 8.3.

(d) We use Lemma 8.5 to approximate Bt by a continuous family of cocycles Ãt ; by
Lemma 8.6 we get L(Ãt ) small for every t .

(e) Since the original family of cocycles At , t ∈ ∂[0, 1]p, has zero exponents, we can
interpolate it with the Ãt family near the boundary of the cube and obtain a continuous
family Ât , t ∈ [0, 1]p, that coincides with the initial family in the boundary, and (by
semicontinuity) has small exponent in the whole cube.

Now let us give the actual proof.
Since the set B is bounded and L(At ) = 0 for every t ∈ ∂[0, 1]p, by part (b) of

Lemma 8.6 there is β > 0 such that whenever A′t , t ∈ ∂[0, 1]p, is an L∞ family of
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cocycles taking values in B and with dw(A
′
t , At ) < β, we have L(A′t ) < γ for every

t ∈ ∂[0, 1]p.
Since the familyAt , t ∈ ∂[0, 1]p, is contractible in B, we can extend it to a continuous

family At , t ∈ [0, 1]p, also taking values in B.
Let ε > 0 be very small. (Actual smallness requirements will emerge several times

along the proof.)
Let tc = (1/2, . . . , 1/2) be the center of the cube. We may assume that Atc = At

for some t ∈ ∂[0, 1]p. Using Theorem 5, choose a cocycle D close to Atc that has an
invariant section z : X → D. Making if necessary a small perturbation, we can assume
that z assumes the same value z0 in an open set. By conjugating everything with some
fixed matrix (and hence changing B, γ , β accordingly), we can assume that z0 = 0. Let
N be a large integer. Take a non-empty open set Z ⊂ X such that its iterates in times
0 = n0 < n1 < · · · < nN are wholly contained in {z = 0}, and moreover Z ∩ f i(Z) = ∅
for 0 < i ≤ nN + 1. Notice that if x ∈ Z, then Dni (x) ∈ SO(2,R) for 0 ≤ i ≤ N . By a
further perturbation (and reducing Z if necessary), we can assume that in addition to the
previous properties,D|f i(Z) is constant for 0 ≤ i ≤ nN , and equal to the identity matrix
for i = nN . Reducing Z further, we assume that the tower

⋃nN−1
i=0 f i(Z) has measure

less than β/2. Let W = f nN (Z) and F = f nN : Z → W . For x ∈ W , let `(x) > 0 be
minimal with f `(x)(x) ∈ Z, and let G : W → Z be given by G(x) = f `(x)(x).

Since the set B is open, we can modify the family At , t ∈ [0, 1]p, near t = tc so that
Atc equals D.

Let Pt : W → SL(2,R) be given by Pt (x) = A
`(x)
t (x).

Claim. There exists an L∞ family P̃t , t ∈ [0, 1]p with the following properties:

(a) ‖P−1
t P̃t − Id‖∞ < ε for every t;

(b) (t, x) 7→ P̃t (x) is finite-valued and takes values in SL(2,R)r SO(2,R);
(c) for every t , there is a full measure subset of W consisting of points x such that the

map t ′ 7→ P̃t ′(x) is constant in a neighborhood of t .

Proof. Since f is minimal and Z is open, `(x) is bounded and therefore so is the function
Pt (x). Choose then a large finite set of SL(2,R)r SO(2,R) approximating its image.

Since (X,µ) is a non-atomic Lebesgue space, we can assume X is the unit interval
and µ is Lebesgue measure. Let Q be a partition of Rp into small dyadic cubes. Fix a
vector v0 ∈ Rp whose coordinates are independent mod Q. For each x ∈ [0, 1], let Q(x)
be the restriction of the partition xv0+Q to the unit cube. Then every t ∈ [0, 1]p belongs
to the interior (relative to [0, 1]p) of an element of the partition Q(x) for all but finitely
many points x ∈ X. Take P̃t (x) to be constant in each element ofQ(x), and taking values
in the large finite set. This proves the claim. ut

For each x ∈ W , let est (x) and eut (x) be respectively the most contracted and the most ex-
panded directions by P̃t (x); these two directions are uniquely defined because the matrix
is not a rotation, and are orthogonal. Next define est (x) and eut (x) for x ∈ Z = G(W) by

e∗t (x) = P̃t (G
−1(x)) · e∗t (G

−1(x)), ∗ ∈ {s, u}.

These two directions are also orthogonal.
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There are only finitely many possible values for eut (x) and est (x); let F ⊂ P1 be the
set of all of them. Define a function ] : F × F → [0, π) such that R](x,y) · x = y.

Apply Lemma 8.2 and choose some set of positive measure Y ⊂ Z that is not a
coboundary. Let

θ(t, x) =

{
](eut (x), e

s
t (F (x))) if x ∈ Y ,

](eut (x), e
u
t (F (x))) if x ∈ Z r Y .

Notice that for every t and for every x in a full measure subset of X (depending on t), the
function t ′ 7→ θ(t ′, x) is constant in a neighborhood of t .

Define

Bt (x)

=


D(x) · Rθ(t,f−ni x)/N if x ∈ f ni (Z), 0 ≤ i < N ,
D(x) if x ∈ f j (Z), j ∈ {0, 1, . . . , nN }r {n0, n1, . . . , nN−1},
At (x) · [Pt (x)]−1

· P̃t (x) if x ∈ W ,
At (x) otherwise.

Let us list some properties of the family of cocycles Bt , t ∈ [0, 1]p. First, it is almost-
continuous. Second,

L(Bt ) = 0 for every t ∈ [0, 1]p. (13)

Indeed, the induced cocycle (Bt )Z(x) is given by

Ct (x) = P̃t (F (x))Rθ(t,x), x ∈ Z.

(Of course, this cocycle is regarded over the dynamicsG◦F , which is the first return map
to Z.) The pair of measurable directions eut , est is preserved by the action of the cocycle;
moreover the directions are swapped precisely for the points in Y . Thus Lemma 8.3 gives
that for each t , the measurable cocycle (G ◦ F,Ct ) has zero Lyapunov exponent (with
respect to the ergodic invariant measure (1/µ(Z))µ). Thus (13) follows from Lemma 8.4.

A third property of the family Bt is that for each t , Bt (x) is close to At (x) for every x
outside a set of small measure. Let us be more precise. Let τ(t, x) equal tc if x is in the
tower

⋃nN
i=0 f

i(Z) (which has measure less than β/2), and t otherwise. Then we can write

Bt (x) = Aτ(t,x)(x) · Et (x),

where Et , t ∈ [0, 1]p, is an almost-continuous family of cocycles such that ‖Et (x)− Id‖
< ε for all t and x. (Here we used that N is large.)

Since τ(t, x) depends continuously on t , we can apply for instance Lemma 8.5 and
find a continuous function τ̃ : [0, 1]p×X→ [0, 1]p such that µ{x∈X : τ̃ (t, x) 6=τ(t, x)}
is very small for every t .

Let Bε be the set of M ∈ SL(2,R) such that ‖M − Id‖ < ε. Since ε is small, this
set is homeomorphic to R3. Thus we can apply Lemma 8.5 and find a continuous map
(t, x) ∈ [0, 1]p × X 7→ Ẽt (x) ∈ Bε such that µ{x ∈ X : Ẽt (x) 6= Et (x)} is uniformly
small for every t .
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Now define
Ãt (x) = Aτ̃ (t,x)(x) · Ẽt (x).

Then Ãt is a continuous family of cocycles and (because ε is small) it takes values in B.
We can choose τ̃ (t, x) and Ẽt (x) so that supt dw(Ãt , Bt ) is as small as desired. Therefore,
by (13) and of Lemma 8.6(b), we can assume that

L(Ãt ) < γ for every t ∈ [0, 1]p.

With appropriate choices, we also find that for each t ∈ [0, 1]p, the set

Gt = {x ∈ X : τ̃ (t, x) = t} has µ(Gt ) > 1− 3
4β.

The last step of the proof is to modify the family Ãt to make it match with At in the
boundary of the cube, while keeping the exponent small. Let π : [0, 1]pr{tc} → ∂[0, 1]p

be a retraction. Let S be a neighborhood of ∂[0, 1]p inside [0, 1]p, thin enough so that
for every t ∈ S, π(t) is close to t and hence Aπ(t) is close to At . Let Êt , t ∈ [0, 1]p, be
a continuous family taking values in Bε, such that Êt (x) = Ẽt (x) for t outside S, and
Êt (x) = Id for t ∈ ∂[0, 1]p. Let τ̂ : [0, 1]p × X → [0, 1]p be continuous such that
τ̂ (t, x) = τ̃ (t, x) if t 6∈ S, τ̂ (t, x) = t if t ∈ ∂[0, 1]p, and moreover τ̂ (t, x) = t for every
t ∈ [0, 1]p and x ∈ Gt . Define

Ât (x) = Aτ̂ (t,x)(x) · Êt (x).

Then the family Ât , t ∈ [0, 1]p, takes values in B and continuously extends At , t ∈
∂[0, 1]p. For t ∈ [0, 1]p r S, we have Ât = Ãt and therefore L(Ât ) < γ . For t ∈ S and
x ∈ Gt , we have Ât (x) = At (x) · Êt (x), which is close to Aπ(t)(x). Since ε is small, we
have dw(Ât , Aπ(t)) < β. By the definition of β, this implies L(Ât ) < γ . This completes
the proof of Lemma 8.1. ut

9. Extending families of cocycles: boundedness

In this section, we will strengthen Lemma 8.1, obtaining the following two results:

Proposition 9.1. Let p ≥ 1, and let B ⊂ C(X,SL(2,R)) be a bounded open set. Let At ,
t ∈ ∂[0, 1]p, be a continuous family of cocycles that is contractible in B and admits a
continuous family of sections zt , t ∈ ∂[0, 1]p. Then zt can be extended to a continuous
family of sections for an extended family of cocyclesAt , t ∈ [0, 1]p, that also takes values
in B.

Proposition 9.2. Let p ≥ 1, and let B ⊂ C(X,SL(2,R)) be a bounded open set. Let At ,
t ∈ ∂[0, 1]p, be a continuous family of cocycles that is contractible in B and such that
At 6∈ UH for every t ∈ ∂[0, 1]p. Then there exists an extended continuous family of
cocycles At , t ∈ [0, 1]p, also taking values in B and such that the family At , t ∈ (0, 1)p,
admits a continuous family of sections.
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Notice that Theorem 4 is an immediate consequence of this proposition with p = 1. It
also follows that the complement of UH is locally connected. This shows the statement
made in Remark 2.2.

We will first prove Proposition 9.1, and then use it together with Theorem 5 to obtain
Proposition 9.2. If A ∈ C(X,SL(2,R)) and ε > 0, we write

Bε(A) = {Ã : ‖Ã− A‖∞ < ε}.

Proof of Proposition 9.1. Let At , t ∈ ∂[0, 1]p, be a continuous family of cocycles ad-
mitting a continuous family of sections. Assume that this family is contractible in a
bounded open set B ⊂ C(X,SL(2,R)), and thus can be extended to a B-valued fam-
ily Āt , t ∈ [0, 1]p. Let ε > 0 be such that for each t ∈ [0, 1]p, the ball with center Āt
and radius 2ε, indicated by B2ε(Āt ), is contained in B. Let γ > 0 be given by Proposi-
tion 6.3, where in place of f we take the homeomorphism of X̂ = X × [0, 1]p given by
f̂ (x, t) = (f (x), t), and take 3 = X × ∂[0, 1]p, and C > supB∈B ‖B‖∞. Next apply
Lemma 8.1 to the family At , t ∈ ∂[0, 1]p, and to the reduced set B′ =

⋃
t∈[0,1]p Bε(Āt ).

We obtain a family Ât , t ∈ [0, 1]p, with values in B′ such that L(Ât ) < γ for each t .
Using compactness of [0, 1]p and subadditivity, it is not hard to see that

lim
n→∞

sup
(x,t)∈X×[0,1]p

1
n

log ‖Ânt (x)‖ < γ.

Thus we can apply Proposition 6.3 and find a continuous family of cocycles Ãt , t ∈
[0, 1]p, that equals Ât (and hence At ) when t ∈ ∂[0, 1]p, such that ‖Ãt − Ât‖∞ < ε (and
thus Ãt ∈ B) for each t , and that admits a continuous family of sections z̃t , t ∈ [0, 1]p,
extending the original zt , t ∈ ∂[0, 1]p. ut

Lemma 9.3. For every C > 0, there is ε̄ > 0 such that for every A ∈ C(X,SL(2,R))
with ‖A‖∞ < C and every ε ∈ (0, ε̄], the following holds: Every continuous family of
cocycles At , t ∈ T , taking values in Bε(A) is contractible in Bε(A).

Proof. Easy and left to the reader. ut

Now we are able to prove the second main result of this section:

Proof of Proposition 9.2. Let At , t ∈ ∂[0, 1]p, be a family of cocycles that is contractible
in B, such that no At is uniformly hyperbolic.

Let Vn = [2−n, 1 − 2−n]p. Take n0 large (to be determined later). Most of the proof
will be devoted to the description of a procedure to extend the family of cocycles At to
the set [0, 1]p r intVn0 , which we call the shell.

For each n ≥ n0, let Wn = Vn+1 r intVn. Cover the set Wn by closed cubes Wn,i

of edge length 2−n−1 whose interiors are disjoint. Let P be the family of all those
cubes Wn,i . Consider the sets K0 ⊂ K1 ⊂ · · · ⊂ Kp, where Kq is the union of the
q-dimensional faces of cubes in P . We are going to define At successively for t in K0,
K1, . . . , up to Kp, and so obtain the extension to the shell.
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During this proof, we take in Rp the box distance given by

d((ti), (t
′

i)) = max
i
|ti − t

′

i |.

Fix a sequence ε1 > ε2 > · · · converging to 0 such that if τ , τ ′ ∈ ∂[0, 1]p are 2−n-close,
then ‖Aτ − Aτ ′‖∞ < εn.

Take t ∈ K0 and let us define At . First choose some τ = τ(t) ∈ ∂[0, 1]p such that
the distance from t to τ is as small as possible; then that distance equals 2−n for some
n ≥ 2. Since Aτ is not uniformly hyperbolic, by Theorem 5 there is a cocycle B with
‖B − Aτ‖ < εn that admits a continuous section. Set At = B.

The definition of At proceeds by an inductive procedure. Assume that At is already
defined for t ∈ Kq . Fix F to be a (q + 1)-dimensional face in Kq+1, and let B = B(F)
be its relative boundary, that is, the union of the q-dimensional faces in Kq that inter-
sect F . Choose any point t0 in B, and let r = r(B) be the diameter of {At : t ∈ B} in
C(X,SL(2,R)). If r is sufficiently small, then, by Lemma 9.3 combined with Proposi-
tion 9.1, we can extend the continuous family of cocycles At , t ∈ B (which takes values
in the ball B2r(At0)) and its continuous family of sections to the (q + 1)-dimensional
cube F , so that the extended family of cocycles takes values in B4r(At0). The smallness
of r will be proven by induction, of course. In fact, we will prove that there exist small
numbers r(q)n > 0 with limn→∞ r

(q)
n = 0 such that if F as above has diameter 2−n, then

r(B) ≤ r
(q)
n .

First consider q = 0, so F is an edge and B = {t0, t1}. If 2−n is the edge length,
then t0 and t1 are both within distance 2−n+1 of the boundary of the unit cube, hence
d(ti, τ (ti)) ≤ 2−n+1 for i = 0, 1. It follows that d(τ(t0), τ (t1)) < 2−n+3 and so

r(B) = ‖At0 − At1‖∞ ≤ ‖At0 − Aτ(t0)‖∞ + ‖Aτ(t0) − Aτ(t1)‖∞ + ‖Aτ(t1) − At1‖∞

≤ εn−1 + εn−3 + εn−1 < 3εn−3.

Thus we set r(0)n = 3εn−3. These numbers will all be small for all n ≥ n0, provided n0 is
chosen large enough. This proves the q = 0 case.

Now let us explain how to find r(q)n assuming r(q−1)
n is known. Take a (q + 1)-

dimensional cell F ; its relative boundary B = B(F) is composed of 2q+1 cells of di-
mension q. In each of these cells, the variation of At is at most 4r(q−1)

n . Hence a crude
estimate gives r(B) ≤ 2q+3r

(q−1)
n =: r(q)n . Take n0 large enough so that these numbers

will be small for all n ≥ n0.
At this point we have definedAt for t in the shell. To check continuity in the boundary

of the unit cube, take a sequence tj in (0, 1)p rVn0 converging to some τ ∈ ∂[0, 1]p. For
each j , consider a cube of the family P that contains tj , and let t ′j be one of its vertices.
Then ‖Atj − At ′j ‖∞ → 0 as j → ∞ due to the variation estimates. On the other hand,
τ(t ′j )→ τ and ‖Aτ(t ′j ) − At ′j ‖∞→ 0, therefore Atj → Aτ .

Now, taking a smaller shell if necessary, we can assume that all the values of At
belong to the open set B. Finally, apply Proposition 9.1 once more to extend continuously
the family of cocycles from the shell to the whole unit cube, still taking values in B, and
in such a way that in (0, 1)p, there is a continuous family of sections. This concludes the
proof of Proposition 9.2. ut
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10. Proof of Theorems 6 and 7

Let A ∈ C0(X,SL(2,R))r UH be an unlocked cocycle. Fix a continuous determination
of the fibered rotation number ρ : Bε0(A)→ R on the ball of radius ε0 and center A. As
proved in Appendix C (see Proposition C.1), we have

ρ(R−θA) < ρ(A) < ρ(RθA) for every sufficiently small θ > 0.

The first step is to show the following:

Lemma 10.1. There is a continuous family of cocycles At , t ∈ [−1, 1], such that A0=A,

ρ(A−t ) < ρ(A) < ρ(At ) for every t ∈ (0, 1],

and no At is uniformly hyperbolic.

Proof. Choose θn < 0 to be an increasing sequence close to 0 and converging to 0,
such that 2ρ(RθnA) /∈ G for each n. The sequence ρ(RθnA) is also strictly increasing
(cf. Proposition C.1). So, by continuity of ρ, we can find a sequence δn decreasing to 0
such that

ρ(Rθn−1A
′) < ρ(RθnA

′′) < ρ(Rθn+1A
′′′) < ρ(A′′′′) for all A′, A′′, A′′′, A′′′′ ∈ Bδn(A).

Define an open subset of C(X,SL(2,R)) by

Tn =
⋃

θ∈[θn,θn+1]
RθBδn(A).

Claim. For each B ∈ Tn, there exists a unique β ∈ [−θn+1 + θn−1,−θn] such that
ρ(RβB) = ρ(Rθn+1A). Moreover, the function B 7→ β is continuous.

Proof. Let B ∈ Tn, so B = RαA′ for some α ∈ [θn, θn+1] and A′ ∈ Bδn(A). Then

ρ(R−θn+1+θn−1B) ≤ ρ(Rθn−1A
′) < ρ(Rθn+1A) < ρ(A′) ≤ ρ(R−θnB).

By the Intermediate Value Theorem, there is β ∈ [−θn+1 + θn−1,−θn] such that
ρ(RβB) = ρ(Rθn+1A). Uniqueness is a consequence of Proposition C.1 and the fact
that 2ρ(Rθn+1A) 6∈ G. Continuity follows. ut

For each n, consider the family of cocycles RθA, θ ∈ {θn+1, θn}. It is obviously con-
tractible in Tn. Thus we can apply Proposition 9.2 to find a continuous one-parameter
family of cocycles with values in Tn ∩ UHc, joining RθnA to Rθn+1A. By concatenation,
we find a continuous family of cocycles At , t ∈ [θ1, 0], such that

Aθn = RθnA, t ∈ [θn, θn+1] ⇒ At ∈ Tn ∩ UHc.

Let
tn = inf{t ∈ [θn, θn+1] : ρ(An,t ) = ρ(Rθn+1A)}.

Now let us define a “correction” function β : [θ1, 0] → R. Define β(t) = 0 for
t ∈ [θn, tn]. For each t ∈ [tn, θn+1], let β(t) be given by the claim above such that
ρ(Rβ(t)An,t ) = ρ(Rθn+1A). Finally, put β(0) = 0. Then β is well-defined and continuous.
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Now consider the continuous family of cocycles Ãt = Rβ(t)At . We have Ãt ∈ UHc

for each t (indeed, for t ∈ [tn, θn+1], this follows from 2ρ(Ãt ) 6∈ G). Also, in each
interval [θn, θn+1] we have ρ(Ãt ) ≤ ρ(Rθn+1A), so ρ(Ãt ) < ρ(A) for every t < 0.

Applying an entirely analogous procedure, we find a family Ãt for small non-negative
t such thatA0 = A and ρ(Ãt ) > ρ(A) for t > 0. By reparameterizing, we find the desired
family. ut

Next we prove the following strengthening of Lemma 10.1:

Lemma 10.2. There is a continuous family of cocycles At , t ∈ [−1, 1], such that A0=A,

ρ(A−t ) < ρ(A) < ρ(At ) for every t ∈ (0, 1],

and the family At , t ∈ [−1, 1] r {0}, admits a continuous family of sections.

Proof. Let At , t ∈ [−1, 1], be the continuous family of cocycles given by the previ-
ous lemma. We can assume it takes values in a small neighborhood of A. Consider the
continuous family Bt , t ∈ ∂[0, 1]2, defined by B(t1,t2) = At1 . Since these cocycles are
not uniformly hyperbolic, we can apply Proposition 9.2 to find an extended family Bt ,
t ∈ [0, 1]2, such that the restricted family Bt , t ∈ (0, 1)2, is continuously reducible
to rotations. Since ρ(B(t1,0)) > ρ(A) for each t1 ∈ (0, 1], we can find a continuous
function h : (0, 1] → (0, 1/2] such that ρ(B(t1/2,h(t1))) > ρ(A) for each t1. That is,
Ãt = B(t/2,h(t)), t ∈ (0, 1], defines a continuous family of cocycles that admits a contin-
uous family of sections, satisfies ρ(Ãt ) > ρ(A) for each t , and limt→0 Ãt = A. In the
same way we find the desired cocycles for negative parameters. ut

In the next step we find a family depending on two parameters:

Lemma 10.3. There exists a family At , t ∈ [0, 1]2, such that A(0,0) = A,

ρ(A(0,s)) < ρ(A) < ρ(A(s,0)) for s ∈ (0, 1],

and the restricted family At , t ∈ [0, 1]2 r {(0, 0)}, admits a continuous family of sections.

Proof. Let A′t , t ∈ [−1, 1], be given by Lemma 10.2, so ρ(A′−t ) < ρ(A) < ρ(A′t ) for
t > 0, and A′t , t ∈ [−1, 1] r {0}, admits a continuous family of sections z′t .

By Proposition 9.1, we can find a family A′′t , t ∈ [−1, 1], admitting a continuous
family of sections z′′t , such that A′′

±1 = A′
±1 and z′′

±1 = z′
±1. Next define At for t ∈

∂[0, 1]2 by

A(t1,t2) =

{
A′t1−t2 if t1 = 0 or t2 = 0,
A′′t1−t2 if t1 = 1 or t2 = 1.

Define analogously the family of sections zt , t ∈ ∂[0, 1]2 r {(0, 0)}.
Consider the set 0 =

⋃
∞

n=1 ∂[0, 1/n]2. Using Proposition 9.1 (with p = 1) infinitely
many times, find an extended continuous family of cocycles At , t ∈ 0, such that the
cocycles At , t ∈ 0 r {(0, 0)}, admit a continuous family of sections that extends the
previously defined zt .
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Now consider the regions [0, 1/n]2 r (0, 1/(n + 1))2; each is homeomorphic to a
square, and At , Bt are defined in the boundary. Applying Proposition 9.1 (with p = 2)
we extend At , zt to each of those holes. This can be done so that limt→(0,0)At = A. This
gives the desired family of cocycles. ut

Now we need a purely topological result:

Lemma 10.4. Let θ : [0, 1]2
→ R be a continuous function. Assume that θ(0, 0) = 0

and θ(0, s) < 0 < θ(s, 0) for every 0 < s ≤ 1. Let K = θ−1(0) and let U ⊂ (0, 1]2

be a neighborhood of K r {(0, 0)}. Then there exists a path γ : (0, 1] → U such that
lims→0 γ (s) = (0, 0).

Proof. Let ε : (0, 1] → (0, 1] be a continuous increasing function such that for every
t ∈ K r {(0, 0)}, Bε(|t |)(t) ∩ [0, 1]2

⊂ U .
For every t ∈ Kr {(0, 0)}, choose a closed dyadic square D̃t containing t of diameter

at least ε(|t |)/10 and at most ε(|t |)/5, and letDt be the union of all closed dyadic squares
of the same diameter that intersect D̃t . Let W =

⋃
t∈Kr{0}Dt .

Let I = {t = (t1, t2) ∈ [0, 1]2 : t1 + t2 = 1/2}. Then I intersects W on finitely
many of its connected components, which we denote by Si . We claim that one of them
accumulates at (0, 0). Indeed, if this is not the case, let T be the union of the boundaries
of the Si intersected with 1 = {t = (t1, t2) ∈ [0, 1]2 : t1 + t2 ≤ 1/2}. Then there exists a
path joining (0, 1/2) to (1/2, 0) that is contained everywhere in (I r

⋃
Si) ∪ T . But the

sign of θ is constant along this path, a contradiction.
Let S be such a connected component that accumulates at (0, 0). Write S as a count-

able union of dyadic squares, so that any of them does not contain another. Order such
squares with the property that Di ∩ Di+1 6= ∅. Refine this sequence so that no squares
are repeated. Join the centers of the squares by straight segments. This gives the desired
path. ut

Now we can finish the proof of Theorems 6 and 7:

Proof of Theorems 6 and 7. Consider the continuous family of cocycles Ãt , t ∈ [0, 1]2,
given by Lemma 10.3; for t 6= (0, 0), one can write

Ãt (x) = B̃t (f x)R2πθ(t,x)B̃t (x)
−1,

where B̃t ∈ C(X,SL(2,R)), t ∈ [0, 1]2 r {(0, 0)}, is a continuous family of
conjugacies and θ : [0, 1]2

× X → R is continuous, with
∫
θ(0, s, x) dµ(x) <∫

θ(0, 0, x) dµ(x) < θ(s, 0, x) for 0 < s ≤ 1. Here, we write
∫
θ(0, 0, x) dµ(x)

for limt→(0,0)
∫
θ(t, x) dµ(x). By the definition of the fibered rotation number,∫

θ(0, 0, x) dµ(x) = ρ(A) mod G′ (where G′ is a subgroup of G, see §1.4).
Let g = α −

∫
θ(0, 0, x) dµ(x) in the case of Theorem 6, and g = 2α −

2
∫
θ(0, 0, x) dµ(x) in the case of Theorem 7. In either case, g ∈ G, so we may write

g =
∫
φ dµ for some continuous function φ : X → R such that φ = ψ ◦ f − ψ for

some continuous ψ : X→ R/Z. In the case of Theorem 6, we may thus replace B̃t (x) by
B̃t (x)R2πψ(x) and θ(t, x) by θ(t, x)+φ(t, x), that is, we may actually assume that g = 0.
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In the case of Theorem 7, we may proceed similarly, replacing B̃t (x) by the PSL(2,R)-
valued B̃t (x)Rψ(x), and θ(t, x) by θ(t, x) + φ(t, x)/2: we may thus also assume that
g = 0 in this case. From now on, we assume that α =

∫
θ(0, 0, x) dµ(x).

Apply Lemma 7.1 with T = [0, 1]2 r {(0, 0)}, ϕ = θ |(T × X), T ∗ = ∅ and ε
so small that ε(0, s) <

∫
α − θ(0, s, x) dµ(x), ε(s, 0) <

∫
θ(s, 0, x) − α dµ(x) and

‖B̃t‖
2
∞ε(t)→ 0 as t → (0, 0). Let ϕ̃ and ψ̃ be as in the lemma. We now define Ât (x) =

B̃t (f (x))R2πϕ̃(t,x)B̃t (x)
−1 for t ∈ [0, 1]2 r {(0, 0)} and Â0 = A; this is a continuous

family at t = (0, 0) since ‖Ât − Ãt‖∞ < 2πε(t)‖B̃t‖2∞ for t ∈ [0, 1]2 r {(0, 0)}. Since
ϕ̃(t, x) is cohomologous to c(t) =

∫
θ(t, x) dµ(x) = ρ(Ãt ), we can write Ât (x) =

B̂t (f (x))R2πc(t)B̂t (x)
−1 (where the ψ’s are absorbed by B̂).

Now choose some function ε1(t) > 0 that goes to zero as t → (0, 0). By Lemma 10.4,
there exists a continuous path γ : (0, 1] → (0, 1]2 whose range is contained in the set
of t’s for which ‖Ât (x) − B̂t (f (x))R2παB̂t (x)

−1
‖ < ε1(t). (The latter set is open and

contains K = c−1(α).) Thus, we may set As(x) = B̂γ (s)(f (x))R2παB̂γ (s)(x)
−1. By

construction, this family has the desired properties. ut

Remark 10.5. It follows from the proof that if α = ρf,A mod G′, then the maps Bt can
be taken in C0(X,SL(2,R)) (i.e., homotopic to a constant). Conversely, if the conclusion
of Theorem 6 holds with Bt ∈ C0(X,SL(2,R)), then it is straightforward to show that
ρf,A = α mod G′.

Remark 10.6. A cocycle can be accessed by a continuous path of unlocked cocycles
with the same rotation number if and only if it is unlocked itself. Indeed, the “only if”
part is an immediate consequence of the definitions. On the other hand, notice that if two
cocycles in C0(X,SL(2,R)) are conjugate via a map also in C0(X,SL(2,R)) then9 they
have the same type (locked / unlocked / semi-locked). Thus, given an unlocked cocycle
A, applying Theorem 6 (and Remark 10.5) with α = ρf,A we obtain a continuous path of
unlocked cocycles with the same rotation number.

Appendix A. Connectedness considerations

Recall that C0(X,SL(2,R)) indicates the subset of C(X,SL(2,R)) formed by maps
that are homotopic to a constant. The rotation number can be viewed as a map
C0(X,SL(2,R))→ R/G′.

Proposition A.1. If two cocycles have the same rotation number (mod G′), then it is
possible to connect them by a continuous path with constant rotation number (mod G′).

Proof. Let A′, A′′ ∈ C0(X,SL(2,R)) be two cocycles such that ρf,A′ = ρf,A′′ mod G′.
Fix once and for all a lift F ′ : X × R → X × R such that e2πiF ′2(x,t) is a positive real
multiple of A′(x) · e2πit . This determines the fibered rotation number of (f,A′) as some
a ∈ R. Moreover, for any contractible space Y and any continuous map y ∈ Y 7→ Ay ∈

9 In fact, it is not necessary that the conjugacy is homotopic to a constant; see Proposition C.4.
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C0(X,SL(2,R)) such that Ay0 = A
′ for some y0 ∈ Y , there exists a unique continuous

function ρ : Y → R such that ρ(y) = ρf,Ay mod G′ and ρ(y0) = a. We also call
ρ a continuous determination of the rotation number. (In fact, the previous use of this
terminology is a particular case.)

Take any continuous path t ∈ [0, 1] 7→ At ∈ C0(X,SL(2,R)) with A0 = A′ and
A1 = A′′. Consider the continuous determination of the rotation number ρ : [0, 1] →
R with ρ(0) = a. Then ρ(1) − ρ(0) ∈ G′, thus there exists φ ∈ C(X,Z) such that
ρ(1) − ρ(0) =

∫
φ dµ. Extend the path of cocycles to the interval [0, 2] by defining

At (x) = R−2π(t−1)φ(x)A
′′(x) for t ∈ [1, 2]. Considering the corresponding extension

ρ : [0, 2]→ R, we have ρ(2) = ρ(0) = a.
Now consider the two-parameter family (t, θ) ∈ [0, 2] × R 7→ RθAt ∈

C0(X,SL(2,R)) and the associated continuous determination of the rotation number
ρ : [0, 2] × R → R such that ρ(0, 0) = a, and thus ρ(0, 2) = a. Notice that ρ(t, θ)
is non-decreasing as a function of θ , and ρ(t, θ + 2π) = ρ(t, θ)+ 1.

We claim that the function f (t) = inf{θ ∈ R : ρ(t, θ) = a} is continuous. Indeed,
fix any sequence tn in [0, 2] converging to some t and such that β = lim f (tn) exists.
Let α = f (t). Then ρ(t, β) = lim ρ(tn, β) ≤ a = ρ(t, α). It follows that β ≤ α.
Moreover, if this inequality is strict, then ρ(t, θ) is constant equal to a for θ in the interval
(β, α) and thus by the first part of Proposition C.1, R(α+β)/2At is uniformly hyperbolic.
In particular ρ(s, (α + β)/2) = a for every s sufficiently close to t . This implies that
ρ(t, β) ≤ lim ρ(tn, β) ≤ lim ρ(tn, (α+β)/2, tn) = a, and thus β ≥ f (t), a contradiction.

It now follows that the rotation number is constant mod G′ along the continuous path
of cocycles t ∈ [0, 2] 7→ Rmin(0,f (t))At , concluding the proof. ut

Proposition A.2. If A0, A1 ∈ C0(X,SL(2,R)) r UH, then we can join these cocycles
by a continuous path t ∈ [0, 1] 7→ At ∈ C(X,SL(2,R))r UH. Moreover, if A0 and A1
have the same rotation number (modG′), then we can take the path with constant rotation
number (mod G′).

Proof. The first assertion is a trivial consequence of Proposition 9.2 with p = 1.
To prove the second assertion, it suffices to show that for any cocycle A ∈

C0(X,SL(2,R)) r UH and any α = ρf,A mod G, there is a path joining A and R2πα
along which the rotation number is constant.

Given such A and α, apply Theorem 6 and find continuous paths At , t ∈ [0, 1], and
Bt , t ∈ (0, 1], in C(X,SL(2,R)) such that A0 = A and At (x) = Bt (f (x))R2παBt (x)

−1.
Since SO(2,R) is a deformation retract of SL(2,R), there exists a homotopy ht :

SL(2,R) → SL(2,R), t ∈ [0, 1], between the identity h0 and an SO(2,R)-valued
map h1.

The rotation number is constant along the path

At+1(x) = ht (B1(f x))R2πα[ht (B1(x))]−1, t ∈ [0, 1],

joining A1 and the SO(2,R)-valued cocycle A2. The latter is homotopic to a constant as
a map X → SL(2,R) and thus (using the deformation retraction) also as a map X →
SO(2,R). It follows that we can write A2(x) = Rθ0(x) where θ0 is real-valued. Let θt ,
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t ∈ [0, 1], be a homotopy in C(X,R) between θ0 and the constant 2πα such that
∫
θt dµ

does not depend on t . Define A2+t (x) = Rθt (x) for t ∈ [0, 1]. Then At , t ∈ [0, 3], is a
path joining A and R2πα along which the rotation number is constant. ut

On the other hand, the set of uniformly hyperbolic cocycles with a given rotation number
is not necessarily connected:

Proposition A.3. There exists a strictly ergodic homeomorphism f of a finite-dimen-
sional compact space X and there exist two cocycles A0, A1 ∈ C0(X,SL(2,R)) with the
same rotation number that lie in distinct path-connected components of UH.

Remark A.4. One could raise the question of whether it is possible to add an extra pa-
rameter in Theorem 3 and obtain the following statement: “If As , s ∈ [0, 1], is a path
in C0(X,SL(2,R)) with 2ρf,As constant and in G, then there is a continuous family of
cocycles As,t , (s, t) ∈ [0, 1]2, such that As,0 = As and As,t ∈ UH for t > 0.” However,
it follows from Propositions A.1 and A.3 that such a statement is false in general. (On
the other hand, it is possible to add an extra parameter in Theorem 4: we have done that
already in Proposition 9.2.)

To prove Proposition A.3 we will need the following well-known lemma. Lacking a
suitable reference, we give a proof of it.

Lemma A.5. Let α ∈ R r Q and β ∈ R. For a generic continuous φ : R/Z → R
with

∫
φ(x) dx = β, the map10 fα,φ : R2/Z2

→ R2/Z2 given by fα,φ(x, y) = (x + α,
y + φ(x)) is strictly ergodic.11

Proof. Let hi : R2/Z2
→ R, i ≥ 1, be a dense sequence in C(R2/Z2,R). Let Un be the

set of all continuous φ with average β such that for every ergodic invariant measure µ for
fα,φ , we have |

∫
hn dµ−

∫
hn dLeb| < 1/n.

Clearly, if φ ∈
⋂
Un, then φ is uniquely ergodic. So we just have to show that all Un

are dense. Let φ0 be any trigonometric polynomial. We wish to find φ close to φ0 that
belongs to Un. Now, clearly φ0(x) = ψ0(x + α) − ψ0(x) + β for some trigonometric
polynomial.

For an arbitrary continuous function g : R/Z→ R, let µg be the probability measure
on R2/Z2 that projects to Lebesgue measure in the first factor and is supported on the
graph of x 7→ x + g(x). Consider the sequence of functions δk : R/Z → R such that
δk(x) is twice the distance between kx and Z. It is readily seen that µδk converges in
weak-∗ sense to Leb. It follows that for every continuous function g, µg+δk converges to
Leb (which equals the push-forward of Leb under (x, y) 7→ (x, y + g(x))).

In particular, µψ0+δk → Leb. Let p/q be a continued fraction approximant of α and
take ψ = ψ0+ δq . Let φ(x) = ψ(x + α)−ψ(x). Then any invariant measure for fα,φ is
a vertical translate of µψ , that is, it is of the form (Tt )∗µψ where Tt (x, t) = (x, y + t). It
follows that all of them are close to Leb, so if we take q sufficiently large, we will have

10 Maps of such form are called Anzai skew-products after [An].
11 It is well-known that ergodic Anzai skew-products are in fact strictly ergodic (see [Fu]), but

this will not be used below.
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φ ∈ Un. Finally, one computes ‖φ − φ0‖∞ ≤ 2|qα − p| < 1/q, so taking q large also
ensures that φ is close to φ0. ut

Proof of Proposition A.3. By the previous lemma, there exists a strictly ergodic homeo-
morphism f = fα,φ of the torus R2/Z2 with

∫
φ(x1) dx1 = α ∈ R r Q. Let ψ :

R/Z → R be continuous and such that ψ(x1 + α) − ψ(x1) is uniformly close to
φ(x1) − α. (This can be done easily using the remark after Lemma 3 in [ABD].) Let
u : R2/Z2

→ R/Z be given by

u(x1, x2) = x1 − x2 + ψ(x1).

Thus u(f (x1, x2)) − u(x1, x2) = ψ(x1 + α) − ψ(x1) + α − φ(x1), which is close to 0.
Notice that u is not homotopic to a constant. Define two elements of C(R2/Z2,SL(2,R))
by

A0(x1, x2) =

(
2 0
0 1/2

)
, A1(x1, x2) = Ru(f (x1,x2))

(
2 0
0 1/2

)
R−u(x1,x2).

These cocycles are uniformly hyperbolic and have the same rotation number (because
u◦f−u lifts to a function of zero mean). But no pathAt , t ∈ [0, 1], joiningA0 andA1 can
be wholly contained in UH, because the respective expanding directions eu(A0), e

u(A1) :
R2/Z2

→ P1 are not homotopic. ut

Appendix B. Minimal examples with many persistently closed gaps

In [Be2, Question 4], the question of genericity of Cantor spectrum is asked in a more gen-
eral context than strictly ergodic dynamical systems. The Gap Labeling Theorem holds,
in fact, for any homeomorphism of a compact metric space, and Bellissard asked whether
the presence of periodic orbits could be the only obstruction to the genericity of Can-
tor spectrum (when it is allowed at all by the Gap Labeling Theorem). Though we have
answered this question affirmatively in our more restricted setting, the answer to the orig-
inal question is in fact negative, and as we will see even a slight departure from unique
ergodicity (keeping minimality) may already prevent Cantor spectrum.

We will consider the well-known Furstenberg examples (see [Fu, p. 585] or [Pa, §5.5])
of minimal, but non-uniquely ergodic skew-products of the form f (x, y) = (x + α, y +

φ(x)), φ ∈ C(X = R2/Z2,R), α ∈ R r Q. For these examples, G = Z ⊕ αZ is
independent of the choice of the invariant measure.

Since L is dense in (0, 1), the Gap Labeling Theorem does not prevent Cantor spec-
trum for a Furstenberg example, and in fact there are choices of the sampling function
exhibiting Cantor spectrum.12 However, the next theorem shows that Cantor spectrum
(and hence the converse of the Gap Labeling Theorem) is not generic for such dynamics.

12 Indeed, the converse of the Gap Labeling Theorem holds for generic potentials which depend
only on the first coordinate: this case reduces to the strictly ergodic dynamics x 7→ x + α which is
covered by Corollary 2.
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Theorem 9. Let f be a Furstenberg example.
(a) For an open and dense set of v ∈ C(X,R), 6f,v is not a Cantor set.
(b) For a generic set of v ∈ C(X,R), int6f,v is dense in 6f,v .13

(c) The interior of C0(X,SL(2,R))r UH is dense in C0(X,SL(2,R))r UH.
Proof. We start with the third statement. Notice that if A ∈ C0(X,SL(2,R)) ∩ UH, the
fibered rotation number (viewed as an element of R/G′ = R/Z) is independent of the
invariant measure.14

If A ∈ C0(X,SL(2,R)) ∩ C(X,SO(2,R)), it has the form A(x) = Rφ(x) with
φ : X → R continuous, and the fibered rotation number is independent of the in-
variant measure if and only if

∫
X
φ dµ is. Thus for an open and dense set of A ∈

C0(X,SL(2,R)) ∩ C(X,SO(2,R)), A /∈ UH. By Theorem 5, if A is not uniformly
hyperbolic, it can be approximated by a cocycle which is bounded, and hence by one in
the complement of UH. This proves (c).

Using Lemma 1.3, (c) implies that for v0 ∈ C(X,R) and E ∈ 6f,v0 , since AE,v0 6∈

UH, we can perturb v0 to v such that AE,v /∈ UH. Then E ∈ int6f,ṽ for every ṽ in a
neighborhood of v. This gives (a). A simple Baire category argument allows us to con-
clude (b). ut

Appendix C. Uniform hyperbolicity and the rotation number

In this section we discuss in more detail the relationship between the behavior of the rota-
tion number in a neighborhood of a cocycle that is homotopic to a constant and properties
of the cocycle. Recall the definitions of a locked/semi-locked/unlocked cocycle, which
were given in Section 2.

Proposition C.1. Let A ∈ C(X,SL(2,R)) be homotopic to a constant, and fix a contin-
uous determination of the fibered rotation number ρ : V → R on a neighborhood of A.
Then:
(a) The function rA : θ 7→ ρ(RθA), defined on an open interval around 0, is locally

constant at θ = 0 if and only if A ∈ UH. Consequently, the cocycle A is:
• locked if RA is locally constant at θ = 0;
• semi-locked if θ = 0 is in the boundary of a plateau of rA;
• unlocked if the value ρ(A) does not correspond to a plateau of rA.

(b) The cocycle A is uniformly hyperbolic if and only if it is locked.
(c) If the cocycle A is semi-locked, it can be accessed by uniformly hyperbolic cocycles

of the form Aθ = RθA, where θ runs through a (non-degenerate) interval of the form
[0, ε] or [−ε, 0].

(d) If A takes values in SO(2,R), or if 2ρ(A) 6∈ G, then A is unlocked.

Before giving the proof of this proposition, let us first establish the following lemma.

13 It is reasonable to expect that for generic v, ∂6f,v is a Cantor set (thus 6f,v is not generically
a finite union of intervals).
14 It is enough to check this for A ∈ C0(X,SL(2,R)) ∩ UH: consider ρ(A) as a continuous

function of the convex set of invariant measures, which (since A ∈ UH) takes values in 1
2 Z+ α

2 Z.
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Lemma C.2. For any ε > 0, there exist c > 0 and λ > 1 with the following properties.
Let v be a non-zero vector in R2. Assume A0, A1, . . . , An−1 are matrices in SL(2,R)
such that

‖An−1 · · ·A1A0(v)‖ < cλn‖v‖.

Then for any w ∈ R2 r {0}, there exists θ ∈ [−ε, ε] such that the vectors

RθAn−1RθAn−2 · · ·RθA0Rθ (v) and w

are collinear.

A set I ⊂ P1 is called an interval if it is non-empty, connected, and its complement
contains more than one point. If I ⊂ P1 is an open interval, there is a Riemannian metric
‖·‖I on I , called the Hilbert metric, which is uniquely characterized by the following
properties:

• any invertible linear map A : R2
→ R2 induces an isometry between I and A(I) with

the corresponding Hilbert metrics;
• if I ⊂ P1 is the projectivization of {(1, y) ∈ R2 : y ∈ (0,∞)}, then the Hilbert metric

is given by dy
y

.

If J b I are open intervals, then the metric ‖·‖I restricted to J is smaller than ‖·‖J times
a factor tanh(diamI (J )/4) < 1 (Garrett Birkhoff’s formula).

Proof of Lemma C.2. We can assume that ε < π/2, otherwise the conclusion is trivial.
Let |·| indicate the Euclidean (angle) metric on P1 (so that the length of P1 is π ). Fix
constants 0 < C1 < C2 (depending only on ε) such that for any open interval I whose
Euclidean length |I | is between ε and π − ε, we have:

‖u‖I ≥ C1|u| for every u tangent to I ;
‖u‖I ≤ C2|u| if u is a tangent vector at the midpoint of I .

Also fix a constant τ > 1 such that if J b I are open intervals with the same midpoint
and |J | + ε = |I | ≤ π − ε, then

‖u‖J ≥ τ‖u‖I for every u tangent to J .

Now take A0, . . . , An−1 ∈ SL(2,R) and a unit vector v ∈ R2. Let v̄ ∈ P1 correspond
to v. Assume that

{RθAn−1 · · ·A1RθA0Rθ (v̄) : θ ∈ [−ε, ε]} 6= P1
; (14)

we want to show that ‖An−1 · · ·A0‖ is exponentially large.
Let us define some open intervals I0, I1, . . . , In ⊂ P1. Let I0 be the open interval

with midpoint v̄ and length |I0| = ε. Define inductively Ik as the open interval with
the same midpoint as Ak−1(Ik−1) and length |Ik| = |Ak−1(Ik−1)| + ε. It follows from
(14) and the fact that the matrices Aj preserve orientation that Ik is indeed an interval,
with endpoints R−ε/2Ak−1 · · ·R−ε/2A0R−ε/2(v̄) and Rε/2Ak−1 · · ·Rε/2A0Rε/2(v̄), and
length |Ik| ≤ π − ε. Therefore for any vector u tangent to Ik−1, we have ‖DAk−1(u)‖Ik
≤ τ−1

‖u‖Ik−1 .
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Let w be a non-zero tangent vector at v̄, and write B = An−1 · · ·A0. Then

|DB(w)| ≤ C−1
1 ‖DB(w)‖In ≤ C

−1
1 τ−n‖w‖I0 ≤ C

−1
1 C2τ

−n
|w|.

Since ‖B(v)‖−2
= |DB(w)|/|w|,15 we see that ‖B(v)‖ is exponentially large, as desired.

ut

Proof of Proposition C.1. We begin by proving the first statement in part (a). Obviously, ρ
is locally constant around A if it is uniformly hyperbolic. Let us prove the other direction.
As usual, fix a lift F2 : X × R → R of A. The nearby lift of RθA is F2 + θ , hence the
rotation number is given by

ρ(RθA) = lim
n→∞

1
n

∫
[(F2 + θ)

n(x, t)− t] dµ(x) (t arbitrary),

where (F2 + θ)n(x, t) is the second coordinate of the n-th iterate of (x, t) 7→
(f (x), F2(x, t)+ θ).

Assume that (f,A) is not uniformly hyperbolic. Fix ε > 0. We will show that
ρ(RεA) > ρ(R−εA). Let c > 0 and λ > 1 be given by Lemma C.2, depending on ε.
There exist n0 ∈ N and x ∈ X such that ‖An0(x)‖ < cλn0 . Let G indicate the (positive
measure) set of such points x. Then Lemma C.2 implies that

(F2 + ε)
n0(x, t)− (F2 − ε)

n0(x, t) > 1/2 for all x ∈ G, t ∈ R.

When x 6∈ G, the left-hand side is positive. Since orbits under f n0 visitGwith an average
frequency µ(G), we conclude that

ρ(RεA)− ρ(R−εA) = lim
k→∞

1
n0k

∫
[(F2 + ε)

n0k(x, t)− (F2 − ε)
n0k(x, t)] dµ(x)

≥
µ(G)

2n0
,

as we wanted to show. This proves the first part of (a).
Let us now prove the remaining parts of (a). SupposeA is such that rA : θ 7→ ρ(RθA)

is constant on [0, ε]. By what we just proved, it follows that Rε/2A ∈ UH. Take a neigh-
borhood V of A such that Rε/2B ∈ UH and ρ(Rε/2B) = ρ(Rε/2A) = ρ(A) for every
B ∈ V . Since rA is non-decreasing, we get ρ(B) ≤ ρ(Rε/2B) = ρ(A) and hence ρ
attains a local maximum at A. Analogously, if A is such that θ 7→ ρ(RθA) is constant
on [−ε, 0], then ρ attains a local minimum at A. This establishes the remaining three
implications in part (a).

Parts (b), (c), and (d) follow readily from (a). (To see the second part of (d), note that
if A is not unlocked, then θ 7→ ρ(RθA) is constant equal to ρ0 on an interval I of the
form [0, ε] or [−ε, 0]. Thus, RθA is uniformly hyperbolic for all θ ∈ int I and hence
2ρ(A) ∈ G.) ut

15 Indeed, the slice of the unit disk corresponding to a small angle |w| around v is a region of R2

with area ‖v‖2|w| that is mapped by B to a region of area ‖B(v)‖2|DB(w)| + O(|w|2); but B is
area-preserving.
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Remark C.3. As is apparent from the proof, Proposition C.1 holds in the more general
setting where f is a homeomorphism of a compact space with a fully supported invariant
probability measure µ and the rotation numbers are taken with respect to this measure
(see [H, §5.8.2]).

Proposition C.4. Conjugate cocycles have the same type (locked/semi-locked/unlocked).

Proof. Let B ∈ C(X,SL(2,R)) be such that x 7→ B(f (x))B(x)−1 is homotopic to
a constant and let 8 : C0(X,SL(2,R)) → C0(X,SL(2,R)) be given by 8(A)(x) =
B(f (x))A(x)B(x)−1.

Let U be an open connected subset of C0(X,SL(2,R)) such that there exists a con-
tinuous choice of lifts A ∈ U 7→ FA,2 ∈ C(X×R,R). These lifts induce determinations
ρ : U → R and ρ′ : 8(U)→ R of the fibered rotation number. We are going to show that
there exists c ∈ R such that ρ′(8(A)) = ρ(8(A))+ c for every A ∈ U . The proposition
follows immediately.

Let also 2 : X × R → R be a measurable lift of B that is continuous in the second
variable, but not necessarily in the first variable, such that 2(X × {0}) is bounded. It
follows that there exists a bounded measurable function ψ : U ×X→ Z such that

F
8(Ã),2(f (x),2(x, t)) = 2(f (x), FÃ,2(x, t))+ ψ(Ã, x).

Thus ρ′(8(Ã)) − ρ(A) =
∫
ψ(Ã, x) dµ(x). On the other hand, ψ(Ã, x) is easily seen

to be continuous in the first variable, and since U is connected, it depends only on the
second variable. ut

Appendix D. Proof of the projection lemma

Let us now prove Lemma 1.3. In the case where trA does not vanish identically, this result
is contained in Lemma 9 of [ABD]. We will explain the necessary changes to deal with
the remaining case.

We wish to show that an arbitrary continuous SL(2,R) perturbation Ã of the constant
cocycle A is conjugate to a Schrödinger perturbation (with a conjugacy depending con-
tinuously on the perturbation, and equal to id at A). On the other hand, given any fixed
compact set of non-empty interior K ⊂ X, Lemma 10 of [ABD] states that under the
assumption of minimality, Ã is conjugate to a perturbation Â such that Â = A outsideK .

So it is enough to describe how to conjugate such a localized perturbation. Since X
has at least four points, we can choose K admitting a compact neighborhood K ′ such
that f i(K ′) ∩ K ′ = ∅ for 1 ≤ i ≤ 3. Notice that A4

= id, so Â4 is close to id. Define
E = supx∈X ‖Â

4(x)− id‖1/2.
For each x ∈ K ′, there are unique Ei(x) ∈ R, 1 ≤ i ≤ 4, such that E3(x) =

Eφ(x) and SE4(x) · · · SE1(x) = Â4(x), where for t ∈ R, St denotes the Schrödinger
matrix

(
t −1
1 0

)
. Indeed, write Â4(x) = R−π/2Â(x) = id +

(
a(x) b(x)
c(x) d(x)

)
, and notice that

E1(x), E2(x) and E4(x) must be given by

E1(x) =
b(x)− Eφ(x)

1+ d(x)
, E2(x) = −

d(x)

Eφ(x)
, E4(x) =

c(x)+ E2(x)

1− d(x)
,
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with the expression for E2(x) being evaluated as 0 whenever Eφ(x) = 0. These expres-
sions immediately imply that the maps Ei : K ′→ R are continuous and vanish in ∂K ′.

We now define 8(Â) as follows. Outside
⋃3
i=0 f

i(K ′), we set 8(Â) = Â = A. For
x ∈ K ′, we define 8(Â)(f i(x)) = SEi+1(x), 0 ≤ i ≤ 3. It is easy to see that 8 depends
continuously on Â in a neighborhood of A.

By construction, 8(Â)4(x) = Â4(x) for x ∈ K . Define 9(Â) = id outside⋃3
i=0 f

i(K ′), 9(Â)(f i(x)) = 8(Â)i(x)Âi(x)−1 for x ∈ K ′ and 1 ≤ i ≤ 3. Then
9 is a continuous function of Â with 9(Â)(f (x)) · Â(x) · (9(Â)(x))−1

= 8(Â)(x) for
every x ∈ X. This completes the proof of Lemma 1.3.

Remark D.1. Like [ABD, Lemma 9], Lemma 1.3 is also valid in smooth settings. We
only need to be careful in two steps. First, we should choose φ to be a smooth function.
Second, we should replace the definition of E = E(Â), which should be “much larger
than d” for our argument to work, by something that takes into account the derivatives
of d. In the case of Cr cocycles with finite r , we could take E = ‖d‖1/2Cr , and it is
straightforward to check that both 8 and 9 are Cr -valued continuous maps defined in a
Cr -neighborhood of A. In the case r = ∞, we can take

E = −
1

log supx∈K ′ ‖Â4(x)− id‖

whenever Â 6= A, and let E = 0 when Â = A. With this definition, 8 and 9 are C0-
valued continuous maps in a C0-neighborhood of A, but their restrictions to Cs+1 are
Cs-valued continuous maps for every finite s (using the convexity inequality ‖·‖Cs ≤
Ks(‖·‖C0‖·‖

s
Cs+1)

1/(s+1); see [N]), so their restrictions to C∞ are C∞-valued continuous
maps.

Appendix E. Mixing dynamics and Cantor spectrum

In [Fa], Fayad proved that there exists a real-analytic time change f t of an irrational
flow on R3/Z3 which is mixing. Thus f t is generated by a vector field of the form uα,
where the coordinates of α ∈ R3 are rationally independent and u : R3/Z3

→ R is a
positive real-analytic function. By general properties of time changes (see [Pa, §5.1]), to
any measure µ0 which is invariant by the flow generated by α, we can associate an f t -
invariant measure which is absolutely continuous with respect to µ0 and has density 1/u,
and all f t -invariant measures are obtained in this way. Since irrational flows are uniquely
ergodic, the flow f t is uniquely ergodic as well. We will denote by µ the unique f t -
invariant probability measure.

Proposition E.1. Let f = f 1 be the time one map of the flow f t . Then f is mixing,
strictly ergodic, and the rangeG of the Schwartzman asymptotic cycle of f is dense in R.

Proof. Obviously f is mixing. If µ′ is any invariant probability measure for f , then∫ 1
0 f

t
∗µ
′ dt is an f t -invariant probability measure, so it coincides with µ. On the other
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hand, for every ε > 0, µ′ε = ε
−1 ∫ ε

0 f
t
∗µ
′ dt is an f -invariant probability measure abso-

lutely continuous with respect to µ. Obviously µ′ε → µ′ as ε→ 0, and since f is mixing,
f n∗ µ

′
ε → µ as n→∞ (in both cases the limits are taken in the weak-∗ topology). Since

µ′ε is f -invariant, we conclude that µ′ε = µ for every ε > 0, and hence µ′ = µ. Thus f
is uniquely ergodic. Since suppµ = R3/Z3, unique ergodicity implies strict ergodicity.

Given k ∈ Z3, let ψ : R3/Z3
→ R/Z be given by ψ(x) = 〈x, k〉, and let φ(x) =∫ 1

0 u(f
t (x)) dt 〈α, k〉. Then φ(x) = ψ(f (x))− ψ(x) mod 1 and g =

∫
R3/Z3 φ dµ ∈ G.

Recalling that µ is an f t -invariant probability measure with density proportional to
1/u(x), we get∫

R3/Z3
φ(x) dµ(x) =

∫ 1

0

∫
R3/Z3

u(f t (x)) dµ(x) dt 〈α, k〉 =

∫
R3/Z3

u(x) dµ(x) 〈α, k〉

= C−1
〈α, k〉,

where C =
∫
R3/Z3 u(x)

−1 dx > 0 is the normalization constant making µ a probability
measure. Since the coordinates of α are rationally independent, this shows thatG contains
a free Abelian subgroup of rank 3, so G is dense in R. ut

It follows from the proposition and Corollary 2 that Schrödinger operators arising from
mixing strictly ergodic dynamics can have Cantor spectrum, thus answering negatively
[Be1, Problem 5].
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