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NONUNIFORM CENTER BUNCHING AND
THE GENERICITY OF ERGODICITY AMONG C!
PARTIALLY HYPERBOLIC SYMPLECTOMORPHISMS

BY ARTUR AVILA, JAIRoO BOCHI anp AMIE WILKINSON

ABSTRACT. — We introduce the notion of nonuniform center bunching for partially hyperbolic dif-
feomorphims, and extend previous results by Burns—Wilkinson and Avila—Santamaria—Viana. Com-
bining this new technique with other constructions we prove that C'-generic partially hyperbolic sym-
plectomorphisms are ergodic. We also construct new examples of stably ergodic partially hyperbolic
diffeomorphisms.

REsuME. — Nous introduisons une notion non-uniforme de resserrement central pour les dif-
féomorphismes partiellement hyperboliques qui nous permet de généraliser quelques résultats de
Burns—Wilkinson et Avila—Santamaria—Viana. Cette nouvelle technique est utilisée, en combinaison

R

symplectiques partiellement hyperboliques de classe C'*. De plus, nous obtenons de nouveaux exemples
de dynamiques stablement ergodiques.

1. Introduction

1.1. Abundance of ergodicity

Let (M, w) be a closed (i.e., compact without boundary) symplectic C*° manifold of di-
mension 2N. Let Diff 3) (M) be the space of w-preserving C'* diffeomorphisms, endowed with
the C! topology. Let m be the measure induced by the volume form w”¥, normalized so that
m(M) = 1.

Let PH (M) be the set of diffeomorphisms f € Diff., (M) that are partially hyperbolic,
i.e., there exist an invariant splitting T, M = E*(z) @ E°(z) & E°(z), into nonzero bundles,
and a positive integer k such that for every z € M,

(DB (@)™ > 1> | DfFIE* ()],
I(DSEE (@)~ 7 > [DFFIE ()| = [(DfF|1E(2)) " I~ > IDf*E ()] -

Such a splitting is automatically continuous.

(1.1)
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932 A. AVILA, J. BOCHI AND A. WILKINSON

THEOREM A. — The set of ergodic diffeomorphisms is residual in PH® (M).

Our result is motivated by the following well-known conjecture of Pugh and Shub [26]:
There is a C? open and dense subset of the space of C? volume-preserving partially hyperbolic
diffeomorphisms formed by ergodic maps. Among the known results in this direction, we have:

— F. and M. A. Rodriguez-Hertz, and Ures [29] proved that C"-stable ergodicity is
dense among C" volume-preserving partially hyperbolic diffecomorphisms with one-
dimensional center bundle, for all » > 2. (See also [14] for an earlier result.)

— F.and M. A. Rodriguez-Hertz, Tahzibi, and Ures [28] proved that ergodicity holds on
a C'! open and dense subset of the C? volume-preserving partially hyperbolic diffeo-
morphisms with two-dimensional center bundle.

Together with the result from Avila [7], it follows that ergodicity is C'* generic among volume-
preserving partially hyperbolic diffeomorphisms with center dimension at most 2. On the
other hand, the techniques yielding the results above seem less effective for the understand-
ing of the case of symplectic maps, and indeed Theorem A is the first result on denseness
of ergodicity for non-Anosov partially hyperbolic symplectomorphisms, even allowing for
constraints on the center dimension. Our approach develops some new tools of independent
interest, as we explain next.

1.2. Center bunching properties

To support their conjecture, Pugh and Shub [26] provided a criterion for a volume-
preserving partially hyperbolic map to be ergodic, based on the property of accessibility,
together with some technical hypotheses. A significantly improved version of this criterion
was obtained by Burns and Wilkinson [18]: accessibility and center bunching imply ergod-
icity. Dolgopyat and Wilkinson [19] showed that accessibility is open and dense in the C*
topology, but center bunching is not a dense condition unless the center dimension is 1
(which cannot happen for symplectic maps). In this paper we introduce and exploit a weaker
condition, called nonuniform center bunching.

In the context of general (not necessarily volume-preserving) partially hyperbolic diffeo-
morphisms, the center bunching hypothesis in [18] is a global, uniform property, requiring
that at every point in the manifold, the nonconformality of the action on the center bundle
be dominated by the hyperbolicity in both the stable and unstable bundles. By contrast, the
nonuniform center bunching property introduced here is a property of asymptotic nature
about the orbit of a single point; it is the intersection of a forward bunching property of the
forward orbit and a backward bunching property of the backward orbit. The precise defini-
tions are slightly technical (see Section 2). However, for Lyapunov regular points (which by
Oseledets’ theorem have full probability), forward (resp. backward) center bunching means
that the biggest difference between the Lyapunov exponents in the center bundle is smaller
than the absolute value of the exponents in the stable (resp. unstable) bundle. The set C BT
of forward center bunched points for a partially hyperbolic diffeomorphism f has the useful
property of being W#-saturated, meaning that it is a union of entire stable manifolds of f;
similarly the set C B~ of backward center bunched points is YW*-saturated, i.e. a union of
unstable manifolds.
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Our next main result, Theorem B, generalizes the core result of [18] (Theorem 5.1 of that
paper). It states that for any C? partially hyperbolic diffeomorphism, the set of Lebesgue
density points of any bi essentially saturated set meets CBY in a W#-saturated set and C B~
in a W"-saturated set. (A bi essentially saturated set is one that coincides mod 0 with a
W3-saturated set and mod 0 with a W¥-saturated set.)

Burns and Wilkinson [18] obtain their ergodicity criterion as a simple consequence of their
technical core result. Indeed, assuming accessibility (or even essential accessibility), ergodic-
ity in [18] follows in one step from the core result, using a Hopf argument; it is not necessary
to establish local ergodicity first (as one does in proving ergodicity for hyperbolic systems).
It is unclear to us whether the Burns—Wilkinson criterion for ergodicity can be improved
by replacing uniform center bunching by almost everywhere nonuniform center bunching,
in part because the uniform version in [18] is by nature not a “local ergodicity” result. In
reality, it is possible to deduce a new ergodicity criterion (Corollary C) from Theorem B.
Namely, ergodicity follows from almost everywhere nonuniform center bunching together
with a stronger form of essential accessibility, where we only allow su-paths whose corners
are center-bunched points. While this accessibility condition is far from automatic, it can be
verified in some interesting classes of examples: see §1.4 below.

1.3. Outline of the proof of Theorem A

Let us explain how nonuniform center bunching combines with other ingredients to yield
Theorem A. Take a symplectomorphism with the following C! generic properties:

(a) it is stably accessible, by Dolgopyat and Wilkinson [19];

(b) all central Lyapunov exponents vanish at almost every point, by Bochi [9].
Notice that property (b) implies almost every point is center bunched. But Theorem B re-
quires C? regularity. This is achieved by taking a perturbation, which still has property (a),
but loses property (b). What happens is that each point in some set of measure close to 1 has
small center Lyapunov exponents and thus is center bunched.

Before getting useful consequences from Theorem B, we need to provide a local source
of ergodicity. This is achieved through a novel application of the Anosov-Katok [2] exam-
ples. (By comparison, [28] uses Bonatti-Diaz blenders.) We proceed as follows. By perturb-
ing, we find a periodic point whose center eigenvalues have unit modulus. Perturbing again,
we create a disk tangent to the center direction that is invariant by a power of the map. We
can choose any dynamics close to the identity on this disk, so we select an ergodic Anosov—
Katok map. Ergodicity is spread from the center disk to a ball around the periodic point
using Theorem B, and then to the whole manifold by accessibility. (In fact, since the set of
center bunched points is not of full measure, a G5 argument is necessary to conclude ergod-
icity — see Section 3 for the precise procedure.)

1.4. Further applications of nonuniform center bunching

By means of our ergodicity criterion (Corollary C) we construct an example of a stably
ergodic partially hyperbolic diffeomorphism that is almost everywhere nonuniformly center
bunched (but not center bunched in the sense of [18]) in a robust way.

We also prove in this paper an extension of Theorem B to sections of bundles over par-
tially hyperbolic diffeomorphisms. This result, Theorem D, brings into the nonuniform
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934 A. AVILA, J. BOCHI AND A. WILKINSON

setting a recent result of Avila, Santamaria and Viana [8], which they use to show that the
generic bunched SL(n,R) cocycle over an accessible, center bunched, volume-preserving
partially hyperbolic diffeomorphism has a nonvanishing exponent. The result from [&] has
also been used in establishing measurable rigidity of solutions to the cohomological equa-
tion over center-bunched systems; see [33]. Theorem D has similar applications in the setting
where nonuniform center bunching holds, and we detail some of them in Section 6.

We conceive that our methods may be further extended to apply in certain “singular par-
tially hyperbolic” contexts where partial hyperbolicity holds on an open, noncompact subset
of the manifold M but decays in strength near the boundary. Such conditions hold, for exam-
ple, for geodesic flows on certain nonpositively curved manifolds. Under suitable accessibility
hypotheses, these systems should be ergodic with respect to volume.

1.5. Questions

Combining results of [19] and Brin [1 5], one obtains that topological transitivity holds for
a C! open and dense set of partially hyperbolic symplectomorphisms. On the other hand,
the C-interior of the ergodic symplectomorphisms is contained in the partially hyperbolic
diffeomorphisms [22, 30]. This suggests the following natural question.

QUESTION 1. — Can Theorem A be improved to an open (and dense) instead of residual
set?

Notice that it is not known even whether the set of C' Anosov ergodic maps has non-
empty interior.

Dropping partial hyperbolicity, recall that C! generic symplectic and volume-preserving
diffeomorphisms are transitive by [5] and [11], while ergodicity is known to be C°-generic
among volume-preserving homeomorphisms by [24]. So the following well-known question
arises:

QUESTION 2. — Is ergodicity generic among C' symplectic and volume-preserving
diffeomorphisms?

1.6. Organization of the paper

In Section 2 we define nonuniform center bunching, state Theorem B, and derive
Corollary C from it.

In Section 3 we prove Theorem A following the outline given in §1.3. As we have explained,
the proof uses the existence (after perturbation) of a periodic point with elliptic central be-
havior. Such a result goes along the lines of [12, 22, 30], but we have not been able to find
a precise reference. In Section 4, which can be read independently from the rest of the pa-
per, we provide a proof of this result by reducing it to its ergodic counterpart and applying
the Ergodic Closing Lemma. This approach is different from the one taken in the literature.
For this reason, we included an appendix explaining how to use it to reobtain some results
from [12].

The proof of Theorem B, despite having much in common with [18], is given here in full
detail in Section 5. In Section 6 we formulate and prove the more general Theorem D. The
new examples of stably ergodic maps are constructed in Section 7.
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2. Nonuniform center bunching and consequences

Throughout this section, f denotes a fixed C? partially hyperbolic diffeomorphism of a
closed manifold M of dimension d. (We do not require f to be symplectic or even volume-
preserving.) Using a result of Gourmelon [20], we take a Riemannian metric ||-|| on M for
which relations (1.1) hold with k& = 1.

REMARK 2.1. — The notion of partial hyperbolicity we use in this paper is called rela-
tive. There is a stronger form of partial hyperbolicity, called absolute, which asks for the ex-
istence of a Riemannian metric such that ||(Df|E“(x))~!||=! > max(1, ||Df|E(y)|) and
min(1, |[(Df|E(y))~t|7Y) > || Df|E*(2)|| for every z, y, z € M; see [1].

2.1. Saturated sets

If F is a foliation with smooth leaves, a set X C M is said to be F-saturated if it is a union
of entire leaves of F. We say that a measurable set X is essentially F-saturated if it coincides
Lebesgue mod 0 with a F-saturated set.

We also say that a set X is F-saturated at a point x if there exist 0 < Jy < d; such that
for any z € X N B(z,d0), we have F(z,6;) C X. (Here F(z, ;) denotes the connected
component of F(z) N B(z, d;) containing z.)

A measurable set X is called bi essentially saturated if it is both essentially W*-saturated
and essentially WW?*-saturated. (Here W* and W?* are the unstable and stable foliations of the
partially hyperbolic diffeomorphism f.)

2.2. Nonuniform center bunching

If A: V — W is a linear transformation between Banach spaces, we denote by m(A) the
conorm of A, defined by

m(4) = _inf [|A(v)].

veV, |lv]|=1
If A is invertible, then m(A) = || A=Y ~L.
We say that a point p € M is forward center bunched if there exist § > 1 and a sequence
0 =19 < i1 < --- such thatixi1 /i — 1 and for every k > 0,
D pir (y f 141 7| EC||
m(Dfik(p)fikH—ik |EC) .

||Dfik(p)fik+1_ik |ES||—1 > Qir+1—k

The point p is called backward center bunched if it is forward center bunched with respect to
f~1. The set of forward, resp. backward, center bunched points is denoted by CB™, resp.
CB~. Alsoset CB = CBT N CB™. Itiseasy to see that these sets are f-invariant. Moreover,
in Section 5 we show:

PROPOSITION 2.2. — OB is Ws-saturated and CB™ is W*-saturated.
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A much deeper property is:

THEOREM B. — Let f be a C? partially hyperbolic diffeomorphism. Let X be a bi essentially
saturated set, and let X denote the set of Lebesgue density points of X. Then X N CB7 is
Ws-saturated and X N CB~ is W*-saturated.

We remark that the hypotheses of Theorem B are weaker than the center bunching hypoth-
esis in [18]. In the setting of [18], CB™ = CB~ = M and one takes i, = k in the definition
of forward center bunching. (In fact, the center bunching hypothesis in [18] is equivalent to
the condition CBY = CB~ = M, see Remark 2.5 below.)

Another remark is that, as in [18], it is essential that X is both essentially W*-saturated
and essentially WW*-saturated in order to conclude anything.

2.3. Relation with Lyapunov spectrum

Let us formulate sufficient conditions for center bunching in terms of Lyapunov expo-
nents.

Oseledets” Theorem asserts that there exists a set of full probability (that is, a Borel set
of full measure with respect to any f-invariant probability) where Lyapunov exponents and
Oseledets’ splitting are defined (see for example [6, Theorem 3.4.11 and Remark 4.2.8]). The
elements of this set are called Lyapunov regular points.

If p € M is a Lyapunov regular point, we write the Lyapunov exponents (with multiplic-
ity) of f at p as:

AL 2> 2 A > A1 2 2 A > A1 200 2 A
Eu Ee e
(The braces are shorthands meaning that dim E* = k,dim E¢ =/ —k, dim E* = d—£.) We
say the Lyapunov spectrum of f at p satisfies the forward center bunched condition if

M1 — A < =Apg1,
and the backward center bunched condition in the case that
)\k+1 — X < A

Notice that if f is symplectic then, by the symmetry between the exponents, the forward
and the backward center bunching conditions are equivalent to:

2)\k+1 < A .

PRrROPOSITION 2.3. — A Lyapunov regular point is forward (resp. backward) center bunched
if and only if its spectrum satisfies the forward (resp. backward) center bunched condition.

Proof. — We only need to prove the forward part of the proposition, and the backward
part will follow by symmetry.
Fix a point p and define

2.1)  8(j,n) = |Dpsp) [IE° |7 - m(Dygs ) [ E) - |1 Dgs oy [PIECIITY Gym > 0.

Assume that p is forward center bunched. Let 8 and i, be as in the definition of forward center
bunching; then O (iy, ix1 — ix) > 0%+~ We have

0(0,ix) > ©(0,41)O(i1, 42 — 1) -+ - O(ik—1,%% — Gx—1) > 0,
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and in particular
1
(2.2) lim sup — log ©(0,n) > 0.
n—+oo M
If p is Lyapunov regular then the lim sup above equals —Ay41 + Ay — Ag41. Thus p has center
bunched Lyapunov spectrum.

Conversely, assume that the point p is Lyapunov regular and has center bunched Lya-
punov spectrum. Fix some 7 with 0 < 7 < —Agy1 — Agy1 + Ae. We claim that

(2.3)  forevery § > 0 there exists ¢; > 0 such that ©(j,n) > cse~ %™ for all j, n > 0.

Before giving the proof, let us see how to conclude from here. Let ig = 0. Inductively define
ix,1 as the least i > iz, such that ©(iy, i — i) > e(7/2 (=) Let us see that this sequence of
times satisfies the requirements of the definition of forward center bunching, with § = /2.
For any § > 0, we have

cse O eTlinni—in—l) o O(ig,ik41 — i — 1) < e(T/Dhr1—in=1)
It follows that if i\, is sufficiently large (depending on §) then (g1 — %) /ix < 36/7. This
proves that iy /i, — 1 and hence thatp € CB™.

We are left to prove (2.3). For 1 < i < d = dim M, let E*(p) be the Oseledets space
corresponding to the Lyapunov exponent A;(p). (This notation is not standard because those
spaces are not necessarily different.) A consequence of the Lyapunov regularity of p is that,
for each i = 1,...,d, the quotient n~!log || D, f™(v)|| converges to A; uniformly over unit
vectors v € E*(p). Thus for every § > 0 there exists Ks > 1 such that

Kyte®i=0m <D, f"(v)| < KsePt9™ for all unit vectors v € E*(p) and n > 0.
Hence, for each n, 7 > 0, we have
(2.4) 1D () f" ||| < 1 Dp ™| el /(D f?

Another consequence of Lyapunov regularity (see [6, Corollary 5.3.10]) is that the angles be-
tween (sums of different) Oseledets spaces along the orbit of p are subexponential. In partic-
ular, for each 6 > 0 we can find K5 > 1 such that

(K(/S)—le—é(j+n) < ”ij(p)fn
maX;e(¢41,d) ”ij (P)fn

It follows from (2.4) that there exists K§ > 1 such that

< K§625je(>\i+5)” .

s )

= < K}eU*™ - for eachn, j > 0.

Ei

IDgs ) f" s || < K €3 ePet20m - for each n, j > 0.

This controls the first term in (2.1). The other two are dealt with in an analogous way, and
(2.3) follows. U

REMARK 2.4. — If p € CB™ then we have seen that (2.2) holds, where © is defined
by (2.1). Let us show that condition (2.2) alone does not imply forward center bunching.
First notice that if p € CB™ then

1 . 1
(2.5) liminf — log ©(jm, nm) > 0 for any sequences j,, ny, with n,, > Ejm — 00.
m—oo My,
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-2 9 -2 10
A= ¢ . B=|° . C= .
0 el 0 e! 0 e3/4

Assume that Dy; ;) f|ge equals C for every j > 0, while the sequence Dy;,,) f|gs, 5 > 0 s
given by:

Now let

A,B,A A, B, B, A (4 times), B (4 times), A (8 times), B (8 times), . . .
Notice that for every n > 0, we have |Dpf"|g:|| = e ™, m(D,f"|gc) = 1, and
| Dy f™ | g< || = e®/4™, so condition (2.2) is satisfied. On the other hand, if j = 2™+ 2™ —2
andn = 2™ then Dy;(,) f™ = B™ and therefore ©(j,n) = e(=*/*". Hence (2.5) does not
hold and so p is not forward center bunched.

REMARK 2.5. — If CBT = CB~ = M then f is center bunched in the sense of [18].
Indeed, let ©,(4,n) be asin (2.1), with a subscript to indicate dependence on the point. As-
suming CBT = M, compactness implies that there exist # > 1 and m such that for every
p € M there exists ¢ with 1 < ¢ < m such that ©,(0,¢) > 6. It follows that there isc > 0
such that ©,(0,n) > cf™/™. We reason analogously for f~. The conclusion follows from
an adapted metric argument along the lines of [20].

2.4. An ergodicity criterion

Let us extract a criterion for ergodicity from Theorem B. (It is not used in the proof of
Theorem A, so the reader can skip the rest of this section.)

COROLLARY C. — Let f be a C? partially hyperbolic volume-preserving diffeomorphism.
Let CB = CBY N CB™ be the set of center bunched points. Assume that almost every pair
of points x, y € CB can be connected by an su-path whose corners are in CB.

Let X be a bi essentially saturated set such that X N C B has positive measure. Then X has
full measure in CB. If CB has full measure, then f is ergodic, and in fact a K-system.

In Section 7 we give applications of Corollary C to prove stable ergodicity of certain par-
tially hyperbolic diffeomorphisms that are not center bunched.

Proof of Corollary C. — Let f and X satisfy the hypotheses of Corollary C and let X be
the set of Lebesgue density points of X. Then for almost every z € X NCB and almost every
y € CB, there is an su-path from x to y with corners zg = z,z1,...,2, = y all lyingin CB
(that is, so that z; lies in CB N (W*(x;41) UW*(2441)), fori =0,...,k —1). Fixsuchan =
and y and such an su-path. Applying Theorem B inductively to each pair x;, z; 1, we obtain
that z; lies in X, fori = 1,...k, and so y € X. This implies that almost every y € CB lies
in X, and hence X has full measure in CB.

A standard argument shows that a volume-preserving partially hyperbolic diffeomor-
phism is ergodic if and only if every bi essentially saturated, invariant set has measure 0 or 1.
Moreover, f is a K-system if every bi essentially saturated set, invariant or not, has measure
0 or 1 (see [18], Section 5). If C'B has full measure, then any bi essentially saturated set has
0 or full measure in C' B, and hence has measure 0 or 1. It follows that f is ergodic, and in
fact a K-system. O
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3. Proof of Theorem A

For € > 0, let us call a diffeomorphism f € PH_ (M) e-nearly ergodic if for any bi essen-
tially saturated and mod 0 invariant set X, either m(X) < € or m(X) > 1 — &." The bulk
of the proof of Theorem A consists in showing the following:

PrOPOSITION 3.1. — For any € > 0, the e-nearly ergodic diffeomorphisms form a dense
subset of PHL (M).

In §§3.1, 3.2, and 3.3 we review some results from the literature, which are used to prove
the proposition in §3.4. Then in §3.5 we explain how Proposition 3.1 implies Theorem A.

3.1. Zero center exponents

Given f € PH. (M), the partially hyperbolic splitting TM = E* @ E°@® E* is not neces-
sarily unique. We consider from now on only the unique splitting of minimal center dimension. If
this center dimension is constant on a C'-neighborhood of f, we say that f has unbreakable
center bundle. Such f’s form an open dense subset of PH (M) (by upper-semicontinuity of
the center dimension).

To get center bunching, we will use the following:

THEOREM 3.2 (Bochi [9], Theorem C). — There is a residual set R C PHL (M) such that
if f € R then all Lyapunov exponents in the center bundle vanish for a.e. point.

In other words, A°(f) = 0 for generic f, where

. 1 n| e . 1 n| e
X(f) = lim f/ log | Df"|E%|| dmzlgfg/ log | D f"|E%|| dm.
M M

n—+4oo n

Notice that A¢(f) is an upper semicontinuous function of f. Therefore, for any § > 0, the set
of f € PHL (M) with X\¢(f) < & is open and dense (and thus, by [34], it contains C? maps).

3.2. Accessibility

There are two results about accessibility that we will need: one says that it is frequent, and
the other gives a useful consequence.

THEOREM 3.3 (Dolgopyat and Wilkinson [19]). — There is an open and dense subset of
PH 3) (M) formed by accessible symplectomorphisms.

THEOREM 3.4 (Brin [15]). — If f is a C? volume-preserving partially hyperbolic diffeomor-
phism with the accessibility property then almost every point has a dense orbit.

In fact, Brin proved the result above for absolute *) partially hyperbolic maps. Another
proof was given by Burns, Dolgopyat, and Pesin, see [16, Lemma 5]. Their proof applies
to relative partially hyperbolic maps (the weaker definition taken in this paper): the only
necessary modification is to use the property of absolute continuity of stable and unstable
foliations in the relative case, which is proven by Abdenur and Viana in [1].

() A related notion, e-ergodicity, was considered by [32].
@) See Remark 2.1
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3.3. Creating an ergodic center disk

The last ingredient we will need in the proof of Proposition 3.1 is Lemma 3.8 below, whose
proof needs its own preparations. We begin finding a suitable periodic point:

THEOREM 3.5. — Let f have unbreakable center. There exists a Ct-perturbation f that has
a periodic point with dim E° eigenvalues of modulus 1.

This result can be obtained along the lines of [30] or [22] (which prove symplectic versions
of the results of [12]). In Section 4 we give a different proof, relying on [9] and the Ergodic
Closing Lemma [23].

The following symplectic pasting lemma is established using generating functions, see [3]:

LEMMA 3.6. — Let f € Diff],(M). Given e > 0 there is & > 0 such that if U C M is an
open set of diameter less than 8, and g : U — M is a C"-symplectic map that is §-C-close to
f|U, then g can be extended to some § € Diff.,(M) that is e-C1-close to f.

The Anosov—Katok constructions enter here:

THEOREM 3.7. — Let L : R?N — R2N be a symplectic linear map with all eigenvalues of
modulus 1. Then there exist an arbitrarily small neighborhood U of 0 in R?N and an ergodic
symplectic diffeomorphism g : U — U that is C*°-close to L|U.

Proof. — We may assume that L has only simple eigenvalues /\1i1, RN /\ﬁl, all in the unit
circle. For 1 < i < N, let E* be the L-invariant two-dimensional subspaces associated to the
eigenvalues \;, \; . Let A; : E — R? be linear maps conjugating L| E" to rigid rotations R;.
Fixe > 0.1If g; : D — D are area-preserving maps of the unit disk D C R? that are C*°-close
to R;|D, then the formula

g(z) = eAl_lgl (5_1A1:1:1) + et 5A]_v1gN(5_1ANxN), where z = 21 + - - - + xn with z; € E?,

defines, on a small neighborhood U of 0 in R*V, a symplectic map g : U — U that is
C*-close to L|U. Now using a well-known result of Anosov and Katok [2], we choose
maps g; as above that are weakly mixing. It follows (see [25], Theorem 2.6.1) that g is weakly
mixing (and hence ergodic) as well. O

LEMMA 3.8. — For all f in a C' dense subset of PHL (M), the following properties hold:
The map f is C?, and there is an immersed closed disk D° such that:

1) the tangent space T, D¢ coincides with E¢(x) at each x € D¢;
2) thereis some £ such that D¢ is f*-invariant, and moreover D°Nf1(D°) = @ for0 < i < £;
3) the restriction of f* to D¢ is ergodic (with respect to the Riemannian volume m.);
4) the disk is center bunched in the sense that
[DfIE ()|l
m(Df|E*(z))
5) f is dynamically coherent in a box neighborhood B of D¢ (that is, there are foliations
WE, WUe, Wes in the box B that integrate the distributions E¢, E* & E€, E¢ ® E®).

< min (m(Df|E*(z)), |Df|E*(z)|™") forallz € D
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Proof. — We will explain how to perturb a given f in order to obtain the desired proper-
ties.

First use Theorem 3.5 to perturb f and find a periodic point p of period £ such that all
eigenvalues of D f¢|E(p) have modulus 1. Also assume that these eigenvalues are distinct
and their arguments are rational mod 2, so that D f¢|E¢(p) is diagonalizable and a power
of it is the identity.

Take a neighborhood U of p that is disjoint from fi(U) for 1 < i < £ — 1, and such
that there is a symplectic chart ¢ : U — R2V (that is, the form ¢.w coincides with
Zf\il dp; A dg;, where p1, ..., PN, q1, ..., gn are coordinates in R?V.) We can also assume
that ¢(p) = 0 and D¢(p) sends the spaces E*(p), E°(p), and E*(p) to the planes p; - - - pu,
Du+1- PNGQu+1 - qN, and qq - - - gy, respectively (where v = dim E™.)

Using Lemma 3.6, we can perturb f so that ¢ o f* o ¢! coincides with the linear map
Dé(p) o Df*(p) o D¢p~1(0) on a neighborhood of p. For simplicity, we omit the chart in the
writing, thus

fl(xw TeyTs) = (Lu(Tu), Le(ze), Ls(ws))-

Recall that there is a power of L, that is the identity. So, if necessary changing the point p
and the period ¢, we can assume L. is the identity.

Next we use Theorem 3.7. Let g : D¢ — D¢ be an ergodic symplectic diffeomorphism,
where the disk D¢ ¢ R4™E” is contained in the chart domain. Consider the (symplectic)
map

G(zy, xc,xs) = (Ly(xy), 9(xc), Ls(xs)), defined in a neighborhood of (0, 0, 0).
Now use Lemma 3.6 again to find a global f : M — M close to f, such that (still in charts)
fixy, xe, ) = G(zy, Te, x,) in a neighborhood of (0,0, 0).
Rename f to f. Then f has all the desired properties. O

3.4. Getting near-ergodicity

Proof of Proposition 3.1. — Fix an open setUf C PH}U(M) ande > 0. Let § > 0 be small.
Using Theorems 3.3 and 3.2, we can assume that the set I/ is composed of maps f that are
accessible and satisfy A\°(f) < ¢. With a good choice of §, the latter property implies that
for any f € U, the measure of the set of Lyapunov regular points whose Lyapunov spectrum
satisfies the center bunching condition is at least 1 — . Thus, by Proposition 2.3,

m(CBT) > 1—e¢.

Now take f € U given by Lemma 3.8. Thus we have a center bunched disk D¢ that is
ergodic (w.r.t. the measure m.) by a power f¢, disjoint from its first £ — 1 iterates, and has a
dynamically coherent box neighborhood B.

We will prove that f is e-nearly ergodic. So take any bi essentially saturated set mod 0 in-
variant set X. Let X; be the (invariant) set of its Lebesgue density points, and
Xo = M ~ X;. By Proposition 2.2 and Theorem B, X; N CB™ is W#-saturated and
X; N CB™ is W*"-saturated for both j = 0, 1.
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The map f* has the invariant ergodic measure m., supported on D°. Thus, for some
i € {0,1} (that will be kept fixed in the sequel),

By Oseledets’ Theorem, m.-almost every point is Lyapunov regular for f¢, and hence for
f as well. By Property 4 in Lemma 3.8, all these points have center bunched Lyapunov spec-
trum, and thus are (forward and backward) center bunched, by Proposition 2.3. Hence for
mc-almost every x € D¢, the unstable manifold W*(x) is contained in X; _;. Dynamical co-
herence gives a foliation W€ in the box B (which integrates E* @ E°); let D¢ be the leaf that
contains D¢, with an induced Riemannian volume measure m,,.. It follows from the absolute
continuity of the W* foliation that

muc(Xi N Duc) = 0.

Since the set Y; = X; N CB™ is W#-saturated and m..(Y; N D*¢) = 0, absolute continuity
gives m(Y; N B) = 0. It follows that m(Y;) = 0; indeed if the invariant set Y; had positive
measure then, by Theorem 3.4, it would have a positive measure intersection with every set
of nonempty interior, for example the box B. Recalling that m(CB™) > 1 — ¢, we get that
m(X;) < . This means that either m(X) < £ or m(X) > 1 — ¢, as we wanted to prove. [

3.5. The G5 argument

We now explain how Proposition 3.1 implies Theorem A.
Given f € Diff} (M) and a continuous function ¢ : M — R, define functions:

Z pr(z) = lim @¢n(z) (defined a.e.).

n—-—+o00
=0

For ¢ € C°(M,R), a € R, and >0, let G(¢,a,e) be the set of f such that
mlpr > a] > 1 —cormlps < a] > 1 —e. (Here [pf > a] is a shorthand for the set
of x € M where ¢ (z) exists and is greater than or equal to a.)

:M—‘

P

LEMMA 3.9. — G(p, a,¢) is a G5 subset of Diff. (M).

Proof. — Define
F(p,a,a) = {f, mlps > al >a}
So we have
G(p,a,e) = F(p,a,1 —e) UF(—p,—a,1 —¢),
We are going to prove that F(i, a, ) is a Gs. Since the finite union of Gs’s is a G, ?) the
lemma will follow.

Let ¢, a, o be fixed. Given b < a, 8 < «, and ng, n1 € N with nyg < nq, let
U(b, B,m9,n1) be the set of f such that the set [max,c(ny,n,] ©fn > b] has measure > 3.
Then U(b, 8,10, n1) is open.

We will check that:

(3.1 F(p,a,a) = ﬂ ﬂ ﬂ U U, B,n9,m1),

b<a B<a Mo m1>ng

® Proof: (N An U Bn =[((A1N---NAp) U (B1N---N By).
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where b and 3 take rational values. First, we have:

lpf > a] = [limsup gy, > a] = ﬂ ﬂ U [pfn >b modO.

b<a mo n>ng

Then we have the following equivalences:

mlps >al > a < Vb<a, Vng, m U[gof,n>b] > o

n>ng

<~ Vb < a, Yng, VB < a, Ing > ng s.t. m( U [<pf,n>b]> >o.

n=ngo

This proves (3.1), and hence that F (¢, a, ) is a Gs. O

Proof of Theorem A. — First, we claim that if f is a e-nearly ergodic map, then
f € G(p,a,¢) forany ¢ € C°(M,R) and @ € R. Indeed, let X be the (invariant) set
of points z € M where limsup ¢y ,,(x) > a. This is a bi essentially saturated set, because it
is W?-saturated and it coincides mod 0 with the W*"-saturated set [lim sup ¢ -1 ,, > a]. Since
f is e-nearly ergodic, m(X) is either less than ¢ or greater than 1 — €. So either m[ps > a]
or m[ps < a] is greater than 1 — ¢, showing that f € G(yp, a,¢).

It follows from Proposition 3.1 that the sets G(y,a,e) are dense in PH. (M), while
Lemma 3.9 says they are G5. Thus to complete the proof of the theorem, we need only to
see that the set of ergodic diffeomorphisms is precisely

N 9(e.ae),
p,a,e

where ¢ varies on a dense subset D of C°(M, R), and a and ¢ take rational values. Indeed, if f
is not ergodic then we canfind ¢ € D,a < band 0 < € < 1/2suchthat [p; < a]and [p; > D]
both have measure greater than e. Then f cannot belong to G(p, a,e) N G(p, b, ). O

4. A proof of Theorem 3.5

The following is the symplectic version of Maiié’s Ergodic Closing Lemma [23], proved
by Arnaud [4]. If f € DiffL(M )and x € M, we say that = is f-closable if for every
€ > 0 there exist a e-perturbation f € Diffi(M ) such that z is periodic for f and moreover

d(fiz, fix) < ¢ for every i between 0 and the f-period of z.
THEOREM 4.1 ([4]). — For every f € DiffL (M), m-almost every point is f-closable.

The first step to obtain Theorem 3.5 is to find an “almost elliptic” periodic point, that is
a periodic point whose center eigenvalues are close to the unit circle:

LemMmaA 4.2. — Let f € PHL(M) have unbreakable center. Then for every € > 0 there
exist an e-perturbation f and a periodic point x of period p for f such that all eigenvalues p; of
D fP|E*(x) satisfy |log |pil| < ep.
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Proof. — Let f and € be given. Write D¢ f = D f|E*. Since the eigenvalues of a symplectic
map are symmetric, to prove the lemma it suffices to find an e-perturbation f with a periodic
point x of period p such that:

4.1) | D¢ f™P(z)|| < e™P for some m > 1.

Due to Theorem 3.2, we can assume that A°(f) = 0. Therefore there exists k such that
% [aslog | D¢ f*|| dm < e. Hence, for all z in a set of positive measure,

m—1

(4.2) lim -~ Z log ||Df*(f* ()]l <e.

m— 00
By Theorem 4.1, we can take an f-closable point = such that (4.2) holds. If x is periodic then
(4.2) follows with f = f. Otherwise, let f; e PH ! (M) be a sequence converging to f in the
C* topology such that z is periodic (of period p;) for f;. Then p; — oco. Let m; = |p;/k].
We estimate:

1 et
;log ID< £} () f > log|[D°fF(fi* (@)l + *log 1D f;lloo-
J i=0 J

As j — 00, the right hand side converges to the left hand side of (4.2). Thus the result follows
with f = f; for j sufficiently large. O

Next we see how the eigenvalues can be adjusted:

LEMMA 4.3. — Lete > 0. Let Ay, ..., A, be symplectic matrices and let 2d be the number
of eigenvalues p; of Ay, - - - A1 (counted with multiplicity) such that % log |psi| < e. Then there
exist symplectic matrices By, ..., By, such that |B; — Id|| < e — 1 and A, By, --- A1 By has
exactly 2d eigenvalues (counted with multiplicity ) in the unit circle.

Proof. — Assume the matrices have size 2N x 2N. Let {p1,...,pN,q1,---,qn} be the
canonical symplectic and orthonormal basis of R?V.

Write A = A; --- A;. Let Ay > --- > \; be the Lyapunov exponents of A and let {0} =
Fy CF C---CF =R bethe Lyapunov filtration of A™, that is, A™(F;) = F; and the
action of A™ on F;/F;_; has eigenvalues of modulus e*i. Let (i) be the dimension of Fj.
Let m > 0 be maximal with A, > 0, and let 0 < u < m be maximal with \,, > . Notice
that dim F}_,,/F,, = 2d.

Let FF = A¥(F;),0 < k < n — 1. There exist symplectic orthogonal matrices
Cy, ..., Cp_1 such that if ¢ < m then C;CFZ»’C is spanned by p1, ..., pr;). It follows that
if i > m then C F}* is spanned by p1, ..., pa. qa, ---» @r(s)—d-

Let us consider a symplectic matrix A such that Apy = p, and Agy = gx, unless
r(i — 1) < k < r(i) for some u < i < m, in which case we let Apy = e /"py,
Aqk — eNi /n

Let By = C’k_lACk. Then T = A, B,, - -- A1 B; preserves the spaces F;, 0 < ¢ < t,and T
actson F;/F;_1 as A", unlessu < i < mork —m < ¢ < k — u, in which case T acts as
e~ A™ It follows that the action of T on Fy_,,/F, has only zero Lyapunov exponents. The
result follows. O
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Proof of Theorem 3.5. — By Lemma 4.2 we can perturb f and create an “almost elliptic”
periodic point. Lemma 4.3 says that the derivatives along this orbit can be perturbed to be-
come completely elliptic. Using Lemma 3.6 we can realize this by a further perturbation of
the diffeomorphism. O

The argument above could have been carried out by appealing to the easier cocycle version
of [9] obtained in [10]: see the appendix of this paper.

5. Proof of Theorem B

We adopt as much as possible notation that is consistent with the notation in [18], as the
proof of Theorem B has many parallels with the proof of Theorem 3.1 there. A few statements
are also adapted bearing in mind the needs of the proof of Theorem D given in the appendix.

5.1. Density

If v is a measure and A and B are v-measurable sets with v(B) > 0, we define the density
of A in B by:
v(AN B)

v(B)
A point x € M is a Lebesgue density point of a measurable set X C M if

v(A:B)=

lir%m(X : By(z)) = 1.

The Lebesgue Density Theorem implies that if X is a measurable set and X is the set of
Lebesgue density points of X, then m(X A 5(\) =0.

Lebesgue density points can be characterized using nested sequences of measurable sets.
We say that a sequence of measurable sets Y,, nests at point zif Yo DY, DYy D --- D {z},
and

Y. = {=}.

A nested sequence of measurable sets Y, is regular if there exists § > 0 such that, foralln > 0,
we have m(Y,,) > 0, and

m(Yne1) > om(Yy).
Two nested sequences of sets Y,, and Z,, are internested if there exists a k > 1 such that,
for all n > 0, we have
Yn+k Cc Zna and Zn+k CY,.
The following lemma is a straightforward consequence of the definitions.
LemMma 5.1 ([18], Lemma 2.1). — Let Y,, and Z,, be internested sequences of measurable

sets, with Y, regular. Then Z, is also regular. If the sets Y, have positive measure, then so do
the Z,, and, for any measurable set X,

lim m(X:Y,)=1 < lim m(X:Z,) =1

n—oo n—o0
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5.2. Foliations and absolute continuity

Let F be a foliation with smooth d-dimensional leaves. An open set U C M is a foliation
box for F if it is the image of R®»~¢ x R? under a homeomorphism that sends each vertical
R-slice into a leaf of F. The images of the vertical R%-slices are called local leaves of F in U.

A smooth transversal to F in U is a smooth codimension-d disk in U that intersects each
local leaf in U exactly once and whose tangent bundle is uniformly transverse to T'F. If 7
and 75 are two smooth transversals to F in U, we have the holonomy map hx : 71 — 7o,
which takes a point in 71 to the intersection of its local leaf in U with 75.

If S C M is a smooth submanifold, we denote by mg the volume of the induced Rieman-
nian metric on S. If F is a foliation with smooth leaves, and A is contained in a single leaf of
F and is measurable in that leaf, then we denote by m z(A) the induced Riemannian volume
of A in that leaf.

A foliation F with smooth leaves is transversely absolutely continuous with bounded Jaco-
bians if for every angle o € (0,7/2], there exist C > 1 and Ry > 0 such that, for every
foliation box U of diameter less than Ry, any two smooth transversals 71,72 to F in U of
angle at least a with F, and any m,,—measurable set A contained in 7y:

(51) C_lm‘rl (A) < mq, (h’]:(A)) < CmTl (A)

The foliations W* and W* for a partially hyperbolic diffeomorphism are transversely ab-
solutely continuous with bounded Jacobians (see [1]).

Let F be an absolutely continuous foliation and let U be a foliation box for F. Let 7 be
a smooth transversal to F in U. Let Y C U be a measurable set. For a point ¢ € 7, we
define the fiber Y (q) of Y over ¢ to be the intersection of Y with the local leaf of F in U
containing q. The base Ty of Y is the set of all ¢ € 7 such that the fiber Y (¢) is m z-measurable
and mz(Y (¢)) > 0. The absolute continuity of F implies that 7y is m,-measurable. We say
that “Y fibers over Z” to indicate that Z = 7y.

If, for some ¢ > 1, the inequalities

-1 < TTL]-‘(Y((]))

— mz(Y(q))

hold for all ¢, ¢’ € Ty, then we say that Y has c-uniform fibers. A sequence of measurable sets

Y,, contained in U has c-uniform fibers if each set in the sequence has c-uniform fibers, with
¢ independent of n.

<c

PropoOSITION 5.2 ([18], § 2.3). — Suppose that the foliation F is absolutely continuous with
bounded Jacobians. Let U be a foliation box for F, and let T be a smooth transversal to F in U.
LetY, and Z,, be sequences of measurable subsets of U with c-uniform fibers.

1) Suppose that there exists 6 > 0 such that:
(a) foralln >0,
mr (TYnH) > om, (TYn )k
(b) foralln > 0, there are points z € Ty, _,, %' € Ty, with

M (Yo (2)) > 6ma(Y(2):

Then'Y,, is regular.
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2) Suppose that Ty, = Tz, , for all n and that 'Y, and Z,, both nest at a common point x.
Then, for any set X C U that is essentially F-saturated at x, we have the equivalence:

lim m(X:Y,) =1« lim m(X:2Z,)=1.
3) For every measurable set X that is F-saturated at x, we have the equivalence:

lim m(X:Y,)=1<+= lim m,(rx : 7y,) = L.

n—oo

5.3. Construction of an adapted metric

We begin with some notation. Again fix the diffeomorphism f: M — M. Forx € M and
j € Z we denote by z; the j-th iterate f7(z). If , 3 are positive functions defined on the
forward orbit O (p) = {p;; j > 0} of some p € M, we write & < (3 if there exists a positive
constant A < 1 such that for all y € OT (p):

o) 5

Bly)
Notice that if a, 8 happen to extend from OF (p) to continuous functions on M satisfying
the pointwise inequality o < (3, then compactness of M implies that o < S.
If « is a positive function, and j > 1 is an integer, let

a;(z) = a(z)a(z) - alzj1),
and
a_j(@) = a(e—;) ale 1) aler)
= 1. Observe that «; is a multiplicative cocycle; in particular, we have

We set ()
= aj(z—5).

a_j(z)~!

LEMMA 5.3. — Let f: M — M be C' and partially hyperbolic, and let p € CBY. Then
there exist functions B, v, 0, v, 4: OV (p) — R, bounded from below, and a Riemannian
metric ||-|| defined on To+ M with the following properties:

D) v<~yy<landv <1;
2) fory in O (p),

”Dy.ﬂESH* < V(y) = ’Y(y) =< m*(DyflEC) < ||Dyf|EC||* < 'A)/(y)_l = D(y)_l < m*(Dyf|E“);

3) limsup;_,, B(pj)Y7 =1;
4) forallv € T,, M and j > 0:

(5.2) [oll < llvlls < B(ps)llvll-

Proof. — Let ||-||; be a Riemannian metric on T+ ()M that coincides with ||-|| on each
of the three spaces E°(p;), E°(p;), and E*(p,), but with respect to which those three spaces
are orthogonal. Notice that there exists a constant C > 1 such that C~1||v|| < ||| < C|Jv]|
for every v € To+ () M.

Let us define another Riemannian metric [|-[|2 on T+, M as follows. Let ix be as in
the definition of forward center bunching. With respect to the inner product induced by
|11, the linear map D,,, f*+ =% can be written in a unique way as OkP,i’““*i’“ where

ik

Py 2 Tp, M — Tp, M is selfadjoint positive and Oy : T, M — T, M is an isometry:
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indeed PQ(““Jrl i) = (Dp, f*+17%)* . Dy, f"*+17" . Notice that Pj preserves the spaces
E*(p;,), E¢(pi,,), and E“(plk) Define ||-||l2 on T+ )M so that for i, < j < g1, the map

Dy, f77 - PLYUT (T, ML) = (Tp, M, |-|l2)

is an isometry. By construction, for each i;, < j < ir41, and for each subbundle F' = E*,
E*, E*, we have | Dy, flels ™% = Dy, £+ |l| and my(Dy, flg)in =

m(D,, fierrle |5, The definitions of partial hyperbolicity and forward center bunch-
ing then immediately imply that there exists p < 1 such that

IDyflEll2 < p*mz(Dy f|ge) min{1, || Dy flg[3'},  and

max{1, | Dy fee 2} < p*ma(Dy f|pw)

Es

for every y € O (p).

Notice that ||-||2 and ||-||1 coincide for T),, M for each k. Let C; > 1 be minimal such that
Cj_1||v|| .S lvll2 < Cjllv|| for every v € Ty, M. The condition ix41/ix — 1 then implies
that C;/j — 1. Let D; > C; be a sequence such that D; < D; 1 < p~'D; and D;/’ — 1.
For every j > 0, let |||, = Dj||-||2 over T,, M, and B(p;) = D;C;. Fory € O*(p), we

define v(y) = p71/4||Dyf Bslle v(y) = p1/4m*(Dyf|EC)a A(y) = (p1/4||Dyf|Ec||*)71, and
o(y) = (p~*m, (D, f|g))~*. All desired properties are straightforward to check. O

We next show that the sets CB™ and CB™ are respectively W* and W*-saturated.

Proof of Proposition 2.2. — We will use the previous lemma and its proof. Let p € CB™
and g€ W*(p), and let p; = fi(p), ¢; = f’(q). Choose invertible linear maps
Aj 2 Ty, M — Ty, M, bounded and with bounded inverses with respect to ||-|, that preserve
the bundles E® and E¢, and such that A} 1Dy, fA; is exponentially close to Dy, f (here we
use that D f and the bundles E* and E* are Holder). This implies that A; +1Dq] f A; is also
exponentially close to D, f with respect to [|-||. It follows that there exists § > 0 such that

| A D, fA;

o M (A7 Dy fA;lge) ™t |A7L Dy, FA;

Jj+1 Es ti41 Jj+1 mells <10

for every sufficiently large j. Let 5 be as in the definition of forward center bunching for p.
By the proof of the previous lemma, ||-||, and ||-|| coincide modulo a constant factor over
E*(p;, ) and Ec(pik), SO

147

o Ay pe) T AL Dy, 1T Ay el < (1= )T

m(A;?

Tk41 ‘hk Th41 q"k Th41 qlk

for every k sufficiently large. Since the maps A4, Aj_1 are uniformly bounded with respect to
|I|l, and preserve E° and E*, we see that there exists n > 1 such that for every k& > 0,

||innk fink+n_ink |E,C ||

ink+n—ink 1 > (146 ink+n—ink i i
f |E ” ( + ) m(in kflnk+n—lnk|Ec)

1Dg,,,

Since ink4n/ink — 1, we conclude that ¢ € CB™.

It follows by symmetry that CB™~ is W"-saturated. O

4¢ SERIE — TOME 42 — 2009 — N° 6



NONUNIFORM CENTER BUNCHING AND GENERIC ERGODICITY 949

Fix Ry > 0 less than injectivity radius of M in the original ||-|| metric. Let exp denote the
exponential map for the ||-|| metric. Consider the neighborhood N, of O (p) defined by

Nr, = || B(p), Ro),
Jj=0
where B(z,r) denotes the ball of radius r centered at z in the original Riemannian metric.
The manifold NV, carries the restriction of the original Riemannian metric. When we speak
of volumes and induced Riemannian volumes on submanifolds of Mg, , it will always be with
respect to this metric.

We introduce two other metrics on Mg, that will be used in this proof, one of them closely
related (and comparable) to the original metric. The first metric is the flat ||-|| metric, denoted
||Il, which is the (locally) flat Riemannian metric defined as follows. For z € B(p;, Ry), and
v,w € T, M, we set

(v, wh, = (D, exp;jl(v), D, exp;j1 (W))p;
where we make the standard identification T, (T, M) ~ (T,M). In the distance d, induced
by this metric, we have, for ¢,¢" € B(p;, Ro), d,(¢,4") = | exp,.'(¢) — exp;."(¢'),- Com-
pactness of M implies that ||-|| and ||-||, are comparable.

Next we extend the ||-|| metric, which is defined on T+ (,) M, to a flat metric ||-||, on Mg,
using the same type of construction. For = € B(p;, Ro), and v,w € T,,; M, we set

(v,w), = (D, exp;j1 (v), Dy exp;j1 (W), -

Denote by d, the distance induced by this Riemannian metric, so that, for ¢, ¢’ € B(p;, Ro),
we have d,(q,¢') = || exp, () — exp, ' (¢)]|«-

The results of this section imply that on B(p;, Ro), we have Kd, < d, < B(p;)d,. Thus
on any component B(p;, Ry), the x and b metrics are uniformly comparable. The degree of
comparability decays subexponentially as j — oco. For ¢ € Ny, and r > 0 sufficiently small,
we denote by B, (g, ) the d,-ball of radius r centered at g.

By uniformly rescaling the ||-||, and ||-||. metrics by the same constant factor, we may as-
sume that for some R > 1, and any z € M, the Riemannian balls B, (z, R) and B(z, R)
are contained in foliation boxes for both W* and W*. We assume both R and R, are large
enough so that all the objects considered in the sequel are small compared with R and Ry.

5.4. Fake invariant foliations

Letr : O*(p) — R, be any positive function such that sup,,r(p;) < Ro. Denote by
N; the following neighborhood of O (p):

N; = || Blpy.x(5)).

J=0

If F is a foliation of Ny, and B, (z,r) is contained in a foliation box U for F, then we
will denote by F, (z,r) the intersection of the local leaf of F at = with B, (z, 7). Notice that
Fi(z,r) € Fz, K 'r).
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PROPOSITION 5.4. — For every € > 0, there exist functions v, R: OF(p) — R satisfying:

, R(p.
r<R, sup R(y) <Ry, inf rpy) e™c, and inf R(p;j11)

>e ¢,
yeO+ (p) i>0 r(pj) 320 R(p;)

and such that the neighborhood NR is foliated by foliations W, WS, We, We and Wes with
the following properties, for each 8 € {u, s, c, cu,cs}:

1) Almost tangency to invariant distributions: For each q € Ng, the leaffv\ﬂ (q) is C* and
the tangent space quﬁ(q) lies in a cone of ||-||«-angle € about EP(q) and also within a
cone of ||-||-angle & about EP(q).

2) Local invariance: for each y € OF (p) and q € B(y,r(y)),

FOV(q,x(y))) € WP(qr), and f~1 (WP (ar,x(y1)) € W(g).
3) Exponential growth bounds at local scales: The following hold for all n >0 and
y € 0% (p).
(a) Suppose that q; € By (yj,r(y;)) for0<j<n-—1
If ¢ € W*(q,x(y)). then ¢}, € W*(gn,x(yn)), and

du(qn, @) < vn(y)di(g,q").-
Ifq; € Wcs(qj,r(yj))for 0<j<n-—1 thengq, € W”S(qn), and

di(qn, qi) < An(y) " 'dela, ).

(b) Suppose that q_; € B,(yn—;,r) for0 < j<n-—1
If ¢ e W*(q,x(yn)), thenq’_,, € W*(q—n,r(y)), and

di(q-ns ") < On(y)di(g, q)-
Ifq_; € Wcu(q_j, r(yn—j;)) for0<j<n-—1 thenq , € Wcu(q_n), and
de(q-nrq",) < (y)'di(g,q).

4) Coherence: W/i and We subfoliate Wwes: 1//\2 and We subfoliate weu,

5) Uniqueness: W*(p) = WS(ER@\)) c/nzd)//v\“(p) = Vlu(p, R(p)).

6) Regularity: The foliations W*¥, W?*, W€, W and W*°® and their tangent distributions
are uniformly Holder continuous, in both the d, and d metrics.

7) Regularity of the strong foliation inside weak leaves: the restriction of the foliation we
to each leaf of wes is absolutely continuous with bounded jacobians, and the restriction
of the foliation W to each leafochu is absolutely continuous with bounded jacobians
(with respect to the standard Riemannian metric and volume ).

There exists a constant L > 0 such that for any p' € W*(p), the Ws-holonomy map
h?: Wc(p) — Wc(p’) is L-bi-Lipschitz at p. That is, for all q € Wc(p), we have:

L7'd.(p,q) < d(h*(p), h°(q)) < Ld.(p, q).-

Proof of Proposition 5.4.. — The proof follows closely the proof of Proposition 3.1 in[18].
Our construction will be performed in two steps. In the first, we construct foliations of each
tangent space T, M,y € O(p). In the second step, we use the exponential map exp,, to project
these foliations from a neighborhood of the origin in T, M to a neighborhood of y.
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The argument diverges slightly from the argument in [18] in that, because we are in the
nonuniform setting, the Holder continuity of D f (in this case Lipschitz continuity) must be
used explicitly in the construction of the fake foliations.

Step 1. We extend the ||-||-metric on T+ () M to a metric on T (,) M, which we also denote
by |||+, by setting it equal to [|-|| on | |;<o 7p; M. Extend the function B to O(p) by setting
B(pj) =1forj <o.

Fix a constant Ry < Rp such that the diameter of f(B(z, Ry)) is less than Ry, for all
z € M.Forv € Ty, M, |[v|| < Ry, let fj(v) = exp, ' of oexp, (v). Then Dof; = Dy, f
and so, since f is C?:
(5.3) fiw) =Dy, f(0) + O(ll0]?),  and  ||Dyf; — Dy, fI| < O(|l0ll),
uniformly in j. Fix a family of smooth bump functions {8, : R — [0,1],r > 0} with the

properties that |3.] < 3r~1, 8,.(t) = 1 for |t| < r?, and B,(t) = 0 for || > 4r2.
Forr € (0, Ry), define F} . : T,, M — T, , (M) by:

Fjr(v) = Br(l0]*) f3(0) + (1 = Be(|[0]*)) Dy, £ (v).-
One easily checks using (5.3) that dei(Fj ., Dp, f) < O(r), uniformly in j and that
Fj.(v) = f(v) for ||v| < r, and Fj.(v) = Dy, f(v) for [jv|| > 2r.

For any function r: O(p) — Ry with sup,ce,) r(y) < Ry, define a C* bundle map
Fr:TogyM — TopM, by setting Fr = Fyp,); on T, M. Then F, covers
f: O(p) — O(p), and has the following properties:

1) F; coincides with exp,~ l.ofo exp,, on the ||-[|-ball of radius r(p;) in T, M and with

D,, f outside the ball of radius 2r(p;);
2) The C* distance from F} to D f on approaches 0 uniformly as |r|, — 0. In particular,
on Ty, M, we have dc: (Fy, Dy, f) < O(x(p;)).
When measured in the ||-||.-metric, the C* distance between two functions on T}, (M) is mul-
tiplied by B(p;). It follows that:

3) On T, M, we have dcoi(Fy, Dy, f)« < O(B(pj)r(pj)), uniformly in j; that is,

dor (Fey Df)y < O(Br).

Let e > 0 be given. Fix ¢; < ¢ such that

_ vy vly) Ply) v(y)
5.4 e %> sup max{yy,uy, , , ——, — .
yeO+(p) ). 2v) () () A) Yi(y)
For ¢ > 0, define a function R.: O(p) — R, by
c, ifj <0
RC ] - . !
2 {ce‘J6 , ifj>0.

Since limsup, _, ., B(p;)Rc(pj) = 0, the argument above shows that dc1 (Fr,, Df). tends
to 0 uniformly as ¢ — 0. This also implies that the C! distance in the original Riemannian
metric ||-|| tends to 0 uniformly in c.

Since D f is uniformly partially hyperbolic in both metrics, we may choose ¢ sufficiently
small so that ' = Fg_ is uniformly partially hyperbolic in both |-|| and |||« metrics. Note
that F'is C** % in the ||-|| . metric, with Lipschitz constant of DF, DF~* on T,,, M bounded
by a constant L(p;) > 0 with the property limsup; ., L(p;)*/? = 1. F is uniformly C? in
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|||l metric. Note also that F' is C'~¢ in the ||-||, metric, with Holder constant of DF, DF on
T, M bounded by a constant. If ¢ is small enough, the equivalents of inequalities (3)—(6) will
hold for T'F.

If ¢ is sufficiently small, standard graph transform arguments give stable, unstable, center-
stable, and center-unstable foliations for F;. inside each T, M. These foliations are uniquely
determined by the extension F' and the requirement that their leaves be graphs of bounded
functions. We obtain a center foliation by intersecting the leaves of the center-unstable and
center-stable foliations. While 7'M is not compact, all of the relevant estimates for F' are uni-
form, and it is this, not compactness, that counts.

The uniqueness of the stable and unstable foliations imply, via a standard argument (see,
e.g. [21], Theorem 6.1 (e)), that the stable foliation subfoliates the center-stable, and the un-
stable subfoliates the center-unstable.

We now discuss the regularity properties of these foliations of 7'M . Our foliations of TM
have been constructed as the unique fixed points of graph transform maps. We can apply
the above results to the F-invariant splittings of 7T'M as the sum of the stable and center-
unstable bundles for F' and as the sum of the center-stable and unstable bundles for F'. It fol-
lows from the pointwise Holder section theorem (see [27], Theorem A) that both the center-
unstable and unstable bundles and the corresponding foliations are Holder continuous as
long as F is C1*9 for some § > 0. Since F is C'*? uniformly in both ||-|| and ||-||, metrics, it
follows that the bundles are uniformly Hélder in both metrics.

We obtain the Holder continuity of the center-stable and stable bundles for F;. and the cor-
responding foliations by thinking of the same splittings as F,~!-invariant. Holder regularity
of the center bundle and foliation is obtained by noticing the the center is the intersection of
the center-stable and center-unstable.

The absolute continuity with bounded Jacobians of the unstable foliation inside of the
center-unstable foliation is a standard result, using only partial hyperbolicity, dynamical co-
herence, the fact that F is uniformly C'+9, and the Holder continuity of the bundles in the
partially hyperbolic splitting. Similarly, the stable foliation for F' is absolutely continuous
with bounded Jacobians when considered as a subfoliation of the center-stable.

The Lipschitz continuity of the stable inside of the center-stable is proved in Lemma 5.5
below.

Step 2. We now have foliations of T,M, for each y € O(p). We obtain the foliations
V/\7“, WC, )7\/\5, WC", and Wes by applying the exponential map exp,, to the corresponding
foliations of T, M inside the ball around the origin of radius R.(y).

If cis sufficiently small, then the distribution Eg’ lies within the angular £ /2-cone about the
parallel translate of Ef, for every B € {u, s,c,cu,cs}t, y € OF(p), and all ¢ € B(y,Re(y)).
Combining this fact with the preceding discussion, we obtain that property (1) holds if ¢ is
sufficiently small.

Property (2) — local invariance — follows from invariance under F;. of the foliations of
T'M and the fact that exp ) (F(y,v)) = f(exp,(y,v)) provided [v|| < Re(y).

Having chosen ¢, we now choose c¢; small enough so that, for all y € O%(p),
f(B(y,2Re, (y))) C B(f(y),Re(y)) and f~1(B(y, 2R, (y))) € B(f~(y), Re(y)), and so
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that, for all ¢ € f(B(y, R, (v))),
¢ €W, Re,(v) = du(f(9), f(¢)) < v(y)dilg,q),
¢ €Wg R, (1) = d(f7Ha), f @) <0 W)) de(a,q),
¢ €WS (@R, (1) = du(f(a), F(d) < A() " dula,q),
¢ €W R, (y) = dulf7He), F7H)) < v(F W) dula,q).

Weset R=R.andr =R

Property (3) — exponential growth bounds at local scales — is now proved by a simple
inductive argument.

Properties (4)—(7) — coherence, uniqueness, regularity and regularity of the strong folia-
tion inside weak leaves — follow immediately from the corresponding properties of the foli-
ations of T'M discussed above, except for the Lipschitz continuity statement, which we now
prove:

LEMMA 5.5. — The W* holonomy maps between we manifolds are Lipschitz at p.

Proof of Lemma 5.5. — Fix a function p satisfying vy~! < p < min{1,4}, and such that
K < e~ °1, where

k= sup max{(v7 " p ")(y), (K¥ )}
yeO*(p)

Note that this is possible because (5.4) implies that

sup max{ry~'(y),ry 14 (y)} < e L
yeO*(p)

Fix a constant A € (k,e™¢1). Observe that

(5.5 sup (v ') < K,
y€eOT(p)

since p < min{1,4}.
Since B(p;)'/7 — 1 as j — oo, there exists a constant C' > 0 such that

sup B(p;) (kA1) < C.
j=0

Let 6 be the Holder exponent of the partially hyperbolic splitting, in the x-metric, and
let H be the -Holder norm. Choose 6 > 0 and N > 0 such that:

o H ((6v;(p))®) + (pn%j(p)™1)?) < 1/2 —eforalln > Nand j = 0,...,n

e pn(p) < d/3,and

® 1 —A—46Csup,co+p) v(y) > 0.
Finally, choose K > 24 satisfying:

—1)j+1
K > sup 85B(p]+1)(/‘€)\ )1
jeN 1 =X = 46B(pj1) w1y (pji1)’

and let L =3+ 2K.
We will show that for each p’ € V/\Zf (p,d/3), and for every ¢ € V/\Zcoc(p):

di(p,q) < pn(p) = L™ 'du(p,q) < du(h*(p), h*(q)) < L™ 'd,(p, q),
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where h*: V/\ZCOC(P) —We (p') is the Ws-holonomy map. We prove the righthand inequality;
the proof of the lefthand inequality is given by switching the roles of p and p'.

Letp’ € Wf (p,0/3) be given, and let g € Wf(p, pn (p)). Denote by ¢’ the image of g under
h?® (by definition h*(p) = p’). Fix n > N such that p,(p) < di(p,q) < pn—1(p). Note that
dy(p,p') < 6/3 < dand d,(q,q’) < 4, by the triangle inequality.

LEMMA 5.6. — For j = 0,...,n, we have {p;,p},4;,q;} C Nr. Moreover:

D) pu()7i(p) < du(pjs ¢5) < pn—1(p);(p) ™", and
2) max{d,(p;,p}), dx(g;,q})} < ov;(p).

Proof. — The proof is a simple inductive argument using Part 3 of Proposition 5.4. [

We will work in ||-||-exponential coordinates in N;. For j € Nand z € B,.((p;),r),
denote by 7 the point exp,, ! (z). Note that ; = 0. Let v; = ¢; — p;, let v} = qN; - p~;, and let
wj = vj — v;. Lemma 5.6 implies that for j = 0,...,n, we have (p,7;)(p) < I[lvjl«
< (pn-1%; ") (p) and [l ll. < dupy,p}) + dalay, @) < 26v;(p). Let ¢ : T, M — EZ, be
the linear projection with kernel (E* & E*) Py and let 7} : T, M — (E* ® E°) ; be the
linear projection with kernel E7 .

p

The vectors v; and v lie in uniform cones about E;. with respect to the splitting
T,,M = E; & (E" o E*)

p;°

732 ()l < 3llvj

LEMMA 5.7. — For j = 0,...n, we have ||7}*(v;)|lx < 1|v;
lville < s (vi)lls and [|vjlls < s (v])l]s-

* *

Proof. — Tp, We and Ty, We both lie in the e-cone about E<(p;), and the tangent dis-
tribution to W¢ is Holder continuous. Hence tan £ (Ty, WC,TP;WC) < Hd.(p;,p})°
< H(6v:(p))’, and tan £, (T, W*, T, W*) < Hd,(g;,¢})° < H(dvi(p))°. Furthermore

tan £, (T, W, Ty, W) < Hdo(p;, ;)? < H(pn(p)4;(p)~")?. This implies that
tan £, (T, W*, Ty W*) < H ((6v;(0))%) + (pn(0)3;()71)?) < 1/2—¢
for j =0,...,n, by our choice of 4. O
Since the points {p;, p}, ¢;, ¢; } all lie in N, in which F coincides with f = exp~' of o exp,
we have that Z; = FJ(z), for x € {p,p’,q,q'}. The Mean Value Theorem implies that

Vj—1 = fol Dp'j+tij('Uj) dt and U_;—l = fol D

we obtain:

/ . ; ;
5+ m;.F(Uj) dt; subtracting these expressions,

1
wj_l = A (Dﬁj+tij_1(Uj) — Dp*;__’_tU;_F_l(U;)) dt
and

1
T (wj—1) = /0 5 (Dp~j+ij_1(vj) - DI;;thU;F_l(U;)) dt.
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Then [[75_; (wj—1)|lx < (I) + (II) where
1
-1
0= [ 751D P (0 = ),

dt.

*

1
(In) = / | (751D 00, F = 751D 4 F71) ()
We have )
(I < / B(p;)llv; — 1l . dt < Bpy) ;L |19,

since DF~! is Lipschitz with norm B(p;) on T),, M.

We next estimate the expression (I). Since D, F~* = D, f~', which sends the split-
ting (E* @ E°® E°), to (E"® E°® E*),  and has norm on E° bounded by v(p;) 71,
we have that:

1
17505 P ) de <00 gl

Hence

1
(1) = /0 17 Dy o0, " ()
1 1
< /0 ij.,l (D, F~' = Dy, 440, F ) (wj)||* dt+/0 ||7r;-,1Dp~jF—1 (wj)H* dt

1
< / 17y (Dg, P~ = Dy, FY) ||, it +(py) eS|

< B(p)llvill«llw; 1« +v(0) " HIw§w; [«
again using the Lipschitz continuity of DF~!. We conclude that
175 (wi—1) [l < () HIm§wslle + Bp;) (v l1llws [l + lwjll«llogll)
< v(p;) " Im5w;ll +26B(p;)v; () (v« + 10 4) ,
using the bound ||w; ||, < 26v;(p).

(5.6)

Cramm. — For  j=0,...,n, we have [mfw;lls < KNv;(p)llvoll.  and
1511 < (3 4 2K M) |Jvjl«

Proof. — We prove it by backward induction on n. The base case is j = n. Observe that:

V" n n
ISl < lwalle < 260(p) :%W(”()p)%(p)pn(p) < 26X (p) [0llx < KN (0) 0]

Since ||wn||* < 20v,(p) < 200" (pY)n(p) < 260\"||vn ||+, We also obtain that
lvplls < llonlls + lon = vplle = lvalls + llwalls < lonll«(1+26A") < Jlon[l«(3 + 2KA™).
Now suppose that the claim holds for some (5 + 1) < n. Then, by (5.6):
75 (wi) s < Y(pj+1) "M Im§ 1 wisalls + 26B(pj1)vigr(0) (lvjealls + 10544 ll4)
< Y(pjs1) T KN Y1 (p) lvoll« + 20B(pj41)vie1 (p) (4 + 2K N ) 041l
< KN (0)lvolls + 26 B(pjs1) lvoll« (WA ™) j41(p) (4 + 2K XHY)
< KnX7;(p)lvoll«,
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where

(ry ')+ (p)
KM+t
j+1
<A+ 853(Pj+1)m’7

by (5.5). Then n < 1, since

n=A+80B(pj+1) Y(pj+1) + 406B(pj+1) vy ') i1 ()Y (Dj41)

(Pj+1) +46B(pj+1)& Y (pj1),

8B (pj+1)(KA~1)H!
1= X = 46B(pj+1)/ 1y (pj41)
This implies that [|75(w;)[lx < KN v;(p)|lvoll, completing the inductive step for the first
assertion of the claim.
Finally, to prove the inductive step for the second part of the claim, we have:

K>

1511 < Nlojlle + llv; — vjll
< il + 75 (v; = vl + 175 (v — v5) [«
< lvslle + 11705 (ws) [l + 15 (i)l + 1757 (v5) 11«
< Jlvjlls + KN (D) |vollx + 5llv; [l + 5[0} 1«
< lvjll« + KN Jvjll« + Bllvsll + -5]|v) -
Solving for [[v}|., we obtain that [[v}]l, < (3 4+ 2K M)]|vj]|., as desired. O

The claim finishes the proof of Lemma 5.5; setting, j = 0 we see that
d.(h*(p),h*(q)) = Ilvoll« < (3 + 2K)[lwollx = Ld.(p, q). O

Given this proposition, the proof now proceeds as the proof of Theorem 5.1 in [18], with
a few modifications, which we will describe in the sequel.

5.5. Distortion estimates in thin neighborhoods

Fix p € M satisfying the bunching hypotheses of Theorem B. Henceforth the entire
analysis will take place in a neighborhood of the forward orbit of p.
We choose € > 0:
— much smaller than /2, which is the x-angle between the bundles of the partially hy-
perbolic splitting over O (p).
— small enough so that

(5.7 et > sup max {uly), o), 22, 20 L
yeO+ (p) () A) YY)
Letr, R: Ot (p) — R, and foliations W, W, We, Wer and W be given by Proposi-
tion 5.4, using this value of e. By uniformly rescaling the ||-||, metric on N, we may assume
that

inf r > 1.
yeO*(p) )

We may also assume that if z,y € B,(p;,r), then 17\705(95) N W“(y), 17\705(90) N WE(y),
We(xz) N W5 (y) and We(z) N Wi (y) are single points. We denote by m,, the measure
myy, induced by the volume form |-[|.
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We next choose functions o, 7: OF(p) — R, satisfying
(5.8) o < min{l,4}, and v<T=<0%,

and such that & = sup,co+(y) o4~ 1(y) < e~¢ (this is possible because of (5.7)). Note that
these inequalities also imply that

TV < oyD < ovy < 0.

For the rest of the proof, except where we indicate otherwise, cocycles will be evaluated at
the point p. We will also drop the dependence on p from the notation; thus, if « is a cocycle,
then «, (p) will be abbreviated to «,.

Using these functions and the fake foliations, we next define a sequence of thin neighbor-
hoods T, of W#(p,1). We first define a neighborhood S,, in Wes (p) by:

Sn = U Wf($,0n)7
zeEW?(p,1)

and then define the neighborhood 7, by:

(5.9) To=f"( U W) UWi(z )
zEf”(Sn)

LEMMA 5.8 (cf. [18], Lemma 4.3). — The set T, is well-defined. There exist C > 0 and
0 < k < 1 such that, for everyn > 0,

F(Tn) C Bu(ps, CKY),
forj=0,...,n

Proof. — Suppose first that x € Wi (p,1) and y € Wc(x, o). By part 3(a) of Proposi-
tion 5.4, we then have

Yj € Wf(l'j,ﬁ/j_lo'n) c Wf(xjal) - B*(pj72)v

for 0 < j < n. In fact, since o < min{#4, 1}, the quantity ﬁj_lon < &j_lcrj < K’ is exponen-
tially small in 7, as is the x-diameter of f7(W?(p, 1)). This implies that for some C' > 0 and
for every n > 0,

(5.10) f(Sn) C Bi(pj,CK?), forj=0,...,n.

For every z € S, we have that B, (z,,7,) C B.(pn,r(pn)), and so the set T,, is well-
defined by (5.9). Proposition 5.4 implies that the leaves of W;;j and W} . are uniformly con-
tracted by f ! aslong as they stay near the orbit of p. Because x < e~¢, the image of f*(T},),
for n sufficiently large, remains in the neighborhood NV, of O (p) in which the fake foliations
are defined and the expansion and contraction estimates hold.

Combining these facts with (5.10), we obtain the conclusion. O
LEmMMA 5.9 (cf. [18], Lemma 4.4). — Let « : M — R be a positive, uniformly Hélder con-
tinuous function. Then there is a constant C > 1 such that, for alln > 0 and all x,y € T,,

C—l S a"(y) S C

an(z)
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Proof. — Since d < K~1d,, Lemma 5.8 implies that the diameter of f7(7},) remains ex-
ponentially small in the d metric, for j = 0,...,n. Since f is C**?, the lemma follows from
the following elementary distortion estimate:

LEmMma 5.10 ([18], Lemma 4.1). — Let o : M — R be a positive Hélder continuous func-
tion, with exponent 6 > 0. Then there exists a constant H > 0 such that the following hold, for
allp,ge M, B> 0andn > 1:

n—1

Zd(pia‘b')a <B — e—HB < an(p) < eHB’
i—0 an(q)
and
> dp-i,q-i)’ <B = e HP< a-n(p) <eHB O
prt a_n(q)

5.6. Juliennes

The next step is to define juliennes. For each x € W?(p,1) one defines a sequence
{f,‘;u(x)}nzo of center-unstable juliennes, which lie in the fake center-unstable mani-
fold Weu (z) and shrink exponentially as n — co while becoming increasingly thin in the
We-direction.

Define, for all z € W*(p, 1),

o~

By () = Wi(z,00)-
Note that
Sn=|J Bi@).
zEWS(p,1)
For y € S,,, we may then define two types of unstable juliennes:

Ti ) = £ OV (g 7))
and
() = F7" OV (yn, ))-
Observe that for all y € S,,, the sets J*(y) and J¥(y) are contained in T,.

For each z € W*(p, 1) and n > 0, we then define the center-unstable julienne centered at
x of order n:

@)= U T
9€B; ()
Note that, by their construction, the sets jﬁ“(x) are contained in T}, for all n > 0 and
z € W3(p,1).
The crucial properties of center unstable juliennes are summarized in the next three propo-
sitions. We state them in a slightly more general form than we will need for the proof of The-
orem B; the more general formulation will be used in the proof of Theorem D.

PrOPOSITION 5.11 (cf. [18], Proposition 5.3). — Let  z,z’ € W#(p, 1), and et
h® : We(z) — W< (z') be the holonomy map induced by the stable foliation W?*. Then
the sequences h®(JS*(z)) and JE*(x') are internested.
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ProrosITION 5.12 (cf. [18], Proposition 5.4). — There exist 6 > 0 and ¢ > 1 such that,
Jorall x € W*(p, 1), and all q,q' € Sy, the following hold, for all n > 0:

¢! <

M (T211(q) > 6 (T2(q)),
and
mcu(Jrczil(x)) > 6mCU(J’I’CLu($))‘

PRrOPOSITION 5.13 (cf. [18], Proposition 5.5). — Let X be a measurable set that is both
Ws-saturated and essentially W"-saturated at some point x € W?*(p). Then x is a Lebesgue
density point of X if and only if:

lim ey (X : JS%(z)) = 1.

n—oo

Assuming these propositions, we conclude the:

Proof of Theorem B. — Let X be a bi essentially saturated set, and let X* be an essential
We#-saturate of X. Since m(X A X?®) = 0, the Lebesgue density points of X are precisely the
same as those of X*. Suppose that z € W*(p, 1) is a Lebesgue density point of X*. Propo-
sition 5.13 implies that x is a cu-julienne density point of X*°.

To finish the proof, we show that every ' € W?*(p,1) is a cu-julienne density point of
X, Then by Proposition 5.13, every ' € W#(p, 1) is a Lebesgue density point of X*, and
so W?(p, 1) C X. Notice that if p satisfies the hypotheses of Theorem B, then so does every
p’ € W#(p). Hence if W?(p) N X # &, then W*(p) C X, completing the proof.

Let A® : W% (x) — W< (z’) be the holonomy map induced by the stable foliation W?.
The sequence h*(JS*(z)) C W (z') nests at 2.

Transverse absolute continuity of ~A°* with bounded Jacobians implies that

lm e (X°: T8 (z)) =1 <= lim Me, (h°(X®) : h*(JS%(2))) = 1.
Since X ¢ is s-saturated, we then have:
Hm e, (X% TS (2)) =1 <= lm e, (X : 5T () = 1.
Since we are assuming that x is a cu-julienne density point of X*, we thus have
lm ey (X : b (TS (2))) = 1.

Working inside of 17\70“(33’ ), we will apply Lemma 5.1 to the sequences hs(jg“(ac)) and
JE(z'), which both nest at z’. Proposition 5.11 implies that these sequences are internested.
Proposition 5.12 implies that J5*(z') is regular with respect to the induced Riemannian mea-
sure M, on We(z’). Lemma 5.1 now implies that

Hm e (X% :h3(JS(2))) =1 <= lim Me(X®: JS()) =1,
and so 7’ is a cu-julienne density point of X 3. It follows from Proposition 5.13 that z’ is a
Lebesgue density point of X*, and thus of X. O
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We extract from this proof a proposition that will be used in the proof of Theorem D:

PROPOSITION 5.14. — Let Y C W®(p) be a measurable subset, let = € W*(p, 1), and let
Y be the image of Y under W#-holonomy. Then p is a cu-julienne density point of Y if and only
if x is a cu-julienne density point of Y.

5.7. Julienne quasiconformality

Here we prove Proposition 5.11. The proof is taken mutatis mutandis from [18].
By a simple argument reversing the roles of z and z’, it will suffice to show that k& can be
chosen so that

(5.11) he (T2 (x)) C T (),

for all n > k, whenever x and z’ satisfy the hypotheses of the proposition.
In order to prove that k can be chosen so that (5.11) holds, we need two lemmas.

LEMMA 5.15. — There exists a positive integer ky such that, for all z,x' € W*(p),
h*(B;,(x)) € By, (a),

Tllfkl

for all n > ky, where h* : V/\Zi}g(m) — )7\/\0“(:1:’ ) is the local W* holonomy.

Proof. — Proposition 5.4 implies that he is L-Lipschitz at x, for some L > 1. Therefore
the image of W¢(x, o,,) under h® is contained in W¢(z', Lo,) € WE(z', 01—k, ), for any ky
large enough so that o_;, > L. O

LEMMA 5.16. — There exists a positive integer ko such that the following holds for every
integer n > ko. Suppose q,q' € Sy, withq' € W*(q). Let y € J¥(q), and let y' be the image

o~

of y under W* holonomy from W¢(q) to Wcu(q’ ). Then
y/ € Js—kz (Z/)7
for some 2 € WE(q', 0n_r,).

Proof. — Let 2’ be the unique point in W* N Wc(q’ ). Itis not hard to see that 2 € NV,
forj = 0,...,n — 1 and that 2/, is the unique point in W*(y/,) N We(¢,). It will suffice to
prove that d, (y.,, z,) = O(,,) and dy(q', 2') = O(o,).

We have d, (qn, yn) < 7, because y € f~"(W¥(qn, Tn)). By Proposition 5.4, 3(a), we also
have that dy (qn, q},) = O(vn) and dy(yn,y,) = O(vn), since dy(q, ') and d,(y,y’) are both
O(1). Note that ¢,, and 2], are, respectively, the images of y,, and y;, under W"-hononomy be-
tween V/\chc(yn) and Wes (gn). Uniform transversality of the foliations W and We* implies
that

d*(y;m Z':z) = O(max{ds(gn,Yn), dx(Yn, y;)}) = O(10),
since v < T.
We next show that d, (¢, ') = O(0,,). By the triangle inequality,

di(qhs 2n) < dul(@hyy @n) + du(Gn, Yn) + du(Yn, Yh) + du (Y, 20,)-

All four of the quantities on the right-hand side are easily seen to be O(r,). Since g,
and z/, lie in the same W¢-leaf at d,-distance O(r,), Proposition 5.4 now implies that
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di(q',2") = O((vn) " 7). But 7 and o were chosen so that 7 < yo. Hence (v,) " '7, < oy,
and d,(q¢’,2") = O(o,), as desired. O

Proof of Proposition 5.11. — As noted above, it suffices to prove the inclusion (5.11). For

q € BE(z),let ¢ = h*(q). Then ¢’ € B;_kl (z') by Lemma 5.15. Hence ¢,¢' € S,—x, and
we can apply Lemma 5.16 to obtain

R @) € |J Tk (),

2€Q

where

Q= U BY 1 ().

q’EB,i,kl (=)

For k > ko, we have:

U Jv s, (2) € U Jri(2)
z€Q z€Q
It therefore suffices to find & > k5 such that Q) C Bfl_k(:c’). This latter inclusion holds if:

On—k; + On—kq S On—k,

which is obviously true for all n > k, if & is sufficiently large. O

5.8. Julienne measure

Next we give the:

Proof of Proposition 5.12. — Recall that we are using the standard Riemannian volumes
and induced Riemannian volumes on submanfiolds (not the ||-||,-volumes).

LeEmMaA 5.17 (cf. inequalities (21), [18]). — There exists a constant Cy > 1 such that, for
alln > 0:

(5.12) ot < TV, ) e,
M,

forall q,q' € Sy, where V/\Z?(w, r) = W () N By(x,r), and m,, is the induced Riemannian
metric on W*"-leaves.

Proof. — Recall that the flat ||-||, metric on T}, M and the Riemannian metric in a neigh-
borhood of p,, (viewed in exponential coordinates at p,,) are uniformly comparable. We will
estimate the ratio in (5.12) using the volume on T, M induced by ||-||;.

On T, M, the ||-||s-metric is also flat: the ball of radius 7,, at g, is just a translate by
gn — q,, of a ||-||«-ball of radius 7,, at ¢,. Viewed in the ||-||, metric, a x-ball of radius 7,, in
T,, M is an ellipsoid with eccentricity bounded by K ~!B,,. The intersection of such a ball
centered at ¢, of radius 7,,(p) with W“(qn) gives the set W“(qn, 7.(p)). Since the leaves of
W\“(qn) are tangent to a uniformly Holder continuous distribution, the volumes of these sets
are uniformly comparable to the intersection of T}, we (gn) With B, (g, 7 (p)). Thisis also a
(u-dimensional) ellipsoid, call it £(g,,). Similarly we have an ellipsoid £(g),) centered at ¢,.

The distance between the spaces Ty, we (gn) and Ty we (gn) (translated by ¢, — ¢/,) is of
the order of d(qy, ¢},)?, for some @ € (0, 1], and so is bounded by ¢3", where 3 = k? < 1. The
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bound on the eccentricity of B, (g, 7,) then implies that the ratio between the u-dimensional
volumes of £(g,,) and £(q,) is bounded above by D,, = C'(1 + ¢cK ~'B,,4")* and below by
D;t, for some constant C”. Since lim sup,,_, Bl/ " = 1, there exists a constant D such that
D,, < D for all n. We conclude that there exists a constant C satisfying (5.12), for all n and
allq,q’ € S,,. O

Let E\S, EC, and E* be the tangent distributions to the leaves of WS, We, and )7\/\“, respec-
tively. They are Holder continuous by Proposition 5.4, part 6. Furthermore, the restrictions
of these distributions to T}, are invariant under D f7, for j = 1,...n. We next observe that
the Jacobian Jac(D f"| 7.) 1s nearly constant when restricted to the set T;,. More precisely,
we have:

LEMMA 5.18. — There exists Cy > 1 such that, for alln > 1, and all y,y' € T,

\_ Iae(Df5)W)
© S Ta ) =

Proof. — By the Chain Rule, these inequalities follow from Lemma 5.9 with
a = Jac(Df|z,). O

Letg € S,,and let X C j\;j(q) be a measurable set (such as f;f(q) itself). Then:
X)) = / Jao(T 7| 5,)() diin ().
X
From this and Lemma 5.18 we then obtain:

LEMMA 5.19. — There exists C3 > 0 such that, for all n > 0, for any q,q' € S,,, and any
measurable sets X C J¥(q), X' C J¥(q"), we have:

L AX) | mlX) L malfX)
O T (X)) S (X = PR

Recall that f"(f}f(q)) = W\f(qn, Tn), forq € S,. T/I\le first conclusioll of Proposition 5.12
now follows from (5.12) and Lemma 5.19 with X = J¥%(q) and X' = J%(¢').

The second conclusion is proved similarly.

We next show that there exists § > 0 such that

T ju
513 PulTia(@) - g

mu(J%(q))
forallmn > 0andall ¢ € S,,. To obtain (5.13), we will apply Lemma 5.19 with ¢ = ¢/,
X =JY,1(¢q),and X’ = J*(q). This gives us:

(T (@) 5 o " (i (@)

mu(J2(e) ~ 0 mu(f(Je( )

But f7( n+1(Q)) = 7 W™ (gni1, Tny1)) and (T4 (q)) = W (gn, 7), and hence:
i (f" (Ti1(@) _ T(f~ OV (@41, T41)))

T (fr(J2(a))) 0 (W2 (s )
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We show that this ratio is uniformly bounded below away from 0. Since 7,41 /7, is uniformly
bounded, and £ is uniformly C" in the x-metric on A}, there exists a constant . < 1 (inde-
pendent of n) such that ffl(Wf(an, Tn+1)) contains the set Wf(qn, uty). Since |||« is a
locally flat metric, the set B, (g, u7y,) is just the set B, (gn, 7 ) dilated (in exponential coor-
dinates at p;) from g, by a factor of u. Since the leaves of the W* foliation are uniformly
smooth, the volumes of W (g,, Cr,,) and Wf(qm Tp) in the ||-||-metric are therefore uni-
formly comparable. This implies that their Riemannian volumes are comparable.

To prove the final claim, we begin by observing that, considered as a subset of )7\/\5“(3:),
the set JC¥(z) fibers over BE () with W*-fibers J¥(¢). We have just proved that these fibers
are c-uniform. Since o,+1/0, = o(py,,) is uniformly bounded away from 0, the ratio

—~

Mie(Byya () _ fe(We(@, 0ns1))

e(Bs () me(We(w,0n))

is bounded away from 0, uniformly in z and n. Thus the sequence of bases Efl (z) of Je(x)
is regular in the induced Riemannian volume m.. Proposition 5.4, part (7) implies that, con-
sidered as a subfoliation of )7\/\0"(;1;), W is absolutely continuous with bounded Jacobians.
Proposition 5.2 implies that the sequence fﬁ“(x) is regular, with respect to the induced Rie-
mannian measure m.,. This proves the final claim of Proposition 5.12. O

5.9. Julienne density

We now come to the:

Proof of Proposition 5.13. — We must show that if a measurable set X is both
We#-saturated and essentially W¥-saturated at a point z € W#(p, 1), then z is a Lebesgue
density point of X if and only if

lim ey (X : JS%(z)) = 1.

n—oo

As in [18], we will establish the following chain of equivalences:

z is a Lebesgue density point of X <= nlgr;o m(X : By(z)) =1
= nlgr;o m(X :Cp(z)) =1
= nlirrgo m(X : Dp(z)) =1
= nlgr;o m(X:E,(z)) =1
= nli_)ngom(X F.(z)) =1
— nh_)Ir;O m(X :Gp(x)) =1
= lim M, (X : J(2) =1

The sets B, (z) through G,,(z) are defined as follows. The set B, (x) is a x-Riemannian ball
in M:
B, (z) = By(z,04).
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The sets Cp,(z), Dy, (z) and E,, (x) will fiber over the same base D*(x), where
pp@= U B

' €EW: (z,0p)

Proposition 5.4, part (4) implies that DS*(z) is contained in the C'* submanifold Wes (z); the
sequences D¢ (x) and W¢*(x, 0,,) are internested. Let

Col)= |J Wi on),

qeDge (@)
and let
Dux)= |J ).
qeD3>(2)
The set E,,(x) is nearly identical to D,, (), with the difference that the J*-fibers are replaced
with J}-fibers:
E)= U o= U Zre)= U e

qED* (x) E/GWf(m,Un) ' EW:S(x,0n)

The rightmost equality follows from the fact that Wf(a:, on) = W:(x,0,), for all
z € W?*(p, 1) (Proposition 5.4, part (5)).
We define F,,(x) to be the foliation product of J*(z) and W (x, o,,):

Fo(z) = U W2 (g) N W (q).

q€T5H (@), ¢/ €W (3,0m)
This definition makes sense since the foliations YW and W* are transverse. Finally, let

Gn(z) = U Wilg,0n).
g€ Tz (@)
We now prove these equivalences, following the outline described above.

First, recall that B, (x) is a round d,-ball about = of radius o,,. The forward implication
in the first equivalence is obvious from the definition of B,,(x). The backward implication
follows from this definition and the fact that the ratio o,,41/0, = o(p,) of successive radii
is less than 1, and is bounded away from both 0 and 1 independently of n. From this we also
see that B, () is regular.

The set C,, () fibers over DE*(z), with fiber W (z', 0,,) over ' € D (x). The sequence
D¢g#(x) internests with the sequence of disks Wfs (z,0,), by continuity and transversality of
the foliations W¢ and We. Continuity and transversality of the foliations W* and Wes then
imply that C,,(z) and B, (z) are internested.

To prove the equivalence

lim m(X : Cp(z)) =1<= lim m(X : D,(z)) =1,

we note that C,, (x) and D,,(z) both fiber over D¢*(z), with W*-fibers. Since X is essentially
Wt-saturated at x, Proposition 5.2 implies that it suffices to show that the fibers of C,, (x)
and D,,(z) are both c-uniform. The fibers of of C,,(x) are easily seen to be uniform, because
they are all comparable to balls in W* of fixed radius o,,. The fibers of D,, (z) are the unstable
juliennes J(z'), for 2’ € DE*(z). Uniformity of these fibers follows from Proposition 5.12.
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We next prove:

LEMMA 5.20. — The sequences D,,(x) and E,,(x) are internested.

Proof. — Recall that

Do(x)= |J J¥q), and E.(@)= |J Ja)-
q€Dgs (x) q€Dgs ()
Internesting of the sequences D,,(z) and E,, (z) means that there is a k& > 0 such that, for all
n >k,
D,(z) CE,—x(x) and E,(z)C D,_r(z).

We will show that there is a k for which the first inclusion holds. Reversing the roles of W*
and W*" in the proof gives the second inclusion.

Suppose y € D,(z). Theny € J¥(q) = f"(W¥(qn,Tn)), for some ¢ € DE*(z); in
particular,
(5.14) dy (Yny Gn) = O(0)-

Let ¢ be the unique point of intersection of W”(y) with Wcs(x). We will show that
y € E,_i(z), for some A k that is independent of . In order to do this, it suffices to show that

Q€D y(x)andy € Ty (@) = =P OV (dnk, To-r)).
In order to prove that g € D;? . (x) it will suffice to show that
(5.15) dy(g,9) = o(on)
(in fact, O(c,) would suffice, but the argument gives o(c,)). In order to prove that
y € J (@) it will suffice to show that

(5.16) ds(Yn Gn) = O(Tn).

Equation (5.15) follows easily from (5.16). Since y,, and §,, lie in the same we leaf, Propo-
sition 5.4 and (5.16) imply that

(5.17) d*(ya qA) = O(ﬁnTn) = O(Un)a
since o7 < o. Similarly, Proposition 5.4 and (5.14) imply that
(5.18) di(y,q) = o(on).

Applying the triangle inequality to (5.17) and (5.18) gives (5.15).

It remains to prove (5.16). Recall from the construction of the fake foliations in Proposi-
tion 5.4 that, at any point z in the neighborhood N; of the orbit of p in which the fake folia-
tions are defined, the tangent space 7. W”(z) lies in the e-cone about T, W"(z) = E"(z).
Furthermore, the angle between T, WCS( ) and either T W“(z) or T, W"( ) is uniformly
bounded away from 0. Note that g, is the unique point in W"(yn) nwes () and g, is the
unique point in W¥(y,,) N W (z,,); combining this with (5.14) gives:

d*(quAn) = O(d*(men)) = O(Tn)
This completes the proof. O

We next show:

LEmMA 5.21. — E,(x) and F,(x) are internested, as are F,,(z) and G, (z).
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Proof. — The sets E,,(z) and F,,(x) both fiber over the same base W\f (z,0p,). The fibers
of E,(x) are the cu—juliennesfﬁ“(m’ ), for 2’ € W\S(x, on). The fibers of F,(x) are images
of fff‘(:ﬂ) under W#-holonomy from Wc"(:v) to )7\7‘3“(37’), for z’ € W;“ (z,0,). It follows
immediately from Proposition 5.11 that the sequences E,,(x) and F,(z) are internested.

To see that F,(z) and G,,(z) are internested, suppose that ¢’ lies in the boundary of the
fiber of F,,(x) that lies in W*(q) for some g € J¢%(z). Then ¢’ € J(z') for a point z’ that
lies in the boundary of W#(z, o,,). The diameters of f;“ (z) and fﬁ“(a:’ ) are both O(o,), and
dy(z,z') = o,. Hence, if k is large enough, we will have

On+k S d*((b ql) S On—k-

Thus all points on the boundary of the fiber of F,(x) in W} (q) lie outside W} (¢, opn+1) and
inside W;(q, o). O

We now know that any two of D, (z), E,(z), F,(z) and G, (x) are internested. As dis-
cussed above, to prove the fourth through sixth equivalences, it now suffices to show:

LEMMA 5.22. — The sequence Gy (z) is regular for each x € W*(p, 1).

Proof. — The set
Gn(z) = U Wi(g, on)
q€T5" (2)
fibers over J*(z), with W*-fibers W (q, 0,). Since W* is absolutely continuous, Proposi-
tion 5.2 implies that regularity of G, (x) follows from regularity of the base sequence and
fiber sequence. Proposition 5.12 implies that the sequence fﬁ"(m) is regular in the induced
measure m.,. As we remarked above, the ratio o,,11/0, = o(p,) is uniformly bounded be-
low away from 0. Consequently, the ratio

ms (Wi (Q7 0n+1))
ms(W; (g, on))
is bounded away 0, uniformly in z, g, and n. The regularity of G, (z) now follows from Propo-
sition 5.2. O

To prove the final equivalence, we use the fact that G, (z) fibers over J&¥(z) with
c-uniform fibers and apply Proposition 5.2. Here we use the fact that X is W#-saturated.
This completes the proof of Proposition 5.13. O

6. Cocycle saturation

We now explain a generalization of Theorem B involving saturation properties of sections.
This brings the results of [§] into the nonuniform setting. We review the notations from [8].
In this discussion M denotes a closed manifold and f: M — M a partially hyperbolic dif-
feomorphism.

A Hausdorff topological space P is refinable if there exists an increasing sequence of
countable partitions @; < 9y < --- < Q, < --- into measurable sets such that any
sequence (Qn)nen With @, € Q,, and @, # @ converges to a point n € P in the sense
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that every neighborhood of 7 contains all @), for n sufficiently large. Every separable metric
space is refinable.

We shall consider continuous fiber bundles X over M with fiber a Hausdorff topological
space P. Such a fiber bundle is refinable if P is refinable.

A fiber bundle 7: X — M has stable and unstable holonomies if, for every x,y € M with
y € W*(z) and * € {u, s}, there exists a homeomorphism &} ,: 7! (z) — 7~ *(y) with the
following properties:

1) h;,x = Idﬂ.fl(z), and h;z [} h;y = h;,Z;
2) the map (z,y,7n,d«(z,y)) +— h;,(n) is continuous on its domain (a subset of
M x M x X x [0,00)), where d.(z,y) stands for the distance between z and y

in W*(z).
Our main result concerns the saturation properties of sections of refinable bundles with stable

and unstable holonomies. In analogy with the definition of stable saturated set, we say that
asection ¥: M — X is h®-saturated if, for every z € M and y € W*(x):

U(y) = hs, (¥ (2))-

We similarly define h*-saturated sections (the terms s-invariant and u-invariant are used in
[8]). A section is bisaturated if it is both h®- and h*-saturated. A section V¥ is bi essentially
saturated if there exist an h®-saturated section ¥*® and a h*-saturated section ¥* such that
¥ = ¥° = ¥* almost everywhere with respect to volume on M.

Examples:

1) Let X = M x {0,1} and set h} ,(n) = n. In this trivial example, if A C M is a
(W2 /W*/[bi) - saturated set, then x — (z,14(z)) is an (h*/h*/bi) - saturated section. If
A is bi essentially saturated, then so is the associated section.

2) (cf. [33], Proposition 4.7) Every Holder-continuous function ¢: M — R determines
stable and unstable holonomy maps on the bundle M x R, invariant under the skew

product (z,n) — (f(z),n + ().
If U: M — R is a continuous solution to the cohomological equation

(6.1) Y=Tof_U,

then ¥ is a bisaturated section. Moreover, if f is C2, volume-preserving and ergodic,
V: M — Rismeasurable, and the equation (6.1) holds almost everywhere with respect
to volume, then ¥ is a bi essentially saturated section.

3) (cf. [8]) Let A: M — SL(n,R) be a Holder-continuous matrix-valued cocycle. If this
cocycle is dominated (in the sense of [§]), then it determines in a natural way stable
and unstable holonomies on the refinable fiber bundle X = M x M(RP"~1), where
M(RP™1) is the space of probability measures on the projective space RP™ 1,

Suppose that the Lyapunov exponents of A,,(f) = (Aof"~1)(Aof"~1) ... Avanish
almost everywhere. Then A determines a bi essentially saturated section of the bundle
X. These results are proved in [8] and used to show that the generic such cocycle over

) This can be reformulated, in view of (1), as requiring that (z, y,n) — h , (n) is continuous when we restrict z
and y to belong to local W* leaves.
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an accessible, center-bunched partially hyperbolic diffeomorphism has a nonvanishing
exponent.

Our main result expands Theorem B to include bi esentially saturated sections. Follow-
ing [8], we introduce an analogue for measurable sections of the notion of density point for
measurable sets.

Letm: X — M be arefinable bundle. We say thatp € M is a point of measurable continuity
for a section ¥: M — X, if there exists n € X such that p is a Lebesgue density point of
U~1(V), for every open neighborhood V of n in X. If such an 7 exists, it is unique, and is
called the density value of ¥ at p.

Let M C(¥) be the set of points of measurable continuity of ¥. We define a measurable
section W: MC(¥) — X by setting ¥(p) to be the density value of ¥ at p. Then M C(¥) has

full volume in M, and ¥ = ¥ almost everywhere, with respect to volume (see Lemma 7.10,

(D).

THEOREM D (cf. Theorem 7.6, [8]). — Let f be C? and partially hyperbolic, and let X be a
refinable fiber bundle with stable and unstable holonomies.
Then, for any bi essentially saturated section V: M — X:

1) MC(¥) N CB" is We-saturated, and the restriction of U to MC(¥) N CB™ is
h®-saturated;

2) MC(¥) N CB~ is W¥-saturated, and the restriction of ¥ to MC(¥) N CB™ is
h*-saturated.

Proof. — The proof follows the same lines as Theorem 7.6 in [8]. The proof there adapts
the proof of the main result in [18], and we correspondingly adapt the proof of Theorem B
here.

We first prove the theorem under the assumption that the bundle X has stable and unstable
holonomies. We prove the first part of the theorem; the second part follows from the first, re-
placing f by f 1. Let 7: X — M be a refinable bundle with stable and unstable holonomies.
The holonomy maps h° and h* define foliations F* and F* of X; the leaf of F* through a
point € X is:

Fr(m) = {h i)y (M) y €W (n(n))}.
We similarly define for » > 0 the local leaf:

Fr(m,r) =A{hayy(m:y € Wi(xm(n),r)}-
Observe that a section 9 is x-saturated if and only if its image ®(M) C X is a union of whole
leaves of F*.

Fix a bi essentially saturated section ¥: M — X. Recall that bi essential saturation of ¥
means that there exist an h°-saturated section ¥*® and a h"-saturated section ¥* such that
U = U* = ¥ almost everywhere.

Fix z € MC(¥) N CBT, and let = ¥(x) be the density value of ¥ at . Note that 7
is also a density value for ¥* and ¥*. We will show that for every y € W*(z, 1), h; , (1) is
a (the) density value of ¥ at y. Since CB™ is W¥-saturated, this will simultaneously estab-
lish that M C(¥) N CB* is W#-saturated and that the restriction of ¥ to MC(¥) N CB™ is
h®-saturated.
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To this end, fix y € W*(z,1), and let V' be a neighborhood of k3 , () in X'. Note that
h;. ,,(n) lies on the local leaf F°(n, 1). To show that h; , (1) is a density value for ¥ at y, we
must show that y is a density point of ¥~ (V).

Continuity of the stable holonomy maps in X and stable saturation of ¥* together imply
that (U%)~1(V) is W#-saturated at y; recall this means that there exist 0 < §y < d; such that
for any z € B(y,d) N (¥*)~1(V), we have W*(z,6;) C ¥ (V). Similarly, (¥%)~}(V) is
Wt-saturated at y, and so U~1(V') is bi essentially saturated at y.

Fix ¢ > 0 and 6 > 0 such that 7=*(B(y,e)) N N5 C V, where

Ns= |J 70
z€B(n,0)

is the union of the local F* leaves through B(n, d) in X. Since Nj is saturated by local 7°(-, 1)
leaves, and the section ¢ is h®-saturated, it follows that the set (U*)~1(Nj) is saturated by
local W#(-, 1)-leaves. The set U ~1(B(n, §)) is bi essentially saturated at = and coincides mod 0
with the set (¥*)~1(B(n, §)), which is h*-saturated at z. Since x € M D(V), it is a Lebesgue
density point of ¥=1(B(n,d)). But z is also an element of CB*, and so Proposition 5.13
implies that z is a cu-julienne density point of (¥*)~!(B(n, d)), and hence of (¥*)~1(Nj) as
well.

Now, since (¥*)~1(Ns) is saturated by local W*(-,1)-leaves, and x € CB™*(f), Propo-
sition 5.14 implies that y is also a cu-julienne density point of (¥*)~1(Ns). Thus y is a
cu-julienne density point of B(y, &) N (¥*)~1(Ns). But

B(y,e) N (¥*)~H(Ns) = (¥°) 7 (n = (B(y,€)) N Ns) € (¥*)7H(V);

since the latter set is W*-saturated and essentially W¥-saturated at y, and sincey € CB*(f),
Proposition 5.13 implies that y is a Lebesgue density point of (¥*)~1(V). Finally, since
(U5)~1(V) = ¥=1(V) mod 0, we obtain that y is a Lebesgue density point of ¥~1(V).
This completes the proof of Theorem D. O

7. Examples

Here we will be interested first in the construction of a C?-open class of maps which are
not uniformly center bunched, but display nonuniform center bunching in the sense that the set
CB of center bunched points has full Lebesgue measure. We then show, using Corollary C,
that this class contains C2-stably ergodic maps, and describe an application of Theorem D
to the cohomological equation.

All of the following constructions can be carried out in the volume-preserving setting. We
do it in the symplectic setting, as the arguments are slightly more subtle.

7.1. A nonuniformly, but not uniformly, center bunched example

Let P, @ and S be compact symplectic manifolds, and let F': P — P, G: Q — @ and
H: S — 8 be symplectic C? diffeomorphisms with the following properties:

1) F and G are Anosov diffeomorphisms.
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2) We have
sup | DG|gs || < inf m(DH)? < sup | DH||*> < inf m(DG|gx),
Q G S S Q G
sothat G x H: Q xS — @ x S is partially hyperbolic and center bunched, with center

bundle tangent to the S factor.
3) We have

sup | DF|p: || < inf m(DH) < sup |DH| < inf m(DF|g),
P s s P o
so that F' x G x H is partially hyperbolicon M = P x @ x S, with center bundle
tangent to the S factor.

4) Indicating by mp the normalized volume measure induced by the symplectic form
on P, we have

/log |DF

5) There exists a point p € P of period k£ under F such that:
| DpF*|g: || < m(DG|gs,)* < |DGlps|* < m(DpF*|py),

g |ldmp < 2igflogm(DH) < 281;p10g||DH|| < /logm(DF|E;)dmp.

which implies that Uf;é {FJ(p)} x @ x S is normally hyperbolic and contained in CB.

Let w be the symplectic form in M = P x @ x S given by the sum of the forms on P, Q
and S. Then fo = F x G x H : M — M is symplectic.

LEMMA 7.1. — If f is a C? volume-preserving (C*-small) perturbation of fo, then f is
nonuniformly center bunched.

Proof. — To show that almost every orbit is forward center bunched, it is enough to prove

that for any f-invariant set W of positive Lebesgue measure, we have

T /W log [IDf|; | dm < 2inf log m(D | ;).
We notice that E; is close to E. @ E¢; and E¥ is close to T'S everywhere. Thus the right hand
side is close to 2 inf s log m(D H), while the left hand side is bounded, up to small error, by the
maximum of supy, || DG| g || and [log||DF B || dmsp, where p1 is the normalized restriction
of the Lebesgue measure m to W and « : M — P is the coordinate projection. By (2) and
(4), we are reduced to showing that , u is weak-* close to mp.

An f-invariant probability measure which is absolutely continuous with respect to the un-
stable foliation W} will be called an u-state for f. One defines s-states analogously. Let /()
be the set of u-states for f and S(f) be the set of s-states for f. An u-state that is also an
s-state will be called an su-state. Since f is C2, the WY and Wi foliations are absolutely con-
tinuous, thus p is an su-state. We are going to show that this already implies that 7, u is close
tomp.

The uniform expansion in the unstable direction as we iterate forward has a regularization
effect which implies that there is an a priori bound on the densities of the disintegration of
an u-state for f along W7: the quotient between the densities at different points in the same
unstable leaf is bounded by K¢ where K is a constant (uniform in a C? neighborhood of f)
and d is the distance between the points inside the leaf. (Recall that the density is defined, in
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each leaf, only up to scaling but the quotient is well defined and given by the Anosov-Sinai
cocycle; see formula (11.4) in [13].)

This bound has the important consequence that () is closed (and hence compact) in
the weak-* topology. Moreover, in a C? neighborhood V of fy, the set Urev{ft xU(f)is
also closed. We call this fact the upper-semicontinuity in f of the set of u-states, see [17] for
a detailed proof.

Analogous considerations show that the set of s-states is upper-semicontinuous in f.
Thus Jseptf} x (S(f) N U(S)) is closed as well, so the set of su-states also depends
upper-semicontinuously on f.

The product structure of the foliations implies that an su-state for fy projects onto an
su-state for F' x G, which is C? Anosov, and the absence of a central direction for F' x G
implies that the projection is absolutely continuous. Since F' x G is Anosov, it is ergodic so
the projection is Lebesgue on P x Q. Projecting again, we conclude that 7, = mp whenever
v is an su-state for fy (in fact, an su-state for fj is just the product of Lebesgue on P x @
by an arbitrary invariant probability measure on S). By upper-semicontinuity, if f is close to
fo, the projection of any su-state for f is weak-* close to mp. The result follows. O

Notice also that we may construct the map fj so that no f nearby is center bunched. For
example, one can arrange that the conditions above hold and in addition there are hyperbolic
periodic points p’ = F*(p’), ¢ = H™(q) such that

p(Dy Ff|5g ) > p(DH™) 2™,

where p denotes spectral radius. Note that the main theorem in [18] does not apply to such
an example, nor to its perturbations.

7.2. Stable ergodicity

Condition (5) implies that for any C'* perturbation f of fy, there exists a normally hyper-
bolic manifold Ny, C-close to U?;S{Fj (p)} x @ x S, whose connected components are
permuted under f.

Let us say that Ny is accessible if for any « and y in the same connected component of
Ny, there is an su-path in Ny connecting « and y. We say that N is stably accessible if N,
is accessible for every g in a neighborhood of f in Diff}) (M x N x P). These properties are
non-void:

LEMMA 7.2. — For any neighborhood Z of fy in Diff;) (M) there exists f € Z such that
Ny is stably accessible.

Proof. — In [31] it is shown that for every neighborhood V of the identity in
Diff7, (@ x S) there exists & € V such that ® o (G x H) is stably accessible. For

such a @, define ¢ € Diff o’ (M x N x P) by ¢ = Idpr x @. Then ¢ o fy is close to fo and
satisfies the desired properties. O

LEMMA 7.3. — If f is CY near fo and Ny is accessible, then we can join any two points in
CB by an su-path with corners in CB.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



972 A. AVILA, J. BOCHI AND A. WILKINSON

Proof. — Fix x € Ny. Obviously W¢(x) C Ny C CB, and since Ny is stably accessible,
any two points in W¢(x) can be joined by an su-path with corners in Ny and hence in CB.
Thus it is enough to show that any y € CB can be joined to some point in W¢(z) through
an su-path with corners in CB. The action of f on M /W)i is topologically conjugated to
the Anosov map F' x G, and under this identification, the projection of any unstable or sta-
ble leaf of f is an unstable or stable leaf of F' x G. Obviously, for F' x G any two points
can be connected by an su-path with 2 legs. We conclude that for every y € M there exists
z € W¢(z) such that W*(y) N W*(z) # @. Wheny € CB, W¥(y) N W*(z) C CB (since
y,z € CB and CB™ is W#-saturated while CB~ is W*-saturated), showing that y is con-
nected to W¢(x) by a 2-legged su-path with corners in CB. O

Putting together Lemmas 7.2, 7.3 and Corollary C we conclude:

THEOREM E. — If f is C%-close to fo and Ny is accessible then f is ergodic (and in fact, a
K-system).

7.3. Continuity of bi saturated sections and the cohomological equation

LEMMA 7.4. — Let f : M — M be a C? volume-preserving partially hyperbolic dif-
feomorphism and let Z be a bi essentially saturated set of positive Lebesgue measure. If
x € supp(m|Z) then any su-path starting at x can be approximated by an su-path with
corners in Z.

Proof. — Let us say that z € Z is k-pretty if almost every w € W*(z) UW?(z) is
k — 1-pretty, where all points of Z are declared to be 0-pretty. Since W* and W* are
absolutely continuous, it follows by induction that almost every z € Z is k-pretty for
every k.

Consider an su-path connecting zq to z,, through z1, ..., z,_1. Now just approximate x
by an n-pretty point zp, and then successively z; by an n — i-pretty point z; € W*(z;_1). O

THEOREM F. — Let f be C?-close to fo and let X and ¥ be as in Theorem D. If Ny is ac-
cessible then ¥ coincides almost everywhere with a continuous bi invariant section.

Proof. — Since any two points of CB can be joined by an su-path with corners in CB,
and CB has positive Lebesgue measure, it follows that M C(¥) contains CB.

Let us show that we can define a bi saturated section that coincides with ¥ on CB. By the
argument of Section 8.2 of [8] (where center bunching does not play a role), the accessibility
of f implies that such a section is necessarily continuous, and since m(CB) = 1, ¥ must
coincide almost everywhere with it.

We notice that, restricting the above considerations to Ny C CB, and using that Ny is
accessible, we can already conclude that ¥| N is continuous.

Let x € Ny. We are going to show that, for any su-path starting and ending at z, the
composition of holonomies along the su-path fixes ¥(z). Since f is accessible, this allows us
to define a bi saturated section: join = to any y € M by any su-path and apply the holonomy
to W(z). If well defined, this new section automatically will coincide with ¥(z) on CB by
Theorem D (since, by Lemma 7.3, x can be joined to any y € CB through an su-path with
corners in CB).
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Let us consider thus an su-path starting and ending in z(, and its composed holonomy
map h. Assume that h(¥(z)) # ¥(z). By the previous lemma, it is approximated by an su-
path with corners in CB. A priori, the extremes of the latter path do not belong to N, but by
adding at most 4 short legs to the latter (two at the beginning and two at the end), we obtain
an su-path starting and ending at points y, z € Ny. Since the corners of this path all belong
to CB, the corresponding composed holonomy map h takes \il(y) to \il(z) Since y,z € Ny
are close to z, we can use the continuity of holonomy maps, and of ¥|N +, to conclude that
h(¥(y)) is close to h(¥(x)) and ¥(z) is close to ¥(z). Since we assumed that k(¥ (z)) #
U (x), this implies that h(¥(y)) # ¥(z), contradiction. O

One particular interesting application is the case of the cohomological equation (see Ex-
ample 2 in Section 6): if ¢p : M — R is a Holder continuous function then a measurable
solution of the cohomological equation ) = ¥ o f — ¥ coincides almost everywhere with a
continuous one.

One can also deduce non-degeneracy of the Lyapunov spectrum of generic bunched
cocycles over f (see Example 3 of Section 6). However, the application of those ideas to the
analysis of the central Lyapunov exponents of f themselves is more subtle since this cocycle
is not bunched (but only nonuniformly bunched), and will be carried out elsewhere: we will
show for instance that in the case that .S is a surface then stably Bernoulli, nonuniformly
hyperbolic examples like above can be obtained.

7.4. Further examples

The mechanism for ergodicity implemented above can be abstracted somewhat to a crite-
rion for ergodicity, which we quickly describe.

Let f : M — M be a C? accessible partially hyperbolic volume preserving diffeomor-
phism. Let N C M be a normally hyperbolic compact (not necessarily connected) subman-
ifold. ) It is easy to see that T, N = (E*(z) N T,N) & (E¢(z) N T, N) & (E*(z) N T, N) at
every x € N. If those three subbundles are non-trivial, then this splitting is partially hyper-
bolic. We are interested on the case that IV is c-saturated in the sense that T, N D E°(z) for
every z € N. Assume that f|N is center bunched and has some open accessibility class. We
will show that the restriction of Lebesgue measure to the set CB is either null or ergodic.

Let us first note that, since NV is normally hyperbolic, the condition that f|N is center
bunched implies that N C CB.

Foraset U C N,let U be the set of all z € M such that there exists y € U such that
W¥(x) N W*#(y) # @. Notice that since N is c-saturated, it is clear that int U D int U.

We claim that if CB is dense, and if U is an open accessibility class for f|N, then any two
points in CB N Jgez £ (int U) can be joined by an su-path with all corners in CB.

Since f is accessible, almost every orbit is dense (by Theorem 3.4); hence the claim implies
that almost every pair in CB can be joined by an su-path with corners in CB, which gives
the conclusion, by Corollary C; that is, if CB has positive measure (which, by Theorem 3.4,
implies that it is dense), then the restriction of f to CB is ergodic.

®) Our arguments would also work by taking N as a (non-compact) leaf of a normally hyperbolic lamination.
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To prove the claim, note first that if z € CB, then W*(z) N W*(y) C CB, for any
y € N.Since U is an accessibility class of f|N,and N C CB, it follows that any two points in
CB N U can be connected by an su-path with all corners in CB.

Since f is accessible, so is f x f; Theorem 3.4 implies that f x f is topologically transi-
tive. This implies that for any three open sets V1, V5,V C M there exists n € Z such that
V; N f*(V) # @, for j = 1,2. In particular, for any pair of integers k1, ko, there existsn € Z
such that f%i (int 7) N f*(int U) # @, for j = 1,2. Since CB is dense, we can find points
z; € CBN f"(int U) N f*i (int U). Then we can join z; to x5 by an su-path with corners in
CB by going through z} and #: z; and «; can be joined since f % (z;), f % (z}) € CBNU,
while ; and ), can be joined since f~"(z}), f~™(z4) € CB N U. This proves the claim.

One can also apply the argument of the previous section to conclude, for instance, that
if ¢ : M — R is a Holder continuous function then any measurable solution of the coho-
mological equation ¢y = ¥ o f — ¥ defined over CB coincides almost everywhere with a
continuous solution defined in the whole M. We notice that here it is only needed to assume
that m(CB) > 0, and a priori the system could even be non-ergodic as far as the current
theory goes.

Appendix

Reobtaining some results from [12]

A variation of the method presented in Section 4 allows one to obtain various [12]-like
(topological) conclusions from [10]-like (ergodic) results. To illustrate, we will reobtain the
following:

THEOREM A.1 ([12]). — A diffeomorphism that has a non-dominated homoclinic class can
be perturbed to display a nearby periodic orbit with all eigenvalues of the same modulus.

Let us explain the result from [10] that we need. Let (X, u) be a non-atomic probability
space, and let f be an ergodic automorphism of it. Fix a positive integer d and let L be the
set of measurable maps (called cocycles) A : X — GL(d, R) such that | A*! || are u-essentially
bounded, where maps that differ on zero sets are identified. Notice L*° is a Baire space.

Given a cocycle A € L, asymptotic information about the products
A (@) = A(f" L (@) - Alw)

is given by Oseledets’ Theorem. So let RY = E'(z) @ - - - @ E*(x) be the Oseledets’ splitting,
defined for p-a.e. z € X, and let A\;(A) > --- > A4(A) the Lyapunov exponents repeated
according to multiplicity. (Notice that k£ and the Lyapunov exponents are constant y-almost
everywhere by ergodicity.) We also write L;(A) = Z;:l Aj(A). We have

L) = int - [ log A 43w du(o).

As a consequence of this formula, the function A € L* — L;(A) is upper-semicontinuous,
and hence its points of continuity form a residual set. Another semi-continuity property that
follows easily from the formula is:
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LEMMA A.2. — Given A € L™, C > ||A*!||«, and e > 0, there exists § > 0 such that if
B € L™ is such that if || B¥!|| oo < C and p[B # A] < § then Li(B) < L;(A) +e¢.

Let RY = E(x) ® F(x) be a splitting defined for p-a.e. z and invariant under a cocycle
A € L. Also assume that dim F is constant (called the index of the splitting). We say that
the splitting is dominated (or, more precisely, that E dominates F') in the case that there exists
m € N such that
|A™ @)l r @ |
m (A" (z)|p(x))

It is not hard to check the following elementary properties (©':

(A1) < for p-a.e. z € X.

N | =

1) The angle between E and F' is essentially bounded from below.

2) For a fixed index, the dominated splitting is unique over the points where it exists.

3) In the case that the space X is compact Hausdorff and A is a continuous map, then
the splitting can be defined over each point of supp u, and varies continuously.

We say that the Oseledets’ splitting of A is trivial if k = 1, and dominated if k > 1 and
E'®--- & E' dominates B! @ --- @ E* foralli € {1,...,k — 1}.

THEOREM A.3 ([10]). — A4 cocycle A € L™ is a point of continuity of all L;’s if and only if
the Oseledets’ splitting is trivial or dominated.

REMARK A.4. — As shown in [10], the statement of Theorem A.3 remains true if
GL(d,R) is replaced by any Lie group of matrices that acts transitively on the projective
space, for example the symplectic group.

We will deduce from Theorem A.3 the following:

PROPOSITION A.5. — If A € L has no dominated splitting then there exists B € L
arbitrarily close to A whose Oseledets’ splitting is trivial.

The proof of the proposition requires a few preliminaries.

Given a cocycle A € L*, we define u4 as a probability measure on GL(d, R)* by
taking the push-forward of u under the map z +— (A(f"(z)))n. Notice p4 is invariant
under the shift. Let Hull(A) =supppa; this is a compact Hausdorff space. Let
A : Hull(A) — GL(d,R) be the projection on the zeroth coordinate, considered as a co-
cycle over the shift on Hull(A). This new cocycle has the advantage of being continuous.
Using the elementary properties listed above, it is easy to see that a cocycle A € L™ has a
dominated splitting if and only if A has one. This means that the existence of a dominated
splitting for A depends only on Hull(A); in particular, if B has a dominated splitting and
Hull(A) C Hull(B), then A has a dominated splitting.

Let V indicate the set of cocycles A € L™ that have no dominated splitting. Then N is a
G5 subset ") of L>°, and thus a Baire space. Indeed, the set of A € L that have a dominated
splitting with fixed index and fixed m as in (A.1) is easily seen to be a closed set.

) Or see e.g. [13, Appendix B].
(M More precisely, NV is a closed set, but we will not need this.
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LEMMA A.6. — If A € N is a point of continuity of L;|N then A is a point of continuity
OfLi.

Proof. — Assume that L; is not continuous at some A € N; we will show that neither is
L;|N.

Leta® = (ak),,, k > 0 be a dense sequence in Hull(A). For j > 0, let Uy, ; C GL(d, R)Z be
the set of all sequences (z,),, with ||z,, —a% || < 277 for every |n| < j. Then each Uy, ; is open
in GL(d, R)Z and for each k > 0, {Uy ; } ;>0 is a fundamental system of neighborhoods of a*.
Let Dy ; C X be the set of all z such that (A(f™(x)))» € Us,;. Since aF € supp pa, we have
u(Dy, ;) > 0, and since p is non-atomic, for every [ > 0 we can choose a subset Dy, ;; C Dy, ;
with 0 < N(Dk,j,l) < 27k=i=l Let 7, = Uk,jZO U|n|§j fn(Dk’j,l). Then ,U,(Zl) — 0 as
I — oo. Moreover, if B € L™ is any cocycle that coincides with A on some Z;, then for every
x € Dy, and every |n| < j, we have B(f"(z)) = A(f"(x)); the definition of Uy ; then
gives that (B(f"(x)))n € Uk,;. This implies successively that pp (U ;) > pu(Dg 1) > 0 for
every k,7 > 0, a* € Hull(B) for every k > 0, Hull(B) D Hull(A), and B € N.

Since L; is upper-semicontinuous and not continuous at A, there exist a sequence
A, € L* converging to A and € > 0 such that L;(A,,) < L;(A) — ¢ for each n. Let By, ;
be the cocycle equal to A on Z; and equal to A,, elsewhere. By Lemma A.2, for each n there
exists I, such that L;(By,;,) < L;(A,) +¢/2. Thus the sequence B, ;, is in N, converges to
A, and satisfies L;(By,;,) < L;(A) — &/2. This shows that L;| N is not continuous at A, as
desired. O

Now we can give the:

Proof of Proposition A.5. — Let A be an element of A, that is, a cocycle without domi-
nated splitting. Since A is a Baire space and the functions L; are upper-semicontinuous, we
can find a point B of continuity of all functions L;|N that is as close to A as desired. By
Lemma A.6, B is a point of continuity of all L;’s, and thus, by Theorem A .3, its Oseledets’
splitting is either dominated or trivial. Since B € N/, the former alternative is forbidden and
thus all Lyapunov exponents of B are equal. O

Now let us use these results to prove Theorem A. 1. Our approach needs a suitable measure
to start with:

LemMA A.7. — For every homoclinic class H, there exists an ergodic invariant probability
measure whose support is H.

Proof. — This is a simple consequence of the fact that any non-trivial homoclinic class H
is contained in the closure of a countable union of horseshoes Hy C Hy C -- - (by a horseshoe
we mean an invariant compact set restricted to which the dynamics is topologically conjugate
to a transitive subshift of finite type).This allows one to construct a wealth of invariant mea-
sures with support H (for instance, with positive entropy), as suitable “infinite Markovian”
measures, but below we will proceed by a somewhat less direct argument.

Given a compact invariant set X C M, let M(X) be the set of invariant probability mea-
sures p with supp ¢ C X, endowed with the weak-star topology. Let M (X) € M(X) be
the set of ergodic measures, and for any compact subset Y C X, let M(X,Y") be the set of
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invariant measures whose support contains Y. It is easy to see that M.(X) and M(X,Y)
are always G subsets of M(X).

Since H; is a horseshoe, both M. (H;) and M(H;, H;) are dense (and hence residual) in
M(H;). Let G; = M (H;)) N M(H;, H;). Let W C M(H) be the closure of the union of
the M(H;). Let W; = W n M.(H) N M(H, H;), which is a Gs-subset of W. Notice that
W, contains G, for each j > 4. Since G, is a Gs-dense subset of M (H;), it follows that W
is dense in W = | J;»; M(H;) for every i. Now, W is a compact Hausdorff and hence Baire
space, and we conclude that (| W; is a dense subset of W. Since H = @, the set (W
is precisely W N M.(H) N M(H, H). In particular, M.(H) N M(H, H) is non-empty, as
desired. O

Proof of Theorem A.1. — Let f be a diffeomorphism and let H be a homoclinic class that
has no dominated splitting. Choose an ergodic probability measure p whose support is H,
using Lemma A.7.

We will consider L*-perturbations A of the derivative of f restricted to H. Such an object
A'is the assignment for p-a.e. x € H of a linear map A(x) : T, M — T, M that is close to
D f(x), and varies measurably. Now, using Proposition A.5 we can find such a perturbation
A of the derivative whose Lyapunov exponents coincide u-almost everywhere. Using Lusin’s
Theorem, we may alter A on a set of arbitrarily small y-measure, while keeping it uniformly
close to D f, to obtain a continuous perturbation B. It follows from Lemma A.2 that the Lya-
punov exponents of B are all close to each other pu-almost everywhere. In other words, there
is a small number € > 0 such that

1. |[Bf@) e
nlin;o - log m < 3 for y-a.e.z € H,
where we indicate B} (z) = B(f" (x))--- B(z). Next we apply the Ergodic Closing
Lemma (imitating the proof of Lemma 4.2) and find a C'-perturbation f of f that has a
periodic point x of period p such that

1B ()]
m(B77(2))

emp

<e for some m > 1.

This implies that the moduli of the eigenvalues of B;(a:) are all close to each other. By means
of an (easier) dissipative analogue of Lemma 4.3, we can perturb B along the f-orbit of z to
make the eigenvalues of B?(m) of the same moduli. By Franks’ Lemma one can perturb the

diffeomorphism again, keeping the periodic orbit and inserting the desired derivatives. This
concludes the proof. O
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