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Cocycles

Ω = compact Hausdorff space.

F : Ω→ Ω continuous map.

G = topological group (main example: GL(,.R)).

A : Ω→ G continuous map.

We call A a cocycle over F .

Dynamical product (non-commutative analogs of Birkhoff sums):

A(n)(ω) := A(F n−1ω) · · ·A(Fω)A(ω).

Cocycle relation
A(n+m)(ω) = A(m)(F nω)A(n)(ω).
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Skew-product
If H is any space where G acts, we can define a dynamical system on
Ω× H:

T : (ω, p) 7→ (F (ω),A(ω) · p).

So
F n(ω, x) = (F n(ω)),A(F n−1(ω)) · · ·A(F (ω)))A(ω)︸ ︷︷ ︸

A(n)(ω)

·p).
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(G = GL(2,R), H = R2)
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Conjugacy

Two cocycles A and B (over F ) are said to be conjugate (or
cohomologous) if there exists a continuous map U : Ω→ G such that

A(ω) = U(Fω)B(ω)U(ω)−1, for all ω ∈ Ω.

Then the associated skew-products on Ω× H are conjugate under a
conjugacy (ω, p) 7→ (ω,U(ω)p).
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Growth of products
Take a linear cocycle, i.e., a cocycle with G = GL(d ,R).
Let µ be an F -invariant probability on Ω. Lyapunov exponent:

L(F ,A, µ) = lim
n→∞

1

n
log ‖A(n)(ω)‖ ≥ 0.

(The limit exists for µ-almost every ω, and is independent of ω.)

We say that cocycle has uniform subexponential growth if

∀ε > 0 ∃Cε s.t.
∥∥[A(n)(ω)]±1

∥∥ ≤ Cεe
εn ∀ω ∈ Ω.

An equivalent condition is:

L(F ,A, µ) = 0 for every invariant µ.

A stronger condition: The cocycle is product-bounded if

∃C > 0 s.t.
∥∥[A(n)(ω)]±1

∥∥ ≤ C ∀ω ∈ Ω.
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A way get to product-bounded cocycles

Suppose A is conjugate to a cocycle of “rotations” B : Ω→ O(d ,R), i.e.,
∃ U continuous s.t.

A(ω) = U(Fω)B(ω)U(ω)−1.

Then A is obviously product-bounded, because:

A(n)(ω) = U(F nω)B(n)(ω)U(ω)−1.

Coronel–Navas–Ponce: If the dynamics F is minimal then the converse
holds (Product-bounded ⇒ conjugate to rotations).
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And how to get a conjugacy with rotations?

Take H = space of ellipsoids in Rd (centered at the origin) There is a
obvious action of GL(d ,R) on H.
(A fact to be used later: There is a Riemannian metric on H which is
invariant under the action, and has sectional curvature ≤ 0.)

A matrix is a rotation iff it leaves invariant the unit ball p0 ∈ H.
Then a cocycle A is conjugate to a cocycle of rotations iff it has a
continuous invariant section φ : Ω→ H

Invariance: A(ω) · φ(ω) = φ(Fω)

Invariance means that the graph of φ is invariant under the skew-product.

Proof of the “iff”: conjugate to send φ to constant = the unit ball ∈ H.
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First result

Theorem [B.–Navas]

If A : Ω→ GL(d ,R) has uniform subexponential growth then we can perturb
it in the C 0-topology so that it becomes conjugate to a cocycle of rotations
(and in particular, becomes product-bounded).

Done previously by Avila–B.–Damanik for the group SL(2,R) (with some
assumptions on Ω).
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Applications of this kind of result

Theorem 1 [ABD]: Genericity of Cantor spectrum

Let T be “rotation-like”. For C 0-generic potential functions v : X → R,
the associated spectrum Σ ⊂ R is a Cantor set.

Theorem 2 [ABD]: Denseness of uniform hyperbolicity

Let T be “rotation-like”. Then the uniformly hyperbolic matrix maps
form an open and dense subset of C 0

0 (X ,SL(2,R)).

0 means homotopic to constant.

A potential application: Try to extend Theorem 2 above for d > 2,
replacing uniform hyperbolicity is projective hyperbolicity (also called
exponential separation or domination).
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Another application

A theorem of B.–Viana says that for a generic linear cocycle, the Oseledets
splitting is (trivial or) dominated. If the dynamics is uniquely ergodic then
we can apply the fibered versions previous results to perturb the cocycle
and make the action conformal in the subbundles of the dominated
splitting. More precisely, we have . . .
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Another application

Theorem

Assume that F : Ω→ Ω is uniquely ergodic with an invariant measure of
full support. Then there is a dense subset D of C 0(Ω,GL(d ,R)) such that
for all A ∈ D there are:

a Riemannian metric on the vector bundle Ω× Rd (that is, a
continuous choice of inner product 〈·, ·〉ω on each fiber {ω} × Rd);

a continuous (F ,A)-invariant splitting Rd = E1(ω)⊕ · · · ⊕ Ek(ω)
which is orthogonal with respect to the Riemannian metric;

constants c1 > · · · > ck > 0

such that, denoting ‖v‖ω =
√
〈v , v〉ω , we have

‖A(ω)vi‖Tω = ci‖vi‖ω for all vi ∈ Ei (ω).
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The simplest case

Since GL(1,R) ∼ (R,+) (take log), the case d = 1 of the B–N theorem
reduces to:
Baby Theorem: The one-dimensional case

Let g : Ω → R be a continuous function. If the Birkhoff averages 1
ng (n)

converge uniformly to zero, then there is g̃ arbitrarily close to g that is a
coboundary.
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Proof of the Baby Theorem

(Idea from [CNP2].)
Define a sequence of continuous functions φN : Ω→ R by the magic
formula:

φN(ω) =
1

N

N−1∑
i=0

[−g (i)(ω)]

Then

φN(Fω) =
1

N

N−1∑
i=0

[−g (i)(Fω)] =
1

N

N−1∑
i=0

[
−g (i+1)(ω) + g(ω)

]
= φN(ω) + g(ω) +

g (N)(ω)

N
.

Since g (N)(ω)
N → 0 (assumption), we conclude that the sequence of

coboundaries φN ◦ F − φN converges uniformly to g .
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Proof of the Adult Theorem: ideas

We need to perturb A to Ã so that the associated skew-product has an
invariant section of ellipsoids. Two steps:

1 First show that if A has uniform subexponential growth, then there is
a sequence of “almost invariant” sections φN : Ω→ H; more
precisely, the distance between the graph of φN and its F -image tends
to zero as N →∞.

2 Next we will show that if (F ,A) has a almost invariant section φ,
then one can perturb A so that φ becomes invariant.
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We need to perturb A to Ã so that the associated skew-product has an
invariant section of ellipsoids. Two steps:

1 First show that if A has uniform subexponential growth, then there is
a sequence of “almost invariant” sections φN : Ω→ H; more
precisely, the distance between the graph of φN and its F -image tends
to zero as N →∞.

2 Next we will show that if (F ,A) has a almost invariant section φ,
then one can perturb A so that φ becomes invariant.

Jairo Bochi (PUC-Rio) From zero Lyapunov exponents to bounded products November 23, 2011 15 / 25



Proof of the Adult Theorem: ideas

We need to perturb A to Ã so that the associated skew-product has an
invariant section of ellipsoids. Two steps:

1 First show that if A has uniform subexponential growth, then there is
a sequence of “almost invariant” sections φN : Ω→ H; more
precisely, the distance between the graph of φN and its F -image tends
to zero as N →∞.

2 Next we will show that if (F ,A) has a almost invariant section φ,
then one can perturb A so that φ becomes invariant.

Jairo Bochi (PUC-Rio) From zero Lyapunov exponents to bounded products November 23, 2011 15 / 25



Clues on how to perform each of the steps

1 For Step 1, the idea to construct almost invariant sections φN is to
imitate the magic formula, replacing the averaging operation
1
N

∑N−1
i=0 by an appropriate barycenter concept.

2 In Step 2, the perturbation Ã(ω) of A(ω) is obtained by
left-multiplying A(ω) by a matrix close to the identity that takes the
ellipsoid A(ω)φ(ω) to the nearby ellipsoid φ(Fω). This is not as
trivial as it seems, because these two ellipsoids may be very distorted,
and moreover the correcting matrices must be chosen in a way that
depends continuously on ω. We accomplish this by establishing a
certain uniform homogeneity property of the space of ellipsoids.

The key tools, the barycenter and the symmetries, are geometric and work
in more general situations. . .
(Rem: Both concepts were introduced by Cartan in the 1920’s.)

Jairo Bochi (PUC-Rio) From zero Lyapunov exponents to bounded products November 23, 2011 16 / 25



Clues on how to perform each of the steps

1 For Step 1, the idea to construct almost invariant sections φN is to
imitate the magic formula, replacing the averaging operation
1
N

∑N−1
i=0 by an appropriate barycenter concept.

2 In Step 2, the perturbation Ã(ω) of A(ω) is obtained by
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Cocycles of isometries
H = symmetric simply-connected space of curvature ≤ 0. (Possibly of
infinite dimension.)
We consider cocycles of isometries, i.e. cocycles in the group Isom(H).
Example: H = Poincaré disc.

A(T(x))

x

T(x)
T^2(x)

X

T T

A(x)

Jairo Bochi (PUC-Rio) From zero Lyapunov exponents to bounded products November 23, 2011 17 / 25



A familiar example of H
Let H = {x + iy ∈ C; y > 0} be the hyperbolic half-space; Riemannian
metric ds2 = (dx2 + dy 2)/y 2.

The group SL(2,R) acts on H by isometries:

A =

(
a b
c d

)
⇒ φA(z) =

az + b

cz + d

SL(2,R) also acts on the hyperbolic disk D = {z ∈ C; |z | < 1}: conjugate
the previous action with a Möbius map that takes H to D.

The dynamics of an isometry (6= id) looks like one of these:

Hyperbolic Parabolic Elliptic
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Drift

Back to cocycles of isometries: F : Ω→ Ω, A : Ω→ Isom(H).

Analogue of the (upper) Lyapunov exponent:

drift(F ,A) = lim
n→∞

1

n
dist(A(n)(x) · p0, p0)

(a measure of the speed the orbits approach ∂H.)

∃ generalization of Oseledets Theorem to this context (Kaimanovich,
Karlsson, Margulis, Ledrappier).
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The main result

Theorem [B.–Navas]

Given a cocycle of isometries A : Ω→ Isom(H) (over a dynamics T : Ω→
Ω) with sublinear drift to infinity, we can perturb it to create an invariant
section φ : Ω→ H. In particular, the perturbed cocycle has bounded orbits.

Remarks:

1 ∃ similar theorem for continuous–time dynamical systems.

2 ∃ a non-perturbative result on the existence of section of nearly
minimal displacement. The hypotheses are weaker (Buseman,
CAT(0), . . . )

3 ∃ versions of these result for other fiber bundles (6= Ω× H). (Those
are actually needed in our application.)
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First tool: barycenter

The Cartan barycenter of a list of points p1, . . . , pn is the unique point
that minimizes the function:

x 7→
n∑

i=1

d(x , pi )
2.

(Works globally with our assumptions on H)

The barycenter is obviously equivariant under isometries.

“Lipschitzness” property:

d(bar{pi}, bar{qi}) ≤
1

n

n∑
i=1

d(pi , qi ).
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Step 1: The magic formula for the almost-invariant section

φN(x) = bar
(

p0,A(x)−1 · p0, [A
(2)(x)]−1 · p0, . . . , [A

(N−1)(x)]−1 · p0

)
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H H H · · · H H- - - - -
A(x) A(Tx) A(T 2x) A(TN−2x) A(TN−1x)

p0 p0 p0 p0 p0

bar =
φN(x)

bar =
φN(Tx)
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Uniform homogeneity of H
To perform Step 2 of the proof of the Main Theorem (the closing of the
almost-invariant section), we use the following:

Lemma (Macroscopic uniform homogeneity)

There exists a continuous map J : H × H → Isom(H) with the following
properties:

1 J(p, q)p = q for all p, q ∈ H.

2 J(p, q) converges uniformly on bounded sets of H to the identity as
the distance between p and q converges to zero.

More explicitly, assertion 2 means:

∀ε > 0 ∀B ⊂ H bounded ∃δ > 0 such that

p, q ∈ H, d(p, q) < δ ⇒ d(J(p, q)r , r) < ε ∀r ∈ B.

(Notice that p and q are not restricted to a bounded set; that is essentially
what makes the lemma non-trivial.)
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Proof of the uniform homogeneity lemma
For any p ∈ H, let σp : H → H denote the Cartan symmetry around p.
We want to continuously define a isometry J(p, q) that takes p to q and
moves the base-point p0 as little as possible.

m is the midpoint of q and σp0(p). The isometry J(p, q) := σm ◦ σp0

sends p to q and translates the geodesic joining p0 and m by length
2dist(p0,m), which by nonpositive curvature is ≤ dist(p, q).
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Thank you!

Happy birthday, Rodrigo!
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