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Abstract. We prove an elementary formula about the average expansion
of certain products of 2 by 2 matrices. This permits us to quickly re-obtain

an inequality by M. Herman and a theorem by Dedieu and Shub, both
concerning Lyapunov exponents. Indeed, we show that equality holds in

Herman’s result. Finally, we give a result about the growth of the spectral

radius of products.

1. Introduction

A major problem in smooth ergodic theory is to determine whether a given
measure-preserving diffeomorphism has a non-zero Lyapunov exponent. This
problem is also of interest in the more general setting of linear cocycles. How-
ever, it is difficult to show the existence of non-zero exponents without strong
conditions like uniform hyperbolicity.

In [He], Herman devised a method to bound the upper Lyapunov exponent of
some cocycles from below and constructed the first examples of non-uniformly
hyperbolic two-dimensional systems with a positive exponent. Such examples are
very delicate: it is shown in [Bo] that the exponent of non-hyperbolic cocycles
drops to zero with an arbitrarily small C0-perturbation of the cocycle.

One of the methods of Herman estimates the average of the upper Lyapunov
exponent of systems in a special parametrized family. While each individual sys-
tem may be unstable, this average estimate is robust. Using Herman’s estimate,
Knill proved in [Kn] that among bounded measurable SL(2,R)-cocycles those
with a positive exponent are dense.

This idea – to consider systems included in some suitable family and to show
that global properties of the family imply good properties for many individual
elements – is also present in the recent paper [DS]. This reasoning has been
conjectured to work in more generality in [BPSW].

We will consider the following situation: take matrices A1, . . . ,An in SL(2,R).
Of course, the norm ‖An · · ·A1‖ can be much smaller than

∏
‖Aj‖. Now we put

those matrices inside a family parametrized by a circle: Aj,θ = AjRθ (we indicate
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by Rθ a rotation of angle θ). Instead of looking at the norms, we will deal with
the related quantity

N(A) = log
(
‖A‖+ ‖A‖−1

2

)
.

In this note we will prove:

1
2π

∫ 2π

0

N(An,θ · · ·A1,θ) dθ =
n∑
j=1

N(Aj).

In particular, if the ‖Aj‖ are large then ‖An,θ · · ·A1,θ‖ is of the order of
∏
‖Aj‖

for most values of θ.
The formula allows us to conclude that the mentioned bound of [He] is sharp

and also to re-obtain one theorem of [DS].
A similar formula, involving spectral radius, also holds. This motivated us

to investigate whether, for cocycles in general, the spectral radius grows like
the norm. This problem was posed by Cohen in [Co]. The answer, at least in
dimension 2, is no, in general.

2. The formula

Notation. Given a real or complex matrix A, we denote:

‖A‖ = sup
v 6=0

‖Av‖
‖v‖

where ‖ · ‖ is the euclidean norm.

Also, we denote by ρ(A) the spectral radius, that is, the maximum absolute
value of the eigenvalues of A. We have ρ(A) ≤ ‖A‖. We will indicate by SL(2,R)
the group of real two-by-two matrices with unit determinant and PSL(2,R) =
SL(2,R)/{±I}. We define:

N(A) = log
(
‖A‖+ ‖A‖−1

2

)
for A ∈ SL(2,R).

We define some special matrices in SL(2,R):

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
for θ ∈ R.

Hc =
(
c 0
0 c−1

)
for c ≥ 1.

Finally, we indicate by D the open unit disk in C and by S1 its boundary.

Our main formula is:

Theorem 1. Let A1, . . . ,An ∈ SL(2,R). Then

1
2π

∫ 2π

0

N(AnRθ · · ·A1Rθ) dθ =
n∑
j=1

N(Aj).

Actually, Theorem 1 is a corollary of the formula below:
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Theorem 2. Let A1, . . . ,An ∈ SL(2,R). Then

1
2π

∫ 2π

0

log ρ (AnRθ · · ·A1Rθ) dθ =
n∑
j=1

N(Aj).

Theorems 1 and 2 are proved in sections 3 and 4 below.
Notice that log ‖A‖ − log 2 < N(A) ≤ log ‖A‖. Let’s give an interpretation of

the quantity N(A) through the following proposition:

Proposition 3. Let A ∈ SL(2,R). Then

N(A) =
1

2π

∫ 2π

0

log ‖A(cos θ, sin θ)‖ dθ.

Therefore the number N(A) can be viewed as the “average rate of expansion”
of the matrix A ∈ SL(2,R).

Proof. By the polar decomposition theorem, one can find numbers α, β ∈ [0, 2π]
and c ≥ 1 such that A = RβHcRα. Moreover, ‖A‖ = c. So we may suppose that
A = Hc, and we have to prove

1
2π

∫ 2π

0

log
√
c2 cos2 θ + c−2 sin2 θ dθ = log

(
c+ c−1

2

)
.

First we calculate

F (b) =
∫ π

0

log(b2 cos2 θ + sin2 θ) dθ.

We have

F ′(b) = 2b
∫ π

0

dθ

b2 + tan2 θ
= 2b

∫ +∞

−∞

dx

(b2 + x2)(1 + x2)
=

2π
b+ 1

.

(The last integral can be calculated by residues). The solution of this differential
equation with initial condition F (1) = 0 is F (b) = 2π log b+1

2 . Therefore∫ 2π

0

log
√
c2 cos2 θ + c−2 sin2 θ dθ = −2π log c+ F (c2) = 2π log

c+ c−1

2
.

The corollary of Theorem 1 below is based on a idea from [Kn] and justifies
the assertion made in the Introduction:

Corollary 4. Let A1, . . . ,An ∈ SL(2,R) a > 0 and

E =
{
θ ∈ [0, 2π]:

1
n

log ‖AnRθ · · ·A1Rθ‖ > −a+
1
n

∑
log ‖Aj‖

}
.

Let ν denote the normalized Lebesgue measure in the circle. Then ν(E) ≥ 1− log 2
a .
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Proof. Let f(θ) = 1
nN(AnRθ · · ·A1Rθ) and M = 1

n

∑
N(Aj). Let

F = {θ: f(θ) > M − b},
where b = a − log 2. It is easy to see that F ⊂ E. Since 0 ≤ f(θ) ≤ M + log 2,
we have

M =
∫
f dν ≤ (M − b)(1− ν(F )) + (M + log 2)ν(F ).

This gives

ν(E) ≥ ν(F ) ≥ b

b+ log 2
= 1− log 2

a
.

3. Proof of Theorem 2

The proof is based on complexification methods from [He].
By continuity, we only have to prove the theorem for a dense set of matrices

Ai. So we can make the following assumption:

Bθ = AnRθ · · ·A1Rθ 6= ±I for all θ.

Define the following complex matrices:

Sz =

(
z+z−1

2 − z−z
−1

2i
z−z−1

2i
z+z−1

2

)
for z ∈ C∗,

Tz =

(
z2+1

2 − z
2−1
2i

z2−1
2i

z2+1
2

)
for z ∈ C.

We have Tz = zSz and Seiθ = Rθ.
Given A1, . . . ,An ∈ SL(2,R), we define

Cz =
n∏
j=1

AjTz = AnTz · · ·A1Tz for z ∈ C.

Lemma 5. There are holomorphic functions λ1, λ2: D → C, which extend con-
tinuously to D, such that {λ1(z), λ2(z)} are the eigenvalues of Cz and |λ2(z)| <
|λ1(z)| for every z ∈ D.

Lemma 5 implies that log ρ(Cz) is an harmonic function in the disk D which
extends continuously to the boundary. Moreover,

z = eiθ ⇒ Cz = zn
n∏
j=1

AjRθ ⇒ ρ(Cz) = ρ
( n∏
j=1

AjRθ

)
.

Therefore
1

2π

∫ 2π

0

log ρ
( n∏
j=1

AjRθ

)
dθ = log ρ(C0).

So the proof of Theorem 2 will be complete once we prove Lemma 5 and the
lemma below:
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Lemma 6. The eigenvalues of C0 are zero and
∏n
j=1

‖Aj‖+‖Aj‖−1

2 .

3.1. Proof of Lemma 5. It is enough to show that that the eigenvalues of Cz
have different norms for all z ∈ D. First we obtain the following criteria for
identity of their norms:

Lemma 7. Let C ∈ M(2,C) with detC 6= 0 and let λ1, λ2 be the eigenvalues of
C. Then |λ1| = |λ2| if and only if

(trC)2

4 detC
∈ [0, 1].

Proof. Let t = λ1
λ2

. We have u = (trC)2

4 detC = 1
4 (t + t−1 + 2). Then |λ1| = |λ2| ⇔

|t| = 1⇔ t+t−1

2 ∈ [−1, 1]⇔ u ∈ [0, 1].
We have detTz = z2 and so detCz = z2n. Therefore Cz has eigenvalues with

equal modulus if and only if (trCz)2

4z2n ∈ [0, 1], that is, if and only if Q(z) = trCz
2zn ∈

[−1, 1]. So to prove lemma 5 we must prove that if z ∈ D then Q(z) /∈ [−1, 1].
The idea is that since Q(z) is a rational map of degree at most 2n, this can be
checked by showing that the unit circle ‘exhausts’ all preimages of [−1, 1]. This
we will do with a topological argument.

Let S = Q−1([−1, 1]).

Lemma 8. If S ∩ S1 has at least 2n connected components then S is the union
of 2n sub-intervals of S1.

Proof. Notice that trCz is a polynomial of degree at most 2n, so Q(z) and Q′(z)
are rational maps of degree at most 2n. Since Q(S1) ⊂ R we know that there is
at least one 0 of Q′(z) in each component of S1 \ S. In particular there are no
zeros of Q′(z) in S, which implies that each connected component of S ∩ S1 is
mapped diffeomorphically onto [−1, 1].

Define the following sets:

X = PSL(2,R) \ {I},
Y = {A ∈ X: | trA| ≤ 2 }. (| tr | is well-defined in PSL(2,R))

Lemma 9. There exists a continuous function F : X → S
1 such that F−1({1}) =

Y and that the induced homeomorphism F#: π1(X)→ π1(S1) is an isomorphism.

Proof. Let A ∈ PSL(2,R). If A ∈ Y then we define F (A) = 1. Otherwise A has
two eigendirections ±v and ±w, where v, w ∈ S1 ⊂ C, with associated eigenvalues
λ and λ−1, where |λ| > 1. We then define F (A) as v2/w2. It is easy to see that
F is continuous at every A 6= I.

We have π1(X) = Z (it is equal to π1(PSL(2,R)), since PSL(2,R) is a three-
dimensional manifold) and so it is enough to exhibit a closed path γ generating
π1(X) such that F ◦ γ has degree one.

Let γ: S1 → X be defined as eiθ 7→ Rθ/2M , where M ∈ X is symmetric. Using
the identities F (AT ) = F (A) and F (R−1

θ ARθ) = F (A), we easily see that F ◦ γ
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commutes with conjugacy (F ◦ γ(z) = F ◦ γ(z)). Furthermore, eiθ = 1 is the
only value such that γ(eiθ) is symmetric, which is equivalent to F (γ(eiθ)) = −1.
This implies that F ◦ γ has degree one.

Let Bθ =
∏n
j=1AjRθ. We have Q(eiθ) = 1

2 trBθ. Notice that eiθ ∈ S if and
only if Bθ is an elliptic or parabolic matrix in SL(2,R).

Lemma 10. S ∩ S1 has at least 2n connected components.

Proof. Let g: S1 → PSL(2,R) be defined by eiθ 7→ Rθ/2. This is clearly a
generator of the fundamental group of PSL(2,R).

Notice that eiθ 7→ Bθ can also be seen as a path in PSL(2,R) and it follows
from the definition that it is homotopic to g2n (by the fact that PSL(2,R) is a
group). Now we use the assumption made at the beginning: for all θ, Bθ 6= ±I.

In this case, the path F ◦ Bθ has degree 2n and therefore the preimage of 1
has at least 2n connected components. This set coincides with S ∩ S1.

Lemmas 8 and 10 imply that S ⊂ S1, and Lemma 5 is proved.

3.2. Proof of Lemma 6. We will list some facts to be used:
(1) One can find numbers αj , βj ∈ [0, 2π], cj ≥ 1 such that Aj = RβjHcjRαj

for each j. Moreover, ‖Aj‖ = cj .
(2) A,B ∈ SL(2,R) ⇒ ρ(AB) = ρ(BA).
(3) For every θ ∈ R, RθT0 = T0Rθ = e−iθT0.
Part (1) is the polar decomposition theorem. For (2), notice that the spectral

radius depends only on the trace. For (3), we use that SzSw = Szw. This implies
TzTw = Tzw and

RθT0 = SeiθT0 = e−iθTeiθT0 = e−iθT0.

Using (1), (2) and (3), we obtain

ρ(C0) = ρ
( n∏
j=1

AjT0

)
= ρ
( n∏
j=1

T0Hcj

)
.

Each matrix T0Hcj has an eigenvector (−i, 1) with corresponding eigenvalue
cj+c

−1
j

2 . Therefore
∏n
j=1 T0Hcj has an eigenvalue∏

j

(cj + c−1
j )/2,

while C0 is not invertible. This proves Lemma 6 and hence Theorem 2.

4. Proof of Theorem 1

Let Bθ = AnRθ · · ·A1Rθ. Then, fixing θ we have, by Theorem 2,

1
2π

∫ 2π

0

log ρ(BθRθ′)dθ′ = N(Bθ).
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On the other hand, fixing θ′ we have, again by Theorem 2,

1
2π

∫ 2π

0

log ρ(BθRθ′)dθ =
1

2π

∫ 2π

0

log ρ (AnRθ · · · (A1Rθ′)Rθ) dθ

= N(A1Rθ′) +
n∑
j=2

N(Aj) =
n∑
j=1

N(Aj).

Then
1

2π

∫ 2π

0

N(Bθ) dθ =
1

2π

∫ 2π

0

1
2π

∫ 2π

0

log ρ(BθRθ′) dθdθ′ =
n∑
j=1

N(Aj).

This proves Theorem 1.

Remark. Inversely, Theorem 2 could be quickly deduced from Theorem 1, using

log ρ(A) = lim
n→∞

1
n

log ‖An‖ = lim
n→∞

N(An)
n

.

5. Herman’s inequality re-obtained

Let (X,µ) be a probability space and T : X → X an ergodic transformation.
Let A: X → SL(2,R) be a measurable function satisfying the integrability con-
dition ∫

log ‖A‖dµ <∞.

We denote for x ∈ X and n ∈ N ,

An(x) = A(Tn−1x) · · ·A(x) .

The function A is called a linear cocycle. In these conditions, there exists
(see [FK] or [Le]) a number λ+(A) ≥ 0, called the upper Lyapunov exponent,
such that

λ+(A) = lim
n→+∞

1
n

log ‖An(x)‖ for µ-a.e. x ∈ X.

For θ ∈ R, we define a cocycle ARθ by (ARθ)(x) = A(x)Rθ. Clearly, θ 7→
λ+(ARθ) is a measurable function.

We now state Herman’s inequality:

Theorem 11 ([He], §6.2, see also [Kn]). If T , µ and A are as above then

1
2π

∫ 2π

0

λ+(ARθ)dθ ≥
∫
X

log
(
‖A(x)‖+ ‖A(x)‖−1

2

)
dµ(x) .

Remark. Herman’s inequality was stated in a different (but equivalent) way, in-
volving the Iwasawa decomposition.

We will re-obtain Theorem 11 and also show that equality holds.

Theorem 12. If T , µ and A are as above then

1
2π

∫ 2π

0

λ+(ARθ)dθ =
∫
X

log
(
‖A(x)‖+ ‖A(x)‖−1

2

)
dµ(x) .
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Proof. Recall that N(A) ≤ log ‖A‖ < log 2 +N(A). By Theorem 1,

n−1∑
j=0

N(A(T j(x)) ≤ 1
2π

∫ 2π

0

log ‖(ARθ)n(x)‖ dθ ≤ log 2 +
n−1∑
j=0

N(A(T j(x)).

Therefore, by Birkhoff’s theorem,

lim
n→∞

1
2π

∫ 2π

0

1
n

log ‖(ARθ)n(x)‖ dθ =
∫
N(A(x)) dµ(x) for a.e. x.

To finish the proof we must check that Dominated Convergence applies. We have

0 ≤ 1
n

log ‖(ARθ)n(x)‖ ≤ 1
n

n−1∑
j=0

log ‖A(T jx)‖ = fn(x).

{fn} is the sequence of Birkhoff means of the function log ‖A‖ ∈ L1(µ). In
particular, {fn(x)} is bounded for a.e. x.

Example 13. Consider the cocycle ([He], § 4.1) where T : S1 → S
1 is an (uniquely

ergodic) irrational rotation, A: S1 → SL(2,R) is given by A(eit) = HcRt and
c ≥ 1 is fixed. We have (ARθ)n(z) = An(eiθz) and therefore λ+(A) = λ+(ARθ)
for all θ. It follows from Theorem 12 that λ+(A) = log

(
c+c−1

2

)
.

6. A theorem by Dedieu and Shub re-obtained

We will use Proposition 3 and Theorem 2 (in the case n = 1) to give another
proof of the following theorem by Dedieu and Shub:

Theorem 14 ([DS]). Let µ be a probability measure in SL(2,R) such that the
integral

∫
log ‖A‖ dµ(A) is finite. Suppose that µ is invariant by rotations, that

is, R∗θµ = µ for all θ. Let A1,A2, . . . ∈ SL(2,R) be independent random matrices
with law µ and consider the associated upper Lyapunov exponent:

λ+ = lim
n→+∞

1
n

log ‖An · · ·A1‖ (w.p. 1).

Then

λ+ =
∫

SL(2,R)

log ρ(A) dµ(A).



A FORMULA WITH APPLICATIONS TO LYAPUNOV EXPONENTS 9

Proof.

λ+ =
∫ ∫ 2π

0

log ‖Aeiθ‖ dθ
2π

dµ(A) (by Furstenberg’s formula, see [Le])

=
∫
N(A)dµ(A) (by Proposition 3)

=
∫ ∫ 2π

0

log ρ(ARθ)
dθ

2π
dµ(A) (by Theorem 2 with n = 1)

=
∫ 2π

0

∫
log ρ(ARθ) dµ(A)

dθ

2π
(since log ρ(ARθ) ≤ log ‖A‖ ∈ L1)

=
∫

log ρ(A) dµ(A) (since µ is invariant by rotations).

7. Growth of the spectral radius

Let X, µ, T and A be as in section 5. In view of our results, it is somewhat
natural to ask about the behavior the spectral radius of the matrix An(x) when
n→∞. This question was already raised in [Co]. We have the following result:

Theorem 15. Suppose T is invertible. Then for µ-a.e. x ∈ X,

lim sup
n→∞

1
n

log ρ(An(x)) = λ+(A).

Before giving the proof, we point out that in general the limit of 1
n log ρ(An(x))

does not exist. Furthermore, the relation

lim sup
n→∞

1
n

∫
log ρ(An) dµ = λ+(A)(∗)

is in general false, as is shown by the following:

Example 16. LetX = {0, 1}Z, µ be the ( 1
2 ,

1
2 )-Bernoulli measure and let T : X →

X be the left shift. We define a cocycle A: X → SL(2,R) by:

A({xi}i∈Z) =


H = H2 if x0 = 1,
I if (x−1, x0, x1) = (0, 0, 0) or (1, 0, 1),
R = Rπ/2 if (x−1, x0, x1) = (1, 0, 0) or (0, 0, 1).

Given any sequence x = {xi}i∈Z, split it in minimal blocks starting with 1, as
for instance,

. . . (10)(1)(1000)(100)(10)(100000)(1) . . .
The corresponding splitting for the sequence {A(T i(x))} is, in this case,

. . . (HI)(H)(HRIR)(HRR)(HI)(HRIIIR)(H) . . .

The product of the matrices in each block is always ±H. It follows that λ+(A) =
log 2

2 . On the other hand, making substitutions R2 = −I in the product An(x),
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we obtain one of the possibilities: ±Hk, ±HkR, ±RHk or ±RHkR. Since
ρ(HkR) = ρ(RHk) = 1, we have ρ(An(x)) = 1 infinitely often for a.e. x.
Besides, it’s not hard to show that (∗) does not hold.

Proof of Theorem 15. We may regard the problem as being posed in PSL(2,R)
instead of SL(2,R). Suppose that λ+(A) > 0 (otherwise there is nothing to
prove). Consider (see [Le]) the Oseledets splitting R2 = E+(x)⊕E−(x), defined
for a.e. x ∈ X, where E+ (resp. E−) is associated to the exponent λ+(A) (resp.
−λ+(A)). By Oseledets’ theorem,

lim
n→∞

1
n

log sin]
(
E+(Tnx), E−(Tnx)

)
= 0.

For each x, take B(x) ∈ PSL(2,R) that sends the direction R(1, 0) (resp.
R(0, 1)) to the direction E+(x) (resp. E−(x)). This defines a.e. a measurable
function B: X → PSL(2,R) such that

lim
n→∞

1
n

log ‖B(Tnx)‖ = 0 for a.e. x.

We claim that

lim inf
n→∞

‖B(x)−1B(Tnx)− I‖ = 0 for a.e. x.

To prove it, let ε > 0. Consider a countable cover of PSL(2,R) by open sets

Uj = {M ∈ PSL(2,R): ‖M −Mj‖ < δj }, where 2δj(‖Mj‖+ δj) < ε.

Define Vj = B−1(Uj) ⊂ X and

Ṽj = {x ∈ Vj : Tn(x) ∈ Vj for infinitely many n ∈ N }.

By Poincaré’s recurrence theorem, µ(Ṽj) = µ(Vj). If x ∈ Ṽj then, for infinitely
many n ∈ N, we have

‖B(x)−1B(Tnx)− I‖ ≤ ‖B(Tnx)−B(x)‖ · ‖B(x)‖ < 2δj(‖Mj‖+ δj) < ε.

Therefore lim inf ‖B(x)−1B(Tnx) − I‖ ≤ ε for every x in the full measure set⋃
Ṽj . This proves the claim.

To prove the Theorem it’s enough (since ρ+ρ−1 = max {| tr |, 2}) to show that

lim sup
n→∞

1
n

log | trAn(x)| = λ+(A).

By construction, the matrix H(x) = B(Tx)−1A(x)B(x) is diagonal. We have
An(x) = B(Tnx)Hn(x)B(x)−1 and, in particular, lim 1

n log ‖Hn(x)‖ = λ+(A).
Write B(x)−1B(Tnx) = (bij(n, x))i,j=1,2. For a.e. x, we know that there are
infinitely many n ∈ N such that

|b11(n, x)− 1| , |b22(n, x)− 1| < 1
2
.
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The matrices An(x) and B(x)−1B(Tnx)Hn(x) have the same trace, so

| trAn(x)| =
∣∣tr (B(x)−1B(Tnx)Hn(x)

)∣∣
=
∣∣ [b11(n, x) · ‖Hn(x)‖+ b22(n, x) · ‖Hn(x)‖−1

] ∣∣
>

1
2
‖Hn(x)‖ − 3

2
‖Hn(x)‖−1.

The result follows.
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