
INSTITUTE OF PHYSICS PUBLISHING NONLINEARITY

Nonlinearity 19 (2006) 2717–2725 doi:10.1088/0951-7715/19/11/011

A generic C1 map has no absolutely continuous
invariant probability measure

Artur Avila1 and Jairo Bochi2

1 CNRS UMR 7599, Laboratoire de Probabilités et Modèles aléatoires. Université Pierre et Marie
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Abstract
Let M be a smooth compact manifold of any dimension. We consider the set
of C1 maps f : M → M which have no absolutely continuous (with respect to
Lebesgue) invariant probability measure. We show that this is a residual set in
the C1 topology.

Mathematics Subject Classification: 37C40

1. Statement

Let M be a smooth compact manifold (maybe with boundary, maybe disconnected) of any
dimension d � 1. Let m be some (smooth) volume probability measure in M . Let C1(M, M)

be the set of C1 maps M → M , endowed with the C1 topology. Given f ∈ C1(M, M), we
say that µ is an acim for f if µ is an f -invariant probability measure which is absolutely
continuous with respect to m.

Theorem 1. The set R of C1 maps f : M → M which have no acim is a residual (dense Gδ)
subset of C1(M, M).

Since the set of all expanding maps and the set of all diffeomorphisms are open subsets
of C1(M, M), we have the following immediate consequences.

(i) The C1-generic expanding map has no acim.
(ii) The C1-generic diffeomorphism has no acim.

Result (i) was previously obtained in the case where M is a circle by Quas [Q]. Of course,
(i) does not hold in the C1+Hölder topology.

It seems possible that result (ii) holds in higher topologies. An old result by Livsic and
Sinai implies that the C∞-generic Anosov map has no acim, see [LS] and also [C]. (In fact,
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the existence of a single periodic point of the Anosov map over which the Jacobian is different
from 1 prohibits the existence of an acim.) On the other hand, the existence of acim is certainly
not rare (in the probabilistic sense) among smooth enough diffeomorphisms of tori close to
translations (by KAM).

In the course of the proof, we will need a generalization of the usual Rokhlin tower lemma
to non-invariant measures. That result, theorem 2, may be of independent interest.

2. Proof

In sections 2.1–2.4 we give some results that are combined to prove theorem 1 in section 2.5.

2.1. Criterium for existence of acim

The following shows that the set of maps that do not have an acim is a Gδ subset of C1(M, M).

Lemma 1. A map f ∈ C1(M, M) has no acim iff for every ε > 0 there exists a compact set
K ⊂ M and N ∈ N such that

m(K) > 1 − ε and m(f N(K)) < ε.

Proof. Assume that f has an acim µ. Let ε > 0 be such that m(Z) � ε implies µ(Z) < 1/2.
Now assume that K ⊂ M is a compact set such that m(f NK) < ε for some N ∈ N. Then
µ(K) � µ(f NK) < 1/2, so m(M � K) > ε.

Next assume that f has no acim. Let µ be a limit point of the sequence of measures
1
n
(m + f∗m + · · · + f n−1

∗ m); then µ is f -invariant. Let µ = µac + µsing be the Lebesgue
decomposition of µ relative to m. Since f is C1, f∗µsing is singular, and it follows that µac

and µsing are f -invariant. But f is assumed to have no acim, so µ = µsing. Thus there exists
Z ⊂ M such that m(Z) = 1 and µ(Z) = 0. Given any ε > 0, take a compact set L and an
open set V such that L ⊂ Z ⊂ V , m(L) > 1 − ε and µ(V ) < ε/2. Let φ be a continuous
function such that χL � φ � χV . For some sequence nj → ∞ we have

1

nj

nj −1∑
i=0

∫
f i ◦ φ dm →

∫
φ dµ < ε/2.

In particular, there exists N such that m(f −NL) �
∫

f N ◦ φ dm < ε/2. Take a compact
K ⊂ M � f −NL such that m(M � K) < ε. Then m(f NK) � m(M � L) < ε. �

2.2. A non-invariant Rokhlin lemma

Theorem 2. Let f : M → M be a C1-endomorphism of a compact manifold, and let m be
normalized Lebesgue measure. Assume that m(Cf ∪ Pf ) = 0, where Cf is the set of critical
points and Pf is the set of periodic points. Given any ε0 > 0 and n0, � ∈ N with � � n0, there
exists a measurable set U ⊂ M such that f −i (U) ∩ U = ∅ for 1 � i < n0,

n0−1∑
i=0

m(f −i (U)) > 1 − ε0, and
�−1∑
i=0

m(f −i (U)) <
�

n0
+ ε0. (1)

Notice that if the map f were assumed to preserve the measure m, the theorem would
be an immediate consequence of the well-known Rokhlin lemma (for non-invertible maps,
see [HS]).
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The proof of theorem 2 will occupy the rest of this subsection. Let f be fixed from now on.
Let M be the σ -algebra of measurable sets. Since f is C1, Y ∈ M implies f (Y ) ∈ M.
Given Z ∈ M, we denote

Ẑ =
∞⋃
i=0

f −i (Z).

We say that Z ∈ M is N -good (where N ∈ N) if Z ∩ f −i (Z) = ∅ for 0 � i < N .

Claim 1. If A and B are N -good sets then the set

C = (A � B̂) ∪ (B � (A � B̂)∧)

is N -good and satisfies Ĉ ⊃ A ∪ B.

Proof. Let A′ = A � B̂; then (A′ ∪ B)∧ = (A ∪ B)∧. Let B ′ = B � Â′; then
(A′ ∪ B ′)∧ = (A′ ∪ B)∧. That is, the set C = A′ ∪ B ′ satisfies Ĉ = (A ∪ B)∧. Using
that A′ and B ′ are N -good, A′ ∩ B̂ ′ = ∅ and Â′ ∩ B ′ = ∅, we see that C is N -good. �

We say that Z ∈ M is N -saturated if f −N(f N(Z)) = Z. The N -saturated sets form the
σ -algebra f −NM.

Claim 2. For each N ∈ N there exists a countable cover (modulo sets of zero m-measure)
M = ⋃

Bk such that each Bk is N -good and N -saturated.

Proof. Since m(Pf ) = 0, there is a countable cover M = ⋃
Ak , where the sets Ak are N -good.

Take Bk = f −N(Ak). �

Claim 3. For every ε > 0 and N ∈ N there exists a set W which is N -good, N -saturated and
m(Ŵ) > 1 − ε.

Proof. Let Bk be the sets given by claim 2. Define inductively sets Ck: take C1 = B1, and
for k > 0, let Ck+1 be the N -good set given by claim 1 such that Ĉk+1 ⊃ Ck ∪ Bk+1. Then
for all k we have that Ck is N -saturated and Ĉk ⊃ ⋃k

j=1 Bj . Finally, take W = Ck for some
large k. �

Claim 4. For every ε > 0 and N ∈ N, there exists a N -good set V such that m(V ) < ε and
m(V̂ ) > 1 − ε.

Proof. Increasing N if necessary, we assume N > 1/ε. Take W as in claim 3. Notice that the
sets W , f (W), . . . , f N−1(W) are disjoint. Take 0 � i � N − 1 such that m(f i(W)) � 1/N .
Let V = f i(W); then V̂ ⊃ Ŵ . Since W is N -good and N -saturated, V is N -good. �

Claim 5. For any i � 0, f i
∗m is absolutely continuous with respect to m.

Proof. Clearly it suffices to consider i = 1. Let Z ∈ M be such that m(f −1(Z)) > 0. Since
m(Cf ) = 0, we can find an open set U ⊂ M � Cf such that f |U is a C1-diffeomorphism and
m(f −1(Z) ∩ U) > 0. Then f (f −1(Z) ∩ U) and hence Z, has positive measure. �

Proof of theorem 2. Let �, n0 and ε0 be given. By claim 5, there exists ε > 0 such that

Z ∈ M, m(Z) < ε ⇒ m

(
2n0−1⋃
i=0

f −iZ

)
<

ε0

2
.
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Let V be given by claim 4 with N = n0. For i � 0, let Vi = f −i (V ) and

V ∗
i = Vi �

i−1⋃
j=0

Vj .

For each 0 � j < n0, let

Sj =
j+�−1∑
k=j

∑
i � 0

i = k mod n0

m(V ∗
i ).

We have
∑n0−1

j=0 Sj = � · m(V̂ ), so there exists some j0 for which Sj0 � �/n0. Define

U =
⊔

i � n0

i = j0 mod n0

V ∗
i .

Noting that f −j (V ∗
i ) ⊂ V ∗

i+j ∪ V0 ∪ V1 ∪ · · · ∪ Vj for 0 � j < n0, we see that U is n0-good.
Also,

m

�−1⊔
j=0

f −j (U)

 � m(V0 ∪ · · · ∪ V�−1) + Sj0 <
�

n0
+

ε0

2
.

Finally, since f −j (V ∗
i ) ⊃ V ∗

i+j , we have

m

n0−1⊔
j=0

f −j (U)

 � m

 ∞⊔
i=2n0

V ∗
i

 > 1 − ε − ε0

2
� 1 − ε0. �

Remark 1. We used only the following assumptions about f and m:

• (M, M, m) is a Lebesgue space and f : M → M is measurable;
• f is aperiodic: m(Pf ) = 0;
• f is non-singular with respect to m: for Y ∈ M, we have m(Y) = 0 if and only if

m(f −1(Y )) = 0;
• f is forward-measurable: Y ∈ M implies f (Y ) ∈ M. (In fact, we can always replace f

by a isomorphic copy which is forward-measurable: see [R].)

Remark 2 (addendum to theorem 2). The set U can be taken open, and with f −i (Ū )∩ Ū =
∅, 0 � i < n0.

Indeed, take a compact set K ⊂ U with m(U � K) very small. Then take an open set
U0 ⊃ K with m(U0 � K) very small and such that U0, . . . , f

−n0+1(U0) are disjoint. Bearing
in mind claim 5, we see that (1) holds with U0 in the place of U .

2.3. Linearization

Fix an atlas of M formed by charts that take the restricted volume on M to Lebesgue measure
on R

d . Fix also a family of pairs (Ai, φi) such that the Ai ⊂ M � ∂M are disjoint open sets
compactly contained in the domain of the chart φi , and

∑
m(Ai) = 1. We call the Ai basic

blocks.
We shall say that a map f : M → M is locally linear on an open set V ⊂ M � ∂M if, for

each connected component W of V , there exists both W and f (W) contained in basic blocks
and if under the corresponding change in coordinates the map f : W → f (W) becomes the
restriction of an affine map R

d → R
d .
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Lemma 2. If f : M → M is a C1 map and U ⊂ M � ∂M is open then for every γ > 0 there
exists a C1-map f̃ : M → M which is C1-close to f and equals f outside U , and there exists
an open set V ⊂ U such that m(V )/m(U) > 1−γ and f̃ is locally linear on V . Furthermore,
if the set Cf of critical points of f has zero Lebesgue measure then f̃ can be taken to be a
local diffeomorphism on V .

Proof. Up to reducing U a little, we can assume each connected component of U , as well as
its image by f , is contained in a basic block.

To simplify writing, from now on we assume U ⊂ R
d , and m is Lebesgue measure on R

d .
Given γ > 0, let δ > 0 be such that (1 − δ)d < γ/2. Fix a C1 bump function ρ : R

d → [0, 1]
such that ρ(x) = 1 if ‖x‖ � 1 − δ, ρ(x) = 0 if ‖x‖ � 1 (where ‖·‖ is the Euclidian norm
on R

d ).
Let r0 > 0 be small. By Vitali’s lemma, we can find finitely many disjoint balls

B(pi, ri) � U of radii ri < r0, such that the Lebesgue measure of their union is greater
than (1 − γ /2)m(U). Define f̃ on each B(pi, ri) by

f̃ (x) = f (x) + ρ(r−1
i (x − pi)) · [−f (x) + f (pi) + Df (pi) · (x − pi)] ,

and f̃ = f on U �
⊔

i B(pi, ri).
Then f̃ is locally linear on V = ⊔

i B(pi, (1 − δ)ri). If r0 is sufficiently small, then f̃ is
C1-close to f .

If m(Cf ) = 0 we take each pi such that Df (pi) is an isomorphism. �

2.4. Perturbation of a sequence of linear maps

Lemma 3. Given ε > 0 and 0 < δ < 1, there exists k ∈ N such that given any of sequence
linear isomorphisms

R
d Ln→ R

d Ln−1→ · · · L1→ R
d ,

with n � k, there exists τ0 > 0 such that for any 0 < τ < τ0 the following holds true.
Define boxes

U0 = [−1, 1]d−1 ×[−τ, τ ],

V0 = [−(1 − δ), 1 − δ]d−1 ×[−(1 − δ)τ, (1 − δ)τ ],

W0 = [−1, 1]d−1 ×[−δτ, δτ ].

Define also Ui = L−1
i Ui−1, Vi = L−1

i Vi−1, Wi = L−1
i Wi−1, for 1 � i � n. Then there exist

C1-diffeomorphisms Hi : R
d → R

d with derivative ε-close to id and with Hi = id outside Ui ,
such that for all i with k � i � n we have

Li−k+1 ◦ Hi−k+1 ◦ · · · ◦ Li−1 ◦ Hi−1 ◦ Li ◦ Hi(Vi) ⊂ Wi−k . (2)

Moreover, for 1 � i � n, Hi only depends on ε, δ, τ and L1, ..., Li (but not on Li+1, . . . , Ln).

In the following proof of lemma 3, we will assume d � 2, leaving for the reader the easy
adaptation to the case d = 1 (where any τ0 works).

In the proof we will need lemmas 4 and 5. We write R
d−1 = R

d−1 × {0} ⊂ R
d . Also, we

call a subset B of a finite-dimensional vector space V a ball if there exists a norm on V such
that B is the closed unit ball on V with respect to that norm.

Lemma 4. For every ε > 0 and 0 < δ < 1, there exists 0 < κ < 1 with the following
properties: given any ball C ⊂ R

d−1, there exists τ ∗ > 0 such that if 0 < τ < τ ∗ then there
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exists a diffeomorphism H : R
d → R

d satisfying the following:

• H has derivative ε-close to the identity;
• H equals the identity outside C × [−τ, τ ];
• if (z, t) ∈ (1 − δ)(C × [−τ, τ ]) then H(z, t) = (z, κt).

Proof. Given ε and δ, let κ be such that

(1 − κ)(1 + 2δ−1) < ε.

Now let C = {z ∈ R
d−1; ‖z‖∗ � 1}, where ‖ · ‖∗ is a norm in R

d−1. Let C > 0 be such that
‖v‖∗ � C‖v‖, where ‖ · ‖ is Euclidian norm. Let τ ∗ = C−1.

Then, given 0 < τ < τ ∗, take a bump function ρ : R → [0, 1] such that ρ(x) = 1 for
|x| � 1 − δ, ρ(x) = 0 for |x| � 1 and |ρ ′| < 2δ−1. Define

H(z, t) = (z, [1 − (1 − κ) · ρ(τ−1t) · ρ(‖z‖∗)]t), z ∈ R
d−1, t ∈ R.

Then ∣∣∣∣∂H

∂t
− 1

∣∣∣∣ � (1 − κ) · ρ(‖z‖∗) · [ρ(τ−1t) + |ρ ′(τ−1t) · τ−1t |] < ε.

And if v ∈ R
d−1 then

‖DH(z, t) · (v, 0)‖ � |t | · (1 − κ) · ρ(τ−1t) · |ρ ′(‖z‖∗)| · ‖v‖∗

� τ ∗(1 − κ) · 2δ−1 · C‖v‖ � ε‖v‖. �

Let ed = (0, . . . , 0, 1) ∈ R
d and 〈·, ·〉 be the standard inner product on R

d . The easy
proof of the following lemma is left to the reader.

Lemma 5. Let L : R
d → R

d be a linear isomorphism such that L(Rd−1) = R
d−1. Let

β = |〈L(ed), ed〉|. Let C ⊂ R
d−1 be a ball, and let λ > 1. Then there exists τ ′ > 0 such that

for any 0 < τ < τ ′ we have

(λ−1L(C)) × [−βτ, βτ ] ⊂ L(C × [−τ, τ ]) ⊂ (λL(C)) × [−βτ, βτ ].

Proof of lemma 3. Let κ = κ(ε, δ/2) > 0 be given by lemma 4. We take k ∈ N such that
κk < δ/(1 − δ).

Now take n � k and L1, . . . , Ln as in the statement of the lemma. Rotating coordinates
if necessary, we can assume Li · R

d−1 = R
d−1 for all i. Let C0 = [−1, 1]d−1 and

Ci = L−1
i · · · L−1

1 · C0 for i � 1. Let α0 = 1 and αi = |〈L−1
i · · · L−1

1 ed, ed〉|. Write, for
a > 0 and b > 0,

Bi[a, b] = (aCi ) × [−αib, αib].

Fix λ > 1 so that

λ3n < (1 − δ)−1(1 − δ/2). (3)

Let τ ∗
i > 0 be associated with the ball C = Ci by lemma 4. Let τ ′

i > 0 be associated with
the linear map L−1

i , the ball Ci and λ by lemma 5. Let

τ0 = λ−2n min{α−1
i τ ∗

i , α−1
i τ ′

i ; 1 � i � n}.
By lemma 5,

Bi[λ
−1a, b] ⊂ L−1

i (Bi−1[a, b]) ⊂ Bi[λa, b], provided
b

a
<

τ ′
i

αi

. (4)
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Therefore
b

a
< λnτ0 ⇒ Bi[λ

−na, b] ⊂ (Li ◦ · · · ◦ L1)
−1(B0[a, b]) ⊂ Bi[λ

na, b]. (5)

Now let 0 < τ < τ0 be fixed, and let U0, V0, W0 be as in the statement of the lemma,
that is,

U0 = B0[1, τ ], V0 = B0[(1 − δ), (1 − δ)τ ], W0 = B0[1, δτ ].

Let H̃i : R
d → R

d be the diffeomorphism supported on Bi (1, λnτ ) = Ci ×
[−αiλ

nτ, αiλ
nτ ] given by lemma 4. We define Hi by

Hi(x) = λ−n · H̃i(λ
nx).

Then DHi is ε-close to id. Also, Hi equals the identity outside Bi[λ−n, τ ] ⊂ Ui . And

Hi(Bi[a, b]) = Bi[a, κb] if 0 < a � λ−n

(
1 − δ

2

)
and b �

(
1 − δ

2

)
τ. (6)

It remains to check that (2) holds; so let k � i � n. In the following diagram, X
F→ Y

means F(X) ⊂ Y . Using repeatedly (3)–(6),

Vi ⊂ Bi[λ
n(1 − δ), (1 − δ)τ ]

Hi→ Bi[λ
n(1 − δ), κ(1 − δ)τ ]

Li→
Bi−1[λn+1(1 − δ), κ(1 − δ)τ ]

Li−1◦Hi−1−→ · · · Li−k+1◦Hi−k+1−→
Bi−k[λn+k(1 − δ), κk(1 − δ)τ ] ⊂ Bi−k[λ−n, δτ ] ⊂ Wi−k.

This proves lemma 3. �

2.5. Proof of theorem 1

Define the following (open) subsets of C1(M, M):

Vε = {f ∈ C1(M, M); there exist K ⊂ M compact, k ∈ N such that

m(K) > 1 − ε and m(f kK) < ε}.
By lemma 1, it suffices to show that eachVε is dense to prove the theorem. So letf ∈ C1(M, M)

and ε > 0 be fixed; we will explain how to find g ∈ V4ε close to f . For clarity we split the
proof into steps.

Step 1. Linearizing f on an open tower. Let Pf be the set of periodic points of f and Cf be
the set of critical points of f . We can assume (perturbing f if necessary) that m(Pf ∪Cf ) = 0.
(Indeed, it suffices to take f analytic and Kupka–Smale.)

Let 0 < δ < ε be such that (1 − δ)d > 1 − ε. Let k = k(ε, δ) be given by lemma 3. Take
n ∈ N such that k/(n + 1) < ε. Now apply theorem 2 (and remark 2) with � = k, n0 = n + 1,
ε0 = ε/2, to find an open set U ⊂ M such that

Ū , f −1(Ū), . . . , f −n(Ū) are disjoint,

k−1∑
i=0

m(f −iU) < ε,

n∑
i=0

m(f −iU) > 1 − ε.

It follows easily from lemma 2 that there exist open sets Qi ⊂ f −i (U), 0 � i � n and
a C1 perturbation f̃ of f such that f̃ (Qi) = Qi−1, 1 � i � n, f̃ |Qi is locally linear and
invertible and

∑n
i=0 m(Qi) > 1−ε. We can assume further (by slightly shrinking the Qi) that
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each Qi has only finitely many connected components and f̃ maps each connected component
of Qi onto a connected component of Qi−1. We have

k−1∑
i=0

m(Qi) < ε,

n∑
i=0

m(Qi) > 1 − ε. (7)

To simplify writing, we replace f̃ by f .
To simplify things further, we will assume

⋃
Qi is a subset of R

d , in order to avoid
mentioning the charts.

Step 2. Defining the perturbation g. Let k = k(ε, δ) be given by lemma 3. For each sequence
x̄ = (xm, . . . , x0), k � m � n with f (xi) = xi−1 and xi ∈ Qi , we apply lemma 3 to the
sequence of linear maps Df (xi), obtaining a certain τ0(x̄) > 0. There are only finitely many
possibilities for the sequence of linear maps Df (xi), so we can choose τ > 0 such that
τ < τ0(x̄) for all x̄.

For y ∈ Q0 and small a, b > 0, write

B[y, a, b] = y + [−a, a]d−1 × [−b, b].

The family of boxes B[y, r, τ r] ⊂ Q0 constitutes a Vitali covering of Q0. So we can find a
finite set F ⊂ Q0 and numbers r(y) > 0, y ∈ F , such that U0(y) = B[y, r(y), τ r(y)] ⊂ Q0

are disjoint and

m

Q0 �

⊔
y∈F

U0(y)

 � εm(Q0). (8)

Let V0(y), W0(y) be boxes around y as in lemma 3, namely

V0(y) = B[y, (1 − δ)r(y), (1 − δ)τr(y)],

W0(y) = B[y, r(y), δτr(y)].

Let F̄ be the set of the sequences ȳ = (ym, . . . , y0) with k � m � n, f (yi) = yi−1,
yi ∈ Qi and y0 ∈ F . Then F̄ is finite. For each ȳ ∈ F̄ and i = 1, . . . , m, let Ui(ȳ) be the
image of U0(y0) by the branch of f −i that takes y0 to yi . Notice that the Ui(ȳ) are either
disjoint or coincide, and if Ui(ȳ) = Uj(ȳ

′) then i = j and the last i + 1 symbols in ȳ and ȳ ′

coincide. We define sets Vi(ȳ) and Wi(ȳ) analogously.
The choice of δ together with the linearity of f gives

m(Vi(ȳ))

m(Ui(ȳ))
> 1 − ε and

m(Wi(ȳ))

m(Ui(ȳ))
< ε for all ȳ, i. (9)

Let Hi,ȳ be the diffeomorphisms given by lemma 3. We define hi,ȳ as

hi,ȳ(x) = yi + r(y0) · Hi,ȳ((x − yi)/r(y0)), for y ∈ Ui(ȳ),

and hi,ȳ = id outside Ui(ȳ). Notice that hi,ȳ only depends on Ui(ȳ). Then hi,ȳ is C1-close to
the identity. Moreover, for all i = k, k + 1, . . . , m we have

f ◦ hi−k+1,ȳ ◦ · · · ◦ f ◦ hi−1,ȳ ◦ f ◦ hi,ȳ(Vi(ȳ)) ⊂ Wi−k(ȳ) .

We define a perturbation g : M → M of f as follows: g = f ◦ hi,ȳ on each Ui(ȳ), and g

equals f on

M �

⋃
ȳ∈F̄

n⋃
i=0

Ui(ȳ).

It follows that gk(Vi(ȳ)) ⊂ Wi−k(ȳ) for all ȳ ∈ F̄ .
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Step 3. Verifications. Define the compact set

K =
⋃
ȳ∈F̄

n⋃
i=k

Vi(ȳ).

First let us see that K has almost full measure. We have

M � K =

(I)︷ ︸︸ ︷(
M �

n⋃
i=0

Qi

)
�

(II)︷ ︸︸ ︷
n⋃

i=0

Qi �

⋃
ȳ∈F̄

Ui(ȳ)

 �

�
n⋃

i=0

⋃
ȳ∈F̄

(Ui(ȳ) � Vi(ȳ))

︸ ︷︷ ︸
(III)

�
k−1⋃
i=0

⋃
ȳ∈F̄

Vi(ȳ)

︸ ︷︷ ︸
(IV)

.

From (7) we get m(I) < ε. By (8) and linearity of f , we have m(II) < ε. From (9), m(III) � ε.
Finally, using (7),

m(IV) � m

(
k−1⋃
i=0

Qi

)
< ε.

So we obtain that m(M � K) < 4ε.
Next let us see that gkK has small measure. We have

gkK =
⋃
ȳ∈F̄

⋃
i�k

gkVi(ȳ) ⊂
⋃
ȳ∈F̄

⋃
i�0

Wi(ȳ).

Using (9),

m(gkK) � εm

⋃
ȳ∈F̄

⋃
i�0

Ui(ȳ)

 < ε.

We have shown that g ∈ V4ε. This proves theorem 1.
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