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The Lyapunov exponents of generic
volume-preserving and symplectic maps

By Jairo Bochi and Marcelo Viana*

To Jacob Palis, on his 60th birthday, with friendship and admiration.

Abstract

We show that the integrated Lyapunov exponents of C1 volume-preserving
diffeomorphisms are simultaneously continuous at a given diffeomorphism only
if the corresponding Oseledets splitting is trivial (all Lyapunov exponents are
equal to zero) or else dominated (uniform hyperbolicity in the projective bun-
dle) almost everywhere.

We deduce a sharp dichotomy for generic volume-preserving diffeomor-
phisms on any compact manifold: almost every orbit either is projectively
hyperbolic or has all Lyapunov exponents equal to zero.

Similarly, for a residual subset of all C1 symplectic diffeomorphisms on
any compact manifold, either the diffeomorphism is Anosov or almost every
point has zero as a Lyapunov exponent, with multiplicity at least 2.

Finally, given any set S ⊂ GL(d) satisfying an accessibility condition, for a
residual subset of all continuous S-valued cocycles over any measure-preserving
homeomorphism of a compact space, the Oseledets splitting is either dominated
or trivial. The condition on S is satisfied for most common matrix groups and
also for matrices that arise from discrete Schrödinger operators.

1. Introduction

Lyapunov exponents describe the asymptotic evolution of a linear cocycle
over a transformation: positive or negative exponents correspond to exponen-
tial growth or decay of the norm, respectively, whereas vanishing exponents
mean lack of exponential behavior.

*Partially supported by CNPq, Profix, and Faperj, Brazil. J.B. thanks the Royal In-
stitute of Technology for its hospitality. M.V. is grateful for the hospitality of Collège de
France, Université de Paris-Orsay, and Institut de Mathématiques de Jussieu.
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In this work we address two basic, a priori unrelated problems. One is to
understand how frequently Lyapunov exponents vanish on typical orbits. The
other, is to analyze the dependence of Lyapunov exponents as functions of the
system. We are especially interested in dynamical cocycles, i.e. those given
by the derivatives of conservative diffeomorphisms, but we discuss the general
situation as well.

Several approaches have been proposed for proving existence of nonzero
Lyapunov exponents. Let us mention Furstenberg [14], Herman [16], Kotani
[17], among others. In contrast, we show here that vanishing Lyapunov ex-
ponents are actually very frequent: for a residual (dense Gδ) subset of all
volume-preserving C1 diffeomorphisms, and for almost every orbit, all
Lyapunov exponents are equal to zero or else the Oseledets splitting is dom-
inated. This extends to generic continuous S-valued cocycles over any trans-
formation, where S is a set of matrices that satisfy an accessibility condition,
for instance, a matrix group G that acts transitively on the projective space.

Domination, or uniform hyperbolicity in the projective bundle, means
that each Oseledets subspace is more expanded/less contracted than the next,
by a definite uniform factor. This is a very strong property. In particular,
domination implies that the angles between the Oseledets subspaces are bounded
from zero, and the Oseledets splitting extends to a continuous splitting on the
closure. For this reason, it can often be excluded a priori:

Example 1. Let f : S1 → S1 be a homeomorphism and µ be any invariant
ergodic measure with supp µ = S1. Let N be the set of all continuous A : S1 →
SL(2, R) nonhomotopic to a constant. For a residual subset of N , the Lyapunov
exponents of the corresponding cocycle over (f, µ) are zero. That is because
the cocycle has no invariant continuous subbundle if A is nonhomotopic to a
constant.

These results generalize to arbitrary dimension the work of Bochi [4],
where it was shown that generic area-preserving C1 diffeomorphisms on any
compact surface either are uniformly hyperbolic (Anosov) or have no hyper-
bolicity at all; both Lyapunov exponents equal zero almost everywhere. This
fact was announced by Mañé [19], [20] in the early eighties.

Our strategy is to tackle the higher dimensional problem and to analyze
the dependence of Lyapunov exponents on the dynamics. We obtain the fol-
lowing characterization of the continuity points of Lyapunov exponents in the
space of volume-preserving C1 diffeomorphisms on any compact manifold: they
must have all exponents equal to zero or else the Oseledets splitting must be
dominated, over almost every orbit. This is similar for continuous linear co-
cycles over any transformation, and in this setting the necessary condition is
known to be sufficient.
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The issue of continuous or differentiable dependence of Lyapunov
exponents on the underlying system is subtle, and not well understood. See
Ruelle [29] and also Bourgain, Jitomirskaya [9], [10] for a discussion and fur-
ther references. We also mention the following simple application of the result
just stated, in the context of quasi-periodic Schrödinger cocycles:

Example 2. Let f : S1 → S1 be an irrational rotation. Given E ∈ R and
a continuous function V : S1 → R, let A : S1 → SL(2, R) be given by

A(θ) =
(

E − V (θ) −1
1 0

)
.

Then the cocycle determined by (A, f) is a point of discontinuity for the
Lyapunov exponents, as functions of V ∈ C0(S1, R), if and only if the expo-
nents are nonzero and E is in the spectrum of the associated Schrödinger op-
erator. Compare [10]. This is because E is in the complement of the spectrum
if and only if the cocycle is uniformly hyperbolic, which for SL(2, R)-cocycles
is equivalent to domination.

We extend the two-dimensional result of Mañé–Bochi also in a different
direction, namely to symplectic diffeomorphisms on any compact symplectic
manifold. Firstly, we prove that continuity points for the Lyapunov expo-
nents either are uniformly hyperbolic or have at least two Lyapunov exponents
equal to zero at almost every point. Consequently, generic symplectic C1 dif-
feomorphisms either are Anosov or have vanishing Lyapunov exponents with
multiplicity at least 2 at almost every point.

Topological results in the vein of our present theorems were obtained
by Millionshchikov [22], in the early eighties, and by Bonatti, Dı́az, Pujals,
Ures [8], [12], in their recent characterization of robust transitivity for dif-
feomorphisms. A counterpart of the latter for symplectic maps was obtained
by Newhouse [25] in the seventies, and was recently extended by Arnaud [1].
Also recently, Dolgopyat, Pesin [13, §8] extended the perturbation technique
of [4] to one 4-dimensional case, as part of their construction of nonuniformly
hyperbolic diffeomorphisms on any compact manifold.

1.1. Dominated splittings. Let M be a compact manifold of dimension
d ≥ 2. Let f : M → M be a diffeomorphism and Γ ⊂ M be an f -invariant set.
Suppose for each x ∈ Γ one is given nonzero subspaces E1

x and E2
x such that

TxM = E1
x⊕E2

x , the dimensions of E1
x and E2

x are constant, and the subspaces
are Df -invariant: Dfx(Ei

x) = Ei
f(x) for all x ∈ Γ and i = 1, 2.

Definition 1.1. Given m ∈ N, we say that TΓ M = E1 ⊕ E2 is an
m-dominated splitting if for every x ∈ Γ,

‖Dfm
x |E2

x
‖ · ‖(Dfm

x |E1
x
)−1‖ ≤ 1

2 .(1.1)
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We call TΓM = E1 ⊕ E2 a dominated splitting if it is m-dominated for some
m ∈ N. Then we write E1 � E2.

Condition (1.1) means that, for typical tangent vectors, their forward
iterates converge to E1 and their backward iterates converge to E2, at uniform
exponential rates. Thus, E1 acts as a global hyperbolic attractor, and E2

acts as a global hyperbolic repeller, for the dynamics induced by Df on the
projective bundle.

More generally, we say that a splitting TΓM = E1 ⊕ · · · ⊕ Ek, into any
number of sub-bundles, is dominated if

E1 ⊕ · · · ⊕ Ej � Ej+1 ⊕ · · · ⊕ Ek for every 1 ≤ j < k.

We say that a splitting TΓM = E1⊕· · ·⊕Ek, is dominated at x, for some point
x ∈ Γ, if it is dominated when restricted to the orbit {fn(x); n ∈ Z} of x.

1.2. Dichotomy for volume-preserving diffeomorphisms. Let µ be the
measure induced by some volume form. We indicate by Diff1

µ(M) the set of
all µ-preserving C1 diffeomorphisms of M , endowed with the C1 topology. Let
f ∈ Diff1

µ(M). By the theorem of Oseledets [26], for µ-almost every point
x ∈ M , there exist k(x) ∈ N, real numbers λ̂1(f, x) > · · · > λ̂k(x)(f, x), and

a splitting TxM = E1
x ⊕ · · · ⊕ E

k(x)
x of the tangent space at x, all depending

measurably on the point x, such that

lim
n→±∞

1
n

log ‖Dfn
x (v)‖ = λ̂j(f, x) for all v ∈ Ej

x � {0}.(1.2)

The Lyapunov exponents λ̂j(f, x) also correspond to the limits of 1/(2n) log ρn

as n → ∞ , where ρn represents the eigenvalues of Dfn(x)∗Dfn(x). Let
λ1(f, x) ≥ λ2(f, x) ≥ · · · ≥ λd(f, x) be the Lyapunov exponents in nonincreas-
ing order and each repeated with multiplicity dimEj

x. Note that λ1(f, x) +
· · · + λd(f, x) = 0, because f preserves volume. We say that the Oseledets
splitting is trivial at x when k(x) = 1, that is, when all Lyapunov exponents
vanish.

It should be stressed that these are purely asymptotic statements: the
limits in (1.2) are far from being uniform, in general. However, our first main
result states that for generic volume-preserving diffeomorphisms one does have
a lot of uniformity, over every orbit in a full measure subset:

Theorem 1. There exists a residual set R ⊂ Diff1
µ(M) such that, for each

f ∈ R and µ-almost every x ∈ M , the Oseledets splitting of f is either trivial
or dominated at x.

For f ∈ R the ambient manifold M splits, up to zero measure, into dis-
joint invariant sets Z and D corresponding to trivial splitting and dominated
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splitting, respectively. Moreover, D may be written as an increasing union
D = ∪m∈NDm of compact f -invariant sets, each admitting a dominated split-
ting of the tangent bundle.

If f ∈ R is ergodic then either µ(Z) = 1 or there is m ∈ N such that
µ(Dm) = 1. The first case means that all the Lyapunov exponents vanish
almost everywhere. In the second case, the Oseledets splitting extends contin-
uously to a dominated splitting of the tangent bundle over the whole ambient
manifold M .

Example 3. Let ft : N → N , t ∈ S1, be a smooth family of volume-
preserving diffeomorphisms on some compact manifold N , such that ft = id for
t in some interval I ⊂ S1, and ft is partially hyperbolic for t in another interval
J ⊂ S1. Such families may be obtained, for instance, using the construction
of partially hyperbolic diffeomorphisms isotopic to the identity in [7]. Then
f : S1×N → S1×N , f(t, x) = (t, ft(x)) is a volume-preserving diffeomorphism
for which D ⊃ S1 × J and Z ⊃ S1 × I.

Thus, in general we may have 0 < µ(Z) < 1. However, we ignore whether
such examples can be made generic (see also Section 1.3).

Problem 1. Is there a residual subset of Diff1
µ(M) for which invariant sets

with a dominated splitting have either zero or full measure?

Theorem 1 is a consequence of the following result about continuity of
Lyapunov exponents as functions of the dynamics. For j = 1, . . . , d− 1, define

LEj(f) =
∫

M
[λ1(f, x) + · · · + λj(f, x)] dµ(x).

It is well-known that the functions f ∈ Diff1
µ(M) �→ LEj(f) are upper semi-

continuous (see Proposition 2.2 below). Our next main theorem shows that
lower semi-continuity is much more delicate:

Theorem 2. Let f0 ∈ Diff1
µ(M) be such that the map

f ∈ Diff1
µ(M) �→

(
LE1(f), . . . ,LEd−1(f)

)
∈ Rd−1

is continuous at f = f0. Then for µ-almost every x ∈ M , the Oseledets splitting
of f0 is either dominated or trivial at x.

The set of continuity points of a semi-continuous function on a Baire
space is always a residual subset of the space (see e.g. [18, §31.X]); therefore
Theorem 1 is an immediate corollary of Theorem 2.

Problem 2. Is the necessary condition in Theorem 2 also sufficient for
continuity?
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Diffeomorphisms with all Lyapunov exponents equal to zero almost ev-
erywhere, or else whose Oseledets splitting extends to a dominated splitting
over the whole manifold, are always continuity points. Moreover, the answer
is affirmative in the context of linear cocycles, as we shall see.

1.3. Dichotomy for symplectic diffeomorphisms. Now we turn ourselves to
symplectic systems. Let (M2q, ω) be a compact symplectic manifold without
boundary. We denote by µ the volume measure associated to the volume form
ωq = ω ∧ · · · ∧ ω. The space Sympl1ω(M) of all C1 symplectic diffeomorphisms
is a subspace of Diff1

µ(M). We also fix a smooth Riemannian metric on M , the
particular choice being irrelevant for all purposes.

The Lyapunov exponents of symplectic diffeomorphisms have a symmetry
property: λj(f, x) = −λ2q−j+1(f, x) for all 1 ≤ j ≤ q. (That is because in this
case the linear operator Dfn(x)∗Dfn(x) is symplectic and so (see Arnold [3])
its spectrum is symmetric; the inverse of every eigenvalue is also an eigenvalue,
with the same multiplicity.) In particular, λq(x) ≥ 0 and LEq(f) is the integral
of the sum of all nonnegative exponents. Consider the splitting

TxM = E+
x ⊕ E0

x ⊕ E−
x ,

where E+
x , E0

x, and E−
x are the sums of all Oseledets spaces associated to

positive, zero, and negative Lyapunov exponents, respectively. Then dimE+
x =

dimE−
x and dimE0

x is even.

Theorem 3. Let f0 ∈ Sympl1ω(M) be such that the map

f ∈ Sympl1ω(M) �→ LEq(f) ∈ R

is continuous at f = f0. Then for µ-almost every x ∈ M , either dimE0
x ≥ 2

or the splitting TxM = E+
x ⊕ E−

x is hyperbolic along the orbit of x.

In the second alternative, what we actually prove is that the splitting is
dominated at x. This is enough because, as we shall prove in Lemma 2.4,
for symplectic diffeomorphisms dominated splittings into two subspaces of the
same dimension are uniformly hyperbolic.

As in the volume-preserving case, the function f �→ LEq(f) is continuous
on a residual subset R1 of Sympl1ω(M). Also, we show that there is a residual
subset R2 ⊂ Sympl1ω(M) such that for every f ∈ R2 either f is an Anosov
diffeomorphism or all its hyperbolic sets have zero measure. Taking R =
R1 ∩R2, we obtain:

Theorem 4. There exists a residual set R ⊂ Sympl1ω(M) such that every
f ∈ R either is Anosov or has at least two zero Lyapunov exponents at almost
every point.

For d = 2 one recovers the two-dimensional result of Mañé–Bochi.
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1.4. Linear cocycles. Now we comment on corresponding statements for
linear cocycles. Let M be a compact Hausdorff space, µ a Borel regular prob-
ability measure, and f : M → M a homeomorphism that preserves µ. Given
a continuous map A : M → GL(d, R), one associates the linear cocycle

FA : M × Rd → M × Rd , FA(x, v) = (f(x), A(x)v).(1.3)

Oseledets’ theorem extends to this setting, and so does the concept of domi-
nated splitting; see Sections 2.1 and 2.2.

One is often interested in classes of maps A whose values have some spe-
cific form, e.g., belong to some subgroup G ⊂ GL(d, R). To state our results
in greater generality, we consider the space C(M, S) of all continuous maps
M → S, where S ⊂ GL(d, R) is a fixed set. We endow the space C(M, S)
with the C0-topology. We shall deal with sets S that satisfy an accessibility
condition:

Definition 1.2. Let S ⊂ GL(d, R) be an embedded submanifold (with
or without boundary). We call S accessible if for all C0 > 0 and ε > 0,
there are ν ∈ N and α > 0 with the following properties: Given ξ, η in
the projective space RPd−1 with �(ξ, η) < α, and A0, . . . , Aν−1 ∈ S with
‖A±1

i ‖ ≤ C0, there exist Ã0, . . . , Ãν−1 ∈ S such that ‖Ãi − Ai‖ < ε and
Ãν−1 . . . Ã0(ξ) = Aν−1 . . . A0(η).

Example 4. Let G be a closed subgroup GL(d, R) which acts transitively
in the projective space RPd−1. Then S = G is accessible and, in fact, we
may always take ν = 1 in the definition. See Lemma 5.12. So the most
common matrix groups are accessible, e.g., GL(d, R), SL(d, R), Sp(2q, R), as
well as SL(d, C), GL(d, C) (which are isomorphic to subgroups of GL(2d, R)).
(Compact groups are not of interest in our context, because all Lyapunov
exponents vanish identically.)

Example 5. The set of matrices of the type already mentioned in Exam-
ple 2:

S =
{(

t −1
1 0

)
; t ∈ R

}
⊂ GL(2, R)

is accessible. To see this, let ν = 2. If ξ and η are not too close to R(0, 1),
then we may find a small perturbation Ã0 of A0 such that Ã0(ξ) = A0(η), and
let Ã1 = A1. In the other case, A0(ξ) and A0(η) must be close to R(1, 0); then
we take Ã0 = A0 and find a suitable Ã1.

Theorem 5. Let S ⊂ GL(d, R) be an accessible set. Then A0 ∈ C(M, S)
is a point of continuity of

C(M, S) � A �→ (LE1(A), . . . ,LEd−1(A)) ∈ Rd−1
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if and only if the Oseledets splitting of the cocycle FA at x is either dominated
or trivial at µ-almost every x ∈ M .

Consequently, there exists a residual subset R ⊂ C(M, S) such that for
every A ∈ R and at almost every x ∈ X, either all Lyapunov exponents of FA

are equal or the Oseledets splitting of FA is dominated.

Corollary 1. Assume (f, µ) is ergodic. For any accessible set S ⊂
GL(d, R), there exists a residual subset R ⊂ C(M, S) such that every A ∈ R
either has all exponents equal at almost every point, or there exists a domi-
nated splitting of M × Rd which coincides with the Oseledets splitting almost
everywhere.

Theorem 5 and the corollary remain true if one replaces C(M, S) by
L∞(M, S). We only need f to be an invertible measure-preserving transfor-
mation.

It is interesting that an accessibility condition of control-theoretic type
was used by Nerurkar [24] to get nonzero exponents.

1.5. Extensions, related problems, and outline of the proof. Most of the
results stated above were announced in [5]. Actually, our Theorems 3 and 4
do not give the full strength of Theorem 4 in [5]. The difficulty is that the
symplectic analogue of our construction of realizable sequences is less satisfac-
tory, unless the subspaces involved have the same dimension; see Remark 5.2.
Thus, the following question remains open (see also Remark 2.5):

Problem 3. Is it true that the Oseledets splitting of generic symplectic C1

diffeomorphisms is either trivial or partially hyperbolic at almost every point?

Problem 4. For generic smooth families Rp → Diff1
µ(M), Sympl1ω(M),

C(M, S) (i.e. smooth in the parameters), what can be said of the Lebesgue
measure of the subset of parameters corresponding to zero Lyapunov expo-
nents?

Problem 5. What are the continuity points of Lyapunov exponents in
Diff1+r

µ (M) or Cr(M, S) for r > 0?

Problem 6. Is the generic volume-preserving C1 diffeomorphism ergodic
or, at least, does it have only a finite number of ergodic components?

The first question in Problem 6 was posed to us by A. Katok and the
second one was suggested by the referee. The theorem of Oxtoby, Ulam [27]
states that generic volume-preserving homeomorphisms are ergodic.

Let us close this introduction with a brief outline of the proof of Theorem 2.
Theorems 3 and 5 follow from variations of these arguments, and the other
main results are fairly direct consequences.
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Suppose the Oseledets splitting is neither trivial nor dominated, over a
positive Lebesgue measure set of orbits: for some i and for arbitrarily large m

there exist iterates y for which

‖Dfm |Ei−
y

‖ ‖(Dfm |Ei+
y

)−1‖ > 1
2(1.4)

where Ei+
y = E1

y ⊕· · ·⊕Ei
y and Ei−

y = Ei+1
y ⊕· · ·⊕E

k(y)
y . The basic strategy is

to take advantage of this fact to, by a small perturbation of the map, cause a
vector originally in Ei+

y to move to Ei−
z , z = fm(y), thus “blending” different

expansion rates.
More precisely, given a perturbation size ε > 0 we take m sufficiently large

with respect to ε. Then, given x ∈ M , for n much bigger than m we choose
an iterate y = f �(x), with 
 ≈ n/2, as in (1.4). By composing Df with small
rotations near the first m iterates of y, we cause the orbit of some Df �

x(v) ∈ Ei+
y

to move to Ei−
z . In this way we find an ε-perturbation g = f ◦ h preserving

the orbit segment {x, . . . , fn(x)} and such that Dgs
x(v) ∈ Ei+ during the

first 
 ≈ n/2 iterates and Dgs
x(v) ∈ Ei− during the last n − 
 − m ≈ n/2

iterates. We want to conclude that Dgn
x lost some expansion if compared to

Dfn
x . To this end we compare the pth exterior products of these linear maps,

with p = dimEi+. While ‖∧p(Dfn
x )‖ ≈ exp(n(λ1 + · · · + λp)) we see that

‖∧p(Dgn
x)‖ � exp

(
n
(
λ1 + · · · + λp−1 +

λp + λp+1

2
))

,

where the Lyapunov exponents are computed at (f, x). Notice that λp+1 =
λ̂i+1 is strictly smaller than λp = λ̂i. This local procedure is then repeated for
a positive Lebesgue measure set of points x ∈ M . Using (see Proposition 2.2)

LEp(g) = inf
n

1
n

∫
log ‖∧p(Dgn)‖ dµ

and a Kakutani tower argument, we deduce that LEp drops under such arbi-
trarily small perturbations, contradicting continuity.

Let us also comment on the way the C1 topology comes into the proof.
It is very important for our arguments that the various perturbations of the
diffeomorphism close to each fs(y) do not interfere with each other, nor with
the other iterates of x in the time interval {0, . . . , n}. The way we achieve
this is by rescaling the perturbation g = f ◦ h near each fs(y) if necessary, to
ensure its support is contained in a sufficiently small neighborhood of the point.
In local coordinates w for which fs(y) is the origin, rescaling corresponds to
replacing h(w) by rh(w/r) for some small r > 0. Observe that this does not
affect the value of the derivative at the origin nor the C1 norm of the map,
but it tends to increase Cr norms for r > 1.

This paper is organized as follows. In Section 2 we introduce several
preparatory notions and results. In Section 3 we state and prove the main
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perturbation tool, the directions exchange Proposition 3.1. We use this propo-
sition to prove Theorem 2 in Section 4, where we also deduce Theorem 1.
Section 5 contains a symplectic version of Proposition 3.1. This is used in Sec-
tion 6 to prove Theorem 3, from which we deduce Theorem 4. Similar ideas,
in an easier form, are used in Section 7 to get Theorem 5.

2. Preliminaries

2.1. Lyapunov exponents, Oseledets splittings. Let M be a compact
Hausdorff space and π : E → M be a continuous finite-dimensional vector
bundle endowed with a continuous Riemann structure. A cocycle over a home-
omorphism f : M → M is a continuous transformation F : E → E such
that π ◦ F = f ◦ π and Fx : Ex → Ef(x) is a linear isomorphism on each fiber
Ex = π−1(x). Notice that (1.3) corresponds to the case when the vector bundle
is trivial.

2.1.1. Oseledets’ theorem. Let µ be any f -invariant Borel probability
measure in M . The theorem of Oseledets [26] states that for µ-almost every
point x there exists a splitting

Ex = E1
x ⊕ · · · ⊕ Ek(x)

x ,(2.1)

and real numbers λ̂1(x) > · · · > λ̂k(x)(x) such that Fx(Ej
x) = Ej

f(x) and

lim
n→±∞

1
n

log ‖Fn
x (v)‖ = λ̂j(x)

for v ∈ Ej
x � {0} and j = 1, . . . , k(x). Moreover, if J1 and J2 are any disjoint

subsets of the set of indexes {1, . . . , k(x)}, then

lim
n→±∞

1
n

log �
(⊕

j∈J1
Ej

fn(x),
⊕

j∈J2
Ej

fn(x)

)
= 0.(2.2)

Let λ1(x) ≥ λ2(x) ≥ · · · ≥ λd(x) be the numbers λ̂j(x), each repeated with
multiplicity dimEj

x and written in nonincreasing order. When the dependence
on F matters, we write λi(F, x) = λi(x). In the case when F = Df , we write
λi(f, x) = λi(F, x) = λi(x).

2.1.2. Exterior products. Given a vector space V and a positive integer p,
let ∧p(V ) be the pth exterior power of V . This is a vector space of dimension(
d
p

)
, whose elements are called p-vectors. It is generated by the p-vectors of

the form v1 ∧ · · · ∧ vp with vj ∈ V , called the decomposable p-vectors. A linear
map L : V → W induces a linear map ∧p(L) : ∧p(V ) → ∧p(W ) such that

∧p(L)(v1 ∧ · · · ∧ vp) = L(v1) ∧ · · · ∧ L(vp).
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If V has an inner product, then we always endow ∧p(V ) with the inner product
such that ‖v1 ∧ · · · ∧ vp‖ equals the p-dimensional volume of the parallelepiped
spanned by v1, . . . , vp. See [2, §3.2.3].

More generally, there is a vector bundle ∧p(E), with fibers ∧p(Ex), associ-
ated to E , and there is a vector bundle automorphism ∧p(F ), associated to F .
If the vector bundle E is endowed with a continuous inner product, then ∧p(E)
also is. The Oseledets data of ∧p(F ) can be obtained from that of F , as shown
by the proposition below. For a proof, see [2, Th. 5.3.1].

Proposition 2.1. The Lyapunov exponents (with multiplicity) λ∧p
i (x),

1 ≤ i ≤
(
d
p

)
, of the automorphism ∧p(F ) at a point x are the numbers

λi1(x) + · · · + λip
(x), where 1 ≤ i1 < · · · < ip ≤ d.

Let {e1(x), . . . , ed(x)} be a basis of Ex such that

ei(x) ∈ E�
x for dimE1

x + · · · + dimE�−1
x < i ≤ dimE1

x + · · · + dimE�
x.

Then the Oseledets space Ej,∧p
x of ∧p(F ) corresponding to the Lyapunov expo-

nent λ̂j(x) is the sub-space of ∧p(Ex) generated by the p-vectors

ei1 ∧ · · · ∧ eip
, with 1 ≤ i1 < · · · < ip ≤ d and λi1(x) + · · · + λip

(x) = λ̂j(x).

2.1.3. Semi-continuity of integrated exponents. Let us indicate Λp(F, x) =
λ1(F, x)+· · ·+λp(F, x), for p = 1, . . . , d−1. We define the integrated Lyapunov
exponent

LEp(F ) =
∫

M
Λp(F, x) dµ(x).

More generally, if Γ ⊂ M is a measurable f -invariant subset, we define

LEp(F, Γ) =
∫

Γ
Λp(F, x) dµ(x).

By Proposition 2.1, Λp(F, x) = λ1(∧pF, x) and so LEp(F, Γ) = LE1(∧p(F ),Γ).
When F = Df , we write Λp(f, x) = Λi(F, x) and LEp(f,Γ) = LEp(F,Γ).

Proposition 2.2. If Γ ⊂ M is a measurable f -invariant subset then

LEp(F,Γ) = inf
n≥1

1
n

∫
Γ

log ‖∧p(Fn
x )‖ dµ(x).

Proof. The sequence an =
∫
Γ log ‖∧p(Fn

x )‖ dµ is sub-additive (an+m ≤
an + am); therefore lim an

n = inf an

n .

As a consequence of Proposition 2.2, the map f ∈ Diff1
µ(M) �→ LEp(f) is

upper semi-continuous, as mentioned in the introduction.
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2.2. Dominated splittings. Let Γ ⊂ M be an f -invariant set. A splitting
EΓ = E1 ⊕E2 is dominated for F if it is F -invariant, the dimensions of Ei

x are
constant on Γ, and there exists m ∈ N such that, for every x ∈ Γ,

‖Fm
x |E2

x
‖

m(Fm
x |E1

x
)
≤ 1

2
.(2.3)

We denote m(L) = ‖L−1‖−1 the co-norm of a linear isomorphism L. The
dimension of the space E1 is called the index of the splitting.

A few elementary properties of dominated decompositions follow. The
proofs are left to the reader.

Transversality. If EΓ = E1 ⊕ E2 is a dominated splitting then the angle
�(E1

x, E2
x) is bounded away from zero, over all x ∈ Γ.

Uniqueness. If EΓ = E1 ⊕ E2 and EΓ = Ê1 ⊕ Ê2 are dominated decom-
positions with dimEi = dim Êi then Ei = Êi for i = 1, 2.

Continuity. A dominated splitting EΓ = E1 ⊕ E2 is continuous, and
extends continuously to a dominated splitting over the closure of Γ.

2.3. Dominance and hyperbolicity for symplectic maps. We just recall
a few basic notions that are needed in this context, referring the reader to
Arnold [3] for definitions and fundamental properties of symplectic forms, man-
ifolds, and maps.

Let (V, ω) be a symplectic vector space of dimension 2q. Given a subspace
W ⊂ V , its symplectic orthogonal is the space (of dimension 2q − dimW )

Wω = {w ∈ W ; ω(v, w) = 0 for all v ∈ V }.

The subspace W is called symplectic if Wω ∩ W = {0}; that is, ω|W×W is a
nondegenerate form. W is called isotropic if W ⊂ Wω, that is, ω|W×W ≡ 0.
The subspace W is called Lagrangian if W = Wω; that is, it is isotropic and
dimW = q.

Now let (M, ω) be a symplectic manifold of dimension d = 2q. We also fix
in M a Riemannian structure. For each x ∈ M , let Jx : TxM → TxM be the
anti-symmetric isomorphism defined by ω(v, w) = 〈Jxv, w〉 for all v, w ∈ TxM .
Denote

Cω = sup
x∈M

‖J±1
x ‖.(2.4)

In particular,

|ω(v, w)| ≤ Cω‖v‖ ‖w‖ for all v, w ∈ TxM .(2.5)

Lemma 2.3. If E, F ⊂ TxM are two Lagrangian subspaces with E ∩F =
{0} and α = �(E, F ) then:
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(1) For every v ∈ E � {0} there exists w ∈ F � {0} such that

|ω(v, w)| ≥ C−1
ω sinα ‖v‖ ‖w‖.

(2) If S : TxM → TyM is any symplectic linear map and β = �(S(E), S(F ))
then

C−2
ω sinα ≤ m(S|E) ‖S|F ‖ ≤ C2

ω(sinβ)−1.

Proof. To prove part 1, let p : TxM → F be the projection parallel
to E. Given a nonzero v ∈ E, take w = p(Jxv). Since E is isotropic,
ω(v, w) = ω(v, Jxv) = ‖Jxv‖2 ≥ C−1

ω ‖v‖ ‖Jxv‖. Also ‖w‖ ≤ ‖p‖ ‖Jxv‖ and
‖p‖ = 1/ sinα, so that the claim follows.

To prove part 2, take a nonzero v ∈ E such that ‖Sv‖/‖v‖ = m(S|E) and
let w be as in part 1. Then

C−1
ω sinα ‖v‖ ‖w‖ ≤ |ω(v, w)| = |ω(Sv, Sw)| ≤ Cω‖Sv‖ ‖Sw‖.

Thus m(S|E) ‖Sw‖/‖w‖ ≥ C−2
ω sinα, proving the lower inequality in part 2.

The upper inequality follows from the lower one applied to S(F ), S(E) and
S−1 in the place of E, F , and S, respectively.

Lemma 2.4. Let f ∈ Sympl1ω(M), and let x be a regular point. Assume
that λq(f, x) > 0, that is, there are no zero exponents. Let E+

x and E−
x be the

sum of all Oseledets subspaces associated to positive and to negative Lyapunov
exponents, respectively. Then

(1) The subspaces E+
x and E−

x are Lagrangian.

(2) If the splitting E+⊕E− is dominated at x then E+ is uniformly expanding
and E− is uniformly contracting along the orbit of x.

Proof. To prove part 1, we only have to show that the spaces E+
x and E−

x

are isotropic. Take vectors v1, v2 ∈ E−
x . Take ε > 0 with ε < λq(f, x). For

every large n and i = 1, 2, we have ‖Dfn
x vi‖ ≤ e−nε‖vi‖. Hence, by (2.5),

|ω(v1, v2)| = |ω(Dfn
x v1, Dfn

x v2)| ≤ Cωe−2nε‖v1‖ ‖v2‖,

that is, ω(v1, v2) = 0. A similar argument, iterating backward, gives that E+
x

is isotropic.
Now assume that E+ � E− at x. Let α > 0 be a lower bound for

�(E+, E−) along the orbit of x, and let C = C2
ω(sinα)−1. By domination,

there exists m ∈ N such that

‖Dfm
fn(x)|E−‖

m(Dfm
fn(x)|E+)

<
1

4C
, for all n ∈ Z.
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By part 2 of Lemma 2.4, we have C−1 ≤ m(Dfm
fn(x)|E+) ‖Dfm

fn(x)|E−‖ ≤ C.
Therefore

m(Dfm
fn(x)|E+) > 2 and ‖Dfm

fn(x)|E−‖ < 1
2 for all n ∈ Z.

This proves part 2.

Remark 2.5. More generally, existence of a dominated splitting implies
partial hyperbolicity: If E ⊕ F̂ is a dominated splitting , with dimE ≤ dim F̂ ,
then F̂ splits invariantly as F̂ = C ⊕ F , with dimF = dimE. Moreover,
the splitting E ⊕ C ⊕ F is dominated , E is uniformly expanding , and F is
uniformly contracting. This fact was pointed out by Mañé in [20]. Proofs
appeared recently in Arnaud [1], for dimension 4, and in [6], for arbitrary
dimension.

2.4. Angle estimation tools. Here we collect a few useful facts from ele-
mentary linear algebra. We begin by noting that, given any one-dimensional
subspaces A, B, and C of Rd, then

sin�(A, B) sin�(A + B, C) = sin�(C, A) sin�(C + A, B)

= sin�(B, C) sin�(B + C, A).

Indeed, this quantity is the 3-dimensional volume of the parallelepiped with
unit edges in the directions A, B and C. As a corollary, we get:

Lemma 2.6. Let A, B and C be subspaces (of any dimension) of Rd.
Then

sin�(A, B + C) ≥ sin�(A, B) sin�(A + B, C).

Let v, w be nonzero vectors. For any α ∈ R, ‖v + αw‖ ≥ ‖v‖ sin�(v, w),
with equality when α = 〈v, w〉/‖w‖2. Given L ∈ GL(d, R), let β = 〈Lv, Lw〉/
‖Lw‖2 and z = v + βw. By the previous remark, ‖z‖ ≥ ‖v‖ sin�(v, w) and
‖Lz‖ = ‖Lv‖ sin�(Lv, Lw). Therefore

sin�(Lv, Lw) =
‖Lz‖
‖Lv‖ ≥ m(L)‖v‖

‖Lv‖ sin�(v, w).(2.6)

As a consequence of (2.6), we have:

Lemma 2.7. Let L : Rd → Rd be a linear map and let v, w be nonzero
vectors. Then

m(L)
‖L‖ ≤ sin�(Lv, Lw)

sin�(v, w)
≤ ‖L‖

m(L)
.

Thus ‖L‖/m(L) measures how much angles can be distorted by L. At
last, we give a bound for this quantity when d = 2.
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Lemma 2.8. Let L : R2 → R2 be an invertible linear map and let
v, w ∈ R2 be linearly independent unit vectors. Then

‖L‖
m(L)

≤ 4 max
{ ‖Lv‖
‖Lw‖ ,

‖Lw‖
‖Lv‖

}
1

sin�(v, w)
1

sin�(Lv, Lw)
.

Proof. We may assume that L is not conformal, for in the conformal case
the left-hand side is 1 and the inequality is obvious. Let Rs be the direction
most contracted by L, and let θ, φ ∈ [0, π] be the angles that the directions
Rv and Rw, respectively, make with Rs. Suppose that ‖Lv‖ ≥ ‖Lw‖. Then
φ ≤ θ and so �(v, w) ≤ 2θ. Hence

‖Lv‖ ≥ ‖L‖ sin θ ≥ 1
2‖L‖ sin 2θ ≥ 1

2‖L‖ sin�(v, w).

Moreover, |detL| = m(L)‖L‖ and

‖Lv‖ ‖Lw‖ sin�(Lv, Lw) = |det L| sin�(v, w).

The claim is an easy consequence of these relations.

2.5. Coordinates, metrics, neighborhoods. Let (M, ω) be a symplectic
manifold of dimension d = 2q ≥ 2. According to Darboux’s theorem, there
exists an atlas A∗ = {ϕi : V ∗

i → Rd} of canonical local coordinates, that is,
such that

(ϕi)∗ω = dx1 ∧ dx2 + · · · + dx2q−1 ∧ dx2q

for all i. Similarly, cf. [23, Lemma 2], given any volume structure β on a
d-dimensional manifold M , one can find an atlas A∗ = {ϕi : V ∗

i → Rd}
consisting of charts ϕi such that

(ϕi)∗β = dx1 ∧ · · · ∧ dxd .

In either case, assuming M is compact one may choose A∗ finite. More-
over, we may always choose A∗ so that every V ∗

i contains the closure of an
open set Vi, such that the restrictions ϕi : Vi → Rd still form an atlas of M .
The latter will be denoted A. Let A∗ and A be fixed once and for all.

By compactness, there exists r0 > 0 such that for each x ∈ M , there exists
i(x) such that the Riemannian ball of radius r0 around x is contained in Vi(x).
For definiteness, we choose i(x) smallest with this property. For technical
convenience, when dealing with the point x we express our estimates in terms
of the Riemannian metric ‖·‖ = ‖·‖x defined on that ball of radius r0 by ‖v‖ =
‖Dϕi(x)v‖. Observe that these Riemannian metrics are (uniformly) equivalent
to the original one on M , and so there is no inconvenience in replacing one by
the other.

We may also view any linear map A : Tx1M → Tx2M as acting on Rd,
using local charts ϕi(x1) and ϕi(x2). This permits us to speak of the distance
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‖A − B‖ between A and another linear map B : Tx3M → Tx4M whose base
points are different:

‖A − B‖ = ‖D2AD−1
1 − D4BD−1

3 ‖, where Dj = (Dϕi(xj))xj
.

For x ∈ M and r > 0 small (relative to r0), Br(x) will denote the ball
of radius r around x relative to the new metric. In other words, Br(x) =
ϕ−1

i(x)

(
B(ϕi(x)(x), r)

)
. We assume that r is small enough so that the closure of

Br(x) is contained in V ∗
i(x).

Definition 2.9. Let ε0 > 0. The ε0-basic neighborhood U(id, ε0) of the
identity in Diff1

µ(M), or in Sympl1ω(M), is the set U(id, ε0) of all h ∈ Diff1
µ(M),

or h ∈ Sympl1ω(M), such that h±1(V i) ⊂ V ∗
i for each i and

h(x) ∈ Bε0(x) and ‖Dhx − I‖ < ε0 for every x ∈ M .

For a general f ∈ Diff1
µ(M), or f ∈ Sympl1ω(M), the ε0-basic neighborhood

U(f, ε0) is defined by: g ∈ U(f, ε0) if and only if f−1 ◦g ∈ U(id, ε0) or g ◦f−1 ∈
U(id, ε0).

2.6. Realizable sequences. The following notion, introduced in [4], is cru-
cial to the proofs of Theorems 1 through 4. It captures the idea of sequence
of linear transformations that can be (almost) realized on subsets with large
relative measure as tangent maps of diffeomorphisms close to the original one.

Definition 2.10. Given f ∈ Diff1
µ(M) or f ∈ Sympl1ω(M), constants

ε0 > 0, and 0 < κ < 1, and a nonperiodic point x ∈ M , we call a sequence of
linear maps (volume-preserving or symplectic)

TxM
L0−→ TfxM

L1−→ . . .
Ln−1−−−→ TfnxM

an (ε0, κ)-realizable sequence of length n at x if the following holds:
For every γ > 0 there is r > 0 such that the iterates f j(Br(x)) are two-

by-two disjoint for 0 ≤ j ≤ n, and given any nonempty open set U ⊂ Br(x),
there are g ∈ U(f, ε0) and a measurable set K ⊂ U such that

(i) g equals f outside the disjoint union
⊔n−1

j=0 f j(U);

(ii) µ(K) > (1 − κ)µ(U);

(iii) if y ∈ K then
∥∥Dggjy − Lj

∥∥ < γ for every 0 ≤ j ≤ n − 1.

Some basic properties of realizable sequences are collected in the following:

Lemma 2.11. Let f ∈ Diff1
µ(M) or f ∈ Sympl1ω(M), x ∈ M not periodic

and n ∈ N.

(1) The sequence {Dfx, . . . , Dffn−1(x)} is (ε0, κ)-realizable for every ε0 and
κ (called a trivial realizable sequence).
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(2) Let κ1, κ2 ∈ (0, 1) be such that κ = κ1 + κ2 < 1. If {L0, . . . , Ln−1}
is (ε0, κ1)-realizable at x, and {Ln, . . . , Ln+m−1} is (ε0, κ2)-realizable at
fn(x), then {L0, . . . , Ln+m−1} is (ε0, κ)-realizable at x.

(3) If {L0, . . . , Ln−1} is (ε0, κ)-realizable at x, then {L−1
n−1, . . . , L

−1
0 } is an

(ε0, κ)-realizable sequence at fn(x) for the diffeomorphism f−1.

Proof. The first claim is obvious. For the second one, fix γ > 0. Let
r1 be the radius associated to the (ε0, κ1)-realizable sequence, and r2 be the
radius associated to the (ε0, κ2)-realizable sequence. Fix 0 < r < r1 such that
fn(Br(x)) ⊂ B(fn(x), r2). Then the f j(Br(x)) are two-by-two disjoint for
0 ≤ j ≤ n + m. Given an open set U ⊂ Br(x), the realizability of the first
sequence gives us a diffeomorphism g1 ∈ U(f, ε0) and a measurable set K1 ⊂ U .
Analogously, for the open set fn(U) ⊂ B(fn(x), r2) we find g2 ∈ U(f, ε0) and a
measurable set K2 ⊂ fn(U). Then define a diffeomorphism g as g = g1 inside
U ∪ · · · ∪ fn−1(U) and g = g2 inside fn(U) ∪ · · · ∪ fn+m−1(U), with g = f

elsewhere. Consider also K = K1 ∩ g−n(K2). Using the fact that g preserves
volume, one checks that g and K satisfy the conditions in Definition 2.10. For
claim 3, notice that U(f, ε0) = U(f−1, ε0).

The next lemma makes it simpler to verify that a sequence is realizable:
we only have to check the conditions for certain open sets U ⊂ Br(x).

Definition 2.12. A family of open sets {Wα} in Rd is a Vitali covering of
W = ∪αWα if there is C > 1 and for every y ∈ W , there are sequences of sets
Wαn

� y and positive numbers sn → 0 such that

Bsn
(y) ⊂ Wαn

⊂ BCsn
(y) for all n ∈ N.

A family of subsets {Uα} of M is a Vitali covering of U = ∪αUα if each Uα

is contained in the domain of some chart ϕi(α) in the atlas A, and the images
{ϕi(α)(Uα)} form a Vitali covering of W = ϕ(U), in the previous sense.

Lemma 2.13. Let f ∈ Diff1
µ(M) or f ∈ Sympl1ω(M), and set ε0 > 0 and

κ > 0. Consider any sequence Lj : Tf j(x)M → Tf j+1(x)M , 0 ≤ j ≤ n − 1 of
linear maps at a nonperiodic point x, and let ϕ : V → Rd be a chart in the
atlas A, with V � x. Assume the conditions in Definition 2.10 are valid for
every element of some Vitali covering {Uα} of Br(x). Then the sequence Lj is
(ε0, κ)-realizable.

Proof. Let U be an arbitrary open subset of Br(x). By Vitali’s covering
lemma (see [21]), there is a countable family of two-by-two disjoint sets Uα

covering U up to a zero Lebesgue measure subset. Thus we can find a finite
family of Uα with disjoint closures such that µ (U −

⊔
α Uα) is as small as we

please. For each Uα there are, by hypothesis, a perturbation gα ∈ U(f, ε0) and
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a measurable set Kα ⊂ Uα with the properties (i)–(iii) of Definition 2.10. Let
K =

⋃
Kα and define g as being equal to gα on each f j(Uα) with 0 ≤ j ≤

n − 1. Then g ∈ U(f, ε0) and the pair (g, K) have the properties required by
Definition 2.10.

3. Geometric consequences of nondominance

The aim of this section is to prove the following key result, from which we
shall deduce Theorem 2 in Section 4:

Proposition 3.1. When f ∈ Diff1
µ(M), ε0 > 0 and 0 < κ < 1, if m ∈ N

is sufficiently large then the following holds: Let y ∈ M be a nonperiodic point
and assume that there is a nontrivial splitting TyM = E ⊕ F such that

‖Dfm
y |F ‖

m(Dfm
y |E)

≥ 1
2

.

Then there exists an (ε0, κ)-realizable sequence {L0, . . . , Lm−1} at y of length
m and there are nonzero vectors v ∈ E and w ∈ Dfm

y (F ) such that

Lm−1 . . . L0(v) = w.

3.1. Nested rotations. Here we present some tools for the construction of
realizable sequences. The first one yields sequences of length 1:

Lemma 3.2. Given f ∈ Diff1
µ(M), ε0 > 0, κ > 0, there exists ε > 0 with

the following properties:
Suppose there are a nonperiodic point x ∈ M , a splitting TxM = X ⊕ Y

with X ⊥ Y and dimY = 2, and an elliptic linear map R̂ : Y → Y with
‖R̂ − I‖ < ε. Consider the linear map R : TxM → TxM given by R(u + v) =
u + R̂(v), for u ∈ X, v ∈ Y . Then {DfxR} is an (ε0, κ)-realizable sequence of
length 1 at x and {R Dff−1(x)} is an (ε0, κ)-realizable sequence of length 1 at
the point f−1(x).

We call a linear isomorphism of a 2-dimensional space elliptic if its eigen-
values are not real; this means the map is a rotation, relative to some basis of
the space.

We also need to construct long realizable sequences. Part 2 of Lemma 2.11
provides a way to do this, by concatenation of shorter sequences. However,
simple concatenation is far too crude for our purposes because it worsens κ;
the relative measure of the set where the sequence can be (almost) realized de-
creases when the sequence increases. This problem is overcome by Lemma 3.3
below, which allows us to obtain certain nontrivial realizable sequences with
arbitrary length while keeping κ controlled.
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In short terms, we do concatenate several length 1 sequences, of the type
given by Lemma 3.2, but we also require that the supports of successive per-
turbations be mapped one to the other. More precisely, there is a domain
C0 ⊂ TxM invariant under the sequence, in the sense that Lj−1 . . . L0(C0) =
Df j

x(C0) for all j. Following [4], where a similar notion was introduced for
the 2-dimensional setting, we call such Lj nested rotations. When d > 2 the
domain C0 is not compact; indeed it is the product C0 = X0 ⊕ B0 of a codi-
mension 2 subspace X0 by an ellipse B0 ⊂ X⊥

0 .
Let us fix some terminology to be used in the sequel. If E is a vector space

with an inner product and F is a subspace of E, we endow the quotient space
E/F with the inner product that makes v ∈ F⊥ �→ (v+F ) ∈ E/F an isometry.
If E′ is another vector space, any linear map L : E → E′ induces a linear map
L/F : E/F → E′/F ′, where F ′ = L(F ). If E′ has an inner product, then we
indicate by ‖L/F‖ the usual operator norm.

Lemma 3.3. When f ∈ Diff1
µ(M), ε0 > 0, κ > 0, there exists ε > 0 with

the following properties: Suppose there are a nonperiodic point x ∈ M , an
integer n ≥ 1, and, for j = 0, 1, . . . , n − 1,

• codimension 2 spaces Xj ⊂ Tf j(x)M such that Xj = Df j
x(X0);

• ellipses Bj ⊂ (Tf j(x)M)/Xj centered at zero with Bj = (Df j
x/X0)(B0);

• linear maps R̂j : (Tf j(x)M)/Xj → (Tf j(x)M)/Xj such that R̂j(Bj) ⊂ Bj

and ‖R̂j − I‖ < ε.

Consider the linear maps Rj : Tf j(x)M → Tf j(x)M such that Rj restricted to
Xj is the identity, Rj(X⊥

j ) = X⊥
j and Rj/Xj = R̂j. Define

Lj = Dff j(x)Rj : Tf j(x)M → Tf j+1(x)M for 0 ≤ j ≤ n − 1.

Then {L0, . . . , Ln−1} is an (ε0, κ)-realizable sequence of length n at x.

We shall prove Lemma 3.3 in Section 3.1.2. Notice that Lemma 3.2 is
contained in Lemma 3.3: take n = 1 and use also part 3 of Lemma 2.11.
Actually, Lemma 3.2 also follows from the forthcoming Lemma 3.4.

3.1.1. Cylinders and rotations. We call a cylinder any affine image C in Rd

of a product Bd−i ×Bi, where Bj denotes a ball in Rj . If ψ is the affine map,
the axis A = ψ(Bd−i × {0}) and the base B = ψ({0} × Bi) are ellipsoids. We
also write C = A⊕B. The cylinder is called right if A and B are perpendicular.
The case we are most interested in is when i = 2.

The present section contains three preliminary lemmas that we use in the
proof of Lemma 3.3. The first one explains how to rotate a right cylinder,
while keeping the complement fixed. The assumption a > τb means that the
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cylinder C is thin enough, and it is necessary for the C1 estimate in part (ii)
of the conclusion.

Lemma 3.4. Given ε0 > 0 and 0 < σ < 1, there is ε > 0 with the
following properties: Suppose there are a splitting Rd = X ⊕ Y with X ⊥ Y

and dimY = 2, a right cylinder A⊕ B centered at the origin with A ⊂ X and
B ⊂ Y , and a linear map R̂ : Y → Y such that R̂(B) = B and ‖R̂ − I‖ < ε.
Then there exists τ > 1 such that the following holds:

Let R : Rd → Rd be the linear map defined by R(u + v) = u + R̂v, for
u ∈ X, v ∈ Y . For a, b > 0 consider the cylinder C = aA⊕ bB. If a > τb and
diam C < ε0 then there is a C1 volume-preserving diffeomorphism h : Rd → Rd

satisfying

(i) h(z) = z for every z /∈ C and h(z) = R(z) for every z ∈ σC;

(ii) ‖h(z) − z‖ < ε0 and ‖Dhz − I‖ < ε0 for all z ∈ Rd.

Proof. We choose ε > 0 small enough so that

18ε

1 − σ
< ε0.(3.1)

Let A, B, X, Y , R̂, R be as in the statement of the lemma. Let {e1, . . . , ed}
be an orthonormal basis of Rd such that e1, e2 ∈ Y are in the directions of the
axes of the ellipse B and ej ∈ X for j = 3, . . . , d. We shall identify vectors
v = xe1 + ye2 ∈ Y with the coordinates (x, y). Then there are constants λ ≥ 1
and ρ > 0 such that B = {(x, y); λ−2x2 + λ2y2 ≤ ρ2}. Relative to the basis
{e1, e2}, let

Hλ =
(

λ 0
0 λ−1

)
and Rα =

(
cos α − sinα

sinα cos α

)
.

The assumption R̂(B) = B implies that R̂ = HλRαH−1
λ for some α. Besides,

the condition ‖R̂ − I‖ < ε implies

λ2|sinα| ≤ ‖(R̂ − I)(0, 1)‖ < ε.(3.2)

Let ϕ : R → R be a C∞ function such that ϕ(t) = 1 for t ≤ σ, ϕ(t) = 0
for t ≥ 1, and 0 ≤ −ϕ′(t) ≤ 2/(1−σ) for all t. Define smooth maps ψ : Y → R
and g̃t : Y → Y by

ψ(x, y) = αϕ(
√

x2 + y2) and g̃t(x, y) = Rϕ(t)ψ(x,y)(x, y).

On the one hand, g̃t(x, y) = (x, y) if either t ≥ 1 or x2 + y2 ≥ 1. On the other
hand, g̃t(x, y) = Rα(x, y) if t ≤ σ and x2 + y2 ≥ σ2. We are going to check
that the derivative of g̃t is close to the identity if ε is close to zero; note that
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| sinα| is also close to zero, by (3.2). We have

D(g̃t)(x,y) =
(

cos(tψ) − sin(tψ)
sin(tψ) cos(tψ)

)
+

(
−x sin(tψ) − y cos(tψ)
x cos(tψ) − y sin(tψ)

)
·
(
t∂xψ t∂yψ

)
= Rtψ(x,y) + t

[
Rπ/2+tψ(x,y)(x, y)

]
· Dψ(x,y).

Consider 0 ≤ t ≤ 1 and x2 + y2 ≤ 1. Then

‖D(g̃t)(x,y) − I‖ = ‖Rtψ(x,y) − I‖ + ‖Rπ/2+tψ(x,y)(x, y)‖ · ‖Dψ(x,y)‖
≤

∣∣ sin
(
tψ(x, y)

)∣∣ +
∥∥(

2αxϕ′(x2 + y2) , 2αyϕ′(x2 + y2)
)∥∥.

Taking ε small enough, we may suppose that α ≤ 2| sinα|. In view of the
choice of ϕ and ψ, this implies

‖D(g̃t)(x,y) − I‖ ≤ |sinα| + 4|α|/(1 − σ) ≤ 9|sinα|/(1 − σ).(3.3)

We also need to estimate the derivative with respect to t:

‖∂tg̃(x, y)‖ ≤
∥∥ϕ′(t)ψ(x, y)Rπ/2+tψ(x,y)(x, y)

∥∥ ≤ 4|sinα|/(1 − σ).(3.4)

Now define gt : Y → Y by gt = Hλ ◦ g̃t ◦ H−1
λ . Each gt is an area-preserving

diffeomorphism equal to the identity outside B. Thus

‖gt(x, y) − (x, y)‖ < diamB,(3.5)

for every (x, y) ∈ B. Moreover, gt = R̂ = HλRαH−1
λ on σB for all t ≤ σ.

By (3.3),

‖D(gt)(x,y) − I‖ =
∥∥Hλ

(
D(g̃t)(λ−1x,λy) − I

)
H−1

λ

∥∥ ≤ λ2

(
9|sinα|
1 − σ

)
,

and, applying (3.2) and (3.1), we deduce that

‖D(gt)(x,y) − I‖ <
9ε

1 − σ
<

ε0

2
(3.6)

for all (x, y) ∈ B. Similarly, by (3.4),

‖∂tgt(x, y)‖ ≤ λ2‖∂tg̃t(λ−1x, λy)‖ ≤ λ2

(
4|sinα|
1 − σ

)
<

ε0

2
.(3.7)

Now let Q :X →R be a quadratic form such that A= {u ∈X;Q(u)≤ 1},
and let q : Rd → X and p : Rd → Y be the orthogonal projections. Given
a, b > 0, define h : Rd → Rd by

h(z) = z′ + bga−2Q(z′)(b
−1z′′), where z′ = q(z) and z′′ = p(z).

It is clear that h is a volume-preserving diffeomorphism. The subscript t =
a−2Q(z′) is designed so that t ≤ 1 if and only if z′ ∈ aA. Then h(z) = z if
either z′ /∈ aA or z′′ /∈ bB. Moreover, h(z) = z′ + R̂(z′′) = R(z) if z′ ∈ σaA
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and z′′ ∈ σbB. This proves property (i) in the statement. The hypothesis
diam C < ε0 and (3.5) give

‖h(z) − z‖ = b‖ga−2Q(z′)(b
−1z′′) − b−1z′′‖

< b diamB ≤ diam(aA⊕ bB) < ε0

which is the first half of (ii). Finally, fix τ > 1 such that ‖DQu‖ ≤ τ‖u‖ for
all u ∈ Rd, and assume that a > τb. Clearly,

Dh = q +
b

a2
(∂tg)(DQ)q + (Dg)p.

By (3.6), (3.7), and the fact that ‖q‖ = ‖p‖ = 1 (these are orthogonal projec-
tions),

‖Dh − I‖ ≤ ‖ b

a2
(∂tg)(DQ)q‖ + ‖(Dg − I)p‖

≤ b

a2
‖∂tg‖ τa ‖q‖ + ‖Dg − I‖ ‖p‖ < ε0 .

This completes the proof of property (ii) and the lemma.

The second of our auxiliary lemmas says that the image of a small cylinder
by a C1 diffeomorphism h contains the image by Dh of a slightly shrunk
cylinder. Denote C(y, ρ) = ρC + y, for each y ∈ Rd and ρ > 0.

Lemma 3.5. Let h : Rd → Rd be a C1 diffeomorphism with h(0) = 0,
C ⊂ Rd be a cylinder centered at 0, and 0 < λ < 1. Then there exists r > 0
such that for any C(y, ρ) ⊂ Br(0),

h(C(y, ρ)) ⊃ Dh0(C(0, λρ)) + h(y).

Proof. Fix a norm ‖·‖0 in Rd for which C = {z ∈ Rd; ‖z‖0 < 1}. Such a
norm exists because C is convex and C = −C. Let H = Dh0 and g : Rd → Rd

be such that h = H ◦ g. Since g is C1 and Dg0 = I, we have

g(z) − g(y) = z − y + ξ(z, y) with lim
(z,y)→(0,0)

ξ(z, y)
‖z − y‖0

= 0.

Choose r > 0 such that ‖z‖, ‖y‖ ≤ r ⇒ ‖ξ(z, y)‖0 < (1 − λ)‖z − y‖0 (where
‖·‖ denotes the Euclidean norm in Rd). Now suppose C(y, ρ) ⊂ Br(0), and let
z ∈ ∂C(y, ρ). Then ‖z − y‖0 = ρ and

‖g(z) − g(y)‖0 ≥ ‖z − y‖0 − ‖ξ(z, y)‖0 > λρ.

This proves that the sets g(∂C(y, ρ))− g(y) and λC are disjoint. Applying the
linear map H, we find that h(∂C(y, ρ)) − h(y) and λHC are disjoint. From
topological arguments, h(C(y, ρ)) − h(y) ⊃ λHC.
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The third lemma says that a linear image of a sufficiently thin cylinder
contains a right cylinder with almost the same volume. The idea is shown in
Figure 1. The proof of the lemma is left to the reader.

Lemma 3.6. Let A⊕B be a cylinder centered at the origin, L : Rd → Rd be
a linear isomorphism, A1 = L(A) and B1 = p(L(B)), where p is the orthogonal
projection onto the orthogonal complement of A1. Then, given any 0 < λ < 1,
there exists τ > 1 such that if a > τb,

L
(
aA⊕ bB

)
⊃ λaA1 ⊕ bB1.

aA

bB

λaA1

bB1

bL(B)
L

Figure 1: Truncating a thin cylinder to make it right

3.1.2. Proof of the nested rotations Lemma 3.3. Let f , ε0, and κ be given.
Define σ = (1−κ)1/2d and then take ε > 0 as given by Lemma 3.4. Now let x, n,
Xj , Bj , R̂j , Rj , Lj be as in the statement. We want to prove that {L0, . . . , Ln}
is an (ε0, κ)-realizable sequence of length n at x; cf. Definition 2.10.

In short terms, we use Lemma 3.4 to construct the realization g at each
iterate. The subset U � K, where we have no control over the approximation,
has two sources: Lemma 3.4 gives h = R only on a slightly smaller cylinder σC;
and we need to straighten out (Lemma 3.5) and to “rightify” (Lemma 3.6)
our cylinders at each stage. These effects are made small by consideration of
cylinders that are small and very thin. That is how we get U �K with relative
volume less than κ, independently of n.

For clearness we split the proof into three main steps:

Step 1. Fix any γ > 0. We explain how to find r > 0 as in Definition 2.10.
We consider local charts ϕj : Vj → Rd with ϕj = ϕi(f jx) and Vj = Vi(f jx), as
introduced in Section 2.5. Let r′ > 0 be small enough so that

• f j(Br′(x)) ⊂ V ∗
j for every j = 0, 1 . . . , n;

• the sets f j(Br′(x)) are two-by-two disjoint;

• ‖Dfz − Dff j(x)‖ ‖Rj‖ < γ for every z ∈ f j(Br′(x)) and j = 0, 1 . . . , n.
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We use local charts to translate the situation to Rd. Let fj = ϕj+1◦f ◦ϕ−1
j

be the expression of f in local coordinates near f j(x) and f j+1(x). To simplify
the notation, we suppose that each ϕj has been composed with a translation
to ensure ϕj(f j(x)) = 0 for all j. Up to identification of tangent spaces via
the charts ϕj and ϕj+1, we have Lj = (Dfj)0Rj .

Let A0 ⊂ X0 be any ellipsoid centered at the origin (a ball, for example),
and let Aj = Df j

x(A0) for j ≥ 1. We identify (Tf j(x)M)/Xj with X⊥
j , so that

we may consider Bj ⊂ X⊥
j . In these terms, the assumption Bj = (Df j

x/X0)(B0)
means that Bj is the orthogonal projection of Df j

x(B0) onto X⊥
j .

Fix 0 < λ < 1 close enough to 1 so that λ4n(d−1) > 1 − κ. Let τj > 1 be
associated to the data (Aj ⊕ Bj , (Dfj)0, λ) by Lemma 3.6; if a > τjb then

(Dfj)0(aAj ⊕ bBj) ⊃ λaAj+1 ⊕ bBj+1.(3.8)

Let τ ′
j > 1 be associated to the data (ε0, σ, Xj⊕X⊥

j ,Aj⊕Bj , R̂j) by Lemma 3.4.
Fix a0 > 0 and b0 > 0 such that

a0 > b0λ
−n max{τj , τ

′
j ; 0 ≤ j ≤ n − 1}.(3.9)

For 0 ≤ j ≤ n, define Cj = λ2ja0Aj ⊕ λjb0Bj . For z ∈ Rd and ρ > 0, denote
Cj(z, ρ) = ρCj + z. Applying Lemma 3.5 to the data (fj , Cj , λ) we get rj > 0
such that

C(z, ρ) ⊂ Brj
(0) ⇒ fj(Cj(z, ρ)) ⊃ (Dfj)0(Cj(0, λρ)) + fj(z).(3.10)

Now take r > 0 such that r < r′ and, for each j = 1, . . . , m − 1,

fj−1 . . . f0(Br(0)) ⊂ Brj
(0).(3.11)

Step 2. Let U be fixed. We find g ∈ U(f, ε0) and K ⊂ U as in Defini-
tion 2.10. We take advantage of Lemma 2.13: it suffices to consider open sets
of the form U = ϕ−1

0 (C0(y0, ρ)), because the cylinders C0(y0, ρ) contained in
Br(0) constitute a Vitali covering.

We claim that, for each j = 0, 1, . . . , m − 1, and every t ∈ [0, ρ],

Cj(yj , t) ⊂ fj−1 . . . f0(Br(0))(3.12)

and

fj(Cj(yj , t)) ⊃ Cj+1(yj+1, t).(3.13)

For j = 0, relation (3.12) means C0(y0, t) ⊂ Br(0), which is true by assumption.
We proceed by induction. Assume (3.12) holds for some j ≥ 0. Then, by (3.11)
and (3.10),

fj(Cj(yj , t)) ⊃ (Dfj)0(Cj(0, λt)) + yj+1

= (Df0)0
[
(λ2j+1ta0Aj) ⊕ (λj+1tb0Bj)

]
+ yj+1.
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Relation (3.9) implies that λ2j+1ta0 > τj(λj+1tb0). So, we may use (3.8) to
conclude that

fj(Cj(yj , t)) ⊃ (λ2j+2ta0Aj) ⊕ (λj+1tb0B0) + yj+1 = Cj+1(yj+1, t).

This proves that (3.13) holds for the same value of j. Moreover, it is clear that
if (3.13) holds for all 0 ≤ i ≤ j then (3.12) is true with j + 1 in the place of j.
This completes the proof of (3.12) and (3.13).

Condition (3.9) also implies λ2ja0 > τ ′
j (λjb0). So, we may use Lemma 3.4

(centered at yj) to find a volume-preserving diffeomorphism hj : Rd → Rd such
that

(1) hj(z) = z for all z /∈ Cj(yj , ρ) and hj(z) = yj + Rj(z − yj) for all z ∈
Cj(yj , σρ) and, consequently,

hj(Cj(yj , σρ)) = Cj(yj , σρ) and hj(Cj(yj , ρ)) = Cj(yj , ρ).(3.14)

(1) ‖hj(z) − z‖ < ε0 and ‖(Dhj)z − I‖ < ε0 for all z ∈ Rd.

Rj is the linear map Tf j(x) → Tf j+1(x) in the statement of the theorem or,
more precisely, its expression in local coordinates ϕj . Let

Sj = ϕ−1
j ({z; h(z) �= z}) ⊂ M.

By Property 1 above and the inclusion (3.12),

Sj ⊂ ϕ−1
j (fj−1 . . . f0(Br(0))) = f j(Br(x)).

In particular, the sets Sj have pairwise disjoint closures. This permits us to
define a diffeomorphism g ∈ Diff1

µ(M) by

g =
{

ϕ−1
j+1 ◦ (fj ◦ hj) ◦ ϕj on Sj for each 0 ≤ j ≤ n − 1

f outside S0 � · · · � Sn−1.

Property 2 above gives that f−1 ◦ g ∈ U(id, ε0), and so g ∈ U(f, ε0).

Step 3. Now we define K ⊂ U and check the conditions (i)–(iii) in
Definition 2.10. By construction, hj = id outside Cj(yj , ρ), and so

ϕ−1
j+1 ◦ (fj ◦ hj) ◦ ϕj = f outside ϕ−j(Cj(yj , ρ)).

Using (3.13) and (3.14), we have ϕ−j(Cj(yj , ρ)) ⊂ f j(U) for all 0 ≤ j ≤ n− 1.
Recall that U = ϕ−1

0 (C0(y0, ρ)). Hence, g = j outside the disjoint union
�n−1

j=0 f j(U). This proves condition (i).

Define K = g−n(ϕ−1
n (Cn(yn, σρ))). Using (3.13) and (3.14) in the same

way as before, we see that K ⊂ U . Also, since all the maps f , g, hj , ϕj are
volume-preserving, and all the cylinders Cj(yj , ρ), Cj(yj , σρ), are right,

volK
volU

=
vol(σρ λ2naAn ⊕ σρ λnbBn)

vol(ρaA0 ⊕ ρbB0)
=

(λ2nσ)d−2 volAn (λnσ)2 volBn

volA0 volB0
.
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Notice also that volAn volBn = volA0 volB0, since the cylinders

Dfn
x (A0 ⊕ B0)

and An ⊕ Bn differ by a sheer. So, the right-hand side is equal to λ2n(d−1)σd.
Now, this expression is larger than 1−κ, because we have chosen σ = (1−κ)1/2

and λ > (1 − κ)1/4n(d−1). This gives condition (ii).
Finally, let z ∈ K. Recall that Lj = Dff j(x)Rj . Moreover, (Dhj)ϕjgj(z)

= Rj (we continue to identify Rj with its expression in the local chart ϕj),
because

gj(z) ∈ g−n+j(ϕ−1
n (Cn(yn, σρ))) ⊂ ϕ−1

j (Cj(yj , σρ)).

Therefore, writing zj = hj(ϕj(gj(z))) for simplicity,∥∥Dggj(z) − Lj

∥∥ =
∥∥D(fj)zj

Rj − D(fj)0Rj

∥∥ ≤
∥∥D(fj)zj

− D(fj)0
∥∥∥∥Rj

∥∥ < γ.

The last inequality follows from our choice of r′. This gives condition (iii) in
Definition 2.10. The proof of Lemma 3.3 is complete.

Remark 3.7. This last step explains why it is technically more convenient
to require ‖Dggj(z) − Lj‖ < γ, rather than Dggj(z) = Lj , when defining realiz-
able sequence.

3.2. Proof of the directions interchange Proposition 3.1. First, we define
some auxiliary constants. Fix 0 < κ′ < 1

2κ. Let ε1 > 0, depending on f , ε0

and κ′, be given by Lemma 3.2. Let ε2 > 0, depending on f , ε0 and κ, be
given by Lemma 3.3. Take ε = min{ε1, ε2}. Fix α > 0 such that

√
2 sinα < ε.

Take

K ≥ (sinα)−2 and K ≥ max
{
‖Dfx‖/m(Dfx); x ∈ M

}
.(3.15)

Let β > 0 be such that

8
√

2 K sinβ < ε sin6 α.(3.16)

Finally, assume m ∈ N satisfies m ≥ 2π/β.

Let y ∈ M be a nonperiodic point and TyM = E ⊕ F be a splitting as in
the hypothesis:

‖Dfm
y |F ‖

m(Dfm
y |E)

≥ 1
2

.(3.17)

We write Ej = Df j
y (E) and Fj = Df j

y (F ) for j = 0, 1, . . . , m. The proof is
divided in three cases. Lemma 3.2 suffices for the first two; in the third step
we use the full strength of Lemma 3.3.

First case. Suppose there exists 
 ∈ {0, 1, . . . , m} such that

�(E�, F�) < α.(3.18)
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Fix 
 as above. Take unit vectors ξ ∈ E� and η ∈ F� such that �(ξ, η) < α.
Let Y = Rξ ⊕ Rη and X = Y ⊥. Let R̂ : Y → Y be a rotation such that
R̂(ξ) = η. Then ‖R̂ − I‖ =

√
2 sin�(ξ, η) < ε. Let R : Tf�(y)M → Tf�(y)M be

such that R preserves both X and Y , R|X = I and R|Y = R̂.
Consider first 
 < m. By Lemma 3.2, the length 1 sequence {Dff�(y)R}

is (κ′, ε0)-realizable at f �(y). Using part 2 of Lemma 2.11 we conclude that

{L0, . . . Lm−1} = {Dfy, . . . , Dff�−1(y), Dff�(y)R, Dff�+1(y), . . . , Dffm−1(y)}

is a (κ, ε0)-realizable sequence of length m at y. The case 
 = m is similar.
By Lemma 3.2, the length 1 sequence {R Dffm−1(y)} is (κ′, ε0)-realizable at
fm−1(y). Then, by part 2 of Lemma 2.11,

{L0, . . . Lm−1} = {Dfy, . . . , Dffm−2(y), R Dffm−1(y)}

is a (κ, ε0)-realizable sequence of length m at y. In either case, Lm−1 . . . L0

sends the vector v = Df−�(ξ) ∈ E0 to a vector w collinear to Dfm−�(η) ∈ Fm.

Second case. Assume there exist k, 
 ∈ {0, . . . , m}, with k < 
, such that

‖Df �−k
fk(y)|Fk

‖
m(Df �−k

fk(y)|Ek
)

> K.(3.19)

Fix k and 
 as above. Let ξ ∈ Ek, η ∈ Fk be unit vectors such that

‖Df �−k(ξ)‖ = m(Df �−k|Ek
) and ‖Df �−k(η)‖ = ‖Df �−k|Fk

‖

(Df �−k is always meant at the point fk(y)). Define also unit vectors

ξ′ =
Df �−k(ξ)
‖Df �−k(ξ)‖ ∈ E� and η′ =

Df �−k(η)
‖Df �−k(η)‖ ∈ F� .

Let ξ1 = ξ + (sinα)η. Then θ = �(ξ, ξ1) ≤ α. In particular, if R̂ : Rξ ⊕ Rη →
Rξ ⊕ Rη is a rotation of angle ±θ, sending Rξ to Rξ1 then

‖R̂ − I‖ =
√

2 sin θ < ε.

Let Y = Rξ ⊕ Rη and X = Y ⊥. Let R : Tfk(y)M → Tfk(y)M be such that
R preserves both X and Y , with R|X = I and R|Y = R̂. By Lemma 3.2, the
length 1 sequence {Dffk(y)R} is (κ′, ε0)-realizable at fk(y). Let η′1 = sξ′ + η′,
where

s =
1

sinα

‖Df �−k(ξ)‖
‖Df �−k(η)‖ =

1
sinα

m(Df �−k|Ek
)

‖Df �−k|Fk
‖ .

Then the vectors Df �−kξ1 and η1 are collinear. Besides, s < 1/(K sinα) <

sinα, because of (3.15) and (3.19). Hence, θ′ = �(η′1, η) < α. Then, as
before, there exists R′ : Tf�(y)M → Tf�(y)M such that R′(Rη′1) = Rη and
{R′ Dff�−1(y)} is a (κ′, ε0)-realizable sequence of length 1 at f �−1(y).
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Notice that (3.15) and (3.19) imply 
 − 1 > k. Then we may define a
sequence {L0, . . . , Lm−1} of linear maps as follows:

Lj =


Dffk(y) R for j = k

R′ Dff�−1(y) for j = 
 − 1
Dff j(y) for all other j.

By parts 1 and 2 of Lemma 2.11, this is a (κ, ε0)-realizable sequence of length
m at y. By construction, Lm−1 . . . L0 sends v = Df−k(ξ) ∈ E0 to a vector w

collinear to Dfm−�(η′) ∈ Fm.

Third case. We suppose that we are not in the previous cases, that is,
we assume

for every j ∈ {0, 1, . . . , m}, �(Ej , Fj) ≥ α,(3.20)

and

for every i, j ∈ {0, . . . , m} with i < j,
‖Df j−i

f i(y)|Fi
‖

m(Df j−i
f i(y)|Ei

)
≤ K.(3.21)

We now use the assumption (3.17), and the choice of m in (3.16). Take unit
vectors ξ ∈ E0 and η ∈ F0 such that ‖Dfmξ‖ = m(Dfm|E0) and ‖Dfmη‖ =
‖Dfm|F0‖ (Dfm is always computed at y). Let also η′ = Dfm(η)/‖Dfm(η)‖
∈ Fm.

Define G0 = E0 ∩ ξ⊥ and Gj = Df j
y (G0) ⊂ Ej for 0 < j ≤ m. Dually,

define Hm = Fm∩η′⊥ and Hj = Df j−m(Hm) ⊂ Fj for 0 ≤ j < m. In addition,
consider unit vectors vj ∈ Ej ∩ G⊥

j and wj ∈ Fj ∩ H⊥
j for 0 ≤ j ≤ m. These

vectors are uniquely defined up to a choice of sign, and v0 = ±ξ and wm = ±η′.
See Figure 2.

 

E0 Ej Em

F0 Fj Fm

G0 Gj Gm

H0

Hj Hm

ξ = v0

vj

vm

w0 wj η′ = wm

Df j

Df j−m

Figure 2: Setup for application of the nested rotations lemma
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For j = 0, . . . , m, define

Xj = Gj ⊕ Hj and Yj = Rvj ⊕ Rwj .

The spaces Xj are invariant: Dff j(y)(Xj) = Xj+1 (the Yj are not). We
shall prove, using (3.20) and (3.21), that the maps Df j

y/X0 : TyM/X0 →
Tf j(y)M/Xj do not distort angles too much:

Lemma 3.8. For every j = 0, 1, . . . , m,

‖Df j
y/X0‖

m(Df j
y/X0)

≤ 8K

sin6 α
.

Let us postpone the proof of this fact for a while, and proceed prepar-
ing the application Lemma 3.3. Let B0 ⊂ (TyM)/X0 be a ball and Bj =
(Df j

y/X0)(B0) for 0 < j ≤ m. Since mβ ≥ 2π, it is possible to choose numbers
θ0, . . . , θm−1 such that |θj | ≤ β for all j and

m−1∑
j=0

θj = �(v0 + X0, w0 + X0).(3.22)

Let Pj : (TyM)/X0 → (TyM)/X0 be the rotation of angle θj . Define linear
maps R̂j : (Tf j(y)M)/Xj → (Tf j(y)M)/Xj by

R̂j =
(
Df j

y/X0

)
Pj

(
Df j

y/X0

)−1
.

Since Pj preserves the ball B0, we have R̂j(Bj) = Bj for all j. Moreover,

‖R̂j − I‖ ≤ ‖Df j
y/X0‖

m(Df j
y/X0)

‖Pj − I‖ ≤ 8K

sin6 α

√
2 sinβ < ε,

by Lemma 3.8, the relation ‖Pj − I‖ ≤
√

2 sinβ, and our choice (3.16) of β.

Applying Lemma 3.3 to these data (ε0, κ, x = y, n = m, Xj ,Bj , R̂j) we ob-
tain an (ε0, κ)-realizable sequence {L0, . . . , Lm−1} at the point y, with Lj |Xj

=
Dff j(y)|Xj

and

Lj/Xj = (Dff j(y)/Xj) R̂j = (Df j+1
y /Xj)Pj (Df j

y/X0)−1.

Let L = Lm−1 . . . L0. Then L/X0 = (Dfm
y /X0)Pm−1 . . . P0. In particular, by

(3.22),
L(v0 + X0) = (Dfm

y /X0)(w0 + X0) = Dfm
y (w0) + Xm .

Recall that Xm = Gm ⊕ Hm by definition. Then we may write

L(v0) = Dfm
y (w0) + um + u′

m

with um ∈ Gm and u′
m ∈ Hm. Let u0 = (Dfm

y )−1(um) ∈ G0 ⊂ X0 ∩ E0.
Since L equals Dfm

y on X0, we have L(u0) = um. This means that the vector
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v = v0 −u0 ∈ E0 is sent by L to the vector Dfm
y (w0)+u′

m ∈ Fm. This finishes
the third and last case of Proposition 3.1.

Now we are left to give the:

Proof of Lemma 3.8. Recall that Xj = Gj ⊕ Hj , Gj ⊂ Ej and Hj ⊂ Fj ,
vj ∈ Ej , wj ∈ Fj , and vj ⊥ Gj , wj ⊥ Hj . Hence, by (3.20),

�(Xj , vj) = �(Hj , vj) ≥ �(Fj , Ej) ≥ α and

�(Xj ⊕ Rvj , wj) = �(Rvj ⊕ Gj , wj) ≥ �(Ej , Fj) ≥ α.

Using Lemma 2.6 with A = Xj , B = Rvj , C = Rwj , we deduce the following
lower bound for the angle between the spaces Xj and Yj = Rvj ⊕ Rwj :

sin�(Xj , Yj) ≥ sin�(Xj , vj) sin�(Rvj ⊕ Xj , wj) ≥ sin2 α.

Let πj : Yj → (Tf j(y)M)/Xj be the canonical map πj(w) = w + Xj . Then πj

is an isomorphism, ‖πj‖ = 1 and

‖π−1
j ‖ = 1/ sin�(Yj , Xj) ≤ 1/ sin2 α(3.23)

(the quotient space has the norm that makes X⊥
j � w �→ w +Xj an isometry).

Now let pj : Tfj(y)M → Yj be the projection onto Yj associated to the
splitting Tfj(y)M = Xj ⊕ Yj . Let Dj : Yj → Yj+1 be given by Dj = pj+1 ◦
(Dff j(y)|Yj

). Define

D(j) : Y0 → Yj by D(j) = Dj−1 ◦ · · · ◦ D0 = pj ◦ (Df j
y |Y0).

We claim that the following inequalities hold:

1
2K

<
‖D(j)(w0)‖
‖D(j)(v0)‖

≤ K for every j with 0 ≤ j ≤ m.(3.24)

To prove this, consider the matrix of Dj relative to bases {vj , wj} and
{vj+1, wj+1}:

Dj =
(

aj 0
0 bj

)
.

Then ‖D(j)(v0)‖ = |aj−1 . . . a0| and ‖D(j)(w0)‖ = |bj−1 . . . b0| , since vj and wj

are unit vectors. Moreover, for 0 ≤ i < j ≤ m we have

|aj−1 . . . ai| = ‖pj ◦ Df j−i
f i(y)(vi)‖ = ‖pi ◦ Df

−(j−i)
f j(y) (vj)‖−1,

|bj−1 . . . bi| = ‖pj ◦ Df j−i
f i(y)(wi)‖ = ‖pi ◦ Df

−(j−i)
f j(y) (wj)‖−1.

Recall that vs ∈ Es and ws ∈ Fs for all s. When restricted to Es (or Fs), the
map ps is the orthogonal projection to the direction of vs (or ws). In particular,
‖pi|Ei

‖ = ‖pj |Fj
‖ = 1 and so

|aj−1 . . . ai| ≥ ‖Df
−(j−i)
f j(y) |Ej

‖−1 = m(Df j−i
f i(y)|Ei

)
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and
|bj−1 . . . bi| ≤ ‖Df j−i

f iy |Fi
‖ .

Using (3.21), we obtain

|bj−1 . . . bi|
|aj−1 . . . ai|

≤ K for all 0 ≤ i ≤ j ≤ m.(3.25)

Taking i = 0 gives the upper inequality in (3.24). For the same reasons, and
the definitions of v0 = ξ and wm = η′ = Dfm

y (η)/‖Dfm
y (η)‖, we also have

|am−1 . . . a0| ≤ ‖Dfm
y (v0)‖ = ‖Dfm

y (ξ)‖ = m(Dfm|E0),

|bm−1 . . . b0| ≥ ‖Df−m
fm(y)(wm)‖−1 = ‖Dfm

y (η)‖ = ‖Dfm|F0‖ .

Now (3.17) translates into

|bm−1 . . . b0|
|am−1 . . . a0|

>
1
2
.

Combining this inequality and (3.25), with i, j replaced with j, m, we find

|bj−1 . . . b0|
|aj−1 . . . a0|

=
|bm−1 . . . b0|
|am−1 . . . a0|

/
|bm−1 . . . bj |
|am−1 . . . aj |

>
1/2
K

,

which is the remaining inequality in (3.24).
Now, combining Lemma 2.8 with (3.24) and �(vs, ws) ≥ α, we get

‖D(j)‖
m(D(j))

≤ 8K

sin2 α
.

Moreover, Df j
y/X0 = πj ◦ D(j) ◦ π−1

0 . So, using the relation (3.23),

‖Df j
y/X0‖

m(Df j
y/X0)

≤ ‖πj‖
m(πj)

· ‖D(j)‖
m(D(j))

· ‖π0‖
m(π0)

≤ 8K

sin6 α
.

This finishes the proof of Lemma 3.8.

The proof of Proposition 3.1 is now complete.

4. Proofs of Theorems 1 and 2

Let us define some useful invariant sets. Given f ∈ Diff1
µ(M), let O(f) be

the set of the regular points, in the sense of the theorem of Oseledets. Given
p ∈ {1, . . . , d − 1} and m ∈ N, let Dp(f, m) be the set of points x such that
there is an m-dominated splitting of index p along the orbit of x. That is,
x ∈ Dp(f, m) if and only if there exists a splitting TfnxM = En ⊕ Fn (n ∈ Z)
such that for all n ∈ Z, dimEn = p, Dffnx(En) = En+1, Dffnx(Fn) = Fn+1

and
‖Dfm

fn(x)|Fn
‖

m(Dfm
fn(x)|En

)
≤ 1

2
.
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By Section 2.2, Dp(f, m) is a closed set. Let

Γp(f, m) = M � Dp(f, m),

Γ�
p(f, m) =

{
x ∈ Γp(f, m) ∩ O(f); λp(f, x) > λp+1(f, x)

}
,

Γ∗
p(f, m) =

{
x ∈ Γ�

p(f, m); x is not periodic
}
.

Define also

Γp(f,∞) =
⋂

m∈N
Γp(f, m) and Γ�

p(f,∞) =
⋂

m∈N
Γ�

p(f, m).

It is clear that all these sets are invariant under f .

Lemma 4.1. For every f and p, the set Γ�
p(f,∞) contains no periodic

points of f . In other words,
⋂

m∈N
(
Γ�

p(f, m) � Γ∗
p(f, m)

)
= ∅.

Proof. Suppose that x ∈ O(f) is periodic, say, of period n, and λp(f, x) >

λp+1(f, x). The eigenvalues of Dfn
x are ν1, . . . , νd, with |νi| = enλi(f,x). Let E

(resp. F ) be the sum of the eigenspaces of Dfn
x associated to the eigenvalues

ν1, . . . , νp (resp. νp+1, . . . , νd). Then the splitting TxM = E ⊕ F is Dfn
x -

invariant. Spreading it along the orbit of x, we obtain a dominated splitting.
That is, x ∈ Dp(f, m) for some m ∈ N, and so x �∈ Γ�

p(f,∞).

4.1. Lowering the norm along an orbit segment. Recall that Λp(f, x) =
λ1(x) + · · · + λp(x) for each p = 1, . . . , d.

Proposition 4.2. Let f ∈ Diff1
µ(M), ε0 > 0, κ > 0, δ > 0 and p ∈

{1, . . . , d − 1}. Then, for every sufficiently large m ∈ N, there exists a mea-
surable function N : Γ∗

p(f, m) → N with the following properties: For almost
every x ∈ Γ∗

p(f, m) and every n ≥ N(x) there exists an (ε0, κ)-realizable se-

quence {L̂(x,n)
0 , . . . , L̂

(x,n)
n−1 } at x of length n such that

1
n

log ‖∧p(L̂(x,n)
n−1 . . . L̂

(x,n)
0 )‖ ≤ Λp−1(f, x) + Λp+1(f, x)

2
+ δ.

Proof. Fix f , ε0, κ, δ and p. For clearness, we divide the proof into two
parts:

Part 1. Definition of N(·) and the sequence L̂
(x,n)
j . Fix f , ε0, κ, δ and p.

Assume m ∈ N is sufficiently large so that the conclusion of Proposition 3.1
holds for f , ε0 and 1

2κ (in the place of κ). To simplify the notation, let Γ =
Γ∗

p(f, m). We may suppose that µ(Γ) > 0; otherwise there is nothing to prove.
Consider the splitting TΓM = E ⊕ F , where E is the sum of the Oseledets
subspaces corresponding to the first p Lyapunov exponents λ1 ≥ · · · ≥ λp and
F is the sum of the subspaces corresponding to the other exponents λp+1 ≥
· · · ≥ λd. This makes sense since λp > λp+1 on Γ. Let A ⊂ Γ be the set of
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points y such that the nondomination condition (3.17) holds. By definition of
Γ = Γ∗

p(f, m),

Γ =
⋃
n∈Z

fn(A).(4.1)

Let λ∧p
i (x), 1 ≤ i ≤

(
d
p

)
, denote the Lyapunov exponents of the cocycle

∧p(Df) over f , in nonincreasing order. Let Vx denote the Oseledets subspace
associated to the upper exponent λ∧p

1 (x) and let Hx be the sum of all other
Oseledets subspaces. This gives us a splitting ∧p(TM) = V ⊕H. By Proposi-
tion 2.1,

λ∧p
1 (x) = λ1(x) + · · · + λp−1(x) + λp(x),

λ∧p
2 (x) = λ1(x) + · · · + λp−1(x) + λp+1(x).

If x ∈ Γ then λp(x) > λp+1(x) and so λ∧p
1 (x) > λ∧p

2 (x). That is, the subspace
Vx is one-dimensional.

For almost every x ∈ Γ, Oseledets’ theorem gives Q(x) ∈ N such that for
all n ≥ Q(x), we have:

• 1
n log ‖∧p(Dfn

x )v‖
‖v‖ < λ∧p

1 (x) + δ for every v ∈ Vx � {0};

• 1
n log ‖∧p(Dfn

x )w‖
‖w‖ < λ∧p

2 (x) + δ for every w ∈ Hx � {0};

• 1
n log sin�(Vfnx, Hfnx) > −δ.

For q ∈ N, let Bq = {x ∈ Γ; Q(x) ≤ q}. Then Bq ↑ Γ; that is, the Bq form a
nondecreasing sequence and their union is a full measure subset of Γ. Define
C0 = ∅ and

Cq =
⋃
n∈Z

fn(A ∩ f−m(Bq)).(4.2)

Since f−m(Bq) ↑ Γ and the definition (4.1), we have Cq ↑ Γ. To prove Propo-
sition 4.2 we must define the function N on Γ. We are going to define it on
each of the sets Cq � Cq−1 separately. From now on, let q ∈ N be fixed.

We need the following recurrence result, proved in [4, Lemma 3.12].

Lemma 4.3. Let f ∈ Diff1
µ(M). Let A ⊂ M be a measurable set with

µ(A) > 0, and let Γ = ∪n∈Zfn(A). Fix any γ > 0. Then there exists a
measurable function N0 : Γ → N such that for almost every x ∈ Γ, and for all
n ≥ N0(x) and t ∈ (0, 1), there exists 
 ∈ {0, 1, . . . , n} such that t− γ ≤ 
/n ≤
t + γ and f �(x) ∈ A.

Let c be a strict upper bound for log ‖∧p(Df)‖ and γ = min{c−1δ, 1/10}.
Using (4.2) and Lemma 4.3, we find a measurable function N

(q)
0 : Cq → N such
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that for almost every x ∈ Cq, every n ≥ N
(q)
0 (x) and every t ∈ (0, 1) there is


 ∈ {0, 1, . . . , n} with |
/n − t| < γ and f �x ∈ A ∩ f−m(Bq). We define N(x)
for x ∈ Cq � Cq−1 as the least integer such that

N(x) ≥ max{N (q)
0 (x), 10Q(x), mγ−1, δ−1 log[4/ sin�(Vx, Hx)]}.

Now fix a point x ∈ Cq � Cq−1 and n ≥ N(x). We will now construct the
sequence {L̂(x,n)

j }. Since n ≥ N
(q)
0 (x), there exists 
 ∈ N such that∣∣∣∣ 


n
− 1

2

∣∣∣∣ < γ and y = f �(x) ∈ A ∩ f−m(Bq).

Since y ∈ A, where the nondomination condition (3.17) holds, Proposition 3.1
gives a sequence {L0, . . . , Lm−1} which is (ε0,

1
2κ)-realizable , such that there

are nonzero vectors v0 ∈ Ey, w0 ∈ Ffm(y) for which

Lm−1 . . . L0(v0) = w0 .

We form the sequence {L̂(x,n)
0 , . . . , L̂

(x,n)
n−1 } of length n by concatenating

{Dff i(x); 0 ≤ i < 
}, {L0, . . . , Lm−1}, {Dff i(x); 
 + m ≤ i < m}.

According to parts 1 and 2 of Lemma 2.11, the concatenation is an (ε0, κ)-
realizable sequence at x.

Part 2. Estimation of ‖∧p(L̂(x,n)
n−1 . . . L̂

(x,n)
0 )‖. Write ∧p(L̂(x,n)

n−1 . . . L̂
(x,n)
0 ) =

D1LD0, with D0 = ∧p(Df �
x), D1 = ∧p(Dfn−�−m

f�+m(x)), and L = ∧p(Lm−1 . . . L0).
The key observation is:

Lemma 4.4. The map L : ∧p(TyM) → ∧p(Tfm(y)M) satisfies L(Vy) ⊂
Hfm(y).

Proof. Proposition 2.1 describes the spaces V and H. Let z ∈ Γ and
consider a basis {e1(z), . . . ed(z)} of TzM such that

ei(x) ∈ Ej
x for dimE1

x + · · · + dimEj−1
x < i ≤ dimE1

x + · · · + dimEj
x.

Then Vz is the space generated by e1(z) ∧ · · · ∧ ep(z) and Hz is generated by
the vectors ei1(z) ∧ · · · ∧ eip

(z) with 1 ≤ i1 < · · · < ip ≤ d, ip > p. Also notice
that {e1(z), . . . , ep(z)} and {ep+1(z), . . . , ed(z)} are bases for the spaces Ez and
Fz, respectively. Consider the vectors v0 ∈ Ey and w0 = L(v0) ∈ Ffmy, where
L = Lm−1 . . . L0. There is ν ∈ {1, . . . , p} such that

{v0, e1(y), . . . , eν−1(y), eν+1(y), . . . , ep(y)}

is a basis for Ey. Therefore Vy is generated by the vector

v0 ∧ e1(y) ∧ · · · ∧ eν−1(y) ∧ eν+1(y) ∧ · · · ∧ ep(y),



LYAPUNOV EXPONENTS 1457

which is mapped by L = ∧p(L) to

w0 ∧ Le1(y) ∧ · · · ∧ Leν−1(y) ∧ Leν+1(y) ∧ · · · ∧ Lep(y),(4.3)

Write w0 as a linear combination of vectors ep+1(fm(y)), . . . , ed(fm(y)) and
write each Lei(y) as a linear combination of vectors e1(fm(y)), . . . , ed(fm(y)).
Substituting in (4.3), we get a linear combination of ei1(fm(y))∧· · ·∧eip

(fm(y))
where e1(fm(y))∧· · ·∧ep(fm(y)) does not appear. This proves that the vector
in (4.3) belongs to Hfm(y).

To carry on the estimates, we introduce a more convenient norm: For x0,
x1 ∈ Γ we represent a linear map T : ∧p(Tx0M) → ∧p(Tx1M) by its matrix

T =
(

T++ T+−

T−+ T−−

)
with respect to the splittings Tx0M = Vx0 ⊕Hx0 and Tx1M = Vx1 ⊕Hx1 . Then
we define

‖T‖max = max
{
‖T++‖, ‖T+−‖, ‖T−+‖, ‖T−−‖

}
.

The following elementary lemma relates this norm to the original one ‖T‖ (that
comes from the metric in ∧p(TΓM) ).

Lemma 4.5. Let θx0 = �(Vx0 , Hx0) and θx1 = �(Vx1 , Hx1). Then:

(1) ‖T‖ ≤ 4 (sin θx0)−1 ‖T‖max;

(2) ‖T‖max ≤ (sin θx1)−1 ‖T‖.

Proof. Let v = v+ + v− ∈ Vx0 ⊕ Hx0 . We have ‖v∗‖ ≤ ‖v‖/ sin θx0 for
∗ = + and ∗ = −. Thus,

‖Tv‖ ≤ ‖T++v+‖ + ‖T++v−‖ + ‖T−−v+‖ + ‖T−−v−‖ ≤ 4‖T‖max‖v‖/ sin θx0 .

This proves part 1. The proof of part 2 is similar. Let v+ ∈ Vx0 . Its image
splits as Tv+ = T++v+ + T−+v+ ∈ Vx1 ⊕ Hx1 . Hence,

‖T ∗+v+‖ ≤ ‖Tv+‖(sin θx1)
−1 ≤ ‖T‖ ‖v+‖(sin θx1)

−1

for ∗ = + and ∗ = −. Together with a corresponding estimate for T ∗−v−,
v− ∈ Hx0 , this gives part 2.

For the linear maps we were considering, the matrices have the form:

Di =
(

D++
i 0
0 D−−

i

)
, i = 0, 1, and L =

(
0 L+−

L−+ L−−

)
:

D+−
i = 0 = D−+

i because V and H are ∧p(Df)-invariant, and L++ = 0
because of Lemma 4.4. Then

∧p(L̂n−1 . . . L̂0) =
(

0 D++
1 L+−D−−

0

D−−
1 L−+D++

0 D−−
1 L−−D−−

0

)
.(4.4)
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Lemma 4.6. For i = 0, 1, x ∈ Cq � Cq−1 and n ≥ N(x),

log ‖D++
i ‖ < 1

2n(λ∧p
1 (x) + 5δ) and log ‖D−−

i ‖ < 1
2n(λ∧p

2 (x) + 5δ).

Proof. Since 
 > (1
2 − γ)n > 1

10n ≥ 1
10N(x) ≥ Q(x), we have

log ‖D++
0 ‖ = log ‖∧p(Df �

x)|Vx
‖ < 
(λ∧p

1 (x) + δ),

log ‖D−−
0 ‖ = log ‖∧p(Df �

x)|Hx
‖ < 
(λ∧p

2 (x) + δ).

Let λ be either λ∧p
1 (x) or λ∧p

2 (x). Using γλ < γc ≤ δ and γ < 1, we find


(λ + δ) < n(1
2 + γ)(λ + δ) < n(1

2λ + 1
2δ + δ + δ) = 1

2n(λ + 5δ).

This proves the case i = 0. We have n − 
 − m > n(1
2 − γ) − nγ > 1

10n ≥
Q(x) ≥ q. Also f �(x) ∈ f−m(Bq), and so Q(f �+m(x)) ≤ q. Therefore

log ‖D++
1 ‖ = log ‖∧p(Dfn−�−m

f�+mx )|Vf�+mx
‖ < (n − 
 − m)(λ∧p

1 (x) + δ),

log ‖D−−
1 ‖ = log ‖∧p(Dfn−�−m

f�+mx )|Hf�+mx
‖ < (n − 
 − m)(λ∧p

2 (x) + δ).

As before, (n − 
 − m)(λ + δ) < n(1
2 + γ)(λ + δ) 1

2n(λ + 5δ). This proves the
case i = 1.

Lemma 4.7. log ‖L‖max < 2nδ.

Proof. Since the sequence {L0, . . . , Lm−1} is realizable, each Lj is close to
the value of Df at some point. Therefore we may assume that log ‖∧p(Lj)‖ < c.
In particular, log ‖L‖ < mc ≤ ncγ ≤ nδ. We have 
 + m ≥ n(1

2 − γ) ≥ 1
10n ≥

Q(x). So log[1/ sin�(Vf�+mx, Hf�+mx)] < δ and, by part 2 of Lemma 4.5,
log ‖L‖max < 2nδ.

Using Lemmas 4.6 and 4.7, we bound each of the entries in (4.4):

log ‖D++
1 L+−D−−

0 ‖ < 1
2n(λ∧p

1 (x) + λ∧p
2 (x) + 14δ),

log ‖D−−
1 L−+D++

0 ‖ < 1
2n(λ∧p

1 (x) + λ∧p
2 (x) + 14δ),

log ‖D−−
1 L−−D−−

0 ‖ < 1
2n(2λ∧p

2 (x) + 14δ).

The third expression is smaller than either of the first two, and so we get

log ‖∧p(L̂n−1 . . . L̂0)‖max < n
(λ∧p

1 (x) + λ∧p
2 (x)

2
+ 7δ

)
.

Therefore, by part 1 of Lemma 4.5 and log[4/ sin�(Vx, Hx)] < nδ,

log ‖∧p(L̂n−1 . . . L̂0)‖ < n
(λ∧p

1 (x) + λ∧p
2 (x)

2
+ 8δ

)
.

We also have λ∧p
1 (x) + λ∧p

2 (x) = Λp−1(f, x) + Λp+1(f, x). This proves Propo-
sition 4.2 (replace δ with δ/8 in the proof).

4.2. Globalization. The following proposition renders global the construc-
tion of Proposition 4.2:
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Proposition 4.8. Let f ∈ Diff1
µ(M), ε0 > 0, p ∈ {1, . . . , d − 1} and

δ > 0. Then there exist m ∈ N and a diffeomorphism g ∈ U(f, ε0) that equals
f outside the open set Γp(f, m) such that∫

Γp(f,m)
Λp(g, x) dµ(x) < δ +

∫
Γp(f,m)

Λp−1(f, x) + Λp+1(f, x)
2

dµ(x).

We need some preparatory terminology:

Definition 4.9. Let f ∈ Diff1
µ(M). An f-tower (or simply tower) is a

pair of measurable sets (T, Tb) such that there is a positive integer n, called
the height of the tower, such that the sets Tb, f(Tb), . . . , fn−1(Tb) are pairwise
disjoint and their union is T . Now, Tb is called the base of the tower.

An f-castle (or simply castle) is a pair of measurable sets (Q, Qb) such
that there exists a finite or countable family of pairwise disjoint towers (Ti, Tib)
such that Q =

⋃
Ti and Qb =

⋃
Tib and Qb is called the base of the castle.

A castle (Q, Qb) is a sub-castle of a castle (Q′, Q′
b) if Qb ⊂ Q′

b and for
every point x ∈ Qb, the towers of (Q, Qb) and (Q′, Q′

b) that contain x have
equal heights. In particular, Q ⊂ Q′.

We shall frequently omit reference to the base of a castle Q in our notation.

Definition 4.10. Given f ∈ Diff1
µ(M) and a positive measure set A ⊂ M ,

consider the return time τ : A → N defined by τ(x) = inf{n ≥ 1; fn(x) ∈ A}.
If we denote An = τ−1(n) then Tn = An ∪ f(An) ∪ · · · ∪ fn−1(An) is a tower.
Consider the castle Q, with base A, given by the union of the towers Tn. This
is called the Kakutani castle with base A.

Note that Q =
⋃

n∈Z fn(A) mod 0; in particular the set Q is invariant.

Proof of Proposition 4.8. Let f , ε0, p and δ be given. For simplicity, we
write

φ(x) =
Λp−1(f, x) + Λp+1(f, x)

2
.

Step 1. Construction of families of castles Q̂i ⊃ Qi . Let κ = δ2. Take
m ∈ N large enough so that the conclusion of Proposition 4.2 holds: There ex-
ists a measurable function N : Γ∗

p(f, m) → N such that for a.e. x ∈ Γ∗
p(f, m) and

every n ≥ N(x) there exists an (ε0, κ)-realizable sequence {L̂(x,n)
0 , . . . , L̂

(x,n)
n−1 }

at x of length n such that
1
n

log ‖∧p(L̂(x,n)
n−1 . . . L̂

(x,n)
0 )‖ ≤ φ(x) + δ.(4.5)

We shall also (see Lemma 4.1) assume that m is large enough so that

µ
(
Γ�

p(f, m) � Γ∗
p(f, m)

)
< δ.(4.6)
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Let C > supg∈U(f,ε0) supy∈M log ‖Dgy‖p and 
 = �C/δ�. For i = 1, 2, . . . , 
, let

Zi = {x ∈ Γ∗
p(f, m); (i − 1)δ ≤ φ(x) < iδ}.

Each Zi is an f -invariant set. Since φ < C, we have Γ∗
p(f, m) =

⊔�
i=1 Zi.

Define the sets Zi
n = {x ∈ Zi; N(x) ≤ n} for n ∈ N and 1 ≤ i ≤ 
. Obviously,

Zi
n ↑ Zi when n → ∞. Fix H ∈ N such that, for all i = 1, 2, . . . , 
,

µ(Zi � Zi
H) < δ2µ(Zi).(4.7)

Using the fact that Λp(f) equals φ in the f -invariant set Γp(f, m) � Γ�
p(f, m),

and Proposition 2.2, we may also assume that H is large enough so that∫
Γp(f,m)�Γ�

p(f,m)

1
n

log ‖∧p(Dfn)‖ < δ +
∫

Γp(f,m)�Γ�
p(f,m)

φ(4.8)

for all n ≥ H.
A measure-preserving transformation is aperiodic if the set of periodic

points has zero measure. The following result was proved in [4, Lemma 4.1]:

Lemma 4.11. For every aperiodic invertible measure-preserving transfor-
mation f on a probability space X, every subset U ⊂ X of positive measure,
and every n ∈ N, there exists a positive measure set V ⊂ U such that the
sets V , f(V ), . . . , fn(V ) are two-by-two disjoint. Besides, V can be chosen to
be maximal in the measure-theoretical sense: no set that includes V and has
larger measure than V has the stated properties.

By definition of the set Γ∗
p(f, m), the map f : Γ∗

p(f, m) → Γ∗
p(f, m)

is aperiodic. So, by Lemma 4.11, for each i there is Bi ⊂ Zi
H such that

Bi, f(Bi), . . . , fH−1(Bi) are two-by-two disjoint and such that Bi is maximal
for these properties (in the measure-theoretical sense). Consider the following
f -invariant set:

Q̂i =
⋃
n∈Z

fn(Bi).

Q̂i is the Kakutani castle with base Bi. It is contained in Zi and, by the
maximality of Bi, it contains Zi

H up to a zero-measure subset. Thus, by (4.7),

µ(Zi � Q̂i) < δ2µ(Zi).(4.9)

Let Qi ⊂ Q̂i be the sub-castle consisting of all the towers of Q̂i with heights
at most 3H floors. The following is a key property of the construction:

Lemma 4.12. For each i = 1, 2, . . . , 
, there exists the relation
µ(Q̂i � Qi) ≤ 3µ(Zi � Zi

H).

Proof. We follow [4, Lemma 4.2] and split the castle Q̂i into towers as
Q̂i =

⊔∞
k=H T i

k where Bi =
⊔∞

k=H Bi
k is the base Q̂i

b and T i
k =

⊔k−1
j=0 f j(Bi

k)
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is the tower with base Bi
k and of height k floors. Take k ≥ 2H and H ≤

j ≤ k − H. The sets f j(Bi
k), . . . f

j+H−1(Bi
k) are disjoint and do not intersect

Bi � · · · � fH−1(Bi). Since Bi is maximal, we conclude that

k ≥ 2H and H ≤ j ≤ k − H ⇒ µ(f j(Bi
k) ∩ Zi

H) = 0

(otherwise we could replace Bi with Bi � (f j(Bi
k) ∩ Zi

H), contradicting the
maximality of Bi). Thus

k ≥ 2H ⇒ µ(T i
k � Zi

H) ≥
k−H∑
j=H

µ(f j(Bi
k)) =

k − 2H + 1
k

µ(T i
k).

In particular,

k ≥ 3H + 1 ⇒ µ(T i
k � Zi

H) >
1
3
µ(T i

k)

and so

µ(Q̂i � Qi) =
∞∑

k=3H+1

µ(T i
k)≤

∞∑
k=3H+1

3µ(Tk � Zi
H)

= 3µ

( ∞⊔
k=3H+1

T i
k � Zi

H

)
≤ 3µ(Zi � Zi

H),

as claimed.

Step 2. Construction of the diffeomorphism g.

Lemma 4.13. For almost every x ∈ Γ∗
p(f, m) and every n ≥ N(x), there

exists r > 0 such that for every ball U = Br′(x) with 0 < r′ < r there exist
h ∈ U(f, ε0) and a measurable set K ⊂ Br′(x) such that

(i) h equals f outside �n−1
j=0 f j(Br′(x));

(ii) µ(K) > (1 − κ)µ(Br′(x));

(iii) if y ∈ K then 1
n log ‖∧p(Dhn

y )‖ < φ(x) + 2δ.

Proof. Fix x and n ≥ N(x). Recall that the point x is not periodic. Let
γ > 0 be very small. Since the sequence {L̂(x,n)

j } given by Proposition 4.2 is
(κ, ε0)-realizable, there exists r > 0 such that for every ball U = Br′(x) with
0 < r′ < r there exists h ∈ U(f, ε0) satisfying condition (i) above and there
exists K ⊂ Br′(x) satisfying condition (ii) and

y ∈ K and 0 ≤ j ≤ n − 1 ⇒ ‖Dhhjy − L̂
(x,n)
j ‖ < γ.

Taking γ small enough, this inequality and (4.5) imply

y ∈ K ⇒ 1
n

log ‖∧p(Dhn
y )‖ <

1
n

log ‖∧p(L̂(x,n)
n−1 . . . L̂

(x,n)
0 )‖ + δ ≤ φ(x) + 2δ,

as claimed in the lemma.
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Lemma 4.14. Fix γ > 0. There exists g ∈ U(f, ε0) and for each i =
1, 2, . . . , 
 there exist a g-castle U i and a g-sub-castle Ki such that :

(i) the U i are open, pairwise disjoint, and contained in Γp(f, m);

(ii) µ(U i � Qi) < 2γµ(Zi) and µ(Qi � U i) < 2γµ(Zi);

(iii) µ(U i � Ki) < 2κµ(Zi);

(iv) g(U i) = f(U i) and g equals f outside
⊔�

i=1 U i;

(v) if y is in the base of Ki and n(y) is the height of the tower of Ki that
contains x then

1
n(y)

log ‖∧p(Dgn(y)
y )‖ < iδ + 2δ.

Proof. By the regularity of the measure µ, one can find a compact sub-
castle J i ⊂ Qi such that

µ(Qi � J i) < γµ(Q̂i).(4.10)

Since the J i are compact and disjoint we can find open pairwise disjoint castles
V i such that each V i contains J i as a sub-castle, is contained in the open and
invariant set Γp(f, m), and

µ(V i � J i) < γµ(Q̂i).(4.11)

For each x ∈ J i
b, let n(x) be the height of the tower that contains x. J i

b

is contained in Zi
H , so that N(x) ≤ H ≤ n(x). Let r(x) > 0 be the radius

given by Lemma 4.13, with n = n(x). This is defined for almost every x ∈ J i
b.

Reducing r(x) if needed, we suppose that the ball Br(x)(x) is contained in the
base of a tower in V i (with the same height).

Using Vitali’s covering lemma1, we can find a finite collection of disjoint
balls U i

k = Brk,i
(xk,i), with xk,i ∈ J i

b and 0 < rk,i < r(xk,i), such that

µ
(
J i

b �
⊔
k

U i
k

)
< γµ(J i

b).(4.12)

Let nk,i = n(xk,i). Notice that n(x) = nk,i for all xi ∈ U i
k.

Now we apply Lemma 4.13 to each ball U i
k. We get, for each k, a measur-

able set Ki
k ⊂ U i

k and a diffeomorphism hk,i ∈ U(f, ε0) such that (in 3 we use
the fact that xk,i ∈ Zi)

(1) hk,i equals f outside the set
⊔ni

k−1
j=0 f j(U i

k);
(2) µ(Ki

k) > (1 − κ)µ(U i
k);

(3) if y ∈ Ki
k then 1

nk,i
log ‖∧p(Dh

nk,i

k,i )y‖ < φ(xk,i) + 2δ < iδ + 2δ.

1First, cover the basis J i
b of the castle by chart domains.
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Let g be equal to hk,i in the set
⊔ni

k−1
j=0 f j(Uk

i ), for each i and k, and be
equal to f outside. Since those sets are disjoint, g ∈ Diff1

µ(M) is a well-defined
diffeomorphism. Each hk,i belongs to U(f, ε0) and so g also does.

Since each U i
k is contained in the base of a tower in the castle V i, V i is also

a castle for g. Let U i be the g-sub-castle of V i with base �kU
i
k. Analogously,

let Ki be the g-sub-castle of U i with base �kK
i
k.

It remains to prove claims (ii) and (iii) in the lemma. Making use of the
castle structures, relation (4.12) and item 2 above imply, respectively,

µ(J i � U i) < γµ(J i) and µ(U i � Ki) < κµ(U i).(4.13)

By (4.11) and Q̂i ⊂ Zi,

µ(U i � Qi) < µ(V i � J i) < γµ(Q̂i) ≤ γµ(Zi).(4.14)

This implies the first part of item (ii). Combining the first part of (4.13)
with (4.10),

µ(Qi � U i) < µ(Qi � J i) + µ(J i � U i) < 2γµ(Q̂i) ≤ 2γµ(Zi).

This proves the second part of item (ii). Finally, the second inequality in (4.13)
and

µ(U i) < µ(Qi) + µ(U i � Qi) < (1 + γ)µ(Q̂i) < 2µ(Zi).

imply item (iii). The lemma is proved.

Step 3. Conclusion of the proof of Proposition 4.8. Let U =
⊔�

i=1 U i and
Q =

⊔�
i=1 Qi and Q̂ =

⊔�
i=1 Q̂i. Set N = Hδ−1. (Of course, we can assume

that δ−1 ∈ N.) Let

G =
�⊔

i=1

Gi where Gi = Zi ∩
N−1⋂
j=0

g−j(Ki)

for each i = 1, 2, . . . , 
. The next lemma means that on G we managed to
reduce some time N exponent:

Lemma 4.15. If x ∈ Gi then

1
N

log ‖∧p(DgN
x )‖ < iδ + (6C + 2)δ.

Proof. For y ∈ Ki
b, let n(y) be the height of the g-tower containing y.

Take x ∈ G; say x ∈ Gi. Since the heights of towers of Ki are less than 3H,
we can write

N = k1 + n1 + n2 + · · · + nj + k2

so that 0 ≤ k1, k2 < 3H, 1 ≤ n1, . . . , nj < 3H, and the points

x1 = gk1(x), x2 = gk1+n1(x), . . . , xj+1 = gk1+n1+···+nj (x)
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are exactly the points (of the orbit segment x, g(x), . . . , gN−1(x)) which belong
to Ki

b. Write

‖∧p(DgN
x )‖ ≤ ‖∧p(Dgk1

x )‖ ‖∧p(Dgn1
x1

)‖ . . . ‖∧p(Dgnj
xj

)‖ ‖∧p(Dgk2
xj+1

)‖.

Using item (v) of Lemma 4.14, and our choice of N = Hδ−1, we get

log ‖∧p(DgN
x )‖< k1C + (n1 + · · · + nj)(iδ + 2δ) + k2C

< 6HC + N(iδ + 2δ) < N(6Cδ + iδ + 2δ),

as claimed.

We also use the fact that G covers most of U ∪ Γ∗
p(f, m), as asserted by

the next lemma whose proof we postpone for a while.

Lemma 4.16. Let γ = δ2/(
H) as in Lemma 4.14. Then

µ
(
U ∪ Γ∗

p(f, m) � G
)

< 12δ.

Continuing with the proof of Proposition 4.8, write ψ(x) = 1
N log ‖∧p(DgN

x )‖.
Since g leaves invariant the set Γp(f, m), Proposition 2.2 gives∫

Γp(f,m)
Λp(g) ≤

∫
Γp(f,m)

ψ.

We split the integral on the right-hand side as∫
Γp(f,m)

ψ =
∫

Γp(f,m)�(U∪Γ�
p(f,m))

ψ +
∫

(U∪Γ�
p(f,m))�G

ψ +
∫

G
ψ

= (I) + (II) + (III).

Outside U , g equals f and so ψ equals 1
N log ‖∧p(DfN )‖. Thus

(I) ≤
∫

Γp(f,m)�Γ�
p(f,m)

1
N

log ‖∧p(DfN )‖ < δ +
∫

Γp(f,m)�Γ�
p(f,m)

φ,

by (4.8). By Lemma 4.16 and (4.6), µ
(
(U∪Γ�

p(f, m))�G
)

< 13δ. Since ψ < C,
we have (II) ≤ 13Cδ. By Lemma 4.15,

(III) =
�∑

i=1

∫
Gi

ψ ≤
�∑

i=1

(iδ + (6C + 2)δ)µ(Gi) < (6C + 3)δ +
�∑

i=1

(i − 1)δµ(Gi).

Since φ ≥ (i − 1)δ inside Zi ⊃ Gi, we have

(III) < (6C + 3)δ +
∫

Γ∗
p(f,m)

φ.

Summing the three terms, we get the conclusion of Proposition 4.8 (replace δ
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with δ/(18C + 4) throughout the arguments):∫
Γp(f,m)

Λp(g) < (18C + 4)δ +
∫

Γp(f,m)
φ.

This completes the proof of the proposition, modulo proving Lemma 4.16.

Step 4. Proof of Lemma 4.16. The following observations will be useful
in the proof: If X ⊂ M is a measurable set and N ∈ N, then

µ
( N−1⋃

j=0

g−j(X)
)
≤ µ(X) + (N − 1)µ

(
g−1(X) � X

)
.(4.15)

Moreover, µ
(
g−1(X) � X

)
= µ

(
X � g−1(X)

)
.

Proof of Lemma 4.16. We shall prove first that

µ(Q̂i � Gi) < 10δµ(Zi).(4.16)

Since Q̂i ⊂ Zi, we have Q̂i � Gi ⊂ Q̂i ∩
⋃N−1

j=0 g−j(M � Ki). Substituting

M � Ki ⊂ (U i � Ki) ∪ (Qi � U i) ∪ (Q̂i � Qi) ∪ (M � Q̂i),

we obtain

Q̂i � Gi ⊂
N−1⋃
j=0

g−j(U i � Ki) ∪
N−1⋃
j=0

g−j(Qi � U i) ∪
N−1⋃
j=0

g−j(Q̂i � Qi)

∪
[
Q̂i ∩

N−1⋃
j=1

g−j(M � Q̂i)

]
= (I) ∪ (II) ∪ (III) ∪ (IV).

Let us bound the measure of each of these sets. The second one is easy: by
Lemma 4.14(ii) and our choices γ = δ2/
H and N = H/δ,

µ(II) ≤ Nµ(Qi � U i) < 2Nγµ(Zi) < δµ(Zi).

The other terms are more delicate.
The set X1 = U i � Ki is a g-castle whose towers have heights at least H.

Hence its base, which contains X1�g(X1), measures at most 1
H µ(X1). By (4.15),

we get

µ(I) <
(
1 +

N

H

)
µ(X1) < 2δ−1µ(X1).

By Lemma 4.14(iii), we have µ(X1) < 2κµ(Zi) = 2δ2µ(Zi). So, µ(I) <

4δµ(Zi).

Let X3 = Q̂i � Qi. By Lemma 4.12 and (4.7), we have µ(X3) < δ2µ(Zi).
Since f and g differ only in U , we have

g(X3) � X3 ⊂ [f(X3) � X3] ∪ g(X3 ∩ U) = (V) ∪ (VI).
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Since X3 is an f -castle whose towers have heights of at least 3H,

µ(V) = µ(X3 � f(X3)) ≤
1

3H
µ(X3).

Since X3 ∩ U ⊂
⊔

k(U
k � Qk), Lemma 4.14(ii) gives µ(VI) ≤ 2
γµ(Zi). Com-

bining the estimates of µ(V), µ(VI), µ(X3) with (4.15) and the definitions of
N and γ, we have

µ(III) < µ(X3) + N
( 1

3H
µ(X3) + 2
γµ(Zi)

)
<

(
1 +

1
3δ

)
µ(X3) + 2δµ(Zi) < 3δµ(Zi).

We also have

(IV) = Q̂i �
N−1⋂
j=1

g−j(Q̂i) ⊂
N−1⋃
j=1

(
gj−1(Q̂i) � g−j(Q̂i)

)
.

In particular, µ(IV) ≤ (N − 1)µ(Q̂i � g−1(Q̂i)). Notice that Q̂i � g−1(Q̂i) ⊂
�kU

k (since Q̂i is f -invariant). Therefore

Q̂i � g−1(Q̂i) ⊂ [Q̂i ∩ �k �=iU
k] ∪ [U i � g−1(Q̂i)] = (VII) ∪ (VIII).

Combining
(VII) ⊂

⊔
k �=i

(Uk � Q̂k) ⊂
⊔
k �=i

(Uk � Qk)

with Lemma 4.14(ii) we obtain µ(VII) ≤ 2(
 − 1)γµ(Zi). Using the fact that
g(U i) = f(U i) and Q̂i = f(Q̂i), we also get

µ(VIII) = µ(g(U i) � Q̂i) = µ(U i � Q̂i) ≤ µ(U i � Qi) < 2γµ(Zi).

Altogether, µ(Q̂i � g−1(Q̂i)) < 2
γµ(Zi) and µ(IV) ≤ 2N
γµ(Q̂i) < 2δµ(Zi).

Summing the four parts, we obtain (4.16). Now

µ
(
U ∪ Γ∗

p(f, m) � G
)
≤ µ(Γ∗

p(f, m) � Q̂) + µ(U � Q̂) + µ(Q̂ � G)

= µ(IX) + µ(X) + µ(XI).

Using (4.9), Lemma 4.14, and (4.16), respectively, we get

µ(IX) ≤
∑

i

µ(Zi � Q̂i) < δ2 < δ,

µ(X) ≤ µ(U � Q) ≤
∑

i

µ(U i � Q̂i) < 2γ < δ,

µ(XI) ≤
∑

i

µ(Q̂i � G) < 10δ.

Summing the three parts, we conclude the proof of Lemma 4.16.
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4.3. End of the proofs of Theorems 1 and 2. We give an explicit lower
bound for the discontinuity “jump” of the semi-continuous function LEp(·).
Denote, for each p = 1, . . . , d,

Jp(f) =
∫

Γp(f,∞)

λp(f, x) − λp+1(f, x)
2

dµ(x).

Proposition 4.17. Given f ∈ Diff1
µ(M) and p ∈ {1, . . . , d − 1}, and

given any ε0 > 0 and δ > 0, there exists a diffeomorphism g ∈ U(f, ε0) such
that ∫

M
Λp(g, x) dµ(x) <

∫
M

Λp(f, x) dµ(x) − Jp(f) + δ.

Proof. Let f , p, ε0 and δ be as in the statement. Using Proposition 4.8,
we find m ∈ N and g ∈ U(f, ε0) such that g = f outside Γp(f, m) and∫

Γp(f,m)
Λp(g) < δ +

∫
Γp(f,m)

Λp−1(f) + Λp+1(f)
2

.

Then ∫
M

Λp(g) =
∫

Γp(f,m)
Λp(g) +

∫
M�Γp(f,m)

Λp(g)

< δ +
∫

Γp(f,m)

Λp−1(f) + Λp+1(f)
2

+
∫

M�Γp(f,m)
Λp(f).

Since Γp(f,∞) ⊂ Γp(f, m), and the integrand is nonnegative,∫
Γp(f,m)

(
Λp(f) − Λp−1(f) + Λp+1(f)

2

)
≥

∫
Γp(f,∞)

(
Λp(f) − Λp−1(f) + Λp+1(f)

2

)
= Jp(f).

Therefore, the previous inequality implies∫
M

Λp(g) < δ − Jp(f) +
∫

M
Λp(f),

as we wanted to prove.

Theorem 2 follows easily from Proposition 4.17:

Proof of Theorem 2. Let f ∈ Diff1
µ(M) be a point of continuity of LEp(·)

for all p = 1, . . . , d−1. Then Jp(f) = 0 for every p. This means that λp(f, x) =
λp+1(f, x) for almost every x ∈ Γp(f,∞). Let x ∈ M be an Oseledets regular
point. If all Lyapunov exponents of f at x vanish, there is nothing to prove.
Otherwise, for any p such that λp(f, x) > λp+1(f, x), the point x /∈ Γp(f,∞)
(except for a zero-measure set of x) . This means that x ∈ Dp(f, m) for
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some m: there is a dominated splitting of index p, TfnxM = En ⊕ Fn,
n ∈ Z along the orbit of x. Clearly, domination implies that En is the sum
of the Oseledets subspaces of f , at the point fnx, associated to the Lyapunov
exponents λ1(f, x), . . . , λp(f, x), and Fn is the sum of the spaces associated
to the other exponents. Since this holds whenever λp(f, x) is bigger than
λp+1(f, x), it proves that the Oseledets splitting is dominated at x.

Theorem 1 is an immediate consequence:

Proof of Theorem 1. The function f �→ LEj(f) is semi-continuous for
every j = 1, . . . , d − 1; see Section 2.1.3. Hence, there exists a residual
subset R of Diff1

µ(M) such that any f ∈ R is a point of continuity for
f �→ (LE1(f), . . . ,LEd−1(f)). By Theorem 2, every point of continuity sat-
isfies the conclusion of Theorem 1.

5. Consequences of nondominance for symplectic maps

Here we prove a symplectic analogue of Proposition 3.1:

Proposition 5.1. Given f ∈ Sympl1ω(M), ε0 > 0 and 0 < κ < 1, if
m ∈ N is large enough then the following holds:

Let y ∈ M be a nonperiodic point and suppose there exists a nontrivial
splitting TyM = E ⊕ F into two Lagrangian spaces such that

‖Dfm
y |F ‖

m(Dfm
y |E)

≥ 1
2
.(5.1)

Then there exists an (ε0, κ)-realizable sequence {L0, . . . , Lm−1} at y of length m

and there are nonzero vectors v∈E, w∈Dfm
y (F ) such that Lm−1 . . . L0(v) = w.

Remark 5.2. The hypothesis that E and F are Lagrangian subspaces in
Proposition 5.1 is the sole reason why Theorem 4 is weaker than what is stated
in [5].

In subsections 5.1 and 5.2 we prove two results, namely, Lemmas 5.3
and 5.8, that are used in subsection 5.3 to prove Proposition 5.1. In Section 6
we prove Theorems 3 and 4 using Proposition 5.1.

5.1. Symplectic realizable sequences of length 1. First, we recall some
elementary facts: Let (·, ·) denote the usual hermitian inner product in Cq. Up
to identification of Cq with R2q, the standard inner product in R2q is Re(·, ·)
and the standard symplectic form in R2q is Im(·, ·). The unitary group U(q) is
subgroup of GL(q, C) formed by the linear maps that preserve the hermitian
product. When R ∈ U(q) is a map R : R2q → R2q, then R is both symplectic
and orthogonal.
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If R : TxM → TxM is an ω-preserving linear map, we shall call R unitary
if it preserves the inner product in TxM induced from the Euclidean inner
product in R2q by the chart ϕi(x) (recall subsection 2.5).

The next lemma constructs realizable sequences of length 1:

Lemma 5.3. Given f ∈ Sympl1ω(M), ε0 > 0, κ > 0, there exists ε > 0
with the following properties: Suppose given a nonperiodic point x ∈ M and
a unitary map R : TxM → TxM with ‖R − I‖ < ε. Then {DfxR} is an
(ε0, κ)-realizable sequence of length 1 at the point x and {R Dff−1(x)} is an
(ε0, κ)-realizable sequence of length 1 at the point f−1(x).

Before starting the proof, let us make some remarks.

Remark 5.4. Let H : R2q → R be a smooth function such that the corre-
sponding Hamiltonian flow ϕt : R2q → R2q is globally defined for every t ∈ R.
Let ψ : R → R be a smooth function, and define H̃ = ψ ◦H. Then the Hamil-
tonian flow (ϕ̃t) of H̃ is globally defined and is given by ϕ̃t(x) = ϕψ′(H(x))t(x).

If R ∈ U(q) then all its eigenvalues belong to the unit circle in C. More-
over, there exists an orthonormal basis of Cq formed by eigenvectors of R. If
J ⊂ R is an interval, we define SJ as the set of matrices R ∈ U(q) whose
eigenvalues can be written as eiθ1 , . . . , eiθq , with all θk ∈ J . There is C0 > 0,
depending only on q, such that if ε > 0 and R ∈ S[−ε,ε] then ‖R− I‖ ≤ C0ε. It
is convenient to consider first the case where the arguments of the eigenvalues
of R all have the same sign and are comparable:

Lemma 5.5. Given ε0 > 0 and 0 < σ < 1, there exists ε > 0 with the
following properties: Given R ∈ S[−3ε,−ε] ∪ S[ε,3ε], there exists a bounded open
set U ⊂ R2q such that 0 ∈ σU ⊂ U , and there exists a C1 symplectomorphism
h : R2q → R2q such that

(i) h(z) = z for every z /∈ U and h(z) = R(z) for every z ∈ σU ;

(ii) ‖Dhz − I‖ < ε0 for all z ∈ R2q.

Proof. Let ε0 and σ be given. Let ε > 0 be a small number, to be
specified later. Take R ∈ S[ε,3ε]; the other possibility is tackled in a similar way.
Let {v1, . . . , vq} be an orthonormal basis of eigenvectors of R, with associated
eigenvalues eiθ1 , . . . , eiθq , and all ε ≤ θk ≤ 3ε. Up to replacing R with SRS−1,
for some S ∈ U(q), we may assume that the basis {v1, . . . , vq} coincides with
the standard basis of Cq. Therefore R assumes the form

R(z1, . . . , zq) = (eiθ1z1, . . . , e
iθqzq).

Let H : Cq → R be given by H(z) = 1
2

∑
k θk|zk|2. Then R is the time 1 map

of the Hamiltonian flow of H. Besides, since max θk ≤ 3 min θk, there is C1
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depending only on q such that

‖z‖ ‖DHz‖ ≤ C1H(z) for all z ∈ Cq.(5.2)

Let τ : R → R be a smooth function such that τ(s) = 1 for s ≤ σ2, τ(s) = 0
for s ≥ 1, and 0 ≤ −τ ′(s) ≤ 2/(1− σ2) for all s. Let ψ(s) =

∫ s
0 τ(u) du and let

H̃ = ψ ◦H. By Remark 5.4, the time 1 map h of the Hamiltonian flow of H̃ is

h(z) = (eiθ1τ(H(z))z1, . . . , e
iθkτ(H(z))zk).

Then h(z) = R(z) if H(z) ≤ σ2 and h(z) = z if H(z) ≥ 1. Moreover, a direct
calculation gives

‖Dhz − I‖ ≤ C2ε‖z‖ ‖DHz‖
1 − σ2

+ 3ε

where C2 = C2(q). Due to (5.2), we can take ε = ε(ε0, σ) such that the right-
hand side is less than ε0 whenever H(z) < 1. Since H is positive definite, the
set U = {z ∈ Cq; H(z) < 1} is bounded.

Remark 5.6. We may assume that the set U in Lemma 5.5 has arbitrarily
small diameter. Indeed, if a > 0 then we may replace U with Ũ = aU and h

with h̃(z) = ah(a−1z). Notice that Dh̃z = Dha−1z, so that h̃ is a symplecto-
morphism and satisfies property (ii) of the lemma.

Lemma 5.7. Given ε0 > 0 and 0 < σ < 1, there exists ε > 0 with the
following properties: Given R ∈ S[−ε,ε], there exists a bounded open set U ⊂
R2q such that 0 ∈ σU ⊂ U , a measurable set K ⊂ U with vol(U � K) <

3(1 − σd) vol(U), and a C1 symplectomorphism h : R2q → R2q such that

(i) h(z) = z for every z /∈ U and Dhz = R for every z ∈ K;

(ii) ‖Dhz − I‖ < ε0 for all z ∈ R2q.

Proof. Let ε be as given by Lemma 5.5. Write R ∈ S[−ε,ε] as a product
R = R+ R−, with R+ ∈ S[ε,3ε] and R− = e−2εiI. Applying Lemma 5.5 to R±,
with ε0 replaced with ε0/2, we obtain sets U± and symplectomorphisms h±.
Let U = U+. Consider the family F of all sets of the form aU− + b, with a > 0
and b ∈ R2q, that are contained in U . This is a Vitali covering of U , and so
we may find a finite number of disjoint sets U i

− = aiU− + bi ∈ F that cover U

except for a set of volume (1− σd) vol(U). Using Lemma 5.5 and Remark 5.6,
for each i we find a symplectomorphism hi

− such that hi
− = id outside U i

− and
D(hi

−)z = R− for z ∈ Ki = aiσU− + bi, and D(hi
−)z is uniformly close to I.

Let K = (σU)∩�iK
i. Define h = h+ ◦hi

− inside each U i
−, and h = h+ outside.

Then K and h have the desired properties.
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Proof of Lemma 5.3. Given ε0 and κ, choose σ close to 1 so that
3(1 − σd) < κ. Remark 5.6 also applies to Lemma 5.7: the set U may be
taken with arbitrarily small diameter. Using Lemma 2.13, we conclude that
the sequences {DfxR} and {R Dff−1(x)} are (ε0, κ)-realizable as stated.

5.2. Symplectic nested rotations. In this subsection we prove an analogue
of Lemma 3.3 for symplectic maps:

Lemma 5.8. Given f ∈ Sympl1ω(M), ε0 > 0, κ > 0, E > 1, and 0 <

γ ≤ π/2, there exists β > 0 with the following properties: Suppose there is a
nonperiodic point x ∈ M , a number n ∈ N, and a two-dimensional symplectic
subspace Y0 ⊂ TxM such that :

• ‖Df j |Y0‖/m(Df j |Y0) ≤ E2 for every j = 1, . . . , n;

• �(Xj , Yj) ≥ γ for each j = 0, . . . , n− 1 where X0 = Y ω
0 , Xj = Df j

x(X0),
and Yj = Df j

x(Y0).

Let θ0, . . . , θn−1 ∈ [−β, β] and let S0, . . . , Sn−1 : Y0 → Y0 be the rotations of
the plane Y0 by angles θ0, . . . , θn−1. Let linear maps

TxM
L0−→ TfxM

L1−→ . . .
Ln−1−−−→ Tfn(x)M

be defined by Lj(v) = Dff j(x)(v) for v ∈ Xj and Lj(w) = (Df j+1
y ) · Sj ·

(Df j
y )−1(w) for w ∈ Yj. Then {L0, . . . , Ln−1} is an (ε0, κ)-realizable sequence

of length n at the point x.

We begin by proving a perturbation lemma that corresponds to Lemma 3.4:

Lemma 5.9. Given ε0 > 0 and 0 < σ < 1, there is ε > 0 with the following
properties: Suppose there exist a splitting R2q = X ⊕ Y with dimY = 2,
Xω = Y and X ⊥ Y , an ellipsoid A ⊂ X centered at the origin, and a unitary
map R ∈ U(q) with R|X = I and ‖R − I‖ < ε.

Then there exists τ > 1 such that the following holds. Let B be the unit
ball in Y . For a, b > 0 consider the cylinder C = Ca,b = aA⊕bB. If a > τb and
diam C < ε0 then there is a C1 symplectomorphism h : R2q → R2q satisfying :

(i) h(z) = z for every z /∈ C and h(z) = R(z) for every z ∈ σC;

(ii) ‖h(z) − z‖ < ε0 and ‖Dhz − I‖ < ε0 for all z ∈ R2q.

Remark 5.10. If H : R2q → R is a smooth function with bounded ‖DH‖
and ‖D2H‖, then the associated Hamiltonian flow ϕt : R2q → R2q is defined
for every time t ∈ R, and

‖ϕt(z) − z‖ ≤ |t| sup ‖DH‖, ‖(Dϕt)z − I‖ ≤ exp(|t| sup ‖D2H‖) − 1

for every z ∈ R2q and t ∈ R.
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Proof of Lemma 5.9. Given ε0 and σ, let t̄ > 0 be small, to be specified
later. Let ε > 0 be such that ε <

√
2 sin t̄. Let X, Y , A, B, and R be as in the

statement. Let A : X → X be a linear map such that A(A) is the unit ball
in X. We define τ = ‖A‖.

Let H : R2q → R be defined by H(x, y) = H(y) = 1
2‖y‖2, where (x, y) are

coordinates with respect to the splitting X ⊕Y . The Hamiltonian flow of H is
a linear flow (Rt)t, where Rt is a rotation of angle t in the plane Y , with axis
X. In particular, ‖Rt − I‖ =

√
2 | sin t| and there exists t0 with |t0| < t̄ such

that Rt0 = R.
Take numbers a, b > 0 such that a/b > τ and the cylinder C = aA ⊕ bB

has diameter less than ε0. We are going to construct another Hamiltonian H̃

which is equal to H inside σC and constant outside C. The symplectomorphism
h will be defined as the time t0 of the Hamiltonian flow associated to H̃.

For this we need a few auxiliary functions. Let ζ : R → [0, 1] be a smooth
function such that:

• ζ(t) = 1 for t ≤ σ and ζ(t) = 0 for t ≥ 1;

• |ζ ′(t)| ≤ 10/(1 − σ) and |ζ ′′(t)| ≤ 10/(1 − σ)2.

Define ψ : X → [0, 1] by ψ(x) = ζ(a−1‖Ax‖). Then

ψ(x) = 1 for x ∈ σaA and ψ(x) = 0 for x /∈ aA.(5.3)

Let K1 be an upper bound for the norms of the first and second derivatives of
the function x ∈ X �→ ζ(‖x‖). (Notice that K1 depends only on σ.) Then we
have

‖Dψ‖ ≤ K1a
−1‖A‖ and ‖D2ψ‖ ≤ K1a

−2‖A‖2.

Now define ρ : R → R by ρ(s) =
∫ s
0 ζ and then let φ : Y → R be given by

φ(y) = 1
2b2ρ(b−1‖y‖)2. Then

φ(y) = H(y) for y ∈ σbB and φ(y) = c for y /∈ bB,(5.4)

where 0 < c < 1
2b2 is a constant. Besides, we can find K2 > 0, depending only

on σ, such that
‖Dφ‖ ≤ K2b and ‖D2φ‖ ≤ K2.

Define H̃ : R2q → R by H̃(x, y) = c − ψ(x)(c − φ(y)). Then, by (5.3)
and (5.4),

x ∈ σaA and y ∈ σbB ⇒ H̃(x, y) = H(y),

x /∈ aA or y /∈ bB ⇒ H̃(x, y) = c.
(5.5)

The derivatives of H̃ are (write v = vx + vy ∈ X ⊕ Y and analogously for w)

DH̃(x,y)(v) = − (c − φ(y))Dψx(vx) + ψ(x)Dφy(vy),

D2H̃(x,y)(v, w) = − (c − φ(y))D2ψx(vx, wx) + Dψx(vx)Dφy(wy)

+ Dψx(wx)Dφy(vy) + ψ(x)D2φy(vy, wy).
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Using the previous bounds we obtain

‖D2H̃‖ ≤ 1
2K1b

2a−2‖A‖2 + 2K1K2ba
−1‖A‖ + K2.

Since a/b > ‖A‖, we conclude that ‖D2H̃‖ is bounded by some K that depends
only on σ.

Take h : R2q → R2q to be the time t0 map of the Hamiltonian flow
associated to H̃. Property (i) in Lemma 5.9 follows from (5.5). Since diam C
< ε0, we have ‖h(z) − z‖ < ε0 for all z. By Remark 5.10, ‖Dhz − I‖ ≤
et0K − 1 ≤ et̄K − 1 < ε0, if t̄ = t̄(ε0, σ) is small enough. This proves (ii) and
the lemma.

An ellipse B contained in a 2-dimensional symplectic subspace Y ⊂ R2q

and centered at the origin has eccentricity E if it is the image of the unit ball
under a linear transformation B : Y → Y with ‖B‖/m(B) = E2. If a map
R̂ : Y → Y preserves the ellipse B, then B−1R̂B is a rotation of the plane Y of
some angle θ. In this case we say that R̂ rotates the ellipse B through angle θ.

The following statement is a more flexible version of Lemma 5.9. In fact,
it follows from Lemma 5.9 just by a change of the inner product.

Lemma 5.11. Given ε0 > 0, 0 < σ < 1, γ > 0 and E > 1, there is β > 0
with the following properties: Suppose there are given:

• a splitting R2q = X ⊕ Y with dimY = 2, Xω = Y and �(X, Y ) ≥ γ;

• an ellipsoid A ⊂ X centered at the origin;

• an ellipse B ⊂ Y centered at the origin and with eccentricity at most E;

• a map R̂ : Y → Y that rotates B through angle θ, with |θ| < β.

Then there exists τ > 1 such that the following holds. Let R : R2q → R2q be
the linear map defined by R(v) = v if v ∈ X and R(w) = R̂(w) if w ∈ Y . For
a, b > 0 consider the cylinder C = Ca,b = aA⊕ bB. If a > τb and diam C < ε0

then there is a C1 symplectomorphism h : R2q → R2q satisfying :

(i) h(z) = z for every z /∈ C and h(z) = R(z) for every z ∈ σC;

(ii) ‖h(z) − z‖ < ε0 and ‖Dhz − I‖ < ε0 for all z ∈ R2q.

Now Lemma 5.8 is proved in the same way as we proved Lemma 3.3, using
Lemmas 5.11 and 3.5. The argument is even a bit simpler since no truncation
(as in Lemma 3.6) is necessary, since we assume that the angles �(Xj , Yj) are
bounded from zero. The details are left to the reader.

5.3. Proof of Proposition 5.1. We use the following lemma, which was also
needed for example 4 in the introduction:
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Lemma 5.12. Let G ⊂ GL(d, R) be a closed group which acts transitively
in RPd−1. Then for every ε1 > 0 there exists α > 0 such that if v1, v2 ∈ RPd−1

satisfy �(v1, v2) < α then there exists R ∈ G such that ‖R − I‖ < ε1 and
R(v1) = v2.

Proof. For δ > 0, let Uδ = {R; R ∈ G, ‖R − I‖ < δ}. Given ε > 0,
fix δ > 0 such that if R1, R2 ∈ Uδ then R2R

−1
1 ∈ Uε1 . The hypothesis on

the group implies that for any w ∈ RPd−1, the map G → RPd−1 given by
A �→ A(w) is open (this follows from [15, Th. II.3.2]). Therefore, for any
δ > 0, the set Uδ(w) = {Rw; R ∈ Uδ} is an open neighborhood of w. Cover
RPd−1 by some finite union Uδ(w1)∪· · ·∪Uδ(wk). Now take two directions v1,
v2 ∈ RPd−1 sufficiently close. Then both belong to some Uδ(wi), and so there
are R1, R2 ∈ Uδ such that v1 = R1wi and v2 = R2wi. Therefore R = R2R

−1
1

belongs to Uε1 and Rv1 = v2.

Proof of Proposition 5.1. Let f , ε0 , κ be given. Fix 0 < κ′ < 1
2κ.

Let ε > 0, depending on f , ε0 , κ′, be given by Lemma 5.3. Let α > 0,
depending on ε1 = ε and G = U(q), be given by Lemma 5.12. Take K

satisfying K ≥ (sinα)−2 and K ≥ maxx ‖Dfx‖/m(Dfx). Let E > 1 and γ > 0
be given by

E2 = 8C4
ωK(sinα)−4 and sin γ = 1

2C−14
ω K−2 sin9 α,

where Cω is as in (2.4). Let β > 0 be given by Lemma 5.8. Finally, let
m ≥ 2π/β. The proof is divided into three cases.

First case. Suppose that there exists 
 ∈ {0, 1, . . . , m} such that

�(E�, F�) < α.(5.6)

Fix 
 as above and take unit vectors ξ ∈ E�, η ∈ F� such that �(ξ, η) < α.
By Lemma 5.12, there exists a unitary transformation R : Tf�(y)M → Tf�(y)M

such that ‖R−I‖ < ε and R(ξ) = η. By Lemma 5.3, the sequences {Dff�(x) R}
and {R Dff�−1(x)} are (κ′, ε0)-realizable. Define {L0, . . . Lm−1} as

{Dfy, . . . , Dff�−1(y), Dff�(y) R, Dff�+1(y), . . . , Dffm−1(y)}
if 
 < m and as {Dfy, . . . , Dffm−2(y), R Dffm−1(y)} if 
 = m. In either case,
this is a (κ, ε0)-realizable sequence of length m at y, whose product Lm−1 . . . L0

sends the direction RDf−�(ξ) ⊂ E0 to the direction RDfm−�(η) ⊂ Fm.

Second case. Assume that there exist k, 
 ∈ {0, . . . , m} with k < 
 and

‖Df �−k
fk(y)|Fk

‖
m(Df �−k

fk(y)|Ek
)

> K.(5.7)

The proof of this case is easily adapted from the second case in the proof of
Proposition 3.1. We leave the details to the reader.
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Third case. We suppose that we are not in the previous cases, that is,

for every j ∈ {0, 1, . . . , m}, �(Ej , Fj) ≥ α,(5.8)

and

for every i, j ∈ {0, . . . , m} with i < j,
‖Df j−i

f i(y)|Fi
‖

m(Df j−i
f i(y)|Ei

)
≤ K.(5.9)

By (5.8) and Lemma 2.3, we have, for all i, j ∈ {0, . . . , m} with i < j,

C−2
ω sinα ≤ m(Df j−i|Ei

) ‖Df j−i|Fi
‖ ≤ C2

ω(sinα)−1.(5.10)

This, together with (5.9), gives

m(Df j−i|Ei
) ≥ C−1

ω K−1/2(sinα)1/2,(5.11)

‖Df j−i|Fi
‖ ≤ CωK1/2(sinα)−1/2.(5.12)

Also, by (5.10) and the main assumption (5.1),

m(Dfm|E0) ≤ 21/2Cω(sinα)−1/2,(5.13)

‖Dfm|F0‖ ≥ 2−1/2C−1
ω (sinα)1/2.(5.14)

Let v0 ∈ E0 be such that ‖v0‖ = 1 and ‖Dfm
y (v0)‖ = m(Dfm

y |E0). Using
Lemma 2.3.1, take w0 ∈ F0 with ‖w0‖ = 1 such that |ω(v0, w0)| ≥ C−1

ω sinα.
Let G0 = E0 ∩ wω

0 and H0 = F0 ∩ vω
0 . (By vω we mean (Rv)ω.) Notice that

E0 = Rv0 ⊕ G0 and F0 = Rw0 ⊕ H0. Let X0 = G0 ⊕ H0 and Y0 = Rv0 ⊕ Rw0.
Then X0 = Y ω

0 . Let, for j = 1, . . . , m,

vj = Df j(v0)/‖Df j(v0)‖, Gj = Df j(G0), Xj = Df j(X0),

wj = Df j(w0)/‖Df j(w0)‖, Hj = Df j(H0), Yj = Df j(Y0)

(all the derivatives are at y). By (2.5),

C−1
ω sinα ≤ |ω(v0, w0)| = |ω(Dfmv0, Dfmw0)| ≤ Cω‖Dfmv0‖ ‖Dfmw0‖.

Thus ‖Dfmw0‖ ≥ C−2
ω sinα · m(Dfm|E0)−1 and, by (5.10),

‖Dfmw0‖ ≥ C−4
ω sin2 α · ‖Dfm|F0‖;(5.15)

that is, w0 is “almost” the most expanded vector by Dfm in F0. Hence,
by (5.1),

‖Dfmw0‖
‖Dfmv0‖

≥ C−4
ω sin2 α

‖Dfm|F0‖
m(Dfm|E0)

≥ 1
2C−4

ω sin2 α.

This and (5.9) imply that, for each j = 1, . . . , m,

K ≥ ‖Df jw0‖
‖Df jv0‖

≥ ‖Dfmw0‖/‖Dfm−j |Fj
‖

‖Dfmv0‖/m(Dfm−j |Ej
)
≥ 1

2C−4
ω K−1 sin2 α.
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Therefore, by (5.8) and Lemma 2.8,

‖Df j |Y0‖
m(Df j |Y0)

≤ 8C4
ωK(sinα)−4 = E2.(5.16)

We now deduce some angle estimates. First, we claim that

sin�(v0, G0) ≥ C−2
ω sinα and sin�(w0, H0) ≥ C−2

ω sinα.(5.17)

Indeed, write v0 = u+u′ with u′ ∈ G0 and u ⊥ G0. Since G0 is skew-orthogonal
to w0,

C−1
ω sinα ≤ |ω(v0, w0)| = |ω(u, w0)| ≤ Cω‖u‖.

That is, sin�(v0, G0) = ‖u‖ ≥ C−2
ω sinα. Analogously we prove the other

inequality in (5.17). Next, we estimate sin�(vj , Gj) and sin�(wj , Hj) for
j = 1, . . . , m. For this we use relation (2.6) from subsection 2.4, which gives:

sin�(vj , Gj) ≥
m(Df j |E0)
‖Df jv0‖

sin�(v0, G0),(5.18)

sin�(wj , Hj) ≥
‖Df jw0‖
‖Df j |F0‖

sin�(w0, H0).(5.19)

By (5.11) and (5.13),

‖Df jv0‖ =
‖Dfmv0‖
‖Dfm−jvj‖

≤ m(Dfm|E0)
m(Dfm−j |Ej

)
≤ 21/2C2

ωK1/2(sinα)−1

for each j = 1, . . . , m. So, by (5.11) again,

‖Df jv0‖
m(Df j |E0)

≤ 21/2C3
ωK(sinα)−3/2.

This, together with (5.17) and (5.18), gives

sin�(vj , Gj) ≥ 2−1/2C−5
ω K−1(sinα)5/2.(5.20)

Similarly, by (5.15), (5.12), and (5.14),

‖Df jw0‖ =
‖Dfmw0‖
‖Dfm−jwj‖

≥ C−4
ω sin2 α

‖Dfm|F0‖
‖Dfm−j |F0‖

≥ 2−1/2C−6
ω K−1/2 sin3 α.

Then, using (5.12) again, we get

‖Df jw0‖
‖Df j |F0‖

≥ 2−1/2C−7
ω K−1(sinα)7/2.

By (5.17) and (5.19),

sin�(wj , Hj) ≥ 2−1/2C−9
ω K−1(sinα)9/2.(5.21)
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Now we use Lemma 2.6 three times:

sin�(Yj , Xj) ≥ sin�(vj , Xj) sin�(wj , Rvj ⊕ Xj)

≥ sin�(vj , Gj) sin�(Ej , Hj) sin�(wj , Rvj ⊕ Xj)

≥ sin�(vj , Gj) sin�(wj , Hj) sin2 �(Ej , Hj)

So, using (5.20), (5.21), and �(Ej , Hj) ≥ α, we obtain

sin�(Xj , Yj) ≥ 1
2C−14

ω K−2 sin9 α = sin γ.(5.22)

Relations (5.16) and (5.22) permit us to apply Lemma 5.8. Since mβ ≥ 2π,
it is possible to choose numbers θ0, . . . , θm−1 such that 0 ≤ θj ≤ β and

∑
θj =

�(v0, w0). Let Sj and Lj be as in Lemma 5.8. We have Lm−1 . . . L0|Y0 =
(Dfm|Y0)Sm−1 . . . S0, so that Lm−1 . . . L0(Rv0) = Rwm. This completes the
proof of Proposition 5.1.

6. Proofs of Theorems 3 and 4

Given f ∈ Diff1
µ(M) and m ∈ N, let D(f, m) be the (closed) set of points

x such that there is an m-dominated splitting of index q = d/2 along the
orbit of x. Let Γ(f, m) = M � D(f, m) and let Γ∗(f, m) be the set of points
x ∈ Γ(f, m) which are regular, not periodic, and satisfy λq(f, x) > 0. Let also
Γ(f,∞) =

⋂
m∈N Γ(f, m).

We have the following symplectic analogues of Propositions 4.2, 4.8 and
4.17:

Proposition 6.1. Let f ∈ Sympl1ω(M), ε0 > 0, δ > 0, and 0 < κ < 1.
If m ∈ N is sufficiently large, then there exists a measurable function N :
Γ∗(f, m) → N such that for a.e. x ∈ Γ∗(f, m) and every n ≥ N(x) there exists
an (ε0, κ)-realizable sequence {L̂0, . . . , L̂n−1} at x of length n such that

1
n

log ‖∧q(L̂n−1 . . . L̂0)‖ ≤ Λq−1(f, x) + δ.

Proposition 6.2. Let f ∈ Sympl1ω(M), ε0 > 0 and δ > 0. Then there
exist m ∈ N and a diffeomorphism g ∈ U(f, ε0) that equals f outside the open
set Γ(f, m) and such that∫

Γ(f,m)
Λq(g, x) dµ(x) < δ +

∫
Γ(f,m)

Λq−1(f, x) dµ(x).

Proposition 6.3. Given f ∈ Sympl1ω(M), let

J(f) =
∫

Γ(f,∞)
λq(f, x) dµ(x).
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Then for every ε0 > 0 and δ > 0, there exists a diffeomorphism g ∈ U(f, ε0)
such that ∫

M
Λq(g, x) dµ(x) <

∫
M

Λq(f, x) dµ(x) − J(f) + δ.

The proofs of these propositions are exactly the same as those of the
corresponding results in Section 4, in the following logical order:

Proposition 5.1 ⇒ Proposition 6.1 ⇒ Proposition 6.2 ⇒ Proposition 6.3.

Concerning the first implication, notice that if x ∈ Γ∗(f, m) then, by Lemma 2.4,
the spaces E+

x and E−
x (that correspond to positive and negative Lyapunov ex-

ponents) are Lagrangian, so that Proposition 5.1 applies.

6.1. Conclusion of the proofs of Theorems 3 and 4.

Proof of Theorem 3. Let f ∈ Sympl1ω(M) be a point of continuity of
the map LEq(·). By Proposition 6.3, J(f) = 0, that is, λq(f, x) = 0 for
a.e. x ∈ Γ(f,∞). Let x ∈ M be a regular point. If λq(f, x) > 0, we have
(if we exclude a zero measure set of x) x /∈ Γ(f,∞). This means that there
is a dominated splitting, Tfn(x)M = En ⊕ Fn, n ∈ Z of index q, along the
orbit of x. Then En is the sum of the Oseledets spaces of f , at the point fnx,
associated to the Lyapunov exponents λ1(f, x), . . . , λq(f, x), and Fn is the
sum of the spaces associated to the other exponents. By part 2 of Lemma 2.4,
the splitting Tfn(x)M = En ⊕ Fn, n ∈ Z, is hyperbolic.

The next proposition is used to deduce Theorem 4 from Theorem 3.

Proposition 6.4. There is a residual subset R2 ⊂ Sympl1ω(M) such that
if f ∈ R2 then either f is Anosov or every hyperbolic set of f has measure 0.

Proof. This is a modification of an argument from [20]. We use the fact,
proved in [30], that C2 diffeomorphisms are dense in the space Sympl1ω(M).
Another key ingredient is that the hyperbolic sets of any C2 non-Anosov dif-
feomorphism have zero measure. We comment on the latter near the end.

For each open set U ⊂ M with U �= M and each f ∈ Sympl1ω(M), consider
the maximal f -invariant set inside U ,

Λf (U) =
⋂
n∈Z

fn(U).

For ε > 0, let D(ε, U) be the set of diffeomorphisms f ∈ Sympl1ω(M) such that
at least one of the following properties is satisfied:

(i) There is a neighborhood U of f such that Λg(U) is not hyperbolic for all
g ∈ U ;

(ii) µ(Λf (U)) < ε.
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Clearly, the set D(ε, U) is open. Moreover, it is dense. Indeed, if f does not
satisfy (i) then there is g close to f such that Λg(U) is hyperbolic. Take f1 ∈ C2

close to g in Sympl1ω(M). Then Λf1(U) is hyperbolic with measure zero, and
so f1 ∈ D(ε, U). This proves denseness. Hence the set

D(U) =∩ε>0D(ε, U)

⊃{f ∈ Sympl1ω(M); Λf (U) is hyperbolic ⇒ µ(Λf (U)) = 0}

is residual. Now take B a countable basis of open sets of M and let B̂ be the
set of all finite unions of sets in B. The set

R2 =
⋂

U∈B̂, U �=M

D(U)

is residual in Sympl1ω(M) and the hyperbolic sets for every non-Anosov f ∈ R
have zero measure.

Finally, we explain why all hyperbolic sets of a C2 non-Anosov diffeomor-
phism have zero measure. This is well-known for hyperbolic basic sets; see [11].
We just outline the arguments in the general case. Suppose f has a hyperbolic
set Λ with µ(Λ) > 0. Using absolute continuity of the unstable lamination,
we get that µu(W u

ε (x) ∩ Λ) > 0 for some x ∈ Λ, where µu denotes Lebesgue
measure along unstable manifolds. By bounded distortion and a density point
argument, we find points xk ∈ Λ such that µu(W u

ε (xk) � Λ) converges to zero.
Taking an accumulation point x0 we get that W u

ε (x0) ⊂ Λ. We may suppose
that every point of Λ is in the support of µ|Λ. In particular, there are recurrent
points of Λ close to x0. Applying the shadowing lemma, we find a hyperbolic
periodic point p0 close to x0. In particular, W s

ε (p0) intersects W u
ε (x0) trans-

versely. Using the λ-lemma we conclude that the whole W u(p0) is contained
in Λ. Define Λ0 as the closure of the unstable manifold of the orbit of p0. This
is a hyperbolic set contained in Λ, and it consists of entire unstable manifolds.
Hence, W s(Λ0) is an open neighborhood of Λ0. Using the fact that f preserves
volume, we check that f(W s

ε (Λ0)) = W s
ε (Λ0). This implies that W s(Λ0) = Λ0

and so, by connectedness, Λ0 must be the whole M . Consequently, f is Anosov.

Proof of Theorem 4. It suffices to take R = R1 ∩ R2 with R1 a residual
set of continuity points of f �→ LEq(f), and R2 as in Proposition 6.4.

7. Proof of Theorem 5

Let M be a compact Hausdorff space, µ a Borel regular measure and f :
M → M a homeomorphism preserving the measure µ. Let S be an accessible
subset of GL(d, R), according to Definition 1.2.

The following result provides an analogue of Proposition 3.1:
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Proposition 7.1. Given A ∈ C(M, S) and ε > 0, if m̃ ∈ N is large
enough then the following holds:

Let y ∈ M be a nonperiodic point and suppose it is given a nontrivial
splitting Rd = E ⊕ F such that

‖Am̃(y)|F ‖
m(Am̃(y)|E)

≥ 1
2
.(7.1)

Then there exist matrices L0, . . . , Lm̃−1 ∈ S, with ‖Lj − A(f jy)‖ < ε, such
that Lm̃−1 . . . L0(v) = w for some nonzero vectors v ∈ E and w ∈ Am̃(y)(F ).

Proof. Let C0 be such that ‖A(x)±1‖ ≤ C0 for all x ∈ M . Let ν ∈ N and
α > 0, depending on C0 and ε, be as in Definition 1.2. Let

K = max{(sinα)−1, C2
0}, and C = 8C2

0K(sinα)−2.

Given m̃ large, let m ∈ N be such that 1 ≤ m̃ − νm ≤ ν. We assume m̃ is
large enough so that m > 2C/α.

Now take y, E and F as in the statement. For j = 0, 1, . . . , m − 1, let
Aj = A(fνjy), Ej = Aνj(x)(E), Fj = Aνj(x)(F ). (We disregard times which
are not multiples of ν.) As before, we divide the rest of the proof into three
cases:

First case. There exists 
 ∈ {0, . . . , m} such that

�(E�, F�) < α.(7.2)

With 
 as above, we take ξ ∈ E�, η ∈ F� such that �(ξ, η) < α. By defini-
tion of accessibility, there are Ã0, . . . , Ãν−1 such that ‖Ãi−A(fν�+ix)‖ < ε and
Ãν−1 . . . Ã0(Rξ) = Aν(fν�y)(Rη). We define Lj = Ãj−ν� for ν
 ≤ j < ν(
 + 1)
and Lj = A(f jy) for the remaining j’s. Then {L0, . . . , Lm̃−1} has the required
properties.

Second case. Assume that there exist k, 
 ∈ {0, . . . , m} such that k < 


and
‖A�−1 . . . Ak|Fk

‖
m(A�−1 . . . Ak|Ek

)
> K.(7.3)

Once more, this is similar to the second case in Propositions 3.1 and 5.1. We
leave it to the reader to spell-out the details.

Third case. We suppose that we are not in the previous cases, that is,
we assume

for every j ∈ {0, 1, . . . , m}, �(Ej , Fj) ≥ α,(7.4)

and

for every i, j ∈ {0, . . . , m} with i < j,
‖Aj−1 . . . Ai|Fi

‖
m(Aj−1 . . . Ai|Ei

)
≤ K.(7.5)
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Take unit vectors ξ ∈ E0 and η ∈ F0 such that

‖Am−1 . . . A0(ξ)‖=m(Am−1 . . . A0|E0)

and
‖Am−1 . . . A0(η)‖= ‖Am−1 . . . A0|F0‖.

Let ξj = Aj−1 . . . A0(ξ), ηj = Aj−1 . . . A0(η) and Yj = Rξj ⊕ Rηj .
The assumption (7.1) gives

‖Am−1 . . . A0(η)‖
‖Am−1 . . . A0(ξ)‖

≥ ‖Am̃(y)|F ‖ / ‖Am̃−νm(y)|F ‖
m(Am̃(y)|E) /m(Am̃−νm(y)|E)

≥ 1
2C2ν

0

.

By (7.5), for any j = 1, . . . , m,

K ≥ ‖Aj−1 . . . A0(η)‖
‖Aj−1 . . . A0(ξ)‖

≥ ‖Am−1 . . . A0(η)‖ / ‖Am−1 . . . Aj‖
‖Am−1 . . . A0(ξ)‖ /m(Am−1 . . . Aj)

≥ 1
2C2ν

0 K
.

This, together with (7.4) and Lemma 2.8 implies that, for all j = 1, . . . , m,

‖Aj−1 . . . A0|Y0‖
m(Aj−1 . . . A0|Y0)

≤ C.(7.6)

Assign orientations to the planes Yj such that each Aj |Yj
: Yj → Yj+1

preserves orientation. Let Pj be the projective space of Yj , with the induced
orientation. Let vj = Rξj and wj = Rηj ∈ Pj . For each z ∈ Pj , let [z] ∈ [0, π)
be the oriented angle between z and vj . Now, z �→ [z] is a bijection and
[z] �→ [Ajz] is monotonic. If L : Y0 → Yj is any linear map then, by Lemma 2.7,

0 < [z2] − [z1] ≤
π

2
=⇒ [Lz2] − [Lz1]

[z2] − [z1]
≤ 2

π
· ‖L‖
m(L)

.(7.7)

We define directions u0 ∈ P0, . . . , um ∈ Pm by recurrence as follows: Let
[u0] = 0 and

[uj+1] = min{[wj+1], [Aj(uj + α)]}.(7.8)

We claim that [um] = [wm]. Indeed, [Ajuj ] ≤ [uj+1] ≤ [wj+1] for each j < m.
Therefore, defining [zj ] = [(Aj−1 . . . A0)−1uj ], we have

0 = [z0] ≤ [z1] ≤ · · · ≤ [zm] ≤ [w0] < π.

In particular, [zi+1] − [zi] < π/m for some i = 0, . . . , m − 1. Hence, by (7.6)
and (7.7),

[A−1
i ui+1] − [ui] = [Ai−1 . . . A0zi+1] − [Ai−1 . . . A0zi] < 2C/m ≤ α.

Due to (7.8), this is only possible if [ui+1] = [wi+1]. This implies [um] = [wm].

Now, �(A−1
j uj+1, uj)<α for each j, so that we can find Ãj,0, . . . , Ãj,ν−1∈S

such that ‖Ãj,k−A(fνj+kx)‖ < ε and Ãj,ν−1 . . . Ãj,0(Ruj) = Ruj+1. We define
the sequence {L0, . . . , Lm̃−1} as

{Ã0,0, . . . , Ãj,ν−1, . . . , Ãm−1,0, . . . , Ãm−1,ν−1, A(fνmx), . . . , A(f m̃−1x)}.
Then Lm̃−1 . . . L0(v0) ∈ Am̃(y)(F ).
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Next we define sets Γp(A, m), Γ∗
p(A, m), Γ�

p(A, m) for p ∈ {1, . . . , d − 1}
and m ∈ N, in the same way as in Section 4, with the obvious adaptations.
Lemma 4.1 also applies in the present context.

Proposition 7.2. Given A ∈ C(M, S), ε > 0, δ > 0, and p ∈ {1, . . . ,

d − 1}, if m ∈ N is sufficiently large then there exists a measurable function
N : Γ∗

p(A, m) → N such that for a.e. x ∈ Γ∗
p(A, m) and every n ≥ N(x) there

exist matrices L̂0, . . . , L̂n−1 ∈ S such that ‖L̂j − A(f jx)‖ < ε and

1
n

log ‖∧p(L̂n−1 . . . L̂0)‖ ≤ Λp−1(A, x) + Λp+1(A, x)
2

+ δ.

The proof is the same as that for Proposition 4.2.

Proposition 7.3. Let A ∈ C(M, S), ε0 > 0, p ∈ {1, . . . , d−1} and δ > 0.
Then there exist m ∈ N and a cocycle B ∈ C(M, S), with ‖B−A‖∞ < ε0, that
equals A outside the open set Γp(A, m) and is such that∫

Γp(A,m)
Λp(B, x) dµ(x) < δ +

∫
Γp(A,m)

Λp−1(A, x) + Λp+1(A, x)
2

dµ(x).

The proof of Proposition 7.3 is not just an adaptation of that of Propo-
sition 4.8, because Vitali’s lemma may not apply to M . We begin by proving
a weaker statement, in Lemma 7.4. Let L∞(M, S) denote the set of bounded
measurable functions from M to S. Oseledets’ theorem also applies for cocycles
in L∞(M, S).

Lemma 7.4. Let A ∈ C(M, S), with ε0 > 0, p ∈ {1, . . . , d− 1} and δ > 0.
Then there exist m ∈ N and a cocycle B̃ ∈ L∞(M, S), with ‖B̃ −A‖∞ < ε0/2,
that equals A outside the open set Γp(A, m) and such that∫

Γp(A,m)
Λp(B̃, x) dµ(x) < δ +

∫
Γp(A,m)

Λp−1(A, x) + Λp+1(A, x)
2

dµ(x).

Sketch of proof. We shall explain the necessary modifications of the
proof of Proposition 4.8. The sets Zi, Q̂i and Qi are defined as before. In
Lemma 4.14, the castles U i and Ki become equal to Qi (as κ and γ were 0).
We decompose each base Qi

b into finitely many disjoint measurable sets U i
k with

small diameter. In each tower with base U i
k we construct the perturbation B̃

using Proposition 7.2, taking B̃ constant in each floor. The definitions of N

and Gi are the same. In Lemma 4.16 several bounds (those involving κ or γ)
become trivial. Then one concludes the proof in the same way as before.
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Proof of Proposition 7.3. Let A, ε0, p and δ be as in the statement. Let
m and B̃ be given by Lemma 7.4. Let N ∈ N be such that∫

Γp(A,m)

1
N

log ‖∧p(B̃N (x))‖ dµ < 2δ +
∫

Γp(A,m)

Λp−1(A, x) + Λp+1(A, x)
2

dµ.

Let γ = N−1δ. Using Lusin’s theorem (see [28]) and the fact that S is a
manifold, one finds a continuous B : M → S such that B = B̃ = A out-
side the open set Γp(A, m), the norm ‖B − B̃‖∞ < ε0/2, and the set E =
{x ∈ M ; B(x) �= B̃(x)} has measure µ(E) < γ. Let

G =
N−1⋂
j=0

f−j
(
Γp(A, m) � E

)
⊂ Γp(A, m).

Then µ
(
Γp(A, m) � G

)
≤ Nµ(E) < δ. Now, letting C be an upper bound for

log ‖∧p(B̃(x))‖, we have∫
Γp(A,m)

Λp(B, x) dµ ≤
∫

Γp(A,m)

1
N

log ‖∧p(BN (x))‖ dµ

< Cδ + 2δ +
∫

Γp(A,m)

Λp−1(A, x) + Λp+1(A, x)
2

dµ.

Up to replacement of δ with δ/(C + 2), this completes the proof.

Using Proposition 7.3, one concludes the proof of Theorem 5 exactly as in
subsection 4.3. The fact that either vanishing of the exponents or dominance of
the splitting is also a sufficient condition for continuity is an easy consequence of
semi-continuity of Lyapunov exponents and robustness of dominated splittings
under small perturbations of the cocycle.
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