
Paulo Najberg Orenstein

Optimal Transport and the Wasserstein Metric

Dissertação de Mestrado

Thesis presented to the Postgraduate Program in Applied Math-
ematics of the Departamento de Matemática, PUC–Rio as par-
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Corção Saldanha and Ricardo de Sá Earp, for their hard work and inspiration.

To the members of staff at the Mathematics Department, particularly

Creuza, for their constant help and usual cheerfulness.

To CNPQ, FAPERJ and PUC-Rio, for the financial support.

To my girlfriend, for her love, kindness, and being the best company ever.

To my sister, Leila, for always making me laugh, always picking me up,

and always being by my side.

To my parents, Luiz and Sheila, for being my role models. For their

strength, love, encouragement, and wisdom throughout the years.



Abstract

Orenstein, Paulo Najberg; Bochi, Jairo; Tomei, Carlos. Optimal Trans-
port and the Wasserstein Metric. Rio de Janeiro, 2014. 89p. Dis-
sertação de Mestrado — Departamento de Matemática, Pontif́ıcia Uni-
versidade Católica do Rio de Janeiro.

In this work, we study the so called Optimal Transport theory: given

two probability measures and a cost function, what is the best way to take

one measure to another, minimizing costs? We analyze particular cases and

establish necessary and sufficient conditions for optimality. We show that, in

general, the transport takes the form of a generalized gradient, and that the

problem, which can be viewed as a generalization of Linear Programming to

infinite dimensions, admits a rich underlying duality theory.

Moreover, using the aforementioned results, it is possible to define a

distance in the space of probability measures, called the Wasserstein metric,

as the optimal transport cost between two given measures. This gives rise to a

metric space of probability measures, known as the Wasserstein space, which

has several interesting properties that are studied in the text, both in terms

of its topology (e.g. completeness) and in terms of its geometry (e.g. geodesics

and curvature).

Keywords

Optimal Transport. Monge–Kantorovich Problem. Transport Map.

Duality. Wasserstein Metric. Measure Interpolation.



Resumo

Orenstein, Paulo Najberg; Bochi, Jairo; Tomei, Carlos. Transporte
Ótimo e a Métrica de Wasserstein. Rio de Janeiro, 2014. 89p.
Dissertação de Mestrado — Departamento de Matemática, Pontif́ıcia
Universidade Católica do Rio de Janeiro.

Neste trabalho, estudamos a chamada Teoria de Transporte Ótimo: dadas

duas medidas de probabilidade e uma função de custo, qual é a melhor

maneira de levar uma medida na outra, minimizando custos? Analisamos

alguns casos particulares e estabelecemos critérios de otimalidade para o

problema. Mostramos que o transporte toma em geral a forma de um gradiente

generalizado e que há uma rica teoria de dualidade subjacente ao problema,

que, de fato, pode ser encarado como uma generalização de programação linear

para dimensão infinita.

Além disso, através dos resultados obtidos, é posśıvel definir uma

distância no espaço de probabilidades, chamada de métrica de Wasserstein,

como o custo de transporte ótimo entre duas medidas. Isto permite conside-

rar um espaço métrico de medidas de probabilidade, conhecido como espaço

de Wasserstein, que traz consigo diversas propriedades interessantes, tanto de

caráter topológico (e.g. completude) quanto de caráter geométrico (e.g. curva-

tura), que são investigadas no texto.

Palavras–chave

Transporte Ótimo. Problema de Monge–Kantorovich. Mapa de Trans-

porte. Dualidade. Métrica de Wasserstein. Interpolação de Medidas.
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1

Introduction

Though Optimal Transport theory can trace its roots back to the French math-

ematician Gaspard Monge in 1781, it has recently been the stage of spectacular devel-

opments, both in terms of new and deep theorems and also unsuspected applications.

The field, once dormant, was first revived by the Russian mathematician and economist

Leonid Kantorovich, in 1923, and, arguably, a second time by Yann Brenier, in 1987. In

its modern incarnation, Optimal Transport stands at the intersection of measure theory,

functional analysis, probability theory and optimization.

The fundamental question is deceivingly simple: given two lumps of masses, what

is the best way to transport one of them to the other, minimizing some cost? Of course,

the problem can be understood in increasing generality, depending on which spaces the

masses are on, what shapes we allow the masses to have, what exactly we mean by

‘transporting’, and which function we take to be the cost of moving. Though one would

have guessed at first that too great a generality would imply in unavailing theorems, we

show in these notes that several important results of this theory work for surprisingly

general scenarios.

This explains, at least in part, why Optimal Transport has found several applic-

ations in recent years. It pervades fields like engineering (where the masses could rep-

resent piles of sand and holes), economics (where the masses could be the density of

consumers and producers) and even image processing (where the masses could be color

histograms). Indeed, this theory has been applied in problems as varied as oceanography

[17], the design of antennas [33], matching theory [14], and city planning [13]. It also has

profound connections with the theories of partial differential equations [19, 31], gradient

flows [4], dynamical systems [5], and stochastic differential equations [23], among others.

This, in and on itself, is sufficient to make Optimal Transport an indispensable tool for

both the pure and the applied mathematician.
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However, even more astounding is the intricate and beautiful mathematics that

underlie this field. Indeed, when looked through the right lenses, one can rewrite

the fundamental question of transporting masses as a Linear Programming problem

in infinite dimensions, and from then try to generalize already established theorems.

Surprisingly, several results still hold in this setting (including a duality theory), but

many new ones give the theory a new and distinct flavor.

Furthermore, this rich mathematical structure allows one to use the problem of

transporting masses to suggest a useful metric in the space of probability measures. It is

called the Wasserstein metric, and it lets one look at the space of probability measures

(in fact, a slight restriction of it) as if it were a metric space. Though this could have

been done in other ways, the particular space that arises, called the Wasserstein space,

is full of interesting properties. In these notes, we care about two, in particular. First, we

investigate topological properties, such as whether the space is separable or complete,

and what kind of topology it possesses. Second, we look at geometric properties, which is

possible when one studies the Optimal Transport dynamically, as a sequence of moving

measures. It is then reasonable to ask what constitutes the ‘shortest path’ between two

given probability measure, and how ‘curved’ the Wasserstein space is.

The structure of this work is as follows. In Chapter 2, we study the Optimal Trans-

port problem. Section 2.1 presents an informal introduction to the theory, explaining in

mathematical terms what we are trying to answer and establishing a standard notation.

It also distinguishes between what is called the Monge Problem, a situation in which

we model the solution of the Optimal Transport problem by a function, and the Kan-

torovich Problem, a relaxation of the Monge Problem where the solution is taken to be

a measure. Section 2.2 gives some simple examples to illustrate the theory and motivate

some fundamental questions. Section 2.3 lays the mathematical groundwork by defin-

ing precisely the basic ingredients of the Optimal Transport problem, as well as some

important theorems (for instance, the existence of solutions). Section 2.4 provides the ne-

cessary and sufficient conditions for optimality. In particular, it proves that it is possible

to verify whether a candidate measure is a solution to the Kantorovich Problem merely

by looking at its support; also, it shows that there is a function somehow associated

to each Optimal Transport problem. In Section 2.5, we further study the relationship
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between this newfound function and the Kantorovich Problem, only to conclude that it

is an indication of an underlying duality theory, which we then set out to explore.

In chapter 3, we study the Wasserstein metric. Section 3.1 defines what we mean

by a Wasserstein space, and deals with some of its basic properties (for example, proving

that the proposed Wasserstein metric satisfies the axioms for a metric). Section 3.2

examines the topological properties of such a space; in particular, it investigates what

kind of topology the Wasserstein metric induces and whether the Wasserstein space is

complete. Finally, Section 3.2 studies two geometrical properties of Wasserstein spaces:

it tries to settle what constitutes a ‘shortest path’, or minimal geodesic, in that space;

and it defines and explores a suitable notion of curvature.



2

Optimal Transport

2.1

The Monge and the Kantorovich Problems

Let us start with a concrete example. Suppose we are at war and our city has just

been under a fierce bombardment. As a consequence, there are several independent fire

spots across town that must be extinguished. All of them are reported to the firemen

central, which must act swiftly to deploy fire trucks. Luckily, there are fire stations

spread throughout the city, each with a single fire truck full of water (for simplicity, let

us assume that the stations are as many as the fire spots).

The firemen central then faces a challenge: what is the best way to transport the fire

trucks from the several stations to the fire spots? Note that since there is only one truck

per fire station, each station must select a single fire to extinguish. A possible alternative

is drawn in figure 2.1, where circles represent fire stations and squares represent the

flames.

Figure 2.1: Transporting fire trucks to flames.

How can we model this problem mathematically? One way is to consider fire
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stations as points x1, . . . , xN in R2 and fire spots as points y1, . . . , yN in R2. The collection

of stations can then be seen as a measure in R2, given by µ = 1
N

∑N
i=1 δxi (where δxi is the

standard Dirac delta measure, defined by δxi(A) = 1 if xi ∈ A, and 0 otherwise) and

the collection of fire spots can be seen as another measure in R2, given by ν = 1
N

∑N
j=1 δyj .

Notice we have normalized µ and ν so that µ(R2) = ν(R2) = 1, thereby making them

probability measures.

For the problem to make sense we must have a cost associated with moving, given

by a function c : R2 ×R2 → R. The value c(x, y) represents how costly it is to move the

mass from point x to point y. In our example, it would be natural to consider the usual

euclidean distance as the cost function, c(x, y) = |x− y|.
It is clear the problem is to transport measure µ to ν, but what should constitute a

candidate for the solution? It seems reasonable to think of it as a function T : R2 → R2,

where T (xi) = yj means that the i-th fire truck should proceed to the j-th fire spot. Note

that because each fire station must deploy only one truck, the function is well-defined

(it even allows for multiple trucks to extinguish a single fire). Thus, the firemen central’s

problem becomes to pick T so as to minimize
∑N

i=1 c(xi, T (xi)), conditional on T taking

all the firetrucks x1, . . . , xN to the fire spots y1, . . . , yN .

This is a particular instance of a general class of problems known as Optimal

Transport. The field started in 1781 when the French mathematician Gaspard Monge

tried to solve a question that is the continuous analog of the problem posed above.

Essentially, he wanted to find the best way to transport a certain amount of sand to a

construction site, where both the shape of the hole and the shape of the construction had

already been decided. As before, the transport is costly, and so it should be minimized.

Figure 2.2 illustrates a possible scenario.

Calling X the space where the sand is and Y the space where it should be

transported to, we can model the mass of sand in X by a measure µ and the mass

where the sand should be put in by another measure ν on Y . Of course, the value of

the measures of the whole spaces X and Y must both be the same, or else it would be

impossible to transport the mass from one place to the other: there would either be too

much sand in the hole, or not enough to fill the proposed shape. Since both measures

should be finite, we can normalize them and assume for simplicity µ(X) = 1, ν(Y ) = 1.
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YX

T

µ

ν

Figure 2.2: Moving sand.

Furthermore, as before, there must be a measurable function cost c : X × Y → R

associated with transporting.

As candidates for solutions, Monge considered all measurable maps T : X → Y ,

indicating that the mass of each point x ∈ X should be transported to point T (x) ∈ Y .

Notice this naturally imposes a restriction: since for T to be a map T (x) needs to be

single-valued, the mass of a point x cannot be split. Put differently, all mass taken from

T−1(B) ⊂ X must go to B ⊂ Y , and so the measures µ and ν should agree on these

sets. Hence, the following condition must hold for T to be considered a candidate for

solution:

ν(B) = µ(T−1(B)), for any measurable set B ⊂ Y. (2.1)

When this condition holds, we call ν the push-forward of µ by T , and denote this by

ν = T#µ.

There is another useful way to characterize the push-forward. Denote by χB the

characteristic function on B, that is χB(x) = 1 if x ∈ B and 0 otherwise. Then,

χT−1(B)(x) = 1 ⇐⇒ x ∈ T−1(B) ⇐⇒ T (x) ∈ B ⇐⇒ χB(T (x)) = 1,

and we have, for ψ = χB,

∫

Y

ψ(y)dν(y) =

∫

Y

ψ(y)dT#µ(y) = T#µ(B) = µ(T−1(B))

=

∫

X

χT−1(B)(x)dµ(x) =

∫

X

χB(T (x))dµ(x) =

∫

X

ψ ◦ T (x)dµ(x).
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By the linearity of the integral, the formula above must hold for all simple functions

ψ =
∑n

j=1 cjχBj
, where cj ∈ R, Bj ⊂ Y measurable. We can further extend the formula

to all ψ ∈ L1(T#µ) such that ψ ≥ 0 since, by a well-known Measure Theory argument,

there exists a sequence of simple function {ψn} such that ψ = supn ψn. Then, by the

Monotone Convergence Theorem,

∫

ψdT#µ = sup
n

∫

ψndT#µ = sup
n

∫

ψn ◦ Tdµ =

∫

ψ ◦ Tdµ.

And, finally, it is easy to see the formula is true for arbitrary ψ ∈ L1(T#µ): it is enough

to write ψ = ψ+ − ψ−, where ψ+, ψ− ≥ 0 denote the positive and negative parts of ψ,

respectively, and ψ+, ψ− ∈ L1(T#µ). So, for any ψ ∈ L1(T#µ), we have that ν = T#µ

holds if and only if the following is true:

∫

Y

ψdν =

∫

X

(ψ ◦ T )dµ. (2.2)

This alternative characterization of the push-forward will be useful on a number of

occasions in the future.

Thus, Monge’s Problem is to minimize the total cost associated with moving

measures from X to Y , choosing among all transportation maps that preserve masses.

We state it mathematically as

minimize

∫

X

c(x, T (x)) dµ(x) (2.3)

among measurable maps T : X → Y such that T#µ = ν. If (2.3) admits a minimizer T ∗

we call it an optimal transport map.

Simple as the problem seems, several mathematicians tried without success to make

progress on it. With enough time, it became clear why: the Monge Problem is in fact

ill-posed. Indeed, there are two glaring issues.

First, no admissible T might exist: consider µ = δx a Dirac delta and ν anything

but. It is clear that T (x) must cover at least two points in Y , which is impossible if T is

a well-defined function — in our first example, this is equivalent to asking a single fire

station to extinguish multiple fires (which cannot happen because, by assumption, each

fire station only has one truck at its disposal).
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Second, even in situations where there is an admissible map T , it is very hard

to find suitable methods to attack this problem. Indeed, the typical approach through

the Calculus of Variations does not yield promising results due to the highly non-linear

aspect of the constraint T#µ = ν. As an example, if we assume a “good scenario” where µ

and ν are defined on Rn and are both absolutely continuous with respect to the Lebesgue

measure (i.e. dµ(x) = f(x)dx, dν(y) = g(y)dy, with f, g Lebesgue-integrable) and if we

guess that T must be a C1 diffeomorphism (which is in general too optimistic a guess),

then it is possible to use (2.2) and the change of variables formula to obtain

∫

X

ψ(T (x))f(x)dx =

∫

Y

ψ(y)g(y)dy =

∫

T (X)

ψ(y)g(y)dy

=

∫

X

ψ(T (x))g(T (x))| det∇T (x)|dx,

for all ψ ∈ L1(T#µ), and so we get the constraint

f(x) = g(T (x))| det∇T (x)|,

which is by all counts a highly non-linear restriction1.

Finally, after more than a century, the Russian mathematician Leonid Kantorovich

was able to make headways on the problem. He realized that modeling the solutions of

Monge’s Problem as functions was too stringent: it imposed the restrictive condition that

each point in X needed to be taken to only one point in Y . Instead, he allowed for the

possibility that a single x ∈ X might be split and transported to several different places

in Y . In our first example, this would be akin to letting one fire station have multiple

trucks, each of which might be sent to a different fire spot.

With this generalization, a function would not model a solution appropriately, since

functions require that T (x) be unique for each x. Instead, Kantorovich considered the

space of Borel probability measures on X × Y , denoted by P(X × Y ), and thought of a

solution as a measure π ∈ P(X ×Y ). Informally, we can interpret π(x, y) as the amount

of mass that is transferred from point x ∈ X to y ∈ Y .

Still, there is a clear restriction on the admissible measures. If we are transporting

1This is, in fact, the famous Monge-Ampère partial differential equation in disguise.
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µ to ν, the total mass that π transfers from a subset A ⊂ X to the whole space Y ,

namely π(A × Y ), must coincide with the given mass of that subset, namely µ(A); the

same is true for ν. Thus, we get the restrictions

π(A× Y ) = µ(A), π(X ×B) = ν(B), (2.4)

for all measurable subsets A ⊂ X and B ⊂ Y . It is easy to see this is equivalent to

∫

X×Y

[ϕ(x) + ψ(y)]dπ(x, y) =

∫

X

ϕ(x)dµ(x) +

∫

Y

ψ(y)dν(y) (2.5)

for all (ϕ, ψ) ∈ L1(µ) × L1(ν), or even for all (ϕ, ψ) ∈ L∞(µ) × L∞(ν). Alternatively,

this condition is also equivalent to

projX# π = µ, projY# π = ν,

where projX : X × Y → X and projY : X × Y → Y denote the standard projections

on X and Y , respectively.

We then define the admissible set for Kantorovich’s reformulation, or simply the

admissible set, by

Π(µ, ν) = {π ∈ P(X × Y ) : π(A× Y ) = µ(A), π(X × B) = ν(B)} . (2.6)

By considering measures in X × Y instead of functions, we arrive at the Kan-

torovich Problem. It can be stated as

minimize

∫

X×Y

c(x, y)dπ(x, y) (2.7)

over π ∈ Π(µ, ν). If (2.7) admits a minimizer, π∗, we call it an optimal transport plan

(in contrast to an optimal transport map, which is a solution to the Monge Problem).

Though this might not be immediately obvious, Kantorovich’s reformulation of

Monge’s Problem has several benefits. Indeed, soon after Kantorovich rephrased Monge’s

Problem mathematicians were able to achieve remarkable results. We list here four

advantages.
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First, the admissible set of measures is never empty. For instance, it is easy to see

that the product measure µ ⊗ ν, given by (µ ⊗ ν)(A × B) = µ(A) · ν(B) is always

available, and satisfies condition (2.4) for all measurable subsets A ⊂ X , B ⊂ Y . Thus,

whereas the set of optimal transport maps can be empty, the set of optimal transport

plans always has at least one element.

Second, the Kantorovich Problem is really a generalization of Monge’s. If there is a

solution to Kantorovich’s Problem that does not involve the splitting of masses, then it is

easy to see it must also be a solution to Monge’s. Indeed, if T solves Monge’s Problem, it

satisfies T#µ = ν, and thus π = (Id×T )#µ is an admissible measure for the Kantorovich

Problem. This follows because, for all measurable subsets A ⊂ X,B ⊂ Y ,

π(A× Y ) = (Id×T )#µ(A× Y ) = µ((Id×T )−1(A× Y )) = µ(A),

π(X × B) = µ((Id×T )−1(X × B)) = µ(T−1(B)) = ν(B),

where the last equality is a consequence of T#µ = ν.

Third, we can guarantee the existence of a solution to the Kantorovich Problem

under quite general conditions. This will be the content of Theorem 10 below. The

existence of a minimizer is not really surprising when one understands that Kantorovich’s

reformulation makes the objective functional linear (in the candidate measure) and the

admissible set convex and compact with respect to a natural topology. This should

become clearer in section 2.3.

Fourth, and more importantly, Kantorovich’s relaxation transformed Monge’s

Problem into an infinite-dimensional Linear Programming problem. Thus, as one might

expect, it admits a useful dual formulation to be explored. This is the content of Theorem

22 below.

Finally, we mention in passing the strong connection the Kantorovich Problem has

with Probability Theory. Though this is immediate from the fact that we are taking µ, ν, π

to be probability measures, the correspondence goes deeper. By definition, a random

variable U in X is a measurable function U : Ω → X , where Ω is a space endowed with

a probability measure P. Also, the law of U , given by a probability measure µ on X , is

defined by law(A) = P(U−1(A)), and the expected value of a random variable U is simply
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its integral with respect to P. Given these definitions, it is easy to see Kantorovich’s

Problem can be restated as: given two probability measures µ and ν, minimize the

expected value of E[c(U, V )] considering all pairs of random variables U : Ω → X ,

V : Ω → Y , such that law(U) = µ, law(V ) = ν.

2.2

Elementary Examples

In order to make the problem less abstract, let us consider some examples.

Example 1 (Dirac mass). Let µ be any measure on X and ν = δa a Dirac delta measure

on Y , with a ∈ Y . Then it is quite clear that the admissible set Π(µ, ν) has only one

element, the measure π that transports all mass from X to a, which must therefore be

optimal. The optimal cost is

∫

X×Y

c(x, y)dπ(x, y) =

∫

X

c(x, a)dµ(x).

Thus, both the Monge and Kantorovich Problems admit the same solution.

Example 2 (Non-existence). Let us give an example where there is no optimal map

that solves the problem, though there is an optimal plan. Consider X = Y = R2 with

quadratic cost c(x, y) = |x− y|2 and let λ be the Lebesgue measure. Define the measure

µ−1 to be supported on {−1} × [0, 1] and equal to µ−1({−1} × A) = 1
2
λ(A) for any

A ⊂ [0, 1] Borel-measurable; likewise define the measure µ1 to be supported on {1}×[0, 1]

and equal to µ1({1} × A) = 1
2
λ(A) for any A ⊂ [0, 1] Borel-measurable. Finally, define

the measure µ0 to be supported on {0}× [0, 1] and equal to µ0({0}×A) = λ(A) for any

A ⊂ [0, 1] Borel-measurable. We shall take µ = µ0 and ν = µ−1 +µ1, and again we must

transport µ to ν.

It is straightforward to see that the Kantorovich Problem admits a solution: there

is an optimal plan π∗ that simply takes half the mass of a point (0, a) to (−1, a) and the

other half to (1, a), where a ∈ [0, 1]. Analytically, we have

π∗((0, a), (1, ã)) =











1/2, if a = ã

0, otherwise,
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and

π∗((0, a), (−1, ã)) =











1/2, if a = ã

0, otherwise.

Indeed, it is easy to see π∗ as defined above must be optimal, since
∫

X×Y
|x −

y|2dπ∗(x, y) = 1 and for any candidate plan π the optimal cost will be equal or big-

ger than one, as each point must necessarily be transported by a distance of at least 1

(thus,
∫

X×Y
|x− y|2dπ ≥

∫

X×Y
1dπ = 1). See Figure 2.3a below.

On the other hand, there is no solution to the Monge Problem, i.e. there is no

map that solves the problem. We can create a sequence of maps that approximate the

solution, but the limit of the sequence turns out not to be a map. For instance, partition

the interval {0} × [0, 1] into n equal-sized intervals, and consider the map T suggested

in Figure 2.3b. Each partition interval will be transported to a side with a cost of

∫ 1
n

0

|(1, 2x)− (0, x)|2dx =
1

n
+

1

3n3
.

Since there are n intervals to be transported, the total cost will be 1+ 1
3n2 → 1 as n→ ∞.

(a) (b)

Figure 2.3: On the left, the optimal plan; on the right, an attempt to find an optimal
map, which gets increasingly close to the optimal plan.
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Example 3 (Discrete case). We shall consider the case where µ and ν are discrete,

uniform probability measures (just as in the initial fire trucks example). Take X and Y

to be discrete spaces, such that X = {x1, . . . , xN}, Y = {y1, . . . , yN}, and let

µ =
1

N

N
∑

i=1

δxi , ν =
1

N

N
∑

j=1

δyj

so both measures are probability measures that assign the same weight to all points.

Since the problem is discrete and finite, a measure π ∈ Π(µ, ν) can be thought of as an

N ×N matrix, π = [πij ]i,j, where πij indicates the fraction of mass that goes from point

xi to point yj. Note that all mass from xi goes to Y , so
∑N

j=1 πij = 1, and also all mass

that gets to yj comes from somewhere in X , so
∑N

i=1 πij = 1. If we define the set of

bistochastic n× n matrices by

MB =

{

M = (mij) ∈ RN×N
∣

∣

N
∑

i=1

mij = 1 ∀i,
N
∑

j=1

mij = 1 ∀j, and mij ≥ 0 ∀i, j
}

,

(2.8)

then the Kantorovich Problem in this setting becomes:

min
π

{

1

N

∑

i,j

πijc(xi, yj)
∣

∣ π ∈ MB

}

. (2.9)

This is a simple Linear Programming problem, since the objective function
∑

i,j πijc(xi, yj) is linear and the admissible set MB is both convex and bounded. By

Choquet’s Theorem [16], we know that at least some solutions to (2.9) must be ex-

tremal points of MB, i.e. points that cannot be expressed as a convex combination

of other points in MB. In turn, by Birkhoff’s Theorem [7], we know all extremal points

of MB are permutation matrices, i.e. matrices such that, for some permutation σ,

πij = 1, if j = σ(i), and 0 otherwise.

This means that there are solutions to Kantorovich’s Problem that are also solutions

to Monge’s Problem. Indeed, as some optimal plans are permutations (which take all the

mass from a point xi to a point yj), the solution can be thought of as a mapping. If we

denote by SN the set of permutations of {1, . . . , N}, the Monge Problem can be recast

as

min
σ

{

1

N

N
∑

i=1

c(xi, yσ(i))
∣

∣ σ ∈ Sn

}

, (2.10)



Optimal Transport and the Wasserstein Metric 21

and it is clear (2.9) and (2.10) are the same.

It is then easy to see that the Optimal Transportation problem reduces to an

optimal matching problem in the discrete case, since we are simply ‘matching’ the

points in X to points in Y so as to minimize a given matrix cost, c = [cij ]i,j. This

particular case has received a lot of attention, and much theory has been developed

lately2.

Example 4 (Book-shifting). Consider the Lebesgue measure on R, denoted by λ, the

spaces X = Y = R, the cost function c(x, y) = |x − y|p, where p > 0, and the uniform

probability measures µ = 1
n
λ
∣

∣

[0,n]
, and ν = 1

n
λ
∣

∣

[1,n+1]
, where n > 1.

Define two transport maps

T1(x) = x+ 1 and T2(x) =











x if 1 < x ≤ n

x+ n if 0 ≤ x ≤ 1.

Note T1 simply “shifts” the measure µ by one, whereas T2 keeps the common mass in

place and moves the remaining mass. It is easy to see from (2.3) that the total costs

associated to maps T1 and T2 are, respectively

∫

X

|x− T1(x)|pdµ(x) = 1,

∫

X

|x− T2(x)|pdµ(x) = np−1.

If p = 1 then both transports cost the same, as our intuition would have made

us believe. If p > 1, though, T1 induces a smaller cost, whereas if p < 1, T2 is better.

This has to do with the fact that f(x) = xp is a convex function when p > 1 (so two

medium-length shifts are better than one big shift and one small shift) and concave when

p < 1 (so two medium-length shifts are worse than one big shift and one small shift).

Furthermore, if p = 1, it is possible to prove that both T1 and T2 are optimal

transport maps by elementary methods. To see this, first notice the infimum of the

Monge Problem is always greater than

sup
ϕ

{
∫

X

ϕd(µ− ν)
∣

∣ ϕ ∈ Lip1(X)

}

, (2.11)

2Though in this discrete setting the Kantorovich Problem becomes a traditional finite-dimensional
Linear Programming problem, one should not be tempted to just use the Simplex algorithm to solve it.
Indeed, there are better algorithms, such as the Hungarian algorithm [25], that exploit the additional
structure this formulation imposes.
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where Lip1(X) denotes the space of 1-Lipschitz functions on X (i.e. those functions

ϕ that satisfy the condition |ϕ(x)− ϕ(y)| ≤ |x− y|, ∀x, y ∈ X), because, by (2.2),

∫

X

ϕd(µ− ν) =

∫

X

(ϕ(x)− ϕ(T (x)))dµ(x) ≤
∫

X

|x− T (x)|dµ(x).

Thus, if we can find a 1-Lipschitz function ϕ and a transport map so that equality

holds, we will simultaneously have that T solves the Monge Problem and ϕ solves (2.11).

Fortunately, it is easy to see ϕ(x) = −x fits the bill:

∫

X

ϕd(µ− ν) =

∫

X

−xd(µ− ν) =

∫

X

xdν(x)−
∫

X

xµ(x)

=
1

n

∫ n+1

1

xdx− 1

n

∫ n

0

xdx =
(n+ 1)2 − 12 − n2

2n
= 1.

Hence, the optimal value of the Monge Problem is 1 and both T1 and T2 are optimal

maps.

Though the method above solves the Monge Problem, it is not clear that T1 and T2

also induce proper solutions to the Kantorovich Problem. As we shall see later, however,

the Lipschitz condition devised can be extended to transference plans, so (Id×T1)# and

(Id×T2)# do solve the Kantorovich Problem. In fact, under suitable conditions, the

Kantorovich Problem always admits a solution that leaves all common mass in place

(see example 32).

Example 5 (Non-uniqueness). An interesting property arises if n = 1 in the preceding

example. Then µ = λ
∣

∣

[0,1]
, ν = λ

∣

∣

[1,2]
and we still have c(x, y) = |x − y|p, with p > 0.

Both T1 and T2 now define the same function, so let us consider the following two maps:

T1(x) = x+ 1 and T3(x) = 2− x.

The costs associated with T1 and T3 are, respectively,

∫ 1

0

1dx = 1 and

∫ 1

0

(2− 2x)pdx =
2p

p+ 1
.

Again, if p > 1, the cost function is convex, and so it is better to move all points by a

medium amount than move half by a large amount and half by a small amount; thus, T1

is optimal. If, on the other hand, p < 1, the cost function is concave, so it is better to
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move all points by a medium amount than half by a large amount and half by a small

amount; thus, T2 is optimal because it reverses the orientation.

A curious property shows up when p = 1. Then any transference plan π ∈ Π(µ, ν)

is optimal because the cost function reduces to c(x, y) = y − x, and so, by (2.5),

∫

X×Y

c(x, y)dπ(x, y) =

∫

X×Y

(y − x)dπ(x, y) =

∫

Y

ydy −
∫

X

xdx

=
22 − 12 − 12

2
= 1.

Hence, the solution to the Kantorovich Problem is not unique. As an obvious con-

sequence, the solution to the Monge Problem (which also attains the value of 1) cannot

be unique as well.

2.3

Basic Definitions and Results

Though we were able to find interesting characterizations for the examples posed

in the last section, in order to derive general results in the Optimal Transport theory,

we must restrict the scope of some of our objects. The conditions we shall impose are

general enough to encompass all the previous examples and more.

In what follows, we will take X and Y to be complete and separable metric spaces

(also called Polish spaces), and denote by P(X),P(Y ) the sets of Borel probability

measures on X and Y , respectively (we recall that a Borel probability measure

is a measure defined on the σ-algebra generated by the open sets of some topological

space). Also, we define the support of a measure µ ∈ P, denoted by supp(µ), as the

smallest closed set on which µ is concentrated. We will consider µ ∈ P(X), ν ∈ P(Y ),

π ∈ P(X × Y ), and restrict our cost functions to continuous functions c : X × Y → R

bounded from below.

Also, given a topological space X , it will be useful to define a function f : X →
R ∪ {−∞,∞} to be lower semi-continuous if, for all x ∈ X and sequence {xn}n∈N
such that xn → x, it holds that f(x) ≤ lim infn→∞ f(xn). Symmetrically, we define a

function f : X → R to be upper semi-continuous if, for all x ∈ X and sequence

{xn}n∈N such that xn → x, we have f(x) ≥ lim supn→∞ f(xn).
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The Monge Problem can then be stated as: given two measures µ ∈ P(X) and

ν ∈ P(Y ) and a continuous cost function c : X × Y → R bounded below, solve

inf
T

{
∫

X

c(x, T (x))dµ(x)
∣

∣ T : X → Y measurable, T#µ = ν

}

. (2.12)

As before, an optimal solution T ∗ to the Monge Problem will be called an optimal

transference map.

The Kantorovich Problem can be stated as: given two measures µ ∈ P(X) and

ν ∈ P(Y ) and a continuous cost function c : X × Y → R bounded below, solve

inf
π

{
∫

X×Y

c(x, y)dπ(x, y)
∣

∣ π ∈ Π(µ, ν)

}

, (2.13)

where Π(µ, ν) is defined as in (2.6). An optimal solution π∗ to the Kantorovich Problem

will be called an optimal transference plan.

Finally, denote by Π∗(µ, ν) the set of optimal plans. The main purpose of

this section will be to prove that Π∗(µ, ν) is always non-empty; i.e. minimizers to the

Kantorovich Problem always exist (see Theorem 10).

We first recall basic results concerning analysis on Polish spaces. Let us take

as the standard topology on P(X) the so-called narrow topology3, induced by the

convergence against continuous bounded functions. It is possible to show that the narrow

topology is metrizable4. We say a sequence of measures {µn}n∈N ⊂ P(X) narrowly

converges to another measure µ if

∫

X

ϕdµn →
∫

X

ϕdµ, ∀ϕ ∈ Cb(X).

Having specified a topology, it will be useful time and again to know when a measure

admits a compact approximation for the space X . In fact, this yields the following

definition.

Definition 6. Given a Polish space X , a set S ⊂ P(X) is called tight if for all ε > 0

there exists a compact set Kε ⊂ X such that µ(X \Kε) ≤ ε, for all µ ∈ S.

3The narrow topology is also referred to as the weak topology of measures; from the point of view of
Functional Analysis, by considering Cb(X) to be the base space, it should be called the weak-∗ topology.

4We shall pick up on this issue on Corollary 38. For now it suffices to say that it is metrizable, for
instance, by the Levy-Prokhorov distance, defined in (3.10).
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Tight sets are important because they have an extremely useful equivalence, as the

next theorem shows.

Theorem 7 (Prokhorov’s Theorem). If X is a Polish space, then a subset S ⊂ P(X) is

tight if and only if it is pre-compact for the narrow topology (i.e. its closure is a compact

set).

Prokhorov’s Theorem is a very important tool in Polish spaces, and shall be

employed frequently in this text. For a proof, refer to [30]. As a straightforward corollary,

we obtain Ulam’s Lemma.

Corollary 8 (Ulam’s Lemma). A Borel probability measure µ on a Polish space X is

automatically tight.

And, lastly, a reassuring result: the completeness and separability of the space X

are inherited by the space of probability measures on that set, P(X). We shall state the

theorem here, though we will later have the opportunity to prove it in Theorem 39, after

we come across a suitable metric for the space P(X).

Theorem 9. If X is a Polish space, then P(X) is also a Polish space.

It is now easy to prove the existence of minimizers for the Kantorovich Problem.

Theorem 10. Let X, Y be Polish spaces and let c : X×Y → R be a continuous function

bounded from below. Given two measures µ ∈ P(X), ν ∈ P(Y ), there exists a measure

π∗ ∈ Π(µ, ν) such that

∫

X×Y

c(x, y)dπ∗(x, y) = inf
π

{
∫

X×Y

c(x, y)dπ(x, y)
∣

∣ π ∈ Π(µ, ν)

}

,

i.e. π∗ is a minimizing measure for the Kantorovich Problem.

Proof. We proceed as follows: first, we show the set Π(µ, ν) is tight, hence pre-compact;

because we can prove Π(µ, ν) is actually closed, it is compact; then, as a consequence,

we are able to find a convergent minimizing subsequence for the Kantorovich Problem;

finally, we show that the continuity of the cost function c guarantees that the limit of

the subsequence is indeed an optimal solution.
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To show Π(µ, ν) is tight, notice that, by Ulam’s Lemma, both µ and ν are tight.

Therefore, given ε > 0, we can find K1 ⊂ X and K2 ⊂ Y compact subsets such that

µ(X \K1) < ε/2 and ν(Y \K2) < ε/2. Thus, for any π ∈ Π(µ, ν), we get

π(X×Y \K1×K2) ≤ π((X \K1)×Y )+π(X× (Y \K2)) = µ(X \K1)+ ν(Y \K2) < ε,

and so Π(µ, ν) is tight in P(X × Y ).

By Prokhorov’s Theorem, we get that Π(µ, ν) is pre-compact in P(X × Y ). To

show that it is in fact (narrowly) compact, we must see that Π(µ, ν) is closed. Let

{πn} ⊂ Π(µ, ν) be such that πn → π∗ narrowly. We shall have π∗ ∈ Π(µ, ν) if

projX# π
∗ = µ and projY# π

∗ = ν.

Since projX ∈ Cb(X) and projY ∈ Cb(Y ), we get, for ϕ ∈ Cb(X),

∫

X

ϕd(projX# π∗) =

∫

X×Y

ϕ(projX(x, y))dπ∗(x, y)

= lim
n→∞

∫

X×Y

ϕ(projX(x, y))dπn(x, y)

= lim
n→∞

∫

X

ϕd(projX# πn) =

∫

X

ϕdµ,

where the first equality follows by (2.2), the second by narrow convergence of {πn}, the
third again by (2.2), and the fourth because πn ∈ Π(µ, ν). Thus, since the equality above

holds for any ϕ ∈ Cb(X), we have that projX# π
∗ = µ. An analogous calculation shows

that projY# π
∗ = ν, and we get (narrow) compactness of Π(µ, ν).

Finally, since c is continuous, there exists an increasing sequence of continuous

and bounded functions cn : X × Y → R such that c(x, y) = limn→∞ cn(x, y). Take a

minimizing sequence {πk}k∈N ⊂ Π(µ, ν) and let π∗ be an accumulation point. Then:

∫

X×Y

cdπ∗ = lim
n→∞

∫

X×Y

cndπ
∗ ≤ lim

n→∞
lim sup
k→∞

∫

X×Y

cndπk (2.14)

≤ lim sup
k→∞

lim
n→∞

∫

X×Y

cndπk = lim sup
k→∞

∫

X×Y

cdπk = inf
π∈Π(µ,ν)

∫

X×Y

cdπ,

where the first and second equalities are a consequence of the Monotone Convergence

Theorem, and the first inequality follows because {πk} is a minimizing sequence.

Hence, as the measure π∗ is in the admissible set and attains the infimum in the

Kantorovich Problem, it is an optimal solution. �
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Remark 2.3.1. Taking the cost function c to be continuous was more restrictive than

needed. Note that any positive lower semi-continuous function f : X → R can be

approximated by a sequence of continuous bounded functions f̃n : X → R (for instance,

consider f̃n(x) = infz∈X{f(z) + nd(z, x)}, where d is any metric on X). Thus, the proof

above would hardly need a modification if we considered c to be lower semi-continuous

instead of continuous.

Now that we have guaranteed the existence of a minimizer for the Kantorovich

Problem, several questions arise: (i) under what circumstances are these minimizers

unique? (ii) can we find good criteria for optimality? (iii) are there properties that any

optimal solution must satisfy (for instance, do they preserve orietantion)? (iv) when will

a solution to the Kantorovich Problem induce a solution to the Monge Problem? (v) can

we estimate how close the solution of the Kantorovich Problem is to the solution of the

Monge Problem?

In the next sections we try to answer some of these questions.

2.4

Necessary and Sufficient Conditions for Optimality

The first important result of this section is the perhaps surprising condition that

optimality in the Kantorovich Problem is a property that can depend solely on the

support of the candidate measure π ∈ Π(µ, ν). In other words, one can determine whether

a given transference plan is optimal only by looking at its support; there is no need to see

how the mass is distributed. The second main result is that the support of an optimal

measure is always contained in a generalization of the gradient of a function ϕ, and,

usually, the transport does in fact take the form ∇ϕ. Both of these observations are part

of Theorem 19.

To build intuition for the necessary and sufficient conditions for optimality, it is

useful to consider a particular case of the Kantorovich Problem. In some sense, we shall

be looking at a “best-case scenario”: we take X = Rn, Y = Rn, µ = 1
N

∑N
i=1 δxi and

ν = 1
N

∑N
j=1 δyj and the quadratic cost c(x, y) = |x − y|2/2. Note this is precisely the

setting of example 3.
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The following three classical concepts in convex analysis are crucial. First, we say

a set Γ ⊂ Rn × Rn is cyclically monotone if, for any N ∈ N and any family of points

in Γ, (x1, y1), . . . , (xN , yN), we have

N
∑

i=1

〈xi, yi〉 ≥
N
∑

i=1

〈xi, yσ(i)〉,

for all possible permutations σ of {1, . . . , N} . It is “cyclical” because it suffices to check

the permutation y1 → y2 → · · · → yN → y1; it is “monotone” because when N = 2

monotonicity and cyclical monotonicity are equivalent.

Second, we define ϕ : Rn → R∪ {∞} to be a (proper) convex function if ϕ 6≡ ∞
and, for any t ∈ (0, 1) and x1, x2 ∈ Rn, it holds that

ϕ((1− t)x1 + tx2) ≤ (1− t)ϕ(x1) + tϕ(x2).

A function is said to be (proper) concave if −ϕ is (proper) convex.

Third, we deal with a generalization of the idea of differentiability for convex

functions. Given a (proper) convex function ϕ : Rn → R ∪ {∞}, the subdifferential of

ϕ, denoted by ∂−ϕ, is a set-valued mapping given by the relation

y ∈ ∂−ϕ(x) ⇐⇒ ∀z ∈ Rn, ϕ(z) ≥ ϕ(x) + 〈y, z − x〉. (2.15)

We usually identify the subdifferential ∂−ϕ with its graph. It is possible to prove that

ϕ is differentiable at a point x if and only if ∂−ϕ(x) contains a single element, which is,

naturally, ∇f(x). Note that if x̄ is such that ϕ(x̄) = ∞, then ∂−ϕ(x̄) = ∅. Figure 2.4

gives some intuition to definition (2.15).

If we consider ϕ to be concave, then we define its superdifferential, denoted by

∂+ϕ, by the relation

y ∈ ∂+ϕ(x) ⇐⇒ ∀z ∈ Rn, ϕ(z) ≤ ϕ(x) + 〈y, z − x〉. (2.16)

We now proceed to relate these concepts with the optimality conditions of the

Kantorovich Problem. It is clear that a plan π ∈ Π(µ, ν) is optimal if and only if

N
∑

i=1

|xi − yi|2
2

≤
N
∑

i=1

|xi − yσ(i)|2
2

,
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Y

X

ϕ(x)

Figure 2.4: The subdifferential of a convex function ϕ(x), given by the cone of purple
normal vectors.

for all N ∈ N, (xi, yi) ∈ supp(π), i = 1, . . . , N and σ permutation of {1, . . . , N}. By
expanding and using inner products, we get the equivalent condition:

N
∑

i=1

〈xi, yi〉 ≥
N
∑

i=1

〈xi, yσ(i)〉. (2.17)

Thus, we get in a straightforward way that π is optimal if and only if its support supp(π)

is cyclically monotone.

We recall an important theorem about cyclically monotone sets.

Theorem 11 (Rockafellar). A nonempty set Γ ⊂ Rn×Rn is cyclically monotone if and

only if it is included in the subdifferential of a lower semi-continuous convex function

ϕ : Rn → R ∪ {∞}, with ϕ 6≡ ∞.

Proof. (⇐) Let ϕ : Rn → R be a convex function, and (x1, y1), . . . , (xN , yN) ∈
supp(∂−ϕ), so that yi ∈ ∂−ϕ(xi) for all i = 1, . . . , N . By (2.15), this means that

ϕ(z) ≥ ϕ(xi) + 〈yi, z − xi〉,

for all z ∈ Rn.

And so we find that
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ϕ(x2) ≥ ϕ(x1) + 〈y1, x2 − x1〉,

ϕ(x3) ≥ ϕ(x2) + 〈y2, x3 − x2〉,
...

ϕ(xN ) ≥ ϕ(xN−1) + 〈yN−1, xN − xN−1〉,

ϕ(x1) ≥ ϕ(xN) + 〈yN , x1 − xN 〉.

(2.18)

By adding all these inequalities, we have that

N
∑

i=1

〈yi, xi+1 − xi〉 ≤ 0. (2.19)

(with the convention that xN+1 = x1). Since (2.19) holds for all sets of points

(x1, y1), . . . , (xN , yN), it is clear that the subdifferential of ϕ is cyclically monotone.

(⇒) Let Γ ⊂ Rn × Rn be a cyclically monotone set, we must find a lower semi-

continuous convex function ϕ (not identically infinite) such that Γ ⊂ ∂−ϕ. By (2.18), it

seems reasonable to pick some (x0, y0) ∈ Γ and from that define

ϕ(x) = sup
{

〈yN , x− xN〉+ . . .+ 〈y0, x1 − x0〉
∣

∣ N ∈ N; (x1, y1), . . . , (xN , yN) ∈ Γ
}

.

(2.20)

Note that ϕ is a convex lower semi-continuous function because it is the supremum of

affine functions. Also, ϕ is not identically infinite since ϕ(x0) ≤ 0, by (2.19).

Having defined ϕ, all that is left to check is that Γ is indeed in the subdifferential of

ϕ. Take (x, y) ∈ Γ and let z ∈ Rn. Since we want to prove that ϕ(z) ≥ ϕ(x) + 〈y, z− x〉,
it will suffice to have that, for all α < ϕ(x)

ϕ(z) ≥ α + 〈y, z − x〉. (2.21)

But if α < ϕ(x), by (2.20), we can find (x1, y1), . . . , (xN , yN) ∈ Γ, for some N ∈ N, such

that

α ≤ 〈yN , x− xN 〉+ · · ·+ 〈y0, x1 − x0〉,

and so

α+ 〈y, z − x〉 ≤ 〈y, z − x〉+ 〈yN , x− xN 〉+ · · ·+ 〈y0, x1 − x0〉.

By taking x = xN+1, y = yN+1, we get (2.21) and conclude the proof. �
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Remark 2.4.1. Note that although the above theorem might seem a bit mysterious

at first, its continuous counterpart is relatively clear: equation (2.17) is equivalent to
∑N

i=1〈yi, xi − xi−1〉 ≤ 0 (with the understanding that x0 = xN ), which translates in a

continuous setting to
∮

y(x)dx ≤ 0. This in turn implies that the vector field y(x) is

conservative, so y(x) = ∇ϕ(x) for some function ϕ(x).

We thus get an equivalence between three key concepts: a measure π ∈ Π(µ, ν) is

optimal if and only if supp(π) is cyclically monotone if and only if there exist a convex

lower semi-continuous function ϕ such that π is concentrated on the subdifferential of ϕ.

This relationship between optimality, cyclical monotonicity and subdifferentials of

convex lower semi-continuous functions is indeed a remarkable one. We can attest a

measure’s optimality for the Kantorovich Problem simply by looking at its support.

Moreover, each solution to the Kantorovich Problem has somehow a convex lower semi-

continuous function associated to it.

Unfortunately, the connections made above relied intrinsically on the format of

the cost function, assumed to be c(x, y) = |x − y|2/2. Hence, a priori, one should have

no reason to expect them to hold for more general cost functions. Still, fortunately, we

are able to regain these equivalences to any continuous cost function c by appropriately

generalizing the notions of cyclical monotonicity, convexity and subdifferential or, as

we shall prefer, by generalizing the notions of cyclical monotonicity, concavity and

superdifferential. We now turn to this direction.

Definition 12. A set Γ ⊂ X×Y is said to be c-cyclically monotone if, for any N ∈ N

and any family of points in Γ, (x1, y1), . . . , (xN , yN), we have

N
∑

i=1

c(xi, yi) ≤
N
∑

i=1

c(xi, yσ(i)),

for all possible permutations σ of {1, . . . , N} (or simply for the permutation σ(i) = i+1

for i = 1, . . . , N − 1 and σ(N) = 1).

Remark 2.4.2. Though it may be hard to characterize c-cyclically monotone sets, it is

not difficult to see why they are important. Indeed, they provide a criteria for ‘critical

points’: if {(x1, y1), . . . , (xN , yN)} is not a c-cyclically monotone set, then they cannot
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Figure 2.5: Two possible cycles.

be contained in the support of an optimal measure, since we can find a permutation σ

such that the optimal measure can be improved by sending some mass from x1 to yσ(1),

from x2 to yσ(2), and so on. By proceeding this way, we can keep improving a candidate

measure until it is supported on a set that is c-cyclically monotone.

The important question is: would that ‘improved’ measure necessarily be an

optimal one? Or could this process just yield a point of ‘local minimum’? Though

we will only prove the answer in Theorem 19 below, here is a reasonable argument:

since the admissible set of the Kantorovich Problem is convex and compact and the

objective function linear, we are in essence dealing with an infinite-dimensional Linear

Programming problem, as alluded to before. Hence, minimizing the cost functional means

walking along the extreme points of our convex domain and all local minimum points

should be global minimum points. In particular, the Kantorovich Problem has either one

solution (i.e. an ‘edge’) or infinitely many solutions (i.e. a ‘face’).

Definition 13. Let ϕ : X → R ∪ {±∞} be a function, ϕ 6≡ −∞. We define its c-

transform ϕc : Y → R ∪ {−∞} by

ϕc(y) = inf
x∈X

c(x, y)− ϕ(x).

Analogously, given a function ψ : Y → R ∪ {±∞}, ψ 6≡ −∞, we define its c-transform

ψc : X → R ∪ {−∞} as

ψc(x) = inf
y∈Y

c(x, y)− ψ(y).
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We are now ready to generalize the idea of concavity, based on the concepts of

c-transforms.

Definition 14. A function ϕ : X → R∪ {−∞} is said to be c-concave if there exists a

function ψ : Y → R∪ {−∞} such that ϕ = ψc. Likewise, a function ψ : Y → R∪ {−∞}
is c-concave if there exists ϕ : X → R ∪ {−∞} such that ψ = ϕc.

Since c is continuous, it is clear that the c-transforms are automatically upper

semi-continuous, so we do not have to worry about the measurability of those functions.

Denoting (ψc)c by ψcc, we have the following simple proposition.

Proposition 15. Given a function ψ : Y → R ∪ {±∞}, it holds that ψc = ψccc.

Proof. We simply use the definition of a c-concave function repeatedly.

ψc(x) = inf
y∈Y

c(x, y)− ψ(y)

ψcc(ỹ) = inf
x̃∈X

c(x̃, ỹ)− ψc(x̃) = inf
x̃∈X

(

c(x̃, ỹ)− inf
y∈Y

c(x̃, y)− ψ(y)

)

= inf
x̃∈X

(

− inf
y∈Y

(c(x̃, y)− c(x̃, ỹ)− ψ(y))

)

= − sup
x̃∈X

inf
y∈Y

c(x̃, y)− c(x̃, ỹ)− ψ(y)

ψccc(x) = inf
ỹ∈Y

(

c(x, ỹ) + sup
x̃∈X

inf
y∈Y

(c(x̃, y)− c(x̃, ỹ)− ψ(y))

)

= inf
ỹ∈Y

sup
x̃∈X

inf
y∈Y

c(x, ỹ)− c(x̃, ỹ) + c(x̃, y)− ψ(y).

By taking x̃ = x, we have that ψccc ≥ ψc, and by taking y = ỹ, we have that

ψccc ≤ ψc. �

Using the proposition above, we can find another useful characterization for c-

concave functions.

Corollary 16. A function ϕ : X → R ∪ {−∞} is c-concave if and only if it holds that

ϕcc = ϕ.

Proof. Suppose ϕ = ϕcc. Considering the function ψ = ϕc, we see that ϕ = ψc, so ϕ is

c-concave. Conversely, if ϕ is c-concave, there exists ψ such that ψc = ϕ. By Proposition

15, we get ϕ = ψc = ψccc = (ψc)cc = ϕcc. �
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Remark 2.4.3. The definition of a c-concave function generalizes the notion of concavity

in the sense that they can be written as the pointwise infima of functions of the form

c(x, y) − ψ(y) for some ψ, whereas concave functions can be defined as the infimum of

a family of affine (and upper semicontinuous) functions. It should be noted that the

definition adopted in this text is not universal, but it is the one more appropriate for

the topics that will be studied subsequently. Some authors also prefer to work with the

notion of c-convex functions.

Finally, we come to our last crucial definition.

Definition 17. Given a c-concave function ϕ : X → R ∪ {−∞}, we define its c-

superdifferential ∂cϕ ⊂ X × Y as

∂cϕ = {(x, y) ∈ X × Y | ϕ(x) + ϕc(y) = c(x, y)} .

As before, in the above definition we identify the c-superdifferential of a function with

its graph. We also define the c-superdifferential of ϕ at a point x, denoted ∂cϕ(x), by

∂cϕ(x) = {y ∈ Y | (x, y) ∈ ∂cϕ}. A symmetric definition holds for c-concave functions

of the form ψ : Y → R ∪ {−∞}.

There is another simple characterization of the c-superdifferential, which is more

closely related to our earlier definition of subdifferential.

Proposition 18. It holds that y ∈ ∂cϕ(x) if and only if ϕ(x)− c(x, y) ≥ ϕ(z)− c(z, y),

∀z ∈ X.

Proof. By definition of c-superdifferential and c-transform, we have, respectively

ϕ(x) = c(x, y)− ϕc(y),

ϕ(z) ≤ c(z, y)− ϕc(y), ∀z ∈ X.

By adding up these equations we get the proposition. �

Remark 2.4.4. It is straightforward to see that the definitions above are generalizations

of cyclical monotonicity, concavity and superdifferential. Indeed, if we consider the case

X = Rn, Y = Rn and c(x, y) = −〈x, y〉, then it holds that: (i) a set is c-cyclically
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Figure 2.6: An illustration of (x, y) ∈ ∂cϕ.

monotone if and only it is cyclically monotone; (ii) a function is c-concave if and only if

it is concave (and upper semicontinuous); and (iii) the c-superdifferential of a c-concave

function is the negative of the classical superdifferential. For this reason taking the

quadratic cost in the beginning of this section was useful: we were able to expand the

inner product and essentially work with a cost function of the form c(x, y) = −〈x, y〉,
thereby working with conventional tools of convex analysis.

An interesting consequence of Proposition 18 is that, just as the subdifferential of a

convex function is always a cyclically monotone set, the c-superdifferential of a c-concave

function is also always a c-cyclically monotone set. This follows directly from the fact

that, if (xi, yi) ∈ ∂cϕ, then for any permutation σ of {1, . . . , N},

N
∑

i=1

c(xi, yi) =

N
∑

i=1

ϕ(xi) + ϕc(yi) =

N
∑

i=1

ϕ(xi) + ϕc(yσ(i)) ≤
N
∑

i=1

c(xi, yσ(i)).

What is more surprising, however, is that the converse holds: every c-cyclically

monotone set is the c-superdifferential of a c-concave function. Not only that, but one

can find conditions for optimality in the Kantorovich Problem through these relations.

That is the content of the next theorem, which is the main result of this section.
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Theorem 19 (Fundamental Theorem of Optimal Transport). Let c : X × Y → R

be a continuous function bounded from below, and µ ∈ P(X), ν ∈ P(Y ) be such that

c(x, y) ≤ a(x) + b(y) for some a ∈ L1(µ), b ∈ L1(ν). Also, let π ∈ Π(µ, ν). Then the

following three conditions are equivalent:

(i) the transference plan π is optimal;

(ii) the set supp(π) is c-cyclically monotone;

(iii) there exists a c-concave function ϕ such that max{ϕ, 0} ∈ L1(µ) and supp(π) ⊂
∂cϕ.

Proof. We first note that whatever admissible π̃ ∈ Π(µ, ν) we take, we can guarantee

that c ∈ L1(π̃), because c is bounded below and, using (2.5),

∫

c(x, y)dπ̃(x, y) ≤
∫

a(x) + b(y)dπ̃(x, y) =

∫

a(x)dµ(x) +

∫

b(y)dν(y) <∞.

(i) ⇒ (ii) We prove by contradiction: if the set supp(π) is not c-cyclically monotone,

there exists an N ∈ N and a set of points {(xi, yi)}Ni=1 ⊂ supp(π), along with a

permutation σ of {1, . . . , N} such that

N
∑

i=1

c(xi, yi) >

N
∑

i=1

c(xi, yσ(i)).

Since we are taking c to be continuous, we can find neighborhoods Ui and Vi, with

xi ∈ Ui, yi ∈ Vi, such that it still holds

N
∑

i=1

c(ui, vi) >
N
∑

i=1

c(ui, vσ(i)),

with ui ∈ Ui, vi ∈ Vi, 1 ≤ i ≤ N .

The idea will be to construct a new measure π̃ that contradicts the minimality of

π. Intuitively, we will try to create a measure that sends Ui to Vσ(i) instead of Vi, and in

all other respects is just the same as π. We shall take π̃ to be a variation of π, so we pick

π̃ = π + η, and must determine the (signed) measure η. The following three conditions

are to be satisfied:
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(1) η− ≤ π;

(2) projX# η = 0, projY# η = 0;

(3)
∫

cdη < 0.

Indeed, the first and second conditions ensure π̃ ∈ Π(µ, ν) while the third condition

defies the optimality of the measure π.

Let Ω = ΠN
i=1Ui × Vi, mi = π(Ui × Vi) and define P ∈ P(Ω) to be the product of

the measures 1
mi
π
∣

∣

Ui×Vi
. Then, define

η :=
minimi

N

N
∑

i=1

(

(projUi
, projVσ(i)

)#P − (projUi
, projVi)#P

)

,

where (projUi
, projVi) : Ω → Ui × Vi is the composition of the usual projections. Note

η = 0 for any set outside Ω and, for a given A×B ⊂ Ui × Vi,

(projUi
, projVi)#P (A×B) = P

((

A ∪
⋃

j 6=i

Uj

)

×
(

B ∪
⋃

j 6=i

Vj

))

= 1 · · ·1 · 1

π(Ui × Vi)
π(A×B) · 1 · · ·1

=
1

π(Ui × Vi)
π(A×B).

We must now show η as defined above satisfies (1), (2), (3) above.

(1): Clearly η− = minimi

N

∑N
i=1(projUi

, projVi)#P , and so we would like to prove that

π − minimi

N

N
∑

i=1

(projUi
, projVi)#P ≥ 0,

and it is sufficient that

1

N
π >

minimi

N
(projUi

, projVi)#P, ∀i = 1, . . . , N.

But indeed we have

minimi

N
(projUi

, projVi)#P =
minimi

N
· 1

π(Ui × Vi)
π
∣

∣

∣

Ui×Vi
<

1

N
π
∣

∣

∣

Ui×Vi
.
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(2): Using the definitions, and taking A ⊂ X,B ⊂ Y , we find that

π̃(A× Y ) = π(A× Y ) +
minimi

N

N
∑

i=1

(

(projUi
, projVσ(i)

)#P (A× Y )

−(projUi
, projVi)#P (A× Y )

)

= µ(A) +
minimi

N

N
∑

i=1

( 1

π(Ui × Vσ(i))
π
∣

∣

∣

Ui×Vσ(i)

(A× Y )

− 1

π(Ui × Vi)
π
∣

∣

∣

Ui×Vi
(A× Y )

)

= µ(A) +
minmi

N

N
∑

i=1

(

1

µ(Ui)
µ(A ∩ Ui)−

1

µ(Ui)
µ(A ∩ Ui)

)

= µ(A),

and, similarly,

π̃(X × B) = ν(B) +
minmi

N

N
∑

i=1

(

1

ν(Vσ(i))
ν(B ∩ Vσ(i))−

1

ν(Vi)
ν(B ∩ Vi)

)

= ν(B),

so the marginals agree.

(3): By the continuity of c, choosing appropriately small neighborhoods Ui, Vi, there

exists a sufficiently small ε > 0 such that

∫

X×Y

cdπ −
∫

X×Y

cdπ̃ =
minimi

N

N
∑

i=1

(

∫

cd(projUi
, projVi)#P

−
∫

cd(projUi
, projVσ(i)

)#P
)

≥ minimi

N

(

N
∑

i=1

(c(xi, yi)− ε)

∫

d(projUi
, projVi)#P

−(c(xi, yσ(i)) + ε)

∫

d(projUi
, projVσ(i)

)#P
)

=
minimi

N

N
∑

i=1

(c(xi, yi)− ε)− (c(xi, yσ(i)) + ε)

=
minimi

N

(

N
∑

i=1

(

c(xi, yi)− c(xi, yσ(i))
)

− 2Nε

)

> 0,

which contradicts the optimality of π.



Optimal Transport and the Wasserstein Metric 39

(ii) ⇒ (iii) Assuming there exists a set Γ ⊂ X × Y that is c-cyclically monotone,

we need to find a c-concave function ϕ such that Γ ⊂ ∂cϕ, with max{ϕ, 0} ∈ L1(µ). If

we fix (x̄, ȳ) ∈ Γ, we must have, for any (xi, yi) ∈ Γ, i = 1, . . . , N ,

ϕ(x) ≤ c(x, y1)− ϕc(y1) = c(x, y1)− c(x1, y1) + ϕ(x1)

≤ (c(x, y1)− c(x1, y1)) + c(x1, y2)− ϕc(y2)

= (c(x, y1)− c(x1, y1)) + (c(x1, y2)− c(x2, y2)) + ϕ(x2)

...

≤ (c(x, y1)− c(x1, y1)) + (c(x1, y2)− c(x2, y2)) + · · ·+ (c(xN , ȳ)− c(x̄, ȳ)) + ϕ(x̄).

Since this is our only restriction on ϕ, and in analogy to Theorem 11, it is reasonable to

define

ϕ(x) := inf
N∈N

inf
{(xi,yi)}Ni=1∈Γ

(c(x, y1)− c(x1, y1)) + · · ·+ (c(xN , ȳ)− c(x̄, ȳ)) .

Note that this way we have implicitly defined ϕ(x̄) = 0 since, on one side, taking N = 1

and choosing (x1, y1) = (x̄, ȳ) we get ϕ(x̄) ≤ 0; on the other, because Γ is c-cyclical

monotone, ϕ(x̄) ≥ 0.

Having defined ϕ, we now show it is c-concave, max{ϕ, 0} ∈ L1(µ), and then that

Γ ⊂ ∂cϕ. For c-concavity, simply rewrite ϕ as

ϕ(x) = inf
y∈Y

inf
N∈N

inf
{(xi,yi)}Ni=1∈Γ

(c(x, y)− c(x1, y)) + · · ·+ (c(xN , ȳ)− c(x̄, ȳ)) ,

and thus, defining

ζ(y) = −
(

inf
N∈N

inf
{(xi,yi)}Ni=1∈Γ

−c(x1, y) + (c(x1, y2)− c(x2, y2)) + · · ·+ (c(xN , ȳ)− c(x̄, ȳ))

)

,

we get

ϕ(x) = inf
y∈Y

c(x, y)− ζ(y) = ζc(x),

so ϕ is c-concave.

To see max{ϕ, 0} ∈ L1(µ), pick N = 1, (x1, y1) = (x̄, ȳ) and since we assumed

c(x, y) ≤ a(x) + b(y) with a ∈ L1(µ), using Proposition 18, we get
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ϕ(x) ≤ c(x, ȳ)− c(x̄, ȳ) < a(x) + b(ȳ)− c(x̄, ȳ),

which proves max{ϕ, 0} ∈ L1(µ).

Finally, we have to check that Γ ⊂ ∂cϕ. Take any (x̃, ỹ) ∈ Γ, and let (x1, y1) =

(x̃, ỹ). By definition of ϕ, it must hold that

ϕ(x) ≤ c(x, ỹ)− c(x̃, ỹ) + inf
N∈N

inf
{(xi,yi)}Ni=1∈Γ

(c(x̃, y2)− c(x2, y2)) + · · ·+ (c(xN , ȳ)− c(x̄, ȳ))

= c(x, ỹ)− c(x̃, ỹ) + ϕ(x̃),

which, by Proposition 18, implies that (x̃, ỹ) ∈ ∂cϕ.

(iii) ⇒ (i) Take any admissible transport plan π̃ ∈ Π(µ, ν), we must show
∫

cdπ ≤
∫

cdπ̃. By the definition of c-transform, we have

ϕ(x) + ϕc(y) ≤ c(x, y), ∀x ∈ X, ∀y ∈ Y,

and by the definition of c-superdifferential we have

ϕ(x) + ϕc(y) = c(x, y), ∀(x, y) ∈ supp(π).

Thus, using (2.5),

∫

c(x, y)dπ(x, y) =

∫

ϕ(x) + ϕc(y)dπ(x, y) =

∫

ϕ(x)dµ+

∫

ϕc(y)dν(y)

=

∫

ϕ(x) + ϕc(y)dπ̃ ≤
∫

c(x, y)dπ̃(x, y),

and the theorem is established. �

Several remarks are in place.

Remark 2.4.5. Note that the proof above relies on the continuity hypothesis of the

cost function. The theorem is still valid (though it becomes more cumbersome to prove

it) if we take the cost function to be only lower semi-continuous (and bounded below).

This is done, as before, by considering a sequence of continuous bounded functions

approximating it.
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Remark 2.4.6. Though the proof above was developed for optimal transference plans,

it still holds true for optimal transference maps. That is, assume T : X → Y is a

map such that there exists a c-concave function ϕ with T (x) ∈ ∂cϕ(x) for all x ∈ X .

Then, if µ ∈ P(X) is such that the measure T#µ satisfies the necessary condition

c(x, y) ≤ a(x) + b(y), for some a ∈ L1(µ), b ∈ L1(T#µ), then T must be an optimal

map between µ and T#µ. This is simply a restatement of the fact that if a map induces

the optimal transference plan, then the map itself must be an optimal transference map.

Remark 2.4.7. In what sense is Theorem 19 “fundamental”?

First, it enables us to solve, at least in some cases, the Monge Problem. Since

the support of an optimal measure is contained in the c-superdifferential of a c-concave

function, if the c-superdifferential is single-valued, then the optimal measure induces

map (which must therefore solve the Monge Problem). It is not hard to show that if

a function is differentiable at a point, then its c-superdifferential must contain solely

the gradient vector. This gives at least a partial answer to the question “when will

the Monge Problem admit a solution?” and also provides effective candidates for the

Monge Problem: they are gradients of convex functions (this result is generally known as

Brenier’s Theorem, [10]). Indeed, to show whether we can find a solution to the Monge

Problem it then suffices to study how the non-differentiability points of the c-concave

function ϕ behave (this is usually done through some form of Rademacher’s Theorem

(see, for example, [32, p. 162]).

Second, it already hints at a duality result. Indeed, note that associated to each

Kantorovich Problem there seems to be a c-concave function ϕ. By exploring this

relationship further, we will see that the problem of finding an optimal π can be translated

to a problem of finding an optimal function ϕ. This is the main result of Theorem 22

below.

One straightforward consequence of Theorem 19 is that optimality is inherited

by restriction, i.e. the restriction of an optimal measure to a certain subset must be

optimal in these subsets. Indeed, if πR is a restriction of π∗ ∈ Π∗(µ, ν) to a certain

(measurable) subset of X × Y , then supp(πR) ⊂ supp(π∗), so it is contained in the the

c-superdifferential of a c-concave function, and thus it is optimal (among its marginals).
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The intuitive idea is that if a transport plan is optimal, it must be optimal between its

parts because if we could improve the transport in a certain subset, we would be able to

improve it when considering the whole space.

Another, perhaps more surprising, corollary is the following.

Corollary 20. Under the hypotheses of the Fundamental Theorem of Optimal Transport,

let π∗ ∈ Π∗(µ, ν) be an optimal transference plan, so that there is a c-concave function

ϕ such that supp(π∗) ⊂ ∂cϕ. Then, for any other optimal plan π′, it must hold that

supp(π′) ⊂ ∂cϕ.

Proof. First, we check that max{ϕc, 0} ∈ L1(ν). Notice that if (x̃, ỹ) ∈ ∂cϕ then, by

Proposition 18, it holds that

ϕ(x̃)− c(x̃, ỹ) ≥ ϕ(x)− c(x, ỹ), ∀x ∈ X.

In particular, by the way we defined ϕ, we can pick an x̄ such that ϕ(x̄) = 0, and then

−ϕ(x̃) ≤ c(x̄, ỹ)− c(x̃, ỹ), and so

ϕc(y) ≤ c(x̃, y)− ϕ(x̃) ≤ c(x̃, y) + c(x̄, ỹ)− c(x̃, ỹ) ≤ c(x̃, y) +M,

where we have renamed M = c(x̄, ỹ)− c(x̃, ỹ) ∈ R. By hypothesis, c(x, y) ≤ a(x) + b(y),

with a ∈ L1(µ), b ∈ L1(ν) so we find that ϕc(y) ≤ a(x̃) + b(y) + M . Thus, we get

max{ϕc, 0} ∈ L1(ν).

Hence, for any optimal π′ ∈ Π∗(µ, ν),

∫

ϕdµ+

∫

ϕcdν =

∫

ϕ(x) + ϕc(y)dπ′(x, y) ≤
∫

c(x, y)dπ′(x, y) =

∫

c(x, y)dπ∗(x, y)

=

∫

ϕ(x) + ϕc(y)dπ∗(x, y) =

∫

ϕdµ+

∫

ϕcdν.

As the first and last expressions above are the same, the inequality must be an equality,

and that is true if and only if (x, y) ∈ ∂cϕ, π′-a.e. By the continuity of c, this must be

true for all (x, y) ∈ supp(π′), not only almost everywhere. Hence supp(π′) ⊂ ∂cϕ. �

Lastly, let us discuss the question of stability of optimality. That is, given a

sequence {µk}k∈N ⊂ P(X) narrowly converging to µ ∈ P(X), and another sequence

{νk}k∈N ⊂ P(Y ) narrowly converging to ν ∈ P(Y ), what can we say about a sequence
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of measures made up of πk ∈ Π∗(µk, νk)? Is it necessarily a convergent sequence? Is the

limit optimal between its marginals?

Proposition 21. Let X and Y be Polish spaces, and let c : X × Y → R be a

cost function bounded below. Given two narrowly convergent sequence of measures,

µk → µ, νk → ν, with µk ∈ P(X), νk ∈ P(Y ), ∀k, a sequence of optimal maps {πk}k∈N
with πk ∈ Π∗(µk, νk), then it must be that, up to a subsequence, πk → π narrowly, and

π ∈ Π∗(µ, ν).

Proof. Since {µk} and {νk} are convergent sequences, by Prokhorov’s Theorem, the sets

S1 = {µk} and S2 = {νk} must be tight. Hence, for any ε > 0, there exist compact sets

K1, K2 ⊂ X such that

µk(X \K1) ≤ ε/2 and ν(Y \K2) ≤ ε/2, ∀k.

Then, for any element of the set π ∈ T = {π ∈ P(X×Y : projX# π ∈ S1, projY# π ∈ S2},
we must have

π(X × Y \K1 ×K2) ≤ µk(X \K1) + νk(Y \K2) ≤ ε.

Hence, by definition, the set T is tight. Thus, given a sequence πk ∈ Π∗(µk, νk) it must

be possible to extract a subsequence (still denoted by {πk}, for simplicity) such that

πk → π narrowly, and π ∈ Π(µ, ν).

We must still prove the optimality of π, i.e. that π ∈ Π∗(µ, ν). By Theorem 19, we

know that the optimality of πk is equivalent to c-cyclical monotonicity of its support.

Fix any N ∈ N and take (xi, yi) ∈ supp(π), i = 1, . . . , N . Because πk → π narrowly,

there must exist points (xki , y
k
i ) ∈ supp(πk), i = 1, . . . , N such that (xki , y

k
i ) → (xi, yi) as

k → ∞. The c-cyclical monotonicity of supp(πk) implies

N
∑

i=1

c(xki , y
k
i ) ≤

N
∑

i=1

c(xki , y
k
i+1),

with the usual convention yN+1 = y1, and then the c-cyclical monotonicity of supp(π)

follows from the continuity of c, which implies π ∈ Π∗(µ, ν). �
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2.5

Duality

As we pointed out, the main reason why Kantorovich generalized Monge’s Problem

was not to merely guarantee the existence of solutions. Kantorovich is considered to be

one of the fathers of Linear Programming, where he established very useful duality

results. The point of extending Monge’s Problem was so that he could generalize his

duality theory and prove results in the more general setting usually considered in Optimal

Transport. Indeed, this duality formulation is fundamental in several ways, as we shall

see later.

What exactly do we mean by duality? It is possible to rewrite Kantorovich’s

Problem, into a related dual problem, so that if we can solve the dual problem then we will

have solved the original problem, and vice-versa. Kantorovich’s Problem is usually stated

as a constrained minimization problem, while its dual is a constrained maximization. In

many cases, solving the dual problem is easier than solving the original one, and this

allows for novel techniques to be tried.

The main goal of this section is to prove the two following formulations are

equivalent, in the sense that the values of (2.22) and (2.23) below are the same.

Problem 1 (Kantorovich Problem). Let P(X),P(Y ) be Borel probability spaces on the

Polish spaces X and Y , respectively, and let c : X × Y → R be a continuous function,

bounded below. Given µ ∈ P(X) and ν ∈ P(Y ) we would like to find π ∈ P(X × Y ) so

as to solve

inf
π

{∫

X×Y

c(x, y)dπ(x, y)
∣

∣ π ∈ Π(µ, ν)

}

, (2.22)

where Π(µ, ν) =
{

π ∈ P(X × Y ) : projX# π = µ, projY# π = ν
}

.

Problem 2 (Dual Problem). Let P(X),P(Y ) be Borel probability spaces on the Polish

spaces X and Y , respectively, and let c : X × Y → R be a continuous function, bounded

below. Given µ ∈ P(X) and ν ∈ P(Y ) we would like to find functions ϕ ∈ L1(µ) and

ψ ∈ L1(ν) so as to attain

sup
ϕ,ψ

{
∫

X

ϕ(x)dµ(x) +

∫

Y

ψ(y)dν(y)
∣

∣ ϕ(x) + ψ(y) ≤ c(x, y), ∀x ∈ X, y ∈ Y

}

. (2.23)
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As we have noted before, the Kantorovich’s Problem is really a linear minim-

ization problem with convex constraints. We want to minimize the functional π 7→
∫

X×Y
c(x, y)dπ(x, y), subject to the constraints projX# π = µ, projY# π = ν, and π ≥ 0.

Problems of this type generally admit a dual formulation, a fact well-known in Linear

Programming. With this in mind, one can try to somewhat reproduce the proof estab-

lished for duality in finite dimensions. And, by finding a suitable ‘minimax theorem’, this

is possible. To give some intuition, below we give a sketch as to how one might go about

in this direction, but we shall bypass some details. We will rigorously prove the theorem

afterwards, using the Fundamental Theorem of Optimal Transport we have just proved,

so as to make the proof more succinct.

To begin with, notice that

inf
π∈Π(µ,ν)

∫

X×Y

c(x, y)dπ(x, y) = inf
π∈M+(X×Y )





∫

X×Y

c(x, y)dπ(x, y) +







0 if π ∈ Π(µ, ν)

∞ else









 ,

where M+(X × Y ) is the set of non-negative Borel measures on X × Y . Because the

constraints defining Π(µ, ν) in (2.5) are linear, it is possible to rewrite the indicator

function in brackets as a supremum of linear functionals:







0 if π ∈ Π(µ, ν)

∞ else







= sup
(ϕ,ψ)∈Cb(X)×Cb(Y )

∫

ϕdµ+

∫

ψdν −
∫

[ϕ(x) + ψ(y)]dπ(x, y),

since if π ∈ Π(µ, ν), then (2.5) holds for (ϕ, ψ) ∈ Cb(X)× Cb(Y ) (because X and Y are

Polish), and so the right hand side is zero; on the other hand if there are (ϕ, ψ) such

that the right hand side is not zero, then we can multiply the functions by real numbers

so as to render the above supremum infinite.

Hence, we get

inf
π∈Π(µ,ν)

∫

X×Y

c(x, y)dπ(x, y) =

= inf
π∈M+(X×Y )

sup
(ϕ,ψ)

∫

X×Y

cdπ +

∫

X

ϕdµ+

∫

Y

ψdν −
∫

X×Y

[ϕ(x) + ψ(y)]dπ(x, y).

If we assume that we can find a minimax theorem to enable us to interchange the

‘inf’ and ‘sup’ operators, we can rewrite this as
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sup
(ϕ,ψ)

inf
π∈M+(X×Y )

∫

X×Y

c(x, y)dπ(x, y) +

∫

X

ϕdµ+

∫

Y

ψdν −
∫

X×Y

[ϕ(x) + ψ(y)]dπ(x, y)

= sup
(ϕ,ψ)

{

∫

X

ϕdµ+

∫

Y

ψdν − sup
π∈M+(X×Y )

∫

X×Y

[ϕ(x) + ψ(y)− c(x, y)]dπ(x, y)

}

.

Now, consider the integrand of the inner ‘sup’ above. If the function θ(x, y) = ϕ(x) +

ψ(y) − c(x, y) is positive at some point (x̄, ȳ), then since we are free to choose π ∈
M+(X × Y ), we just pick π = αδ(x̄,ȳ), with α ∈ R and δ(x̄,ȳ) a Dirac measure, and let

α → ∞, obtaining a value of infinity for the supremum. On other hand, if θ is non-

positive, then it is clear that the value for the supremum must be obtained by π = 0.

Hence,

sup
π∈M+(X×Y )

∫

X×Y

[ϕ+ ψ − c(x, y)]dπ =







0 if (ϕ, ψ) satisfies the constraints in (2.23)

∞ else







,

and, finally, we get

inf
π∈Π(µ,ν)

∫

c(x, y)dπ(x, y) = sup
(ϕ,ψ)

∫

ϕ(x)dµ(x) +

∫

ψ(y)dν(y)

as we hoped for, where (ϕ, ψ) ∈ L1(µ)× L1(ν) satisfies the constraints in (2.23).

Remark 2.5.1. To rigorously establish this proof, one can use the Fenchel-Rockafellar

Theorem, a basic result in Functional Analysis (see [11, p. 15]), as the missing minimax

theorem. Still, this theorem only yields the desired result if we take X and Y to be

compact. The general result follows from approximation arguments (see [31, p. 26]).

Let us now prove the Duality Theorem, using tools from the Fundamental Theorem

of Optimal Transport. Actually, we shall prove something stronger: not only the result

holds, but the maximizing pair (ϕ, ψ) can always be taken to be of the form (ϕ, ϕc).

Theorem 22 (Duality Theorem). Let µ ∈ P(X), ν ∈ P(Y ) and c : X × Y → R be

a continuous cost function, bounded from below. If c satisfies c(x, y) ≤ a(x) + b(y) for

a ∈ L1(µ) and b ∈ L1(ν), then the minimum value in the Kantorovich Problem, 1, is

equal to the supremum value in the Dual Problem, 2.



Optimal Transport and the Wasserstein Metric 47

In addition, the supremum of the dual problem is attained, and the maximizing pair

(ϕ, ψ) is of the form (ϕ, ϕc), for some c-concave function ϕ.

Proof. First, let π ∈ Π(µ, ν) and take (ϕ, ψ) ∈ L1(µ) × L1(ν) such that ϕ(x) + ψ(y) ≤
c(x, y), ∀x ∈ X, y ∈ Y . It is clear that

∫

c(x, y)dπ(x, y) ≥
∫

X×Y

ϕ(x) + ψ(y)dπ(x, y) =

∫

ϕ(x)dµ(x) +

∫

ψ(y)dν(y),

and so the minimum in the Kantorovich Problem is at least as great as the supremum

in the Dual Problem.

Conversely, let π∗ ∈ Π∗(µ, ν) be an optimal transport plan. By the Fundamental

Theorem of Optimal Transport, there exists a c-concave function ϕ such that supp(π∗) ⊂
∂cϕ, as well as max{ϕ, 0} ∈ L1(µ) and max{ϕc, 0} ∈ L1(ν). Because

∫

c(x, y)dπ(x, y) =

∫

ϕ(x) + ϕc(y)dπ(x, y) =

∫

ϕ(x)dµ(x) +

∫

ϕc(y)dν(y),

and we already know
∫

cdπ ∈ R, we get ϕ ∈ L1(µ) and ϕc ∈ L1(ν), so that (ϕ, ϕc) is

an admissible pair and establishes that the supremum of the Dual Problem is at least

as great as the minimum in the Kantorovich Problem. Hence, (ϕ, ϕc) is a maximizing

couple for the Dual Problem. �

Remark 2.5.2. The Duality Theorem holds in greater generality than considered here.

For instance, as before, we could have taken c to be lower semi-continuous. Also, it

is possible to first prove the Duality Theorem and from that derive the Fundamental

Theorem of Optimal Transport (see [31]).

An interesting consequence of the Duality Theorem is that if (ϕ, ψ) is a maximizing

couple for the Dual Problem, with ϕ c-concave, then (ϕ, ϕc) must also be a maximizing

couple. Note the same process could be again applied so that (ϕcc, ϕc) yields a pair that

is not worse than (ϕ, ϕc), (ϕcc, ϕccc) yields a pair that is not worse than (ϕcc, ϕc), and so

on. However, we know by Proposition 15 and Proposition 16 that the above process must

stop: if ϕ is c-concave, it stops because ϕcc = ϕ, otherwise it stops because ϕccc = ϕc.

Thus, we can restrict our search of maximizers to those of the form (ϕ, ϕc), with

ϕ c-concave. This motivates the next definition.



Optimal Transport and the Wasserstein Metric 48

Definition 23. A Kantorovich potential for the measures µ, ν is a couple of functions

(ϕ, ϕc), with ϕ c-concave, that maximizes the Dual Problem.

If ϕ is not c-concave, we can consider (ϕcc, ϕc), so that the first function in the

couple is in fact c-concave.

Remark 2.5.3. The way we proved optimality in example 4 above was to consider

the supremum in (2.11) and prove it must equal the value of the Kantorovich Problem.

Notice this was a particular instance of duality at work: in the example considered, the

cost function was a distance on the Polish space X = Y , given by c(x, y) = |x − y|, so
the constraint in the dual reads ϕ(x)+ψ(y) ≤ |x−y|. But we have seen that in the dual

problem we can consider, with no loss of generality, ϕ(x) = infy∈X(|x− y| − ψ(y)), so ϕ

satisfies the 1-Lipschitz condition. But then

ψ(y) = inf
x∈X

|x− y| − ϕ(x) = −ϕ(x),

since the infimum is actually achieved. Hence, the maximizing pair for the dual must be

of the form (ϕ,−ϕ), with ϕ ∈ Lip1(X). This implies the dual problem can be rewritten

as in (2.11), which is precisely the condition used to solve the example.



3

The Wasserstein Metric

3.1

Wasserstein Spaces

From our previous chapter, we know that associated to each pair of Borel probab-

ility measures µ, ν, there is a unique real number

C(µ, ν) = inf
π∈Π(µ,ν)

∫

c(x, y)dπ(x, y),

that quantifies in a very precise way how ‘hard’ it is to transport µ to ν. On this direction,

assuming both µ, ν are in the same space P(X), it is natural to ask: is it possible to use

C(µ, ν) as a metric for the measures?

Though for general costs c : X×X → R the answer is readily seen to be ‘no’, if we

restrict our possible cost functions to distances in X×X , then the answer is ‘yes’. This is

the starting point for the concept of the Wasserstein metric that shall be investigated in

this section. It not only provides a metric for the somewhat complicated space of Borel

probability measures, but it also has several interesting and useful properties, as we shall

see ahead.

First, since a metric cannot attain the value ∞, it would be hopeless to try to

find a metric based on C(µ, ν) for the entire space P(X). Instead, we shall restrict our

attention to a slightly smaller space, called the Wasserstein space.

Definition 24. Let (X, d) be a Polish metric space, and take p ∈ [1,∞). For any two

Borel probability measure µ on X , the Wasserstein space of order p is defined to be

Pp(X) =

{

µ ∈ P(X) :

∫

X

d(x0, x)
pdµ(x) <∞

}

, (3.1)

where x0 ∈ X is arbitrary.
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Note that the triangle inequality ensures that the space Pp(X) is completely

independent from the choice of x0. Also, if d is a bounded function, then clearly

Pp(X) = P(X).

We proceed to define a reasonable candidate for a metric in this space.

Definition 25. Let (X, d) be a Polish metric space, and take p ∈ [1,∞). For any two

measures µ, ν ∈ Pp(X), the Wasserstein metric of order p from µ to ν is defined by

Wp(µ, ν) =

(

inf
π∈Π(µ,ν)

∫

X×X

dp(x, y)dπ(x, y)

)1/p

.

Before proving that the Wasserstein metric indeed satisfies the conditions for

a metric, let us quickly check that Wp(µ, ν) is always finite on Pp(X). Indeed, if

µ, ν ∈ Pp(X), then, since dp(x, y) ≤ 2p−1[dp(x, x0) + dp(x0, y)] and using (2.5) it is clear

that dp(·, ·) is π-integrable whenever dp(·, x0) is µ-integrable and dp(x0, ·) is ν-integrable.
Now, in order to prove that Wp(µ, ν) satisfies the triangle inequality, we shall need

the following basic lemma. It essentially states that it is possible to ‘glue’ two probability

measures with a common marginal together to form a third probability measure.

Lemma 26 (Gluing Lemma). Let X1, X2, X3 be three Polish spaces, and let µ1 ∈
P(X1), µ2 ∈ P(X2), µ3 ∈ P(X3). Take π1,2 ∈ Π(µ1, µ2) and π2,3 ∈ Π(µ2, µ3) to be

two transference plans with a common marginal µ2. Then there exists a Borel probability

measure π ∈ P(X1 ×X2 ×X3) with marginals π1,2 on X1 ×X2 and π2,3 on X2 ×X3.

Proof. We provide a sketch of the proof. The Disintegration of Measure Theorem (see,

for instance, [30, p.23] or [31, p. 209]) states that, if X, Y are Polish spaces, then any

probability measure π ∈ P(X×Y ) can be written as the average of probability measures

on {x} × Y with x ∈ X . Particularly, if π has a marginal µ on X , then there exists a

measurable application x 7→ πY |x from X to P(Y ) such that

π =

∫

X

(δx ⊗ πY |x)dµ(x),

where this identity should be taken to mean that for any measurable set A ⊂ X × Y ,

π(A) =

∫

X

(δx ⊗ πY |x)(A)dµ(x) =

∫

X

πY |x(Ax)dµ(x)

with AY |x = {y ∈ Y : (x, y) ∈ A}.
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Now, take π1,2 ∈ Π(µ1, µ2) and π2,3 ∈ Π(µ2, µ3), and disintegrate them with respect

to their marginal µ2. Then we get two measurable applications π̂X1|x2 and π̂X3|x2, from

X2 to P(X1),P(X3), respectively, such that

π1,2 =

∫

X2

π̂X1|x2 ⊗ δx2dµ2(x2),

π2,3 =

∫

X2

δx2 ⊗ π̂X3|x2dµ2(x2).

Finally, we define π ∈ P(X1 ×X2 ×X3) by

π =

∫

X2

(π̂X1|x2 ⊗ δx2 ⊗ π̂X3|x2)dµ2(x2). (3.2)

To check that π has the correct marginals, just take an arbitrary measurable subset

A× B ⊂ X1 ×X2 so that

π(A× B ×X3) =

∫

X2

π̂X1|x2(A) δx2(B) π̂X3|x2(X3)dµ2(x2)

=

∫

X2

π̂X1|x2(A) δx2(B)dµ2(x2) = π1,2(A×B).

This establishes that π has the correct marginal π1,2 on X1×X2. The proof for the other

marginal is analogous. �

Definition 27. Given two measures µ1,2 ∈ Π(µ1, µ2), µ2,3 ∈ Π(µ2, µ3) with a com-

mon marginal µ2, and letting π be as in the above lemma, the measure π1,3 =

(proj1, proj3)#π ∈ Π(µ1, µ3) will be called the composition of two measures µ1,2

and µ2,3, and shall be denoted by

π1,3 = π2,3 ◦ π1,2.

We are finally in condition to prove that Wp(µ, ν) is a distance.

Theorem 28. For all p ∈ [1,∞), given a Polish space X and two measures µ, ν ∈ Pp(X),

the Wasserstein metric Wp(µ, ν) does indeed define a metric.

Proof. We have already checked thatWp is finite on Pp(X). It is straightforward to check

it is nonnegative and symmetric.
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Clearly, Wp(µ, µ) = 0. Now, consider a pair of probability measures such that

Wp(µ, ν) = 0. We must prove µ = ν. Take π∗ ∈ Π∗ to be an optimal transport plan

between µ and ν. Since
∫

X×Y
c(x, y)dπ∗(x, y) = 0, the measure π∗ must be concentrated

on the diagonal of X × Y (given by y = x). This implies, for all ϕ ∈ Cb(X),

∫

X

ϕ(x)dµ(x) =

∫

X×Y

ϕ(x)dπ∗(x, y) =

∫

X×Y

ϕ(y)dπ∗(x, y) =

∫

X

ϕ(x)dν(x),

and so µ = ν.

Lastly, it remains to prove the triangle inequality. Consider µ1, µ2, µ3 ∈ Pp(X), and

take π1,2 ∈ Π∗(µ1, µ2) and π2,3 ∈ Π∗(µ2, µ3) to be optimal transfer plans between µ1, µ2

and µ2, µ3, respectively. Define Xi to be the support of measure µi. Let π be a measure

such as the one in the Gluing Lemma, in (3.2), and call its marginal on X1×X3 by π1,3,

so that π1,3 ∈ Π(µ1, µ3). Then:

Wp(µ1, µ3) ≤
(
∫

X1×X3

dp(x1, x3)dπ1,3(x1, x3)

)1/p

=

(
∫

X1×X2×X3

dp(x1, x3)dπ(x1, x2, x3)

)1/p

≤
(
∫

X1×X2×X3

[d(x1, x2) + d(x2, x3)]
pdπ(x1, x2, x3)

)1/p

≤
(
∫

X1×X2×X3

dp(x1, x2)dπ(x1, x2, x3)

)1/p

+

(
∫

X1×X2×X3

dp(x2, x3)dπ(x1, x2, x3)

)1/p

=

(
∫

X1×X2

dp(x1, x2)dπ1,2(x1, x2)

)1/p

+

(
∫

X2×X3

dp(x2, x3)dπ2,3(x2, x3)

)1/p

= Wp(µ1, µ2) +Wp(µ2, µ3).

Note the first inequality follows because π1,3 is not guaranteed to be optimal; the first

equality follows because π1,3 is just the marginal of π on X1 ×X3; the second inequality

follows from the usual triangle inequality of d; and the third inequality follows from the

Minkowski’s inequality for Lp(X × X × X, π) functions. This establishes that Wp is a

metric, and finishes the theorem. �
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Let us explore a few examples of the Wasserstein metric in order to familiarize

ourselves with the concept.

Example 29 (Trivial). It is readily seen that Wp(δx, δy) = d(x, y) for any p ∈ [1,∞).

Example 30. If X = R (or, more generally, a Hilbert space), µ a Borel probability

measure, and a ∈ X , then

W 2
2 (µ, δa) =

∫

X

|x− a|2dµ(x).

We can then find the mean of µ, defined to be mµ =
∫

X
xdµ(x), as the solution

to the optimization problem infa∈XW
2
2 (µ, δa). Also, the variance of µ, defined to be

∫

X
|x−mµ|2dµ(x), is the minimum value obtained.

Remark 3.1.1. An important consequence of the way the Wasserstein metric is defined

is that it can be ordered in the following sense: if 1 ≤ p ≤ q, thenWp(µ, ν) ≤Wq(µ, ν) for

any µ, ν. Indeed, given 1 ≤ p ≤ q and any π ∈ Π(µ, ν), a simple application of Hölder’s

inequality yields
(

∫

X×Y
dp(x, y)dπ(x, y)

)1/p

≤
(

∫

X×Y
dq(x, y)dπ(x, y)

)1/q

. It thus follows

that Wp(µ, ν) ≤Wq(µ, ν).

When we take the cost function of the Optimal Transport problem to be a metric

d, it is possible to use the Duality Theorem to find an alternative formula for the 1-

Wasserstein Metric. The following theorem is simply a generalization of remark 2.5.3.

Theorem 31 (Kantorovich-Rubinstein). Let X be a Polish space, and d a metric on X.

Take Lip(X) to be the space of all Lipschitz functions on X, and define

||ϕ||Lip = sup
x 6=y

|ϕ(x)− ϕ(y)|
d(x, y)

.

If c(x, y) = d(x, y), then

W1(µ, ν) = inf
π∈Π(µ,ν)

{
∫

X×X

d(x, y)dπ(x, y)

}

= sup
ϕ∈L1(d|µ−ν|)

{
∫

X

ϕd(µ− ν) | ||ϕ||Lip ≤ 1

}

,

where we define |µ− ν| = (µ− ν)+ + (µ− ν)−.

Proof. First, notice that all Lipschitz functions ϕ are integrable with respect to µ, ν, so

that the right hand side of the equation above makes sense. This holds because, without
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loss of generality, we can take d to be bounded (otherwise replace it by a sequence of

bounded distances dn = d/(1 + n−1d), which satisfy dn ≤ d and dn(x, y) → d(x, y) as

n→ ∞), and so any Lipschitz function will be bounded, thus integrable.

Now, by the Duality Theorem, we now the following holds:

inf
π∈Π(µ,ν)

{
∫

X×X

d(x, y)dπ(x, y)

}

= sup
ϕ,ψ

{
∫

ϕdµ+

∫

ψdν | ϕ(x) + ψ(y) ≤ d(x, y)

}

= sup
ϕ

{
∫

X

ϕ(x)dµ(x) +

∫

X

ϕc(y)dν(y)

}

.

Also, our definition for c-concave functions gives ϕc(y) = infx∈X d(x, y)−ϕ(x) and

ϕcc(x) = infy∈X d(x, y) − ϕc(y). Since ϕc is 1-Lipschitz (because it is the infimum of

1-Lipschitz functions, bounded from below) we get

−ϕc(x) ≤ inf
y∈X

d(x, y)− ϕc(y) ≤ −ϕc(x), (3.3)

where the first inequality follows because of the 1-Lipschitz property, and the second by

considering x = y in the infimum. This shows that ϕc(x) = −ϕcc(x) = −ϕ(x). Thus

W1(µ, ν) = sup
ϕ∈L1(d|µ−ν|)

{
∫

X

ϕdµ−
∫

X

ϕdν | ||ϕ||Lip ≤ 1

}

,

which establishes the theorem. �

One might ask where precisely the hypothesis that the cost is given by a metric

enters in the above result. The fact is that the inequalities (3.3) are only true if the cost

function satisfies the triangle inequality.

The Kantorovich-Rubinstein Theorem is very useful in many situations. We illus-

trate this with the following example.

Example 32. One of the most common metrics used in probability spaces is the so-called

total variation distance, defined as

||µ− ν||TV =
1

2
|µ− ν|(X) = sup

A
|µ(A)− ν(A)|,

where A is a (Borel) subset of X , and µ, ν ∈ P(X). In fact, this is just the 1-Wasserstein

metric considered with the particular cost c(x, y) = χx 6=y (sometimes called the 0-
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Wasserstein metric, W0). Using the Kantorovich-Rubinstein Theorem, we get

W0(µ, ν) = inf
π∈Π(µ,ν)

∫

X×X

χx 6=ydπ(x, y) = inf
π∈Π(µ,ν)

π({x 6= y}) = sup
0≤f≤1

∫

X

fd(µ− ν).

By the Jordan Decomposition Theorem, we can split (µ − ν) = (µ − ν)+ − (µ − ν)−,

where both (µ − ν)+, (µ − ν)− are positive measures and singular to each other. It is

then easy to see that

sup
0≤f≤1

∫

X

fd(µ− ν) = (µ− ν)+(X) = (µ− ν)−(X) = ||µ− ν||TV .

Of course, both metrics W0(µ, ν) and ||µ − ν||TV are essentially measuring the

amount of mass that needs to be moved if we are required to leave as much mass in its

place as possible. Thus, it is not very surprising that they are, in fact, the same.

3.2

Topological Properties

Having defined the Wasserstein distance, it is only natural to ask what kind of

topology it induces. Is it the same as some other known topology, or is it something

completely different? In any case, what kind of properties does this topology possess?

Before setting out to answer these questions, however, let us note that it is already

expected that the Wasserstein distance has some nice properties. Indeed, it is possible

to consider X as a ‘subset’ of Pp(X) via the map x 7→ δx, and also Wp(δx, δy) = d(x, y),

as we noted in example 29. Therefore, there is a straightforward isometric immersion of

(X, d) into (Pp(X),Wp), and so ‘good’ properties of (X, d) are somewhat expected to

appear in (Pp(X),Wp).

First, we define a convergence mode suitable in Pp(X), which we shall call narrow

convergence in Pp(X), that is essentially the usual narrow convergence plus a moment

condition. We then prove that the Wasserstein metric can metrize the narrow convergence

in Pp(X). In particular, by tweaking with the distance function, we shall see that the

Wasserstein metric can in fact metrize the weak convergence.

We recall that a sequence of measures {µk}k∈N is said to converge narrowly to µ if
∫

X
ϕ(x)dµk →

∫

X
ϕ(x)dµ for all ϕ ∈ Cb(X), where Cb(X) denote the space of bounded

continuous functions on X .
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Definition 33. Let (X, d) be a Polish metric space, and p ∈ [1,∞). Take {µk}k∈N to

be a sequence of measures in Pp(X) and let µ be another element of Pp(X). Then {µk}
is said to converge narrowly in Pp(X) if, for any x0 ∈ X , µk → µ narrowly and
∫

X
dp(x0, x)dµk(x) →

∫

X
dp(x0, x)dµ(x).

We now consider alternative ways to get narrow convergence in Pp(X).

Proposition 34. Let (X, d) be a Polish metric space, x0 ∈ X, and p ∈ [1,∞). Take

{µk}k∈N to be a sequence of measures in Pp(X) and let µ be another element of Pp(X).

Then the following are equivalent:

(i) µk → µ narrowly in Pp(X), i.e. µk → µ narrowly and
∫

X
dp(x0, x)dµk(x) →

∫

X
dp(x0, x)dµ(x);

(ii) µk → µ narrowly and limR→∞ lim supk→∞

∫

d(x0,x)≥R
dp(x0, x)dµk(x) = 0;

(iii) For all continuous functions ϕ with |ϕ(x)| ≤ K(1 + dp(x0, x)), K ∈ R a constant,

it holds that
∫

X
ϕ(x)dµk(x) →

∫

X
ϕ(x)dµ(x).

(iv) µk → µ narrowly and lim supk→∞

∫

X
dp(x0, x)dµk(x) ≤

∫

X
dp(x0, x)dµ(x);

Proof. We will prove that (iii) → (i) → (ii) → (iii), and then establish that (i) is

equivalent to (iv).

First, it is clear that (iii) implies (i). Let us show that (i) implies (ii). We denote

f ∧ g = inf{f, g}, so that, by narrow convergence,

∫

X

[d(x0, x) ∧ R]pdµk(x) k→∞−−−→
∫

X

[d(x0, x) ∧R]pdµ(x);

also, the Monotone Convergence Theorem implies

lim
R→∞

∫

X

[d(x0, x) ∧ R]pdµk(x) =
∫

X

dp(x0, x)dµ(x);

and, finally, by the hypothesis in (i),

∫

X

dp(x0, x)dµk(x)
k→∞−−−→

∫

X

dp(x0, x)dµ(x).

Thus, we get that
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lim
R→∞

lim
k→∞

∫

X

(dp(x0, x)− [d(x0, x) ∧R]p) dµk(x) = 0.

To conclude, we just investigate what happens when d(x0, x) ≥ 2R. A simple rearrange-

ment yields dp(x0, x)− Rp ≥ (1− 2−p)dp(x0, x), and then

lim
R→∞

lim sup
k→∞

∫

d(x0,x)≥R

dp(x0, x)dµk(x) = 0,

which is (ii).

Next, we prove that (ii) implies (iii). Take any function ϕ satisfying |ϕ(x)| ≤
K(1 + dp(x0, x)), K ∈ R, and let R > 1. We can decompose ϕ(x) = ϕ1(x) + ϕ2(x),

where ϕ1(x) = [ϕ(x)∧K(1+Rp)], and ϕ2(x) = ϕ(x)−ϕ1(x). Then, as ϕ2(x) is bounded

pointwise by Kdp(x0, x)χd(x0,x)≥R, we find

∣

∣

∣

∣

∫

X

ϕ(x)dµk(x)−
∫

X

ϕ(x)dµ(x)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

X

ϕ1(x)d(µk − µ)

∣

∣

∣

∣

+K

∫

d(x0,x)≥R

dp(x0, x)dµk(x) +K

∫

d(x0,x)≥R

dp(x0, x)dµ(x).

Because µk → µ narrowly, we get

lim sup
k→∞

∣

∣

∣

∣

∫

X

ϕ(x)dµk(x)−
∫

X

ϕ(x)dµ(x)

∣

∣

∣

∣

≤ K lim sup
k→∞

∫

d(x0,x)≥R

dp(x0, x)d(µk + µ).

And, as R → ∞, using the added hypothesis in (ii), we see that the right hand side

above must go to zero. This establishes (iii).

Finally, let us show that (i) is equivalent to (iv). Because µk → µ narrowly, we get

∫

X

dp(x0, x)dµ(x) = lim
R→∞

lim
k→∞

∫

X

[d(x0, x) ∧ R]pdµk(x) ≤ lim inf
k→∞

∫

X

dp(x0, x)dµk(x).

Therefore, the convergence in (i) is true if and only if

lim sup
k→∞

∫

X

dp(x0, x)dµk(x) ≤
∫

X

dp(x0, x)dµ(x),

that is, the inequality in (iv) is true. �

We now want to prove that weak convergence in Pp(X) is actually the same as

convergence in the Wasserstein metric.
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For the proof we shall need the following important but technical lemma, that

essentially states that Cauchy sequences inWp are tight; that is, given a sequence {µk}k∈N
such that Wp(µk, µj)

k,j→∞−−−−→ 0, then, for all ε > 0, one can always find a compact set

Kε ⊂ X such that µk(X \Kε) ≤ ε, ∀k ∈ N.

Lemma 35. Let X be a Polish space, p ≥ 1, and take {µk}k∈N to be a Cauchy sequence

in (Pp(X),Wp). Then {µk} is tight.

Proof. We shall prove the lemma by adapting a canonical proof of Ulam’s Lemma. The

idea will be to split the sequence {µk}k∈N into a finite part, which will be tight by Ulam’s

Lemma, and an infinite part, which can be controlled because it is a Cauchy sequence in

Wp. Some work must be done to find a compact S that, given ε, satisfies µk(X \ S) ≤ ε

for all the measures µk in the sequence, out of a compact K that satisfies µj(X \K) ≤ ε

for just some finite j.

First, from remark 3.1.1 we know that Wp(µ, ν) ≥ W1(µ, ν), so that if {µk}k∈N is

Cauchy in Wp then it must also be Cauchy in W1. Thus, given ε > 0, there must exist

N ∈ N such that W1(µk, µN) ≤ ε2 for n ≥ N . As a consequence, for any k ∈ N, there

exists j ∈ {1, . . . , N} such that W1(µk, µj) ≤ ε2 (indeed, either k ≥ N , and so j = N

suffices, or k < N , in which case just take j = k).

Now, the finite family {µ1, . . . , µN} is tight by Ulam’s Lemma, so there exists a

compact set K ⊂ X such that µj(K) ≥ 1 − ε for j = 1, . . . , N . Because K is compact,

it can be covered by a finite subcover, i.e. there exists q points x1, . . . , xq ∈ X such that

K ⊂ B(x1, ε) ∪ · · ·B(xq, ε). Call U =
⋃q
n=1B(xn, ε), so that µj(U) ≥ 1 − ε for any

j = 1, . . . , N .

Consider the set Uε = {x ∈ X : d(x, U) < ε} ⊂ B(x1, 2ε) ∪ · · · ∪ B(xq, 2ε) as an

enlargement of ǫ around U , still contained in X . Also, define ϕ(x) = max
{

1− d(x,U)
ε

, 0
}

,

and note that ϕ is (1/ε)-Lipschitz.

Since χU ≤ ϕ(x) ≤ χUε
, we get that, for any k ∈ N and j ≤ N ,

µk(Uε) ≥
∫

X

ϕ(x)dµk(x) =

∫

X

ϕ(x)dµj(x) +

(
∫

X

ϕ(x)dµk(x)−
∫

X

ϕ(x)dµj(x)

)

,
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but, because ϕ is (1/ε)-Lipschitz, we have, for π ∈ Π(µj, µk),

∫

X

ϕ(x)dµj(x)−
∫

X

ϕ(x)dµk(x) =

∫

X×X

(ϕ(x)− ϕ(y))dπ(x, y)

≤ 1

ε

∫

X×X

d(x, y)dπ(x, y) =
W1(µk, µj)

ε
,

and so

µk(Uε) ≥
∫

X

ϕ(x)dµj(x)−
W1(µk, µj)

ε
≥ µj(U)−

W1(µk, µj)

ε
.

Since µj(U) ≥ µj(K) ≥ 1− ε if j ≤ N and for each k ∈ N we can find j such that

W1(µk, µj) ≤ ε2, we have

µk(Uε) ≥ 1− ε− ε2

ε
= 1− 2ε.

Thus, from Uε ⊂
⋃q
i=1B(xi, 2ε), we get

µk

(

X \
q
⋃

i=1

B(xi, 2ε)

)

≤ 2ε.

Note this is almost what we need, except that
⋃q
i=1B(xi, 2ε) might not be compact.

To fix this issue, first replace ε by ε2−m−1, where m is an integer, and find q(m)

points xm1 , . . . , x
m
1(m) in X in order to have

µk



X \
q(m)
⋃

i=1

B(xmi , ε2
−m)



 ≤ ε2−m

for any k ∈ N.

It suffices to find a compact set S such that S ⊂
⋃q(m)
i=1 B(xmi , ε2

−m) to finish this

lemma. To this end, consider

S =

∞
⋂

m=1

q(m)
⋃

k=1

B(xmk , ε2
−m).

It is easy to see that S must be compact because on the one hand it is totally bounded

(that is, S can be covered by a finite number of balls of arbitrarily small radius δ; indeed,

just take l so that 2−lε < δ and then B(xi, 2−lε) ⊂ B(xi, δ)); on the hand hand, S is

closed (as an infinite intersection of a finite union of closed sets). Because X is complete,
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it holds that S = S is compact.

Finally, because we picked S to satisfy S ⊂
⋃q(m)
i=1 B(xmi , ε2

−m), we have

µk (X \ S) ≤
∞
∑

m=1

µk



X \
q(m)
⋃

i=1

B(xmi , ε2
−m)



 ≤
∞
∑

m=1

ε2−m = ε.

Therefore, given ε > 0, we found a compact set S such that µk (X \ S) ≤ ε for any k ∈ N.

This means that the Cauchy sequence {µk}k∈N is tight, as we wished to prove. �

We are finally ready to prove that the Wasserstein metric metrizes the narrow

convergence in Pp(X).

Theorem 36. Let (X, d) be a Polish metric space, and p ∈ [1,∞). Then the narrow

convergence in Pp(X) is the same as convergence in the Wasserstein metric. That is,

given a sequence {µk}k∈N ⊂ Pp(X) and a measure µ ∈ P(X), then µk converges narrowly

in Pp(X) if and only if Wp(µk, µ) → 0.

Proof. Take {µk}k∈N with Wp(µk, µ) → 0, and let us prove that µk → µ nar-

rowly in Pp(X). We must show two things: (i) µk
k→∞−−−→ µ narrowly; and (ii)

lim supk→∞

∫

X
dp(x0, x)dµk(x) ≤

∫

X
dp(x0, x)dµ(x). By Proposition 34, we will then have

the narrow convergence in Pp(X).

To prove (i), we first use Lemma 35 to see that {µk}k∈N is tight, and then, by

Prokhorov’s Theorem, we get a subsequence {µ̃k}k∈N that is narrowly convergent to a

probability measure µ̃ ∈ P(X). Since S1 = {µ̃k}k∈N and S2 = µ̃ are tight, we already

know by Proposition 21 that there exists a sequence given by π̃k ∈ Π∗(µ̃k, µ) that is

narrowly convergent to π ∈ Π∗(µ̃, µ). Then, proceeding as in (2.14), take {dpn}n∈N to be

a sequence of bounded, continuous function converging pointwise to dp, so

inf
π̃∈Π(µ̃,µ)

∫

X×X

dp(x, y)dπ̃(x, y) = inf
π̃∈Π(µ̃,µ)

lim
n→∞

∫

X×X

dpn(x, y)dπ̃

= inf
π̃k∈Π(µ̃k ,µ)

lim
n→∞

lim
k→∞

∫

X×X

dpn(x, y)dπ̃k

≤ lim inf
k→∞

inf
π̃k∈Π(µ̃k ,µ)

∫

X×X

dp(x, y)dπ̃k.

As a consequence, we find that
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Wp(µ̃, µ) ≤ lim inf
k→∞

Wp(µ̃k, µ) = 0.

So it must be that µ̃ = µ and therefore we must have µk → µ narrowly.

To prove (ii), we first use a classical inequality: for any ε > 0, there exists a constant

C such that for a, b ∈ R+, it holds

(a + b)p ≤ (1 + ε)ap + Cbp. (3.4)

Using the triangle inequality, as well as the inequality above, we find that, for x0, x, y ∈
X ,

dp(x0, x) ≤ (1 + ε)dp(x0, y) + Cdp(x, y). (3.5)

Now, take a sequence {µk}k∈N ⊂ Pp(X) with Wp(µk, µ) → 0. Let πk ∈ Π∗(µk, µ) and

integrate (3.5) with respect to πk to get

∫

X

dp(x0, x)dµk(x) ≤ (1 + ε)

∫

X

dp(x0, y)dµ(y) + C

∫

X×X

dp(x, y)dπk(x, y).

Since
∫

X×X
dp(x, y)dπk(x, y) = W p

p (µk, µ) → 0 when k → ∞,

lim sup
k→∞

∫

X

dp(x0, x)dµk(x) ≤ (1 + ε)

∫

X

dp(x0, x)dµ(x).

By making ε → 0, we get property (iv) of Proposition 34. This proves that µk → µ

narrowly in Pp(X).

Conversely, we assume µk → µ narrowly in Pp(X) and must show that

limk→∞Wp(µk, µ) = 0. Take as before πk ∈ Π∗(µk, µ) so that

∫

X×X

dp(x, y)dπk(x, y) → 0.

By Prokhorov’s Theorem, the sequence {µk}k∈N is tight, and {µ} is also trivially tight.

Then, by Proposition 21, there must exist a subsequence (which we still denote by {πk})
such that πk → π narrowly in P(X × X) as k → ∞. Also, since each πk is optimal,

Proposition 21 tells us that π must be an optimal transport plan with marginals µ and

µ. Hence, it clearly must be that π = (Id, Id)#µ. Because the limit does not depend on

the subsequence chosen, π needs to be the limit of the whole sequence {πk}.
Note that, given x0 ∈ X and R > 0, we have following inequality:
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d(x, y) ≤ d(x, y) ∧ R + 2d(x, x0)χd(x,x0)≥R/2 + 2d(x0, y)χd(x0,y)≥R/2,

which is simply stating that if d(x, y) > R then the largest of d(x, x0) and d(x0, y) needs

to be greater than R/2, and not less than d(x, y)/2. Then, taking the p-th power and

using (3.4), it must hold that

dp(x, y) ≤ Cp
(

[d(x, y) ∧R]p + dp(x, x0)χd(x,x0)≥R/2 + dp(x0, y)χd(x0,y)≥R/2
)

, (3.6)

for some constant Cp > 0 that only depends on p.

Finally, let πk ∈ Π∗(µk, µ). From (3.6) above, with R ≥ 1, we have

W p
p (µk, µ) =

∫

X×X

dp(x, y)dπk(x, y) (3.7)

≤ Cp

∫

X×X

[d(x, y) ∧R]pdπk(x, y) + Cp

∫

d(x,x0)≥R/2

dp(x, x0)dπk(x, y)

+ Cp

∫

d(x0,y)≥R/2

dp(x0, y)dπk(x, y)

(3.8)

≤ Cp

∫

X×X

[d(x, y) ∧R]pdπk(x, y) + Cp

∫

d(x,x0)≥R/2

dp(x, x0)dµk(x)

+ Cp

∫

d(x0,y)≥R/2

dp(x0, y)dµk(y).

(3.9)

Since πk → π narrowly and π ∈ Π∗(µ, µ),

lim
R→∞

lim
k→∞

∫

X×X

[d(x, y) ∧ R]pdπk(x, y) = lim
R→∞

∫

X×X

[d(x, y) ∧R]pdπ(x, y)

=

∫

X×X

dp(x, y)dπk(x, y),

and thus, when taking limits in R and k, (3.9) simply becomes

lim sup
k→∞

W p
p (µk, µ) ≤ lim

R→∞
Cp lim sup

k→∞

∫

d(x,x0)≥R/2

dp(x, x0)dµk(x)

+ lim
R→∞

Cp lim sup
k→∞

∫

d(x0,y)≥R/2

dp(x0, y)dµk(y)

= 0,

where above we have used the equivalence between converging narrowly in Pp(X) and

property (ii) in Proposition 3.9. This concludes the theorem. �
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Two important corollaries are straightforward from Theorem 36. The first attests

the continuity of Wp, while the second shows that, in fact, the Wasserstein metric can

properly metrize the narrow topology in P(X).

Corollary 37. Let (X, d) be a Polish metric space, and p ∈ [1,∞), then, Wp is

continuous on Pp(X). That is, if both {µk}k∈N and {νk}k∈N converge narrowly in Pp(X)

to µ and ν as k → ∞, respectively, then

Wp(µk, νk)
k→∞−−−→Wp(µ, ν).

Proof. Because the sequences {µk}, {νk} converge narrowly in Pp(X), by Theorem 36,

we have that Wp(µk, µ) → 0 and Wp(νk, ν) → 0 as k → ∞. By the triangle inequality,

we get

Wp(µ, ν)− (Wp(µ, µk) +Wp(ν, νk)) ≤Wp(µk, νk) ≤Wp(µ, ν) + (Wp(µ, µk) +Wp(ν, νk)) ,

and so Wp(µk, νk) →Wp(µ, ν) as k → ∞. �

Remark 3.2.1. If, in the theorem above, we only had that µk → µ, νk → ν narrowly

(as opposed to narrowly in Pp(X)), then the Wasserstein metric would only be lower-

semicontinuous. That is, it would only hold that Wp(µ, ν) ≤ lim infk→∞Wp(µk, νk).

Corollary 38. Let (X, d) be a Polish space. It is always possible to find a distance d̃

such that the convergence in the Wasserstein sense for the distance d is equivalent to the

narrow convergence of probability measures in P(X).

Proof. We have already observed that if d is a bounded function then Pp(X) = P(X)

and all the extra conditions in Proposition 34 are trivially satisfied, so that narrow

convergence is equivalent to narrow convergence in Pp(X) or, by Theorem 36, convergence

in the Wasserstein metric.

To find a bounded distance inducing the same topology as d, consider d̃ =

d/(1 + d). �

Now is a good time to stop and discuss why the Wasserstein metric has any

importance. Though it is very appealing that it can metrize the narrow topology, it is

certainly not the only to do so. For instance, this holds for both the Lévy-Prokhorov
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distance, defined by

dp(µ, ν) = inf {ε > 0 : µ(B) ≤ ν(Bε) + ε, for all Borel sets B} , (3.10)

where Bε = {x : infy∈B d(x, y) ≤ ε}; or the bounded Lipschitz distance, defined by

dbL(µ, ν) = sup

{
∫

ϕdµ−
∫

ϕdν : ||ϕ||∞ + ||ϕ||Lip ≤ 1

}

,

where ||ϕ||∞ = sup |ϕ|.
Still, there are quite a few reasons why the Wasserstein metric is of interest. First,

as we have argued before, there is an isometric embedding of (X, d) in (Pp(X),Wp),

that suggests an interesting geometric structure for Wasserstein spaces. Second, there

is the direct connection with Optimal Transport that can sometimes lead to interesting

insights. Third, and as a consequence of the Optimal Transport theory, we know there

is an interesting duality theorem that might lead to a new and rich set of tools. Fourth,

from Proposition 21, we get that the Wasserstein distance is reasonably ‘stable’ under

perturbations. Finally, because Wp is defined as an infimum, it is relatively easy to find

upper bounds for it.

Let us now make due on our promise that the space (Pp(X),Wp) has a rich structure

with the next theorem. We shall prove that if (X, d) is a Polish space, then (Pp(X),Wp)

is itself a Polish space, that is, it is a complete and separable space.

Theorem 39. Let (X, d) be a metric Polish space with p ∈ [1,∞); then (Pp(X),Wp) is

also a Polish space.

Proof. We must prove that (Pp(X),Wp) is a complete and separable metric space. We

have already proved that it is a metric space in Theorem 28; now we prove separability

and completeness.

For separability, we must find a sequence of points xn ∈ X such that the countable

set of measures M = {∑N
n=1 bnδxn : N ∈ N, bn ∈ Q} is dense in (Pp(X),Wp).

Let µ ∈ Pp(X) and ε > 0. First, we construct a measure µ1 =
∑N

n=1 anδxn, with

an ∈ R+ and
∑∞

n=1 an = 1, such that Wp(µ, µ1) ≤ ε. Since µ1 does not satisfy all the

criteria we need, we then find another measure µ2 ∈ M such that Wp(µ1, µ2) ≤ 2ε, and

then, by the triangle inequality, we shall have Wp(µ,µ2) ≤ 3ε for µ2 ∈M , as we wanted.
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Because X itself is separable, we can find a sequence of points {xn}n∈N such that

balls of the form B(xn, ε
max{1,1/p}) cover the entire space X . Moreover, we can construct

a partition of X by considering the sets

B̃n =

(

B(xn, ε
max{1,1/p}) \

n−1
⋃

k=1

B(xk, ε
max{1,1/p})

)

∩X.

The idea will be to concentrate each point of B̃n in xn, and consider how costly

the transport is. In this case, take an = µ(B̃n), so that
∑∞

n=1 an = 1, and define

µ1 =
∑∞

n=1 anδxn. The optimal cost of transporting µ to µ1 is

∞
∑

n=1

dp(x, xn)dµ(x) ≤
∞
∑

n=1

anε
pmax{1,1/p} = εmax{p,1}

and we get Wp(µ, µ1), as we wanted. Now we need to find a suitable µ2 to prove

separability.

Because Wp(µ, µ1), from (3.1) and property (ii) in Proposition 34, it is clear that

µ ∈ Pp(X). Since trivially δx1 ∈ Pp(X), it must be that

∞
∑

n=1

an|xn − x|p = (Wp(µ1, δx1))
max{p,1} <∞.

Since the sequence
∑∞

n=1 an|xn − x|p is convergent, there must exist N ∈ N so that

∞
∑

n=N+1

an|xn − x|p ≤ εmax{p,1}.

For n = 2, . . . , N , it is then possible to pick nonnegative rational numbers bn sufficiently

close to an to ensure that

0 ≤ an − bn ≤ an
εmax{p,1}

(

∑N
n=1 an|xn − x1|p

)

with

b1 = a1 +

N
∑

n=2

(an − bn) +

∞
∑

n=N+1

an.

Note that, by the way we defined b1, it holds that
∑N

n=1 bn = 1. The idea now is transport

µ1 to µ2 =
∑N

n=1 bnδxn in the following way: for n = 1, . . .N keep a bn mass at each xn

and transport the remaining mass an− bn back to x1 (keeping the bn mass in place costs
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0, and since an− bn is really small, it should not cost too much); for n > N , transport all

the mass an from xn to x1 (because the masses an are small, this should not cost much

either). In any case, the total cost of transport will be

N
∑

n=1

(an − bn)|xn − x1|p +
∞
∑

n=N+1

an|xn − x1|p ≤ 2εmax{p,1}.

Thus, Wp(µ1, µ2) ≤ 2ε and, finally we obtain, Wp(µ, µ2) ≤ 3ε. Since ε is arbitrary, we

proved separability.

To show that (Pp(X),Wp) is complete, take {µk}k∈N to be a Cauchy sequence, and

let us prove convergence. By Lemma 35, we already know that {µk} must be tight and,

hence, it has a subsequence (still denoted by {µk} for simplicity) that converges narrowly

to a measure µ. We must then have, for an arbitrary x0 ∈ X ,

∫

X

dp(x0, x)dµ(x) ≤ lim inf
k→∞

∫

X

dp(x0, x)dµk(x) <∞,

which shows that µ ∈ Pp(X). Now, consider a subsequence of {µk}, which we shall denote

{muk′} Since µk → µ narrowly, by remark 3.2.1, we have

Wp(µ, µk′) ≤ lim inf
k→∞

Wp(µk, µk′)

which yields

lim sup
k′→∞

Wp(µ, µk′) ≤ lim sup
k,k′→∞

Wp(µk, µk′) = 0.

Thus, µk′ → µ narrowly in Pp(X). Since {µk′} is an arbitrary subsequence of {µk}, and
{µk} itself is a Cauchy sequence, the entire sequence must be convergent in Wp. �

3.3

Geometric Properties

We now investigate the geometric structure of the Wasserstein space (Pp(X),Wp).

We try to answer two important questions: (i) given two points in Pp(X) what is the

shape of the ‘shortest path’ between the points?; and (ii) how ‘curved’ is the space

Pp(X)? The first question leads us to the concept of geodesics, and the second to the

notion of curvature. To answer them, we will restrict our attention to the case where the

base space X is a separable Hilbert space so as to simplify several proofs, but we shall

state the theorem in full generality when suitable.
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Geodesics

Why should we care for the behavior of shortest paths in Wasserstein spaces?

Linear structures provide very useful aids when trying to understand a space, and several

definitions are based upon on it (for instance, convexity). Yet, in arbitrary structures,

the key concept of a line segment does not exist, and some other notion must take its

place. Since part of the reason why line segments are so important is because they give

the shortest path between two points, it seems useful to understand how shortest paths

behave in arbitrary metric spaces. Indeed, it is the basic motivation for defining geodesic

curves, of which shortest paths are a particular case.

First, we will need some preliminary concepts.

Definition 40. Given a topological space X , a curve γ is a continuous map γ : I → X ,

where I ⊂ R is an interval.

Of course, two different curves can have the same image if they have different

parametrizations. We would like to identify when that is the case.

Definition 41. A curve γ̃ : I → X is said to be a reparametrization of another curve

γ : J → X if there exists a nondecreasing and continuous function θ : I → J such that

γ̃ = γ ◦ θ.

For simplicity and without any loss of generality, we shall take I = [0, 1] from now

on.

Another important concept regarding curves is its length, which we define next.

Definition 42. Given a metric space (X, d) and a curve γ : [0, 1] → X , the length of γ

is given by

len(γ) = sup
0=t0<t1<···<tn=1

n
∑

i=1

d(γ(ti − 1), γ(ti)),

where the supremum is taken over all the partitions 0 = t1 < t2 < · · · < tn = 1, and

n ∈ N is arbitrary.

We say a curve is rectifiable if len(γ) <∞. In this text, we shall not bother with

non-rectifiable curves.

It will be useful to introduce the following notation: we let γ[s,t] be the restriction

of a curve γ : [0, 1] → X to the interval [s, t], with 0 ≤ s ≤ t ≤ 1.
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Now, in order to avoid working with curves that are simply reparametrizations of

each other, let us define a somewhat ‘natural’ parametrization that will be standard from

this point on.

Definition 43. A parametrization of a rectifiable curve γ : [0, 1] → X is called a

constant speed parametrization if there exists v > 0 such that len(γ[s,t]) = v(t− s),

for all 0 ≤ s ≤ t ≤ 1.

To verify that a parametrization is constant speed, one can let s = a be fixed and

just prove len(γ[a,t]) = v(t− a) for all t ∈ [a, 1], since len(γ[s,t]) = len(γ[a,t]) − len(γ[a,s]).

Indeed, this point of view shows why this parametrization is called ‘constant speed’: we

have that d
dt
len(γ[a,t]) = v.

Of course, it remains to be shown that every (rectifiable) curve does indeed admit

such a constant speed parametrization.

Proposition 44. Given v > 0, any rectifiable curve γ : [0, 1] → X can be rewritten

as γ = γ̃ ◦ ζ, where γ̃ : [0, 1
v
len(γ)] → X is a constant speed parametrization, and

ζ : [0, 1] → [0, 1
v
len(γ)] is a nondecreasing continuous function.

Proof. The idea will be to find a constant speed parametrization γ̃ by taking ζ : [0, 1] →
[0, 1

v
len(γ)] to be length of the curve γ[0,t] divided by v.

First, then, we define ζ(t) = 1
v
len(γ[0,t]), ∀t ∈ [0, 1], and it is immediate to see

that ζ(t) is nondecreasing. It is also continuous: for a fixed t and any ε > 0, consider

a partition of the interval [0, t] given by 0 = s0 < s1 < · · · < sn−1 < sn = t with

d(γ(sn−1), γ(t)) < vε/2 and such that len(γ[0,t]) −
∑n

i=1 d(γ(si−1), γ(si)) < vε/2. Then

we have

len(γ[sn−1,t])− d(γ(sn−1), γ(t)) <
vε

2
,

and so len(γ[sn−1,t]) < vε. Thus, given ε > 0, for any t′ such that sn−1 ≤ t′ ≤ t we have

that

ζ(t)− ζ(t′) =
1

v

(

len(γ[0,t])− len(γ[0,t′])
)

=
len(γ[t′,t])

v
< ε.

Since ε > 0 was arbitrary, we get the continuity of ζ(t) from the left. Analogously, one

proves it is continuous from the right; hence we have that ζ(t) is continuous.

Now, we must define γ̃ : [0, 1
v
len(γ)] → X . To do so, pick τ ∈ [0, 1

v
len(γ)] and

t ∈ [0, 1] such that τ = ζ(t); since we want γ(t) = γ̃ ◦ ζ(t) = γ̃(τ), simply define
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γ̃(τ) = γ(t). By construction, it must hold that γ = γ̃ ◦ ζ . We are left to show that γ̃ is

continuous and has constant speed parametrization.

To see that γ̃ is indeed a constant speed parametrization, note that γ̃ is just a

reparametrization of γ, and so

len(γ̃[τ1,τ2]) = len(γ[t1,t2]) = len(γ[0,t2])− len(γ[0,t1]) = vτ2 − vτ1 = v(τ2 − τ1). (3.11)

For continuity, take τ1 = ζ(t1), τ2 = ζ(t2), so that γ̃(τ1) = γ(t1), γ̃(τ2) = γ(t2) and

the endpoints of γ[t1,t2] are γ̃(τ1) and γ̃(τ2). From the triangle inequality we have that

d(γ̃(τ1), γ̃(τ2)) ≤ len(γ̃[τ1,τ2]), and thus using (3.11) above we get that

d(γ̃(τ1), γ̃(τ2)) ≤ len(γ[t1,t2]) = v(τ2 − τ1),

which proves continuity.

�

Having defined curves, and given them a ‘natural’ constant speed parametrization,

we must now ensure that the space we are working with does indeed admit a shortest

path. In this sense, we would like to consider as a metric the infimum of the lengths of

all curves connecting two given points.

Definition 45. Given a metric space (X, d), its intrinsic metric, dI : X × X → R+,

is given by

dI(x, y) = inf
γ∈Cxy

len(γ),

with x, y ∈ X , where Cxy denote the set of curves in X connecting x to y. If there is no

path in X of finite length between x and y, we define dI(x, y) = ∞.

The intrinsic metric is simply a notion of distance based on the lengths of connecting

curves. It is not hard to see that (X, dI) is a metric space as long as dI <∞. Note that,

in general,

dI(x, y) ≥ d(x, y), (3.12)

since, as we have noted, len(γ) ≥ d(γ(0), γ(1)) follows from the triangular inequality.

The next example illustrates a case where the inequality may be strict.
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Example 46. Consider the circle S1 ⊂ R2, with the euclidean distance d(x, y) = |x−y|.
Then no matter how two distinct points are connected by a curve, the curve’s length

needs to be strictly greater than the euclidean distance between the two points. See

Figure 3.1.

x

y

dI(x, y)

d(x, y)

Figure 3.1: A situation where dI(x, y) > d(x, y).

In light of inequality (3.12) above, we would hope that the spaces we work with

are such that the distance between two points can be approximated by the length of the

curves connecting them. We call these length spaces.

Definition 47. Given a metric space (X, d), we call it a length space if, for every

x, y ∈ X ,

d(x, y) = dI(x, y),

where dI(x, y) denotes the intrinsic metric of the space.

Example 48. From example 46, we know that S1 (with the euclidean distance) is not

a length space, though Rd (with the euclidean distance) is. More generally, any convex,

connected subset of Rd is a length space, and any non-convex set cannot be one.

Example 49. The set R2 \ {(0, 0)} with the euclidean distance is still a length space.

Even if the line segment connecting two points goes through the origin, we can still

consider a sequence of curves whose lengths are arbitrarily close to the distance between

the two points. See Figure 3.2.

Finally, we define the notion of geodesic.
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x

y

Figure 3.2: A case where dI(x, y) = d(x, y), though the infimum is not achieved.

Definition 50. Given a length space X , a curve γ : [0, 1] → X is said to be a (constant

speed) geodesic if there exists a constant v > 0 such that for all t ∈ [0, 1] there exists

a neighborhood J of t in [0, 1] such that, for any t1, t2 ∈ J with t1 > t2,

d(γ(t1), γ(t2)) = v(t1 − t2).

Geodesics, as defined above, are curves that are everywhere locally distance

minimizers (because of (3.12)). Since shortest paths are curves that are globally distance

minimizers, they are a particular case of geodesics.

Definition 51. Given a length space X , a curve γ : [0, 1] → X is said to be a (constant

speed) minimal geodesic or shortest path if there exists a constant v > 0 such that

for all t1, t2 ∈ [0, 1] with t1 > t2,

d(γ(t1), γ(t2)) = v(t1 − t2).

The definition of minimal geodesic above simply means that for a curve to be

a shortest path, it needs to be a shortest path between all points γ(t1), γ(t2) with

t1, t2 ∈ [0, 1], whereas a geodesic might only be a shortest path on small neighborhoods.

As we have noted, every shortest path between two points, when it exists, must be a

geodesic. The converse, however, is not true, as the following example shows.
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Example 52. Consider the sphere S2 ⊂ R3, and take x, y ⊂ S2, as in Figure 3.3. Since

x and y are not antipodal, the shortest path between them is precisely a segment of the

great circle passing through them, colored in purple in the Figure. However, the other

segment constituting the geodesic, colored in orange, must also be a geodesic, since it

locally minimizes the distance between the two points.

Besides, note that if x and y are antipodal (as the green points in Figure 3.3), then

there are infinitely many geodesics connecting x and y. Indeed there are infinitely many

great circles passing through x and y in this case, and any of the two segments of a great

circle connecting x and y constitutes a geodesic.

x

y

Figure 3.3: Geodesics on a sphere.

Essentially all the geodesics that will be considered from now on are minimal

geodesics.

As example 49 showed, in arbitrary spaces it is possible that no geodesic exists

between two given points. We would like to avoid this situation, and so the next definition

comes naturally.

Definition 53. A metric space (X, d) is called geodesic if for every x, y ∈ X there

exists a minimal geodesic connecting them.
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Now, in a geodesic space the notion of a shortest path makes sense, and we are

guaranteed to find a curve that realizes it. The main aim of this section will be to prove

that if the base space is geodesic, then its Wasserstein space is also geodesic. To simplify

several results and avoid measure theoretical complications, we shall take our base space

to be one that, given two points, admits only one geodesic.

Definition 54. A metric space (X, d) is called uniquely geodesic if for every x, y ∈ X

there exists a single minimal geodesic connecting them.

From example 52 above, we have already learned not to expect geodesics to be

unique. Yet, several important spaces are in fact uniquely geodesic.

Example 55. It is easy to see that any normed vector space V must be geodesic, since

given two points x, y ∈ V , the minimal geodesic connecting x and y must be given by

γ(t) = tx + (1 − t)y, with t ∈ [0, 1]. The more interesting question is: are all normed

vector spaces uniquely geodesic? The general answer must clearly be ‘no’: just take R2

with the l1 norm, and notice there are infinitely many geodesics connecting two arbitrary

points x, y, as in Figure 3.4.

Still, if we restrict our attention to strictly convex normed vector spaces

(i.e. a space E such that, for all x1, x2 ∈ E, x1 6= x2, ||x1|| = ||x2|| = 1, we have

||(1 − t)x1 + tx2|| < 1), then the answer is ‘yes’. Indeed, a normed vector space is

uniquely geodesic if and only if it is strictly convex (see [28, p. 180]). As a consequence,

any vector space equipped with a norm that comes from an inner product must be

uniquely geodesic. In particular, any Hilbert space is uniquely geodesic.

Finally, let us return to our study of the Wasserstein space. From now on, we

assume the base space X is a separable Hilbert space, with p > 1; from example 55

above we already know this is a uniquely geodesic Polish space.

A curve in the Wasserstein space can be thought of as a family of probability

measures µt, one for each t ∈ [0, 1]. According to Definition 51, such a curve is a minimal

geodesic if it satisfies

Wp(µs, µt) = (t− s)Wp(µ0, µ1), ∀0 ≤ s ≤ t ≤ 1. (3.13)
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x

y

Figure 3.4: (R2, || · ||1) is not uniquely geodesic.

Now, given two probability measures, how can we characterize the minimal geodesic

between them? As a starting point, let us first consider the case µ = δx, ν = δy, with

x, y ∈ X .

Perhaps a naive guess, in analogy with the fact that γ(t) = (1 − t)x + ty is

the shortest path between x, y ∈ X , is to conjecture that a minimal geodesic between

measures δx, δy, should be of the form µt = tδx + (1 − t)δy. However, if we take p = 2

and 0 ≤ s ≤ t ≤ 1, we readily see that

W2(µs, µt) =
√
t− s d(x, t)

which of course does not satisfy equation 3.13 – indeed, {µt}t∈[0,1] would have infinite

length! This strange curve amounts to the somewhat artificial idea of sending mass from

δx to δy at a distance, as Figure 3.5 shows.

A better guess would be to transport the mass from δx to δy optimally along

geodesics in the base space X , as Figure 3.6 suggests. In other words, geodesics in Pp(X)

should be given by optimally interpolating two measures. This will be the content of

Theorem 58 below.

Before doing so, we need to introduce some notation and an important lemma.

To make the notation more homogeneous, we let proji denote the standard

projection in the (i+ 1)-th variable (so that proj0 projects in the first variable, proj1 in

the second, etc.) and proji,k denote the standard projection on both the (i + 1)-th and
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x

x

x

y

y

y

µ0 = δx

µ1/2

µ1 = δy

Figure 3.5: The curve µt = (1− t)δx + tδy.

x

y

µ0 = δx

µ1 = δy

Figure 3.6: Interpolating measures δx and δy provides a minimal geodesic curve.
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the (k + 1)-th variables. Also, take N ≥ 2, 0 ≤ i, j, k ≤ N − 1, and t ∈ [0, 1].

Now, given µ̄ ∈ P(XN), define

– proji→j
t : XN → X ; with proji→j

t = (1− t) proji+t projj;

– proji→j,k
t : XN → X2; with proji→j,k

t = (1− t) proji,k+t projj,k;

– µi→j
t ∈ P(X); with µi→j

t = (proji→j
t )#µ̄;

– µi→j,k
t ∈ P(X2); with µi→j,k

t = (proji→j,k
t )#µ̄.

The idea behind this notation is the following. Let N = 2, and take µ̄ = π∗ ∈
Π∗(µ0, µ1) to be an optimal coupling between µ0 and µ1 (greek boldface letters will

denote optimal couplings, so that µ̄ ∈ P(XN ) but µ ∈ P(X)). Then we will prove that

µt = µ0→1
t = (proj0→1

t )#µ̄ is a geodesic from µ0 = (proj0)#µ̄ to µ1 = (proj1)#µ̄.

Notice that, for any measurable U ⊂ X ,

µt(U) = (proj0→1
t )#π

∗(U) = π∗ {(x, y) ∈ X ×X : tx+ (1− t)y ∈ U} ,

so that if π∗(U0 × U1) > 0, then the set

Ut = {(1− t)x+ ty : x ∈ U0, y ∈ U1},

illustrated in Figure 3.7, has positive measure µt. Indeed,

µt(Ut) = π∗{(x, y) ∈ X ×X : (1− t)x+ ty ∈ Ut} ≥ π∗(U0 × U1).

U0 Ut U1

Figure 3.7: Understanding the behavior of the geodesic {µt}t∈[0,1].
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We will need the following lemma, which essentially states that though there could

be several geodesics from µ0 to µ1, any point µt along a geodesic between these measures

is such that Π∗(µ0, µt) and Π∗(µt, µ1) have only one element, and the optimal transport

from µ0 to µt and the one from µt to µ1 are induced by a map.

Lemma 56. Given a minimal geodesic {µt}t∈[0,1] in Pp(X), for each t ∈ (0, 1) the sets

Π∗(µ0, µt) and Π∗(µt, µ1) have a unique optimal plan, which we respectively call µ̄0→t and

µ̄t→1. Furthermore, there exists µ̄ such that both µ̄0→t and µ̄t→1 are induced by transport

maps:

µ̄0→t = (proj0,0→1
t )#µ̄ and µ̄t→1 = (proj0→1,1

t )#µ̄

and µ̄ = µ̄t→1 ◦ µ̄0→t (in the sense of remark 27),

Proof. Fix t ∈ (0, 1). We first let α ∈ Π∗(µ0, µt) and β ∈ Π∗(µt, µ1), so that both α and

β constitute optimal plans. To make the proof easier to understand, we consider three

distinct copies of X , and name them X1, X2, X3 so that µ0 ∈ P(X1), µt ∈ P(X2) and

µ1 ∈ P(X3).

We now use Lemma 26 (the Gluing Lemma) to ‘glue’ the measures α and β with

respect to their common variable x2, obtaining a third measure γ ∈ P(X1 ×X2 ×X3).

Indeed, we first disintegrate the measures α and β as

α =

∫

X2

αX1|x2 ⊗ δx2dµt(x2)

β =

∫

X2

βX3|x2 ⊗ δx2dµt(x2),

and then ‘glue’ them together, obtaining

γ =

∫

X2

αX1|x2 ⊗ δx2 ⊗ βX3|x2dµt(x2),

which is essentially equation (3.2) rephrased.

Thus, using the notation of remark 27, we define

µ̄ = α ◦ β = (proj1,3)#γ ∈ Π(µ0, µ1), (3.14)

and obtain
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Wp(µ0, µ1) ≤
(
∫

X1×X3

dp(x1, x3)dµ̄

)
1
p

=

(
∫

X1×X2×X3

dp(x1, x3)dγ

)
1
p

≤
(
∫

X1×X2×X3

dp(x1, x2)dγ

)
1
p

+

(
∫

X1×X2×X3

dp(x2, x3)dγ

)
1
p

=

(
∫

X1×X2

dp(x1, x2)dα

) 1
p

+

(
∫

X2×X3

dp(x2, x3)dβ

) 1
p

= Wp(µ0, µt) +Wp(µt, µ1) = Wp(µ0, µ1).

The first inequality follows from the definition of the Wasserstein metric; the

first equality follows (3.14) above; the second inequality is simply the usual triangular

inequality in Lp; the second equality comes from the marginal identities of γ; and the

third equality comes from α ∈ Π∗(µ0, µt), β ∈ Π∗(µt, µ1), and the fact that {µt}t∈[0,1] is
geodesic.

Since we must then have equality everywhere, this calculation shows that µ̄ is an

optimal measure between µ0 and µ1, i.e. µ̄ ∈ Π∗(µ0, µ1).

Also, we get that

||x1 − x3||Lp(X1×X2×X3,γ) = ||x1 − x2||Lp(X1×X2×X3,γ) + ||x2 − x3||Lp(X1×X2×X3,γ),

and so, by the strict convexity of the Lp-norm, γ-a.e. x2 − x1 and x3 − x1 should be

collinear; that is, there exists k > 0 such that

x2 − x1 = k(x3 − x1)

for γ-a.e. triples (x1, x2, x3).

Because {µt} is a geodesic in Pp(X), we have that Wp(µ0, µt) = tWp(µ0, µ1), which

implies

∫

X1×X2×X3

dp(x1, x2)dγ =

∫

X1×X2

dp(x1, x2)dα = tp
∫

X1×X3

dp(x1, x3)dµ̄

=

∫

X1×X2×X3

(td(x1, x3))
pdγ

and so k = t. That is,



Optimal Transport and the Wasserstein Metric 79

x2 − x1 = t(x3 − x1) (3.15)

for γ-a.e. triples (x1, x2, x3).

Let z(x2) =
∫

X1
x1dαX1|x2, and note that αX1|x2 = γX1|x2,x3 by the way we defined

γ. Then, integrating (3.15) with respect to the measure αX1|x2, we get

x2 − z(x2) = t(x3 − z(x2)),

for β-a.e. pairs (x2, x3).

This, in turn, implies the transport map rt : X2 → X3 given by

rt(x2) =
x2
t
− (1− t)

z(x2)

t

induces the measure β, i.e. β = (Id×rt)#µt. Note that α determines z, which depends

on rt, which in turn depends on β. Still, as α and β were chosen independently, β is

properly determined by the transport map rt; thus, β must be unique.

Finally, by taking µ̄t→1 = β, we get that µ̄t→1 is indeed unique and induced by the

appropriate transport map. Analogously, one sees that µ̄0→t = α also fits the bill, and

so µ̄ = µ̄t→1 ◦ µ̄0→t ∈ Π∗(µ0, µ1). This finishes the lemma. �

Finally, we prove the main result of this subsection: if we optimally interpolate two

measures µ0 and µ1 using the formula for µ0→1
t above, we get that {µt}t∈[0,1] is a geodesic.

Conversely, given any geodesic {µt}t∈[0,1] we can find an optimal map µ̄ ∈ Π∗(µ0, µ1) such

that this geodesic satisfies µt = µ0→1
t = (proj0→1

t )#µ̄.

Theorem 57. Given an optimal plan µ̄ ∈ Π∗(µ0, µ1), the curve {µt}t∈[0,1] with µt = µ0→1
t

is a minimal geodesic from µ0 to µ1. Conversely, all geodesics are of this form.

Proof. (⇒) Note that, for 0 ≤ s ≤ t ≤ 1, since µt, µs are induced by transport maps,

W p
p (µt, µs) =W p

p ((projt)#µ̄, (projs)#µ̄) ≤
∫

X×X

dp(x, y)d ((projt, projs)#µ̄) (x, y)

=

∫

X×X

dp(projt(x, y), projs(x, y))dµ̄(x, y) =

∫

X×X

(t− s)pdp(x, y)dµ̄(x, y)

= (t− s)p
∫

X×X

dp(x, y)dµ̄ = (t− s)pW p
p (µ0, µ1).
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The inequality comes form the fact that (f, g)#µ̄ ∈ Π(f#µ̄, g#µ̄). The first equality

comes from equation (2.2); and the second equality comes from the fact that |(1− t)x+

ty − (1− s)x− sy| = (t− s)|x− y|.
Thus, Wp(µt, µs) ≤ (t − s)Wp(µ0, µ1). However, if the inequality is strict we can

find a contradiction by simply applying the triangular inequality to µ0, µs, µt and µ1.

Therefore, equality must hold, and, by definition, {µt} is a minimal geodesic.

(⇐) Conversely, take {µt}t∈[0,1] to be a minimal geodesic. Fix t, and consider the

geodesic restricted to the interval [0, t]; that is, consider the minimal geodesic {µs}s∈[0,t],
which can of course be thought of as {µst}s∈[0,1]. From Lemma 56, we know that µst is

uniquely determined by a transport map, so

µst = (proj0→1
s )#µ̄

0→t = (proj0→1
s ◦ proj0,0→1

t )#µ̄ = (proj0→1
st )#µ̄,

and the geodesic going from 0 to t does indeed take the form (proj0→1
st )#µ̄, s ∈ [0, 1].

The argument is analogous for the other part of the geodesic, though we use the measure

µ̄t→1 instead of µ̄0→t. In any case, since µ̄ = µ̄t→1 ◦ µ̄0→t, we get that the whole geodesic

must satisfy

µt = (proj0→1
t )#µ̄,

which finishes the theorem. �

Though the proof above relied heavily on properties of the separable Hilbert space

X , Theorem 57 can be generalized in several directions. For instance, one could have

let the base space X to be any geodesic space, and still obtain that (Pp(X),Wp) is a

geodesic space for p > 1. Indeed, let Geod(X) denote the metric space of all minimal

geodesics on X , endowed with the supremum norm. Also, define the evaluation maps

et : Geod(X) → X by et(γ) = γ(t) for t ∈ [0, 1]. Then the following holds.

Theorem 58. If (X, d) is a Polish geodesic space, then (Pp(X),Wp) is also Polish and

geodesic; the converse also holds. Furthermore, for every minimal geodesic {µt}t∈[0,1],
there exists µ̃ ∈ Pp(Geod(X)) such that (e0, e1)#µ̃ ∈ Π∗(µ0, µ1) and µt = (et)#µ̃;

conversely, any such curve {µt}t∈[0,1] must be a minimal geodesic.

Proof. See [3, p. 31]. �
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Curvature

We would like to somehow measure how ‘curved’ the Wasserstein space is. To make

matters simpler, we restrict attention to the case where p = 2 (and, as before, X is a

separable Hilbert space). Now, we must first define a notion of curvature that is suitable

for metric spaces. Intuitively, we want it to distinguish between Figures 3.8(a), 3.8(b)

and 3.8(c).

(a) (b) (c)

Figure 3.8: A space like (a) should have zero curvature; a space like (b) should have
positive curvature; and a space like (c) should have negative curvature.

The idea will be as follows: given three points x1, x2, x3 ∈ X , and geodesics

x1→2, x2→3, x3→1 among them, compare the triangle formed in X with an euclidean

triangle in R2 with sides of length d(x1, x2), d(x2, x3), and d(x3, x1). If the distance

between a vertice and any point in the opposing geodesic is bigger or equal to the

distance that between the corresponding two points in the R2 triangle, we will say that

the original space is non-negatively curved, or NNC. If, on the other hand, the distance

is smaller or equal to the corresponding distance in the R2 triangle, we will say that the

original space is non-positively curved, or NPC.

Note that this notion agrees with our intuition for Figure 3.8, and it would make

the space in 3.8(b) NNC, the one in 3.8(c) NPC, and the space in 3.8(a) both NNC and

NPC.

Since in Rn, or, more generally, a Hilbert space, geodesics take the form x1→2
t =

(1− t)x1 + tx2, we have the equality

|x1→2
t − x3| = (1− t)|x1 − x3|2 + t|x2 − x3|2 − t(1− t)|x1 − x2|2.

Hence, it makes sense to define NNC spaces as follows.
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Definition 59. A geodesic metric space (X, d) is said to be non-negatively curved or

NNC if for every x3 ∈ X and every minimal geodesic {x1→2
t }t∈[0,1] connecting x1, x2 ∈ X ,

d2(x1→2
t , x3) ≥ (1− t)d2(x1, x3) + td2(x2, x3)− t(1− t)d2(x1, x2). (3.16)

The space is said to be non-positively curved or NPC if the reverse inequality holds.

x1x1

x2x2 x3x3

x1→2
x1→2

x2→3

x2→3

x3→1
x3→1

(a) (b)

Figure 3.9: Comparing triangles.

It is not hard to show that the definition above does indeed agree with our intuition

regarding triangles. In any case, for our purposes, the Wasserstein space (P2(X),W2) is

said to be NNC if for each choice of µ1, µ2, µ3 ∈ P2(X) it holds that

W 2
2 (µ

1→2
t , µ3) ≥ (1− t)W 2

2 (µ1, µ3) + tW 2
2 (µ2, µ3)− t(1− t)W 2

2 (µ1, µ2).

In this section, our aim will be to prove that if X is a NNC space, then so will

be P2(X). First, we need two technical results; we now let proji denote the standard

projection in the i-th coordinate, again.

Lemma 60. Given µ̄ ∈ Π(µ1, µ2, µ3) ⊂ P2(X ×X ×X), i, j, k ∈ {1, 2, 3} and t ∈ [0, 1],

if we define

C2
µ̄(µ

i→j
t , µk) =

∫

X×X×X

|(1− t)xi + txj − xk|2dµ̄(x1, x2, x3),

then it holds that

W 2
2 (µ

1→2
t , µ3) ≤ (1− t)C2

µ̄(µ1, µ3) + tC2
µ̄(µ2, µ3)− t(1− t)C2

µ̄(µ1, µ2).
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Proof. First, recall that for any measure µ ∈ P(X) and any pair of Borel measurable

maps f, g : X → X , we must have

W 2
2 (f#µ, g#µ) ≤

∫

X

d2(f(x), g(x))dµ(x),

since (f, g)#µ ∈ Π(f#µ, g#µ) and the Wasserstein metric is defined as the infimum cost

among all admissible measures.

Furthermore, note that C2
µ̄(µ

i→j
t , µk) is simply the squared cost of the push-forward

of µ̄ by the projections f(x1, x2, x3) = (1− t)xi + txj and g(x1, x2, x3) = xk, so we get

W 2
2 (µ

1→2
t , µ3) ≤ C2

µ̄(µ
1→2
t , µ3). (3.17)

Now, the identity

|(1− t)a + tb− c|2 = (1− t)|a− c|2 + t|b− c|2 − t(1− t)|b− a|2

yields

C2
µ̄(µ

1→2
t , µ3) =

∫

X×X×X

|(1− t)x1 + tx2 − x3|2dµ̄(x1, x2, x3)

= (1− t)

∫

|x1 − x3|2dµ̄+ t

∫

|x2 − x3|2dµ̄− t(1− t)

∫

|x2 − x1|2dµ̄ =

= (1− t)C2
µ̄(µ1, µ3) + tC2

µ̄(µ2, µ3)− t(1− t)C2
µ̄(µ1, µ2),

and so we have

W 2
2 (µ

1→2
t , µ3) ≤ (1− t)C2

µ̄(µ1, µ3) + tC2
µ̄(µ2, µ3)− t(1− t)C2

µ̄(µ1, µ2),

as we wished. �

Proposition 61. Let µ1,2 ∈ Π(µ1, µ2) and µt,3 ∈ Π∗(µ1→2
t , µ3), with t ∈ (0, 1). Then

there exists a plan µt ∈ Π(µ1, µ2, µ3) such that (proj1→2,3
t )#µt = µt,3 and thus

W 2
2 (µ

1→2
t , µ3) = (1− t)C2

µt
(µ1, µ3) + tC2

µt
(µ2, µ3)− t(1− t)C2

µt
(µ1, µ2), (3.18)

Moreover, the plan µt is unique if µ1,2 ∈ Π∗(µ1, µ2).

Proof. Define the homeomorphisms Qt : X × X → X × X and Rt : X × X × X →
X ×X ×X by
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Qt(x1, x2) = ((1− t)x1 + tx2, x2)

Rt(x1, x2, x3) = ((1− t)x1 + tx2, x2, x3) ,

and consider the measure η = (Rt)#µ. Note that the properties µt ∈ Π(µ1, µ2, µ3)

and (proj1→2,3
t )#µt = µt,3 are equivalent to asking (proj1,2)#η = (Qt)#µ

1,2 and

(proj1,3)#η = µt,3, since

r (proji)#η = (proji)#((Rt)#µ) = (proji)#((1− t)µ1 + tµ2, µ2, µ3)

r (Qt)#µ
1,2 = ((1− t)µ1 + tµ2, µ2)

r µt,3 = ((1− t)µ1 + tµ2, µ3).

Because (proj1,2)#η and (proj1,3)#η have a common marginal, Lemma 26 (the

Gluing Lemma) guarantees the existence of a measure η such as the one we want. Then,

the fact that Rt is a homeomorphism is enough to ensure the existence of µt.

From (proj1→2,3
t )#µt = µt,3 ∈ Π∗(µ1→2

t , µ3) and Lemma 60, we get

W 2
2 (µ

1→2
t , µ3) =

∫

X×X

d2(x, y) d
(

(proj1→2
t , proj3)#µt)

)

=

∫

X×X×X

d2
(

proj1→2
t , proj3

)

dµt(x1, x2, x3)

=

∫

X×X×X

|(1− t)x1 + tx2 − x3|2dµt(x1, x2, x3) = C2
µt
(µ1→2

t , µ3)

= (1− t)C2
µt
(µ1, µ3) + tC2

µt
(µ2, µ3)− t(1− t)C2

µt
(µ1, µ2).

Finally, if µ1,2 ∈ Π∗(µ1, µ2), then (Qt)#µ
1,2 ∈ Π∗(µ1→2

t , µ2) and from Lemma 56 we

have that (Qt)#µ
1,2 is unique because it is induced by a transport map. In turn, since

Qt is a homeomorphism, we have µt is uniquely determined. �

We thus obtain the main result of this subsection.

Theorem 62. For any measures µ1, µ2, µ3 ∈ P2(X), the following inequality holds:

W 2
2 (µ

1→2
t , µ3) ≥ (1− t)W 2

2 (µ1, µ3) + tW 2
2 (µ2, µ3)− t(1− t)W 2

2 (µ1, µ2);

that is, P2(X) is a NNC space.
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Proof. Given µ1, µ2, µ3 ∈ P2(X), µ1,2 ∈ Π(µ1, µ2) and using (3.17), (3.18) we obtain

W 2
2 (µ

1→2
t , µ3) ≥ (1− t)W 2

2 (µ1, µ3) + tW 2
2 (µ2, µ3)− t(1− t)C2

µ1,2(µ1, µ2). (3.19)

Now, since we are considering a geodesic between µ1 and µ2, because of Theorem

57 it must be that µ1,2 ∈ Π∗(µ1, µ2). This, in turn, means that

C2
µ1,2(µ1, µ2) = W 2

2 (µ1, µ2). (3.20)

Putting equations (3.19) and (3.20) together yields

W 2
2 (µ

1→2
t , µ3) ≥ (1− t)W 2

2 (µ1, µ3) + tW 2
2 (µ2, µ3)− t(1− t)W 2

2 (µ1, µ2),

which shows that P2(X) is indeed a NNC space. �

As in the last subsection, the proofs above relied on the underlying Hilbert structure

of the space X . Still, Theorem 62 holds in far greater generality: we could have taken X

to be just a geodesic space.

Theorem 63. If (X, d) is a geodesic space that is NNC, then the space (P2(X),W2) is

also NNC.

Proof. See [3, p. 39]. �

Though the non-negative curvature seems to be inherited by the Wasserstein space,

the same is not true for non-positive curvature. That is, it is possible for (X, d) to be a

NPC space while (P2(X),W2) is not, as the next example shows.

Example 64. Consider the space X = R2 with the usual euclidean distance. it is

straightforward to see that since in this case (3.16) holds in equality, R2 must be NPC.

Now, let us show that (P2(R
2),W2) is not NPC. Define

µ0 =
1

2

(

δ(1,1) + δ(5,3)
)

,

µ1 =
1

2

(

δ(−1,1) + δ(−5,3)

)

,

ν =
1

2

(

δ(0,0) + δ(0,−4)

)

,

as in Figure 3.10.



Optimal Transport and the Wasserstein Metric 86

Figure 3.10: Illustration of µ0 (light blue), µ1 (dark blue), ν (pink), and their transports.

Since the cost function is convex, it will be better to transport the masses along

two medium length paths than along one big and one small path, as suggested by the

blue path in Figure 3.10. It is then straightforward to see that W 2
2 (µ0, µ1) = 40 and

W 2
2 (µ0, ν) = W 2

2 (µ1, ν) = 30.

Besides, we already know that R2 with the euclidean distance is uniquely geodesic,

and in this particular example the geodesic between µ1 and µ2 should follow along the

blue path in Figure 3.10. Therefore, the geodesic between µ1 and µ2 should be

µ1→2
t =

1

2

(

δ(1−6t,1+2t) + δ(5−6t,3−2t)

)

.

Then, the transport from µ1→2
1/2 to ν should follow along the dotted black line in Figure

3.10, and easy calculations show that

W 2
2 (µ

1→2
1/2 , ν) = 24 >

30

2
+

30

2
− 40

4
= tW 2

2 (µ0, ν)+ (1− t)W 2
2 (µ1, ν)− t(1− t)W 2

2 (µ0, µ1).

Hence, (P2(R
2),W2) violates the NPC condition.

This example also illustrates two additional interesting facts: first, the inequality

(3.16) is oftentimes strict; put another way, the triangles in the Wasserstein space are

usually more like the ones in Figure 3.3(a) then the one in Figure 3.3(b). Second, although

geodesics in R2 behave very well (they are line segments, after all), the geodesics in

(P2(R
2),W2) can have both intersecting paths and splitting of masses.
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