FURSTENBERG'S THEOREM ON PRODUCTS OF I.I.D. 2×2 MATRICES

These notes follow [BL].
We deal with Lyapunov exponents of products of random i.i.d. matrices. For simplicity we shall consider only the 2×2 case. It is no real restriction to assume that matrices are in $\mathrm{SL}(2, \mathbb{R})$ (i.e., have determinant ± 1).

Let μ be a probability measure in $\operatorname{SL}(2, \mathbb{R})$ which satisfies the integrability condition ${ }^{1}$

$$
\int_{\mathrm{SL}(2, \mathbb{R})} \log \|M\| d \mu(M)<\infty .
$$

If Y_{1}, Y_{2}, \ldots are random independent matrices with distribution μ, then the limit

$$
\gamma=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|Y_{n} \cdots Y_{1}\right\|
$$

(the upper Lyapunov exponent) exists a.s. and is constant, by the subadditive ergodic theorem. We have $\gamma \geq 0$.

The Furstenberg theorem says that $\gamma>0$ for "most" choices of μ. Let us see some examples where $\gamma=0$:
(1) If μ is supported in the group of rotations $\operatorname{SO}(2, \mathbb{R})$ then $\gamma=0$.
(2) If μ is supported in the abelian subgroup

$$
\left\{\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right) ; t \in \mathbb{R} \backslash\{0\}\right\}
$$

then $\gamma=\left|\int \log \right| t|d \mu(M)|$, which may be zero.
(3) Assume that only two matrices occur:

$$
\left(\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right) \quad \text { and } \quad R_{\pi / 2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Then it is a simple exercise to show that $\gamma=0$.
Furstenberg's theorem says that the list above essentially covers all possibilities where the exponent vanishes:
Theorem. Let μ be as above, and let G_{μ} be the smallest closed subgroup which contains the support of μ. Assume that:
(i) G_{μ} is not compact.
(ii) There is no finite set $\emptyset \neq L \subset \mathbb{P}^{1}$ such that $M(L)=L$ for all $M \in G_{\mu}$.

Then $\gamma>0$.
Remark. Under the assumption (i), condition (ii) is equivalent to
(ii') There is no set $L \subset \mathbb{P}^{1}$ with $\# L=1$ or 2 and such that $M(L)=L$ for all $M \in G_{\mu}$.

[^0](This follows from the fact that if $M \in \mathrm{SL}(2, \mathbb{R})$ fixes three different directions then $M=I$.)

Non-atomic measures in \mathbb{P}^{1}

Let $\mathcal{M}\left(\mathbb{P}^{1}\right)$ be the space of probability Borel measures in \mathbb{P}^{1}. A measure $v \in$ $\mathcal{M}\left(\mathbb{P}^{1}\right)$ is called non-atomic if $v(\{x\})=0$ for all $x \in \mathbb{P}^{1}$.

We collect some simple facts for later use.
If $A \in \mathrm{GL}(2, \mathbb{R})$ then we also denote by A the induced map $A: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$. If A in not invertible but $A \neq 0$ then there is only one direction $x \in \mathbb{P}^{1}$ for which $A x$ is not defined. In this case, it makes sense to consider the push-forward $A v \in \mathcal{M}\left(\mathbb{P}^{1}\right)$, if $v \in \mathcal{M}\left(\mathbb{P}^{1}\right)$ is non-atomic.
Lemma 1. If $v \in \mathcal{M}\left(\mathbb{P}^{1}\right)$ is non-atomic and A_{n} is a sequence of non-zero matrices converging to $A \neq 0$, then $A_{n} v \rightarrow A v$ (weakly).

The proof is easy.
Lemma 2. If $v \in \mathcal{M}\left(\mathbb{P}^{1}\right)$ is non-atomic then

$$
H_{v}=\{M \in \operatorname{SL}(2, \mathbb{R}) ; M v=v\}
$$

is a compact subgroup of $\operatorname{SL}(2, \mathbb{R})$.
Proof. Assume that there exists a sequence M_{n} in H_{v} with $\left\|M_{n}\right\| \rightarrow \infty$. Up to taking a subsequence, we may assume that the sequence (of norm 1 matrices) $\left\|M_{n}\right\|^{-1} M_{n}$ converges to a matrix C. Since $C \neq 0$, lemma 1 gives $C v=v$. On the other hand,

$$
\operatorname{det} C=\lim \frac{1}{\left\|M_{n}\right\|^{2}}=0 .
$$

Thus C has rank one and $v=C v$ must be a Dirac measure, contradiction.

μ-INVARIANT MEASURES IN \mathbb{P}^{1}

If $v \in \mathcal{M}\left(\mathbb{P}^{1}\right)$, let the convolution $\mu * v \in \mathcal{M}\left(\mathbb{P}^{1}\right)$ is the push-forward of the measure $\mu \times v$ by the natural map ev: $\mathrm{SL}(2, \mathbb{R}) \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$. If $\mu * v=v$ then v is called μ-invariant. By a Krylov-Bogolioubov argument, μ-invariant measures always exist.

Lemma 3. If μ satisfies the assumptions of Furstenberg's theorem then every μ-invariant $v \in \mathcal{M}\left(\mathbb{P}^{1}\right)$ is non-atomic.

Proof. Assume that

$$
\beta=\max _{x \in X} \mu(\{x\})>0 .
$$

Let $L=\{x ; \mu(\{x\})=\beta\}$. If $x_{0} \in L$ then

$$
\begin{aligned}
\beta=v\left(\left\{x_{0}\right\}\right)=(\mu * v)\left(\left\{x_{0}\right\}\right)=\iint \chi_{\left\{x_{0}\right\}}(M x) d \mu(M) d v(x) & \\
& =\int v\left(\left\{M^{-1}\left(x_{0}\right)\right\}\right) d \mu(M) .
\end{aligned}
$$

But $v\left(\left\{M^{-1}\left(x_{0}\right)\right\}\right) \leq \beta$ for all M, so $v\left(\left\{M^{-1}\left(x_{0}\right)\right\}\right) \leq \beta$ for μ-a.e. M. We have proved that $M^{-1}(L) \subset L$ for μ-a.e. M. This contradicts assumption (ii).

From now on we assume that μ satisfies the assumptions of Furstenberg's theorem, and that v is a (non-atomic) μ-invariant measure in \mathbb{P}^{1}.

$$
\nu \text { AND } \gamma
$$

The shift $\sigma: \operatorname{SL}(2, \mathbb{R})^{\mathbb{N}} \hookleftarrow$ in the space of sequences $\omega=\left(Y_{1}, Y_{2}, \ldots\right)$ has the ergodic invariant measure $\mu^{\mathbb{N}}$.

The skew-product map $T: \operatorname{SL}(2, \mathbb{R})^{\mathbb{N}} \times \mathbb{P}^{1} \hookleftarrow, T(\omega, x)=\left(\sigma(\omega), Y_{1}(\omega) x\right)$ leaves invariant the measure $\mu \times v$. Consider $f: \operatorname{SL}(2, \mathbb{R})^{\mathbb{N}} \times \mathbb{P}^{1} \rightarrow \mathbb{R}$ given by

$$
f(\omega, x)=\log \frac{\left\|Y_{1}(\omega) x\right\|}{\|x\|}
$$

(The notation is obvious). Then

$$
\frac{1}{n} \sum_{j=0}^{n} f\left(T^{j}(\omega, x)\right)=\frac{1}{n} \log \frac{\left\|Y_{n}(\omega) \cdots Y_{1}(\omega) x\right\|}{\|x\|}
$$

by Oseledets' theorem, for a.e. ω and for all $x \in \mathbb{P}^{1} \backslash\left\{E^{-}(x)\right\},^{2}$ the quantity on the right hand side tends to γ as $n \rightarrow \infty$. In particular, this convergence holds for $\mu^{\mathbb{N}} \times v$-a.e. (ω, x). We conclude that

$$
\begin{equation*}
\gamma=\iint f d \mu^{\mathbb{N}} d v=\iint \log \frac{\|M x\|}{\|x\|} d \mu(M) d v(x) \tag{1}
\end{equation*}
$$

Convergence of push-Forward measures

Let $S_{n}(\omega)=Y_{1}(\omega) \cdots Y_{n}(\omega)$.
Lemma 4. For $\mu^{\mathbb{N}_{-}}$a.e. ω, there exists $v_{\omega} \in \mathcal{M}\left(\mathbb{P}^{1}\right)$ such that

$$
S_{n}(\omega) v \rightarrow v_{\omega}
$$

Proof. Fix $f \in C\left(\mathbb{P}^{1}\right)$. Associate to f the function $F: \operatorname{SL}(2, \mathbb{R}) \rightarrow \mathbb{R}$ given by

$$
F(M)=\int f(M x) d v(x)
$$

Let \mathcal{F}_{n} be the σ-algebra of $\operatorname{SL}(2, \mathbb{R})^{\mathbb{N}}$ formed by the cylinders of length n; then $S_{n}(\cdot)$ is \mathcal{F}_{n}-measurable. Also

$$
\begin{aligned}
\mathbb{E}\left(F\left(S_{n+1}\right) \mid \mathcal{F}_{n}\right) & =\int F\left(S_{n} M\right) d \mu(M) \\
& =\iint f\left(S_{n} M x\right) d \mu(M) d v(x) \\
& \left.=\int f\left(S_{n} y\right) d v(y)=S_{n} \quad \text { (since } \mu * v=\mu\right)
\end{aligned}
$$

[^1]This shows that the sequence of functions $\omega \mapsto F\left(S_{n}(\omega)\right)$ is a martingale. Therefore the limit

$$
\Gamma f(\omega)=\lim _{n \rightarrow \infty} F\left(S_{n}(\omega)\right)
$$

exists for a.e. ω.
Now let $f_{k} ; k \in \mathbb{N}$ be a countable dense subset of $C\left(\mathbb{P}^{1}\right)$. Take ω in the fullmeasure set where $\Gamma f_{k}(\omega)$ exists for all k. Let v_{ω} be a (weak) limit point of the sequence of measures $S_{n}(\omega) v$. Then

$$
\int f_{k} d v_{\omega}=\lim _{n \rightarrow \infty} \int f_{k} d\left(S_{n} v\right)=\lim _{n \rightarrow \infty} \int f \circ S_{n} d d v=\Gamma f_{k}(\omega)
$$

Since the limit is the same for all subsequences, we have in fact that $S_{n}(\omega) v \rightarrow$ v_{ω}.

Let's explore the construction of the measures to obtain more information about them:

Lemma 5. The measures v_{ω} from lemma 4 satisfy

$$
S_{n}(\omega) M v \rightarrow v_{\omega} \quad \text { for } \mu \text {-a.e. } M .
$$

Proof. The proof is tricky. We have to show that, for any fixed $f \in C\left(\mathbb{P}^{1}\right)$, that ${ }^{3}$

$$
\begin{equation*}
\lim \mathbb{E}\left(F\left(S_{n} M\right)\right)=\Gamma f=\lim \mathbb{E}\left(F\left(S_{n}\right)\right) \quad \text { for } \mu \text {-a.e. } M \in \operatorname{SL}(2, \mathbb{R}) \tag{2}
\end{equation*}
$$

We are going to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E}\left(\left(F\left(S_{n+1}\right)-F\left(S_{n}\right)\right)^{2}\right)=0 \tag{3}
\end{equation*}
$$

This is sufficient, because

$$
\mathbb{E}\left(\left(F\left(S_{n+1}\right)-F\left(S_{n}\right)\right)^{2}\right)=\mathbb{E}\left(\left(\iint\left(f\left(S_{n} M x\right)-f\left(S_{n} x\right)\right) d v(x) d \mu(M)\right)^{2}\right)
$$

So (3) gives that, for a.e. ω,

$$
\lim _{n \rightarrow \infty} \int\left(F\left(S_{n} M\right)-F\left(S_{n}\right)\right) d \mu(M)=\lim _{n \rightarrow \infty} \iint\left(f\left(S_{n} M x\right)-f\left(S_{n} x\right)\right) d v(x) d \mu(M)=0
$$

This implies (2).
We have

$$
\mathbb{E}\left(\left(F\left(S_{n+1}\right)-F\left(S_{n}\right)\right)^{2}\right)=\mathbb{E}\left(F\left(S_{n+1}\right)^{2}\right)+\mathbb{E}\left(F\left(S_{n}\right)^{2}\right)-2 \mathbb{E}\left(F\left(S_{n+1}\right) F\left(S_{n}\right)\right)
$$

But

$$
\begin{aligned}
& \mathbb{E}\left(F\left(S_{n+1}\right) F\left(S_{n}\right)\right)=\mathbb{E}\left(\int f \circ S_{n+1} d v \cdot \int f \circ S_{n} d v\right)= \\
& \mathbb{E}\left(\iint f\left(S_{n} M x\right) d v(x) d \mu(M) \cdot \int f \circ S_{n} d v\right)= \\
& \mathbb{E}\left(\left(\int f \circ S_{n} d v\right)^{2}\right)=\mathbb{E}\left(F\left(S_{n}\right)^{2}\right)
\end{aligned}
$$

[^2]So

$$
\mathbb{E}\left(\left(F\left(S_{n+1}\right)-F\left(S_{n}\right)\right)^{2}\right)=\mathbb{E}\left(F\left(S_{n+1}\right)^{2}\right)-\mathbb{E}\left(F\left(S_{n}\right)^{2}\right) .
$$

Hence, by cancellation, for any p,

$$
\sum_{n=1}^{p} \mathbb{E}\left(\left(F\left(S_{n+1}\right)-F\left(S_{n}\right)\right)^{2}\right)=\mathbb{E}\left(F\left(S_{p+1}\right)^{2}\right)-\mathbb{E}\left(F\left(S_{1}\right)^{2}\right) \leq\|f\|_{\infty}^{2}
$$

Therefore $\sum_{n=1}^{p} \mathbb{E}\left(\left(F\left(S_{n+1}\right)-F\left(S_{n}\right)\right)^{2}\right)<\infty$ and (3) follows.

The limit measures are Dirac

Lemma 6. For $\mu^{\mathbb{N}}$-a.e. ω, there exists $Z(\omega) \in \mathbb{P}^{1}$ such that $v_{\omega}=\delta_{Z(\omega)}$.
Proof. Fix ω. We have, for μ-a.e. M,

$$
\lim S_{n} v=\lim S_{n} M v .
$$

Let B be a limit point of the sequence of norm 1 matrices $\left\|S_{n}\right\|^{-1} S_{n}$. Since $\|B\|=1$, we can apply lemma 1 :

$$
B v=B M v .
$$

If B were invertible, this would imply $v=M v$. That is, a.e. M belongs to the compact group H_{v} (see lemma 2) and therefore $G_{v} \subset H_{v}$, contradicting hypothesis (i). So B is non-invertible. Since $B v=v_{\omega}$, we conclude that v_{ω} is Dirac.

Convergence to Dirac implies norm growth

Lemma 7. Let $m \in \mathcal{M}\left(\mathbb{P}^{1}\right)$ be non-atomic and let let $\left(A_{n}\right)$ be a sequence in $\mathrm{SL}(2, \mathbb{R})$ such that $A_{n} m \rightarrow \delta_{z}$, where $z \in \mathbb{P}^{1}$. Then

$$
\left\|A_{n}\right\| \rightarrow \infty .
$$

Moreover, for all $v \in \mathbb{R}^{2}$,

$$
\frac{\left\|A_{n}^{*}(v)\right\|}{\left\|A_{n}\right\|} \rightarrow|\langle v, z\rangle| .
$$

Proof. We may assume that the sequence $A_{n} /\left\|A_{n}\right\|$ converges to some B. Since $\|B\|=1$, we can apply lemma 1 to conclude that $B m=\delta_{z}$. If B were invertible then we would have that $m=\delta_{B^{-1} z}$ would be atomic. Therefore $\operatorname{det} B=0$ and

$$
\frac{1}{\left\|A_{n}\right\|^{2}}=\left|\operatorname{det} \frac{A_{n}}{\left\|A_{n}\right\|}\right| \rightarrow|\operatorname{det} B|=0 .
$$

So $\left\|A_{n}\right\| \rightarrow \infty$.
Notice that the range of B must be the z direction.
Let v_{n}, u_{n} be unit vectors such that $A_{n} v_{n}=\left\|A_{n}\right\| u_{n}$. Then

$$
u_{n}=\frac{A_{n}\left(v_{n}\right)}{\left\|A_{n}\right\|} .
$$

Since $A_{n} /\left\|A_{n}\right\| \rightarrow B$ and $\|B\|=1$, we must have $u_{n} \rightarrow z$ (up to changing signs). Moreover, u_{n} is the direction which is most expanded by A_{n}^{*}. The assertion follows. (For a more elegant proof, see [BL, p. 25].)

Convergence to ∞ cannot be slower than exponential

We shall use the following abstract lemma from ergodic theory:
Lemma 8. Let $T:(X, m) \hookleftarrow$ be a measure preserving transformation of a probability space (X, m). If $f \in L^{1}(m)$ is such that

$$
\sum_{j=0}^{n-1} f\left(T^{j} x\right)=+\infty \quad \text { for } m \text {-almost every } x
$$

then $\int f d \mu>0$.
Proof. ${ }^{4}$ Let \simeq denote limit of Birkhoff averages. Then $\tilde{f} \geq 0$. Assume, by contradiction, that $\int f=0$. Then $\tilde{f}=0$ a.e.

Let $s_{n}=\sum_{j=0}^{n-1} f \circ T^{j}$. For $\varepsilon>0$, let

$$
A_{\varepsilon}=\left\{x \in X ; s_{n}(x) \geq \varepsilon \forall n \geq 1\right\} \quad \text { and } \quad B_{\varepsilon}=\bigcup_{k \geq 0} T^{-k}\left(A_{\varepsilon}\right) .
$$

Fix $\varepsilon>0$ and let $x \in B_{\varepsilon}$. Let $k=k(x) \geq 0$ be the least integer such that $T^{k} x \in A_{\varepsilon}$. We compare the Birkhoff sums of f and $\chi_{A_{\varepsilon}}$:

$$
\sum_{j=0}^{n-1} f\left(T^{j} x\right) \geq \sum_{j=0}^{k-1} f\left(T^{j} x\right)+\sum_{j=k}^{n-1} \varepsilon \chi_{A_{\varepsilon}}\left(T^{j} x\right) \quad \forall n \geq 1
$$

Dividing by n and making $n \rightarrow \infty$ we get

$$
0=\tilde{f}(x) \geq \varepsilon \widetilde{\chi_{A_{\varepsilon}}}(x)
$$

Therefore

$$
\mu\left(A_{\varepsilon}\right)=\int \widetilde{\chi_{A_{\varepsilon}}}=\int_{B_{\varepsilon}} \widetilde{\chi_{A_{\varepsilon}}}=0 .
$$

Thus $\mu\left(B_{\varepsilon}\right)=0$ for every $\varepsilon>0$ as well.
On the other hand, if $s_{n}(x) \rightarrow \infty$ then $x \in \bigcup_{\varepsilon>0} B_{\varepsilon}$. We have obtained a contradiction.

End of the proof of the theorem. Replace everywhere Y_{i} by Y_{i}^{*}. Note that μ^{*} also satisfies the hypothesis of the theorem if μ does. ${ }^{5}$

Let T and f be as in page 3 . By lemmas 6 and 7 we have

$$
\sum_{j=0}^{n} f\left(T^{j}(\omega, x)\right)=\log \frac{\left\|S_{n}^{*}(\omega) x\right\|}{\|x\|} \rightarrow \infty
$$

for a.e. ω and all $x \in \mathbb{P}^{1} \backslash\left\{Z(\omega)^{\perp}\right\}$. In particular, convergence holds $\mu^{\mathbb{N}} \times v$-a.e. By lemma 8 , this implies $\int f>0$. Then, by (1), $\gamma>0$.

[^3]
References

[BL] P. Bougerol and J. Lacroix. Products of random matrices with applications to Schrödinger operators. Birkhäuser, 1985.
[F] H. Furstenberg. Non-commuting random products. Trans. AMS, 108: 377-428, 1963.

[^0]: ${ }^{1}$ Note that $\|M\|=\left\|M^{-1}\right\| \geq 1$ if $M \in \operatorname{SL}(2, \mathbb{R})$.

[^1]: ${ }^{2} E^{-}(x)$ is the direction associated to the exponent $-\gamma$, if $\gamma>0$.

[^2]: ${ }^{3} \mathbb{E}$ is integration on ω.

[^3]: ${ }^{4}$ This proof is a bit simpler than that in [BL].
 ${ }^{5}$ Because $A(v)=w \Rightarrow A^{*}\left(w^{\perp}\right)=v^{\perp}$.

