FURSTENBERG'S THEOREM ON PRODUCTS OF I.I.D. 2 × 2 MATRICES

These notes follow [BL].

We deal with Lyapunov exponents of products of random i.i.d. matrices. For simplicity we shall consider only the 2×2 case. It is no real restriction to assume that matrices are in SL(2, \mathbb{R}) (i.e., have determinant ±1).

Let μ be a probability measure in SL(2, \mathbb{R}) which satisfies the integrability condition¹

$$\int_{\mathrm{SL}(2,\mathbb{R})} \log \|M\| \, d\mu(M) < \infty.$$

If Y_1, Y_2, \ldots are random independent matrices with distribution μ , then the limit

$$\gamma = \lim_{n \to \infty} \frac{1}{n} \log \|Y_n \cdots Y_1\|$$

(the upper Lyapunov exponent) exists a.s. and is constant, by the subadditive ergodic theorem. We have $\gamma \ge 0$.

The Furstenberg theorem says that $\gamma > 0$ for "most" choices of μ . Let us see some examples where $\gamma = 0$:

- (1) If μ is supported in the group of rotations SO(2, \mathbb{R}) then $\gamma = 0$.
- (2) If μ is supported in the abelian subgroup

$$\left\{ \begin{pmatrix} t & 0\\ 0 & t^{-1} \end{pmatrix}; \ t \in \mathbb{R} \setminus \{0\} \right\}$$

then $\gamma = \left| \int \log |t| d\mu(M) \right|$, which may be zero.

(3) Assume that only two matrices occur:

$$\begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix} \quad \text{and} \quad R_{\pi/2} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Then it is a simple exercise to show that $\gamma = 0$.

Furstenberg's theorem says that the list above essentially covers all possibilities where the exponent vanishes:

Theorem. Let μ be as above, and let G_{μ} be the smallest closed subgroup which contains the support of μ . Assume that:

(i) G_{μ} is not compact.

(ii) There is no finite set $\emptyset \neq L \subset \mathbb{P}^1$ such that M(L) = L for all $M \in G_{\mu}$. Then $\gamma > 0$.

Remark. Under the assumption (i), condition (ii) is equivalent to

(ii') There is no set $L \subset \mathbb{P}^1$ with #L = 1 or 2 and such that M(L) = L for all $M \in G_{\mu}$.

1

¹Note that $||M|| = ||M^{-1}|| \ge 1$ if $M \in SL(2, \mathbb{R})$.

(This follows from the fact that if $M \in SL(2, \mathbb{R})$ fixes three different directions then M = I.)

Non-atomic measures in \mathbb{P}^1

Let $\mathcal{M}(\mathbb{P}^1)$ be the space of probability Borel measures in \mathbb{P}^1 . A measure $\nu \in \mathcal{M}(\mathbb{P}^1)$ is called *non-atomic* if $\nu(\{x\}) = 0$ for all $x \in \mathbb{P}^1$.

We collect some simple facts for later use.

If $A \in GL(2, \mathbb{R})$ then we also denote by A the induced map $A \colon \mathbb{P}^1 \to \mathbb{P}^1$. If A in not invertible but $A \neq 0$ then there is only one direction $x \in \mathbb{P}^1$ for which Ax is not defined. In this case, it makes sense to consider the push-forward $Av \in \mathcal{M}(\mathbb{P}^1)$, if $v \in \mathcal{M}(\mathbb{P}^1)$ is non-atomic.

Lemma 1. If $v \in \mathcal{M}(\mathbb{P}^1)$ is non-atomic and A_n is a sequence of non-zero matrices converging to $A \neq 0$, then $A_n v \rightarrow Av$ (weakly).

The proof is easy.

Lemma 2. If $v \in \mathcal{M}(\mathbb{P}^1)$ is non-atomic then

$$H_{\nu} = \{ M \in SL(2, \mathbb{R}); M\nu = \nu \}$$

is a compact subgroup of $SL(2, \mathbb{R})$ *.*

Proof. Assume that there exists a sequence M_n in H_v with $||M_n|| \to \infty$. Up to taking a subsequence, we may assume that the sequence (of norm 1 matrices) $||M_n||^{-1}M_n$ converges to a matrix *C*. Since $C \neq 0$, lemma 1 gives Cv = v. On the other hand,

$$\det C = \lim \frac{1}{\|M_n\|^2} = 0$$

Thus *C* has rank one and v = Cv must be a Dirac measure, contradiction. \Box

μ -invariant measures in \mathbb{P}^1

If $v \in \mathcal{M}(\mathbb{P}^1)$, let the *convolution* $\mu * v \in \mathcal{M}(\mathbb{P}^1)$ is the push-forward of the measure $\mu \times v$ by the natural map ev: SL(2, \mathbb{R}) $\times \mathbb{P}^1 \to \mathbb{P}^1$. If $\mu * v = v$ then v is called μ -invariant. By a Krylov-Bogolioubov argument, μ -invariant measures always exist.

Lemma 3. If μ satisfies the assumptions of Furstenberg's theorem then every μ -invariant $\nu \in \mathcal{M}(\mathbb{P}^1)$ is non-atomic.

Proof. Assume that

$$\beta = \max_{x \in Y} \mu(\{x\}) > 0.$$

Let $L = \{x; \mu(\{x\}) = \beta\}$. If $x_0 \in L$ then

$$\beta = \nu(\{x_0\}) = (\mu * \nu)(\{x_0\}) = \iint \chi_{\{x_0\}}(Mx) \, d\mu(M) \, d\nu(x)$$
$$= \int \nu(\{M^{-1}(x_0)\}) \, d\mu(M).$$

2

But $\nu({M^{-1}(x_0)}) \leq \beta$ for all *M*, so $\nu({M^{-1}(x_0)}) \leq \beta$ for μ -a.e. *M*. We have proved that $M^{-1}(L) \subset L$ for μ -a.e. *M*. This contradicts assumption (ii).

From now on we assume that μ satisfies the assumptions of Furstenberg's theorem, and that ν is a (non-atomic) μ -invariant measure in \mathbb{P}^1 .

$$\nu$$
 and γ

The shift σ : SL(2, \mathbb{R})^{\mathbb{N}} \leftrightarrow in the space of sequences $\omega = (Y_1, Y_2, ...)$ has the ergodic invariant measure $\mu^{\mathbb{N}}$.

The skew-product map $T: SL(2, \mathbb{R})^{\mathbb{N}} \times \mathbb{P}^1 \leftrightarrow, T(\omega, x) = (\sigma(\omega), Y_1(\omega)x)$ leaves invariant the measure $\mu \times \nu$. Consider $f: SL(2, \mathbb{R})^{\mathbb{N}} \times \mathbb{P}^1 \to \mathbb{R}$ given by

$$f(\omega, x) = \log \frac{\|Y_1(\omega)x\|}{\|x\|}$$

(The notation is obvious). Then

$$\frac{1}{n}\sum_{j=0}^{n}f(T^{j}(\omega,x)) = \frac{1}{n}\log\frac{\|Y_{n}(\omega)\cdots Y_{1}(\omega)x\|}{\|x\|}.$$

by Oseledets' theorem, for a.e. ω and for all $x \in \mathbb{P}^1 \setminus \{E^-(x)\}$, ² the quantity on the right hand side tends to γ as $n \to \infty$. In particular, this convergence holds for $\mu^{\mathbb{N}} \times \nu$ -a.e. (ω , x). We conclude that

(1)
$$\gamma = \iint f \, d\mu^{\mathbb{N}} \, d\nu = \iint \log \frac{||Mx||}{||x||} \, d\mu(M) \, d\nu(x).$$

Convergence of push-forward measures

Let $S_n(\omega) = Y_1(\omega) \cdots Y_n(\omega)$.

Lemma 4. For $\mu^{\mathbb{N}}$ -a.e. ω , there exists $\nu_{\omega} \in \mathcal{M}(\mathbb{P}^1)$ such that

$$S_n(\omega)\nu \to \nu_{\omega}.$$

Proof. Fix $f \in C(\mathbb{P}^1)$. Associate to f the function $F: SL(2, \mathbb{R}) \to \mathbb{R}$ given by

$$F(M) = \int f(Mx) \, d\nu(x).$$

Let \mathcal{F}_n be the σ -algebra of SL(2, \mathbb{R})^{\mathbb{N}} formed by the cylinders of length n; then $S_n(\cdot)$ is \mathcal{F}_n -measurable. Also

$$\mathbb{E}(F(S_{n+1}) \mid \mathcal{F}_n) = \int F(S_n M) d\mu(M)$$

= $\iint f(S_n M x) d\mu(M) d\nu(x)$
= $\int f(S_n y) d\nu(y) = S_n$ (since $\mu * \nu = \mu$).

 $^{^{2}}E^{-}(x)$ is the direction associated to the exponent $-\gamma$, if $\gamma > 0$.

This shows that the sequence of functions $\omega \mapsto F(S_n(\omega))$ is a martingale. Therefore the limit

$$\Gamma f(\omega) = \lim_{n \to \infty} F(S_n(\omega))$$

exists for a.e. ω .

Now let f_k ; $k \in \mathbb{N}$ be a countable dense subset of $C(\mathbb{P}^1)$. Take ω in the fullmeasure set where $\Gamma f_k(\omega)$ exists for all k. Let ν_{ω} be a (weak) limit point of the sequence of measures $S_n(\omega)\nu$. Then

$$\int f_k d\nu_\omega = \lim_{n \to \infty} \int f_k d(S_n \nu) = \lim_{n \to \infty} \int f \circ S_n dd\nu = \Gamma f_k(\omega).$$

Since the limit is the same for all subsequences, we have in fact that $S_n(\omega)\nu \rightarrow \nu_{\omega}$.

Let's explore the construction of the measures to obtain more information about them:

Lemma 5. The measures v_{ω} from lemma 4 satisfy

$$S_n(\omega)M\nu \rightarrow \nu_{\omega}$$
 for μ -a.e. M.

Proof. The proof is tricky. We have to show that, for any fixed $f \in C(\mathbb{P}^1)$, that³

(2)
$$\lim \mathbb{E}(F(S_n M)) = \Gamma f = \lim \mathbb{E}(F(S_n)) \text{ for } \mu\text{-a.e. } M \in SL(2, \mathbb{R}).$$

We are going to show that

(3)
$$\lim_{n \to \infty} \mathbb{E}\left((F(S_{n+1}) - F(S_n))^2 \right) = 0.$$

This is sufficient, because

$$\mathbb{E}\left((F(S_{n+1}) - F(S_n))^2\right) = \mathbb{E}\left(\left(\iint (f(S_nMx) - f(S_nx))\,d\nu(x)\,d\mu(M)\right)^2\right)$$

So (3) gives that, for a.e. ω ,

$$\lim_{n \to \infty} \int (F(S_n M) - F(S_n)) d\mu(M) = \lim_{n \to \infty} \iint (f(S_n M x) - f(S_n x)) d\nu(x) d\mu(M) = 0.$$

This implies (2).

We have

$$\mathbb{E}\left((F(S_{n+1}) - F(S_n))^2\right) = \mathbb{E}(F(S_{n+1})^2) + \mathbb{E}(F(S_n)^2) - 2\mathbb{E}(F(S_{n+1})F(S_n)).$$

But

$$\mathbb{E}(F(S_{n+1})F(S_n)) = \mathbb{E}\left(\int f \circ S_{n+1} \, dv \cdot \int f \circ S_n \, dv\right) = \\\mathbb{E}\left(\int \int f(S_n M x) \, dv(x) \, d\mu(M) \cdot \int f \circ S_n \, dv\right) = \\\mathbb{E}\left(\left(\int f \circ S_n \, dv\right)^2\right) = \mathbb{E}(F(S_n)^2).$$

³ \mathbb{E} is integration on ω .

So

$$\mathbb{E}\left((F(S_{n+1}) - F(S_n))^2\right) = \mathbb{E}(F(S_{n+1})^2) - \mathbb{E}(F(S_n)^2)$$

Hence, by cancellation, for any *p*,

$$\sum_{n=1}^{p} \mathbb{E}\left((F(S_{n+1}) - F(S_n))^2 \right) = \mathbb{E}(F(S_{p+1})^2) - \mathbb{E}(F(S_1)^2) \le ||f||_{\infty}^2$$

Therefore $\sum_{n=1}^{p} \mathbb{E}\left((F(S_{n+1}) - F(S_n))^2\right) < \infty$ and (3) follows.

The limit measures are Dirac

Lemma 6. For $\mu^{\mathbb{N}}$ -a.e. ω , there exists $Z(\omega) \in \mathbb{P}^1$ such that $\nu_{\omega} = \delta_{Z(\omega)}$.

Proof. Fix ω . We have, for μ -a.e. M,

$$\lim S_n \nu = \lim S_n M \nu.$$

Let *B* be a limit point of the sequence of norm 1 matrices $||S_n||^{-1}S_n$. Since ||B|| = 1, we can apply lemma 1:

$$Bv = BMv.$$

If *B* were invertible, this would imply v = Mv. That is, a.e. *M* belongs to the compact group H_v (see lemma 2) and therefore $G_v \subset H_v$, contradicting hypothesis (i). So *B* is non-invertible. Since $Bv = v_\omega$, we conclude that v_ω is Dirac.

Convergence to Dirac implies norm growth

Lemma 7. Let $m \in \mathcal{M}(\mathbb{P}^1)$ be non-atomic and let $let(A_n)$ be a sequence in SL(2, \mathbb{R}) such that $A_nm \to \delta_z$, where $z \in \mathbb{P}^1$. Then

$$||A_n|| \to \infty.$$

Moreover, for all $v \in \mathbb{R}^2$ *,*

$$\frac{\|A_n^*(v)\|}{\|A_n\|} \to |\langle v, z \rangle|.$$

Proof. We may assume that the sequence $A_n/||A_n||$ converges to some *B*. Since ||B|| = 1, we can apply lemma 1 to conclude that $Bm = \delta_z$. If *B* were invertible then we would have that $m = \delta_{B^{-1}z}$ would be atomic. Therefore det B = 0 and

$$\frac{1}{\|A_n\|^2} = \left|\det\frac{A_n}{\|A_n\|}\right| \to |\det B| = 0.$$

So $||A_n|| \to \infty$.

Notice that the range of B must be the z direction.

Let v_n , u_n be unit vectors such that $A_n v_n = ||A_n||u_n$. Then

$$u_n = \frac{A_n(v_n)}{\|A_n\|}.$$

Since $A_n/||A_n|| \to B$ and ||B|| = 1, we must have $u_n \to z$ (up to changing signs). Moreover, u_n is the direction which is most expanded by A_n^* . The assertion follows. (For a more elegant proof, see [BL, p. 25].)

FURSTENBERG'S THEOREM

Convergence to ∞ cannot be slower than exponential

We shall use the following abstract lemma from ergodic theory:

Lemma 8. Let $T: (X, m) \leftrightarrow$ be a measure preserving transformation of a probability space (X, m). If $f \in L^1(m)$ is such that

$$\sum_{j=0}^{n-1} f(T^{j}x) = +\infty \quad for \ m\text{-almost every } x,$$

then $\int f d\mu > 0$.

Proof. ⁴ Let $\tilde{}$ denote limit of Birkhoff averages. Then $\tilde{f} \ge 0$. Assume, by contradiction, that $\int f = 0$. Then $\tilde{f} = 0$ a.e.

Let $s_n = \sum_{j=0}^{n-1} f \circ T^j$. For $\varepsilon > 0$, let

$$A_{\varepsilon} = \{x \in X; s_n(x) \ge \varepsilon \ \forall n \ge 1\}$$
 and $B_{\varepsilon} = \bigcup_{k \ge 0} T^{-k}(A_{\varepsilon}).$

Fix $\varepsilon > 0$ and let $x \in B_{\varepsilon}$. Let $k = k(x) \ge 0$ be the least integer such that $T^k x \in A_{\varepsilon}$. We compare the Birkhoff sums of f and $\chi_{A_{\varepsilon}}$:

$$\sum_{j=0}^{n-1} f(T^j x) \ge \sum_{j=0}^{k-1} f(T^j x) + \sum_{j=k}^{n-1} \varepsilon \chi_{A_{\varepsilon}}(T^j x) \quad \forall n \ge 1.$$

Dividing by *n* and making $n \to \infty$ we get

$$0 = \tilde{f}(x) \ge \varepsilon \widetilde{\chi_{A_{\varepsilon}}}(x)$$

Therefore

$$\mu(A_{\varepsilon}) = \int \widetilde{\chi_{A_{\varepsilon}}} = \int_{B_{\varepsilon}} \widetilde{\chi_{A_{\varepsilon}}} = 0.$$

Thus $\mu(B_{\varepsilon}) = 0$ for every $\varepsilon > 0$ as well.

On the other hand, if $s_n(x) \to \infty$ then $x \in \bigcup_{\varepsilon > 0} B_{\varepsilon}$. We have obtained a contradiction.

End of the proof of the theorem. Replace everywhere Y_i by Y_i^* . Note that μ^* also satisfies the hypothesis of the theorem if μ does.⁵

Let *T* and *f* be as in page 3. By lemmas 6 and 7 we have

$$\sum_{j=0}^{n} f(T^{j}(\omega, x)) = \log \frac{||S_{n}^{*}(\omega)x||}{||x||} \to \infty$$

for a.e. ω and all $x \in \mathbb{P}^1 \setminus \{Z(\omega)^{\perp}\}$. In particular, convergence holds $\mu^{\mathbb{N}} \times v$ -a.e. By lemma 8, this implies $\int f > 0$. Then, by (1), $\gamma > 0$.

⁴This proof is a bit simpler than that in [BL].

⁵Because $A(v) = w \Rightarrow A^*(w^{\perp}) = v^{\perp}$.

FURSTENBERG'S THEOREM

References

- [BL] P. Bougerol and J. Lacroix. *Products of random matrices with applications to Schrödinger operators.* Birkhäuser, 1985.
- [F] H. Furstenberg. Non-commuting random products. Trans. AMS, 108: 377–428, 1963.