
ON THE SUBADDITIVE ERGODIC THEOREM

ARTUR AVILA AND JAIRO BOCHI

Abstract. We present a simple proof of Kingman’s Subadditive Ergodic The-

orem that does not rely on Birkhoff’s (Additive) Ergodic Theorem and there-

fore yields it as a corollary.

1. Statements

Throughout this note, let (X,A, µ) be a fixed probability space and T : X → X
be a fixed measurable map that preserves the measure µ.

Birkhoff’s Ergodic Theorem ([B]). Let f1 : X → R be an integrable function,
and let

(1) fn =
n−1∑
j=0

f1 ◦ T j for all n ≥ 1.

Then fn/n converges a.e. to an integrable function f such that
∫
f =

∫
f1.

Kingman’s Subadditive Ergodic Theorem ([Ki]). Let fn : X → R be a se-
quence of measurable functions such that f+

1 is integrable and

(2) fm+n ≤ fm + fn ◦ Tm for all m, n ≥ 1.

Then fn/n converges a.e. to a function f : X → R. Moreover, f+ is integrable and∫
f = lim

n→∞
1
n

∫
fn = inf

n

1
n

∫
fn ∈ [−∞,+∞).

A sequence of functions fn is called subadditive if it satisfies (2), and is called
additive if equality holds in (2). Clearly every additive sequence takes the form (1).

In this note we will prove Kingman’s Theorem and obtain Birkhoff’s Theorem
as a corollary.

2. Proof

Let fn : X → R be a subadditive sequence of functions with f+
1 (and therefore

f+
n ) in L1. Using that

∫
fn is a subadditive sequence of extended-real numbers, it

is an easy exercise to show that
1
n

∫
fn converges as n→∞ to L := inf

n

1
n

∫
fn (which can be −∞).

Let f[, f] : X → [−∞,∞) be the measurable functions defined by

f[ = lim inf
n→∞

fn

n
, f] = lim sup

n→∞

fn

n
.
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The plan of the proof is this: We will show that

(3)
∫
f[ ≥ L ≥

∫
f].

In fact, the first inequality is the key one, and the second will be obtained as a
consequence. Thus we obtain f[ = f] a.e., at least in the case L > −∞. The same
is true in the case L = −∞ by a simple truncation procedure, which allows us to
conclude.

To begin the proof, notice that

f[(x) ≤ lim inf
n→∞

f1(x) + fn−1(Tx)
n

= f[(Tx);

hence T−1({f[ ≥ a}) ⊂ {f[ ≥ a} for each a ∈ R and therefore f[ ◦ T = f[ a.e.
Similarly for f].

Now let us prove the first part of (3); it fact we show:

Lemma 1.
∫
f[ = L.

Proof. We will first consider the case where

(4) there exists C ∈ R such that fn ≥ −Cn for all n.

By Fatou’s Lemma, f[ is integrable, with
∫
f[ ≤ L. Fix ε > 0 and consider the

following increasing sequence of sets:

Ek =
{
x; ∃j ∈ {1, . . . , k} s.t.

fj(x)
j

< f[(x) + ε
}
, k ∈ N+.

We have
⋃

k Ek = X. Define an integrable function

ψk =

{
f[ + ε in Ek,
f1 in Ec

k.

The heart of the proof is the following inequality:

(5) fn(x) ≤
n−k−1∑

i=0

ψk(T ix) +
n−1∑

i=n−k

(ψk ∨ f1)(T ix) , for a.e. x and all n ≥ k.

To see this, fix a point x along whose orbit the function f[ is constant. Define a
sequence of integers

m0 ≤ n1 < m1 ≤ n2 < m2 ≤ · · ·
inductively as follows: Set m0 = 0. Let nj be the least integer greater or equal
than mj−1 such that Tnjx belongs to the set Ek. By definition of this set, we can
choose mj such that 1 ≤ mj − nj ≤ k and

(6) fmj−nj (Tnjx) ≤ (mj − nj)(f[(x) + ε) .

Now, given n ≥ k, let ` be the biggest integer such that m` ≤ n. Using subadditiv-
ity, we write

(7) fn(x) ≤
∑

f1(T ix) +
∑̀
j=1

fmj−nj (Tnjx) ,

where the first sum is over all i in the set
⋃`−1

j=0[mj , nj+1) ∪ [m`, n). Each term

f1(T ix) with i ∈
⋃`−1

j=0[mj , nj+1)∪[m`, n`+1∧n) equals ψk(T ix) (because T ix ∈ Ec
k).
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On the other hand, using (6), invariance of f[ along the orbit, and the fact that
ψk ≥ f[ + ε, we get

fmj−nj (Tnjx) ≤
∑

i∈[nj ,mj)

(f[(T ix) + ε) ≤
∑

i∈[nj ,mj)

ψk(T ix) .

Thus (7) becomes

fn(x) ≤
n`+1∧n−1∑

i=0

ψk(T ix) +
n−1∑

i=n`+1

f1(T ix) .

Since n`+1 > n− k, (5) follows.
Integrating (5), we get

∫
fn ≤ (n − k)

∫
ψk + k

∫
(ψk ∨ f1). Dividing by n and

making n→∞, we get L ≤
∫
ψk. Then making k →∞, we get L ≤

∫
f[ + ε. Since

ε > 0 is arbitrary, we conclude that the lemma holds under the assumption (4).

Now let us consider the general case. For C ∈ R, define functions

(8) f (C)
n = fn ∨ (−Cn) .

Then the sequence f (C)
n is subadditive and

(9) f
(C)
[ := lim inf

n→∞

f
(C)
n

n
= f[ ∨ (−C), f

(C)
] := lim sup

n→∞

f
(C)
n

n
= f] ∨ (−C).

Therefore, using the Monotone Convergence Theorem and the part of the lemma
already obtained, we get

�(10)
∫
f[ = inf

C

∫
f

(C)
[ = inf

C
inf
n

1
n

∫
f

(C)
n = inf

n
inf
C

1
n

∫
f

(C)
n = inf

n

1
n

∫
fn = L.

Lemma 2. Let g : X → R be an integrable function. Then g ◦ Tn/n → 0 a.e. as
n→∞.

This is usually presented as a consequence of Birkhoff’s Theorem; but we provide
a simple proof that does not rely on it:

Proof. It suffices to show that for every ε > 0, the set of x ∈ X such that |g(Tnx)| ≥
εn for infinitely many n ∈ N has zero measure. This follows from the Borel–Cantelli
Lemma:
∞∑

n=1

µ{|g ◦ Tn| ≥ εn} =
∞∑

n=1

µ{|g| ≥ εn} =
∞∑

n=1

∞∑
k=n

µ{k ≤ ε−1|g| < k + 1}

=
∞∑

k=1

k µ{k ≤ ε−1|g| < k + 1} ≤
∫
{|g|>ε}

ε−1|g| <∞. �

Lemma 3. For any k ∈ N+,

lim sup
n→∞

fkn

n
= k lim sup

n→∞

fn

n
a.e.

Proof. The ≤ inequality is obvious, so let us prove the reverse one. Fix k. For each
n ∈ N+, write n = kmn + rn and 1 ≤ rn ≤ k. By subadditivity,

fn ≤ fkmn
+ g ◦ T kmn , where g = f+

1 ∨ · · · ∨ f
+
k .

As n→∞, we have mn →∞; more precisely mn/n→ 1/k. Since g ∈ L1, Lemma 2
gives g ◦ T kmn/n→ 0 a.e. The result follows. �
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Now let us prove the second part of (3); as mentioned, the idea is to deduce it
from the first part. Again we first consider the case where (4) holds. Fix k ∈ N+.
Let Fn be the n-th Birkhoff sum of −fk with respect to T k, that is, −

∑n−1
j=0 fk◦T jk.

Then the sequence Fn is additive with respect to T k. Moreover, F1 = −fk ≤ Ck,
so F+

1 ∈ L1. Letting F[ = lim inf Fn/n, Lemma 1 gives
∫
F[ ≥ lim 1

n

∫
Fn. By

invariance,
∫

Fn

n = −
∫
fk. On the other hand, using Lemma 3,

−F[ = lim sup
n→∞

1
n

n−1∑
j=0

fk ◦ T jk ≥ lim sup
n→∞

fkn

n
= k lim sup

n→∞

fn

n
= kf] .

Thus
∫
f] ≤ − 1

k

∫
F[ ≤ 1

k

∫
fk. This holds for every k; hence we proved that∫

f] ≤ L under assumption (4).

Now we deal with the general case. Again consider f (C)
n as in (8). By what

we have already proved, the functions f (C)
[ and f

(C)
] defined by (9) have the same

integral, and thus they coincide almost everywhere. Since f (C)
[ → f[ and f (C)

] → f]

as C → +∞, it follows that f[ = f] a.e. This concludes the proof of Kingman’s
Theorem.

3. Comments

Lemma 1 by itself immediately implies Birkhoff’s Theorem: applying it to −f1
we get

∫
f] ≤ L and thus f[ = f] a.e. Also notice that the proof of the lemma

wouldn’t get any simpler under the assumption of additivity. Thus our proof of
Kingman’s Theorem is a modified proof of Birkhoff’s, where the last inequality∫
f] ≤ L is deduced directly from

∫
f[ ≥ L.

Except perhaps for that step, the other ingredients are not significantly new.
Among the simplest proofs of Birkhoff’s and Kingman’s theorems that can be found
in the literature we have those of [KeP] and [St], respectively. The former also es-
tablishes the equality f[ = f] a.e. by showing that

∫
f[ ≥ L. Our key inequality

(5) is essentially contained in [St], and [KeP] is based on a similar estimate. Trun-
cation, as in (8), appears in both papers. In fact, these approaches are descended
from [KzW] – which in turn uses ideas of [Km].

Let us mention that [Sc] also obtains Kingman’s Theorem (in fact, a generaliza-
tion of it) without using Birkhoff’s Theorem.

This note arose from a series of lectures on Lyapunov exponents we gave at the
School and Workshop on Dynamical Systems in the ICTP (Trieste), 2008. We
thank L. F. N. França for useful comments.
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