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BASIC SETTING
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Lyapunov exponents (2× 2 case)
Let T : X→ X be a homeomorphism of a compact space. Let
A : X→ GL(2,R) be continuous. The pair (T,A) is called a
cocycle. Consider “Birkhoff-like” products:

A(n)(x) := A(Tn−1x) · · ·A(Tx)A(x).

The upper and lower Lyapunov exponents at the point x (if
they exist) are:

λ1(x) := lim
n→+∞

1

n
log



A(n)(x)




λ2(x) := lim
n→+∞

1

n
log



[A(n)(x)]−1




−1

S1

A(n)(x)
' enλ1(x)

enλ2(x) '
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Oseledets Theorem

Theorem (Invertible 2× 2 Oseledets)
Let μ be an ergodic probability measure for T. Then there
exist λ1(μ) ≥ λ2(μ) such that λi(x) = λi(μ) for μ-a.e. x.

Moreover, if λ1(μ) > λ2(μ) then there exists an “Oseledets
splitting” R2 = E1(x)⊕ E2(x), defined for μ-a.e. x and such that
for each i = 1,2:

the spaces Ei vary measurably w.r.t. x;

the spaces Ei are equivariant: A(x)(Ei(x)) = Ei(Tx);

lim
n→±∞

1

n
log ‖A(n)(x)v‖ = λi(μ), ∀v ∈ Ei(x)r {0} (i = 1,2).

� We’ll see much more on Anthony Quas lectures.
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Optimization of Lyapunov exponents

Fixed cocycle (T,A) as above, let:

λ⊤1 := sup
μ∈Merg(T)

λ1(μ) , λ⊥1 := inf
μ∈Merg(T)

λ1(μ) .

(Rem.: The λ2 case can be reduced to the λ1 case by inverting time and
sign.)

Questions:

Are the sup and inf above attained? That is, are there
μ ∈Merg(T) such that λ1(μ) = λ⊤1 or λ⊥1?
How are those measures? What are their entropies,
dimensions, etc?
Are they unique?
Are they characterized by their support?
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Attempt to reduce to the traditional theory

Note that λ1 is the limit of the Birkhoff averages of the
function

f (x) := log


A(x)|E1(x)





where E1 is the first Oseledets space. Can we apply the
traditional ergodic optimization theory to f?

The first problem is that in general f is not defined
everywhere and it’s only measurable.

But there are situations where f is more regular. . .
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Dominated cocycles
The cocycle (T, : X→ X,A : X→ GL(2,R)) is called dominated if
there exist c > 0 and δ > 0 such that

nc(A(n)(x)) > ceδn ∀ x ∈ X, n ≥ 0 ,

where nc(L) := ‖L‖ ‖L−1‖ is the non-conformality of the
matrix L.

S1

L
a

b

nc(L) = a/b

Example (Positive matrices)
If all matrices A(x) have strictly positive entries then the
cocycle is dominated.
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Dominated cocycles
If the cocycle (T,A) is dominated then there exist a
continuous splitting R2 = E1(x)⊕ E2(x), defined for every
x ∈ X that extends the Oseledets splitting.

In particular, for dominated cocycles the function
f (x) := log



A(x)|E1(x)



 is continuous (and not only
measurable).

Remark about terminology: It can be shown that E1
“dominates” E2, i.e., ∃ c > 0 and δ > 0 such that

‖A(n)(x)|E1(x)‖
‖A(n)(x)|E2(x)‖

> ceδn ∀ x ∈ X, n ≥ 0 ,

So E1 ⊕ E2 is a “dominated splitting”.

Conversely, existence of such a dominated splitting (easily) implies that the
cocycle is dominated as we have defined.
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A SPECIAL SITUATION:

ONE-STEP COCYCLES
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One-step cocycles

A cocycle (T,A) is one-step if:

T : X→ X is the two-sided full shift on k ≥ 2 symbols, so

X =
n

(ξi)i∈Z; ξi ∈ {1,2, . . . ,k}
o

.

A : X→ GL(2,R) only depends on the zeroth symbol. In
other words, there is a list of matrices A1, . . . , Ak such that

ξ = (ξi)i∈Z ⇒ A(ξ) = Aξ0

(In particular, A is locally constant.)

Equivalent setting: Linear IFS’s (iterated function systems).
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Joint spectral radius and subradius

Equivalent elementary definitions of λ⊤1, λ⊥1 for one-step
cocycles:

λ⊤1 = lim
n→∞

1

n
log sup

i1,...,in

‖Ai1 . . .Ain‖ ,

λ⊥1 = lim
n→∞

1

n
log inf

i1,...,in
‖Ai1 . . .Ain‖ .

For one-step cocycles, the numbers eλ
⊤
1 and eλ

⊥
1 are known as

joint spectral radius (Rota, Strang 1960) and joint spectral
subradius (Gurvits, 1995) of the set of matrices {A1, . . . ,Ak}.

Applications in wavelets, control theory . . .
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The finiteness conjecture on the Joint spectral
radius

Finiteness conjecture (1995): There always exists a
Lyapunov-maximizing measure supported on a periodic orbit.

The conjecture was shown to be false by Bousch and
Mairesse (2002); their counterexamples are pairs of matrices
in GL(2,R) such that the maximizing measures are sturmian
but not periodic.

� We’ll see much more about this on Mark Pollicott’s talk, I
guess.
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Domination for one-step cocycles

We have already seen two equivalent definitions of
domination for general (2× 2) cocycles.

Let us see two extra characterizations of domination, this time
specializing to one-step cocycles.

1 An one-step cocycle is dominated iff (λ1 − λ2)
⊥ > 0 ,

where

(λ1 − λ2)
⊥(A) := inf

μ∈Merg(T)
(λ1(A, μ)− λ2(A, μ)).

2 Geometrical characterization . . .
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Domination for one-step cocycles: geometrical
viewpoint
Let P1 be the projective space (lines through the origin in R2).

A multicone for {A1, . . . ,Ak} is an open set M $ P1 such that

M has a finite number of connected components, and they
have disjoint closures.
∀ i, the closure of the image Ai(M) is contained in M.

Example
Ai positive ⇒ the first quadrant is a multicone.

Theorem (Avila, B., Yoccoz)
An one-step cocycle is dominated if and only if it has a
multicone.

Consequence: domination is an open condition.
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Example where the multicone is not a cone
The simplest example where the multicone is not connected
(and cannot be replaced by a connected multicone) is:

A_1 A_2
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A more complicated example
A (non-obvious) example where the multicone has at least 5
components:

A_1 A_2
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Non-additive thermodynamic formalism

� If (T,A) is a dominated one-step cocycle then the sequence
of functions

ϕn(ξ) = log ‖A(n)(ξ)‖ = log ‖Aξn−1 . . .Aξ1Aξ0‖

is “almost-additive” and “regular” so the results of Godofredo
Iommi’s lecture apply: “zero temperature” limits are
optimizing measures.
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REVEALING FUNCTIONS

FOR DOMINATED ONE-STEP COCYCLES

Some of these terms should be familiar to many of you:

Mañé Lemma
revealing functions
(calibrated) sub-actions
Barabanov norms
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Barabanov functions
Assume given an one-step dominated cocycle, with a
multicone M. Let

−→
M := {v ∈ R2; v = 0 or R · v ∈M} be the

“support” of M.

Proposition (Existence of a Barabanov function)

There exists a continuous function |||·||| :
−→
M → [0,∞) such that

for every v ∈
−→
M, t ∈ R we have

|||tv||| = |t| |||v||| (homogeneity);

max
i∈{1,...,k}

|||Aiv||| = eλ
⊤
1 |||v||| (main property).

We call |||·||| an upper Barabanov function.

Consequence: For any v ∈
−→
M , we can find recursively

symbols i1, i2, . . . ∈ {1, . . . ,k} such that

|||Ain · · ·Ai1(v)||| = enλ⊤1 |||v|||.
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Barabanov functions

Upper Barabanov function:

|||tv||| = |t| |||v|||, max
i∈{1,...,k}

|||Aiv||| = eλ
⊤
1 |||v|||.

Actually (even without domination) there is a true norm
|||·||| in R2 with the properties above; it is called Barabanov
norm (1988).
There is also a lower Barabanov function |||·|||′ such that

|||tv||| = |t| |||v|||, min
i∈{1,...,k}

|||Aiv||| = eλ
⊥
1 |||v|||.

In this case the domination hypothesis is really needed.
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Construction of Barabanov functions

Our construction of Barabanov functions is similar to the
traditional construction of revealing functions. The only “new”
fact we use is that the Hilbert metric is contracted.

Proof of the Proposition:

The desired function is (essentially) the fixed point of an
operator acting on C(M) mod constants.
The operator preserves a compact subspace of functions
(those satisfying a bound on the Lipschitz constant w.r.t.
the Hilbert metric on M.).
We apply Schauder fixed point theorem.
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Mather sets
Proposition
If an one-step cocycle is dominated then there are nonempty
compact invariant sets K⊤, K⊥ s.t. for every T-invariant
measure μ

suppμ ⊂ K⊤ ⇔ λ1(μ) = λ⊤1, suppμ ⊂ K⊥ ⇔ λ1(μ) = λ⊥1

(In particular, there exist Lyapunov-optimizing measures.)

Proof:

K⊤ :=
n

ξ ∈ X; u ∈ E1(ξ), n ∈ Z ⇒ |||A(n)(ξ)(u)||| = enλ⊤1 |||u|||
o

.

Rem.: The proposition above probably also follows from the
general (commutative) theory, but we will use Barabanov
functions for other purposes anyway.
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OUR MAIN RESULT
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Non-overlapping condition

We say that the matrices A1, . . . ,Ak satisfy forward
nonoverlapping condition (NOC+) if they admit a multicone M
such that

i 6= j ⇒ Ai(M) ∩ Aj(M) =∅.

We say that the matrices A1, . . . ,Ak satisfy backwards
nonoverlapping condition (NOC−) if {A−1

1 , . . . ,A−1
k } satisfy the

forward nonoverlapping condition.

If both conditions hold then we say that the matrices satisfy
the nonoverlapping condition (NOC).

Examples: The two previous ones.
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The main theorem

Theorem (B., Rams)
If an one-step cocycle is dominated and satisfies the
non-overlapping condition then the sets K⊤, K⊥ have zero
topological entropy.

In particular, the optimizing measures have zero entropy.
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Remark

There are examples satisfying the hypotheses of the
theorem with no periodic λ1-maximizing measures:
Bousch-Mairesse (for some values of the parameters) and
others.
The non-overlapping condition is indeed required: for
example, if A1 = A2 then there are optimal measures with
positive entropy.
We think that a more general theorem holds, with T =
subshift of finite type, A = locally constant cocycle, but we
haven’t checked the details.
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Questions

Can we replace the non-overlapping condition by a
weaker hypothesis (preferably “typical” among
dominated cocycles)?
Is there a result of this kind for cocycles that are not
locally constant?
What about the non-dominated case? (Maybe the
restriction of the cocycle to K⊤ is typically dominated. . . )
“Generic finiteness conjecture”: Is is typical for
Lyapunov-optimizing measures to be periodic?
(� Don’t miss Gonzalo Contreras lecture.)
What about higher dimension?

There is much more to be done in this subject!
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PROOF OF THE THEOREM
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Oseledets directions

Given a bi-infinite word ξ ∈ X = kZ, split it as
ξ = (ξ−, ξ+) ∈ kZ− × kZ+, where Z− = {. . . ,−2,−1} y
Z+ = {0,1, . . .}.

The first Oseledets direction only depends on the past, while
the second one only depends on the future:

E1(ξ) = E1(ξ−), E2(ξ) = E2(ξ+).
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Sets of directions
Consider the sets of Oseledets directions:

C1 :=
¦

E1(ξ−); ξ ∈ kZ−
©

, C2 :=
¦

E2(ξ+); ξ ∈ kZ+
©

.

If M is a multi-cone then:

C1 =

∞
⋂

n=1

⋃

i1,...,in

Ai1 · · ·Ain(M) (nested intersection).

Proof: E1(ξ−) appears when we take ij = ξ−j.

If the forward non-overlapping condition (NOC+) is
satisfied then C1 is a Cantor set. Moreover, E1 : kZ− → C1 is
a bijection.

Similar facts hold for E2 (consider the inverse multicone
M−1 := P1 rM.)
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Main proposition

Proposition
Suppose that the cocycle satisfies the forward
non-overlapping condition (NOC+).
Let μ be an ergodic measure such that λ1(μ) = λ⊤1 or
λ1(μ) = λ⊥1.
Then for μ-a.e. ξ ∈ X, the direction E1(ξ−) is uniquely
determined the direction E2(ξ+).
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Main Proposition ⇒ Theorem
Suppose that the cocycle satisfies the non-overlapping
condition (NOC+ +NOC−). Let μ be an ergodic measure
supported in K⊤, that is, λ1(μ) = λ⊤1.

Then for μ-a.e. ξ ∈ X, the past ξ− uniquely the future ξ+:

ξ− ξ+

E1(ξ−) E2(ξ+)
Proposition

NOC+

NOC−

This implies that h(μ) = 0, for all μ supported in K⊤.

By the Entropy Variational Principle, htop(K⊤) = 0. Analogously
for K⊥.

This proves the Theorem modulo the Proposition.
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PROOF OF THE MAIN PROPOSITION

Recall the statement:

Proposition
Suppose that the cocycle satisfies the forward
non-overlapping condition (NOC+).
Let μ be an ergodic measure such that λ1(μ) = λ⊤1 or
λ1(μ) = λ⊥1.
Then for μ-a.e. ξ ∈ X, the direction E1(ξ−) uniquely
determined the direction E2(ξ+).

Jairo Bochi Optimization of Lyapunov Exponents 33 / 1



Cross ratio

Given nonzero vectors u, v, u′, v′ ∈ R2, (no three of them
being collinear), we define their cross ratio (cross ratio)

[u,v;u′,v′] :=
u× u′

u× v′
·
v× v′

v× u′
∈ R ∪ {∞} ,

where × is the cross product on R2 (that is, determinant).

Actually the value above only depends on the directions
determined by the vectors. So we can define the cross ratio of
four points in P1.

The cross ratio is invariant by linear isomorphisms.

Jairo Bochi Optimization of Lyapunov Exponents 34 / 1



Configurations of four points in P1

Let u, v, u′, v′ ∈ P1 be distinct. The configuration is called
co-parallel, crossing or anti-parallel according to the value of
the cross ratio [u,v;u′,v′] as follows:

Co-parallel Crossing Anti-parallel

0 < [u,v;u′,v′] < 1 [u,v;u′,v′] > 1 [u,v;u′,v′] < 0

vv′

u′ u

vu′

v′ u

v′v

u′ u
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Restrictions among the Oseledets directions
Lemma (Geometrical Lemma)
K⊤, K⊥ = Mather sets of an 1-step dominated cocycle.

Then ξ, η ∈ K⊤ ⇒
�

�[E1(ξ),E1(η);E2(ξ),E2(η)]
�

� ≥ 1 ,

ξ, η ∈ K⊥ ⇒
�

�[E1(ξ),E1(η);E2(ξ),E2(η)]
�

� ≤ 1 .

In particular:
co-parallel configuration crossing configuration

is forbidden en K⊤: is forbidden en K⊥:

E1(η)E2(η)

E2(ξ) E1(ξ)

E1(η)E2(ξ)

E1(η) E1(ξ)
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Geometrical Lemma ⇒ Main Proposition

Consider the set G :=
¦

(E1(ξ),E2(ξ)); ξ ∈ K⊤
©

⊂ P1 × P1.

Since the co-parallel configuration is forbidden, the set G has
a monotonicity property: if E1 moves clockwise then so
does E2.

This implies that G is a graph (above
its projection), with the exception to
an at most countable numbers of
“plateaux” and “cliffs”:
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Geometrical Lemma ⇒ Main Proposition
(continued)

Let μ be an ergodic non-periodic (and so non-atomic) measure
supported in K⊤. Then the union of plateaux and cliffs in G is
the image under (E1,E2) of a set of zero μ-measure.

Therefore each of the directions E1 y E2 uniquely determines
the other μ-a.e.

The case of periodic μ being trivial, the Main Proposition is
proved in the case of K⊤.

The case of K⊥ is similar (but extra care is needed:
monotonicity is only local).
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PROOF OF THE GEOMETRICAL LEMMA

Some important ideas in the proof come from the 2002 paper
by Bousch and Mairesse (counter-examples to the finiteness
conjecture).
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Recall
Lemma (Geometrical Lemma)
K⊤, K⊥ = Mather sets of an 1-step dominated cocycle.

Then ξ, η ∈ K⊤ ⇒
�

�[E1(ξ),E1(η);E2(ξ),E2(η)]
�

� ≥ 1 ,

ξ, η ∈ K⊥ ⇒
�

�[E1(ξ),E1(η);E2(ξ),E2(η)]
�

� ≤ 1 .

In particular:
co-parallel configuration crossing configuration

is forbidden en K⊤: is forbidden en K⊥:

E1(η)E2(η)

E2(ξ) E1(ξ)

E1(η)E2(ξ)

E1(η) E1(ξ)
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An important estimate

Lemma

Let ξ ∈ K⊤, u ∈ E1(ξ). Let v ∈
−→
M be such that u− v ∈ E2(ξ).

Then |||u||| ≤ |||v|||.

Proof: For all n ≥ 0,

un := A(n)(ξ)(u) ⇒ |||un||| = enλ⊤1 |||u|||

vn := A(n)(ξ)(v) ⇒ |||vn||| ≤ enλ⊤1 |||v|||

and so:
|||v|||
|||u|||

≥
|||vn|||
|||un|||

=: ?n

We will show that limn→+∞ ?n = 1.
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An important estimate (continued)

Let |·| be the euclidean norm.

log|||un||| = log|||un/ |un||||+ log |un|
log|||vn||| = log|||un/ |vn||||+ log |vn|

�

� log ?n
�

� =
�

� log|||un||| − log|||vn|||
�

�

≤
�

� log|||un/ |un|||| − log|||vn/ |vn||||
�

�

︸ ︷︷ ︸

(1)

+
�

� log |un| − log |vn|
�

�

︸ ︷︷ ︸

(2)

.
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An important estimate (continued)

(1) =
�

� log|||un/ |un|||| − log|||vn/ |vn||||
�

�

≤ Const ·∠(un,vn)

→ 0 ,

(2) =
�

� log |un| − log |vn|
�

�

≤max

�

|un|
|vn|

− 1,
|vn|
|un|

− 1

�

≤
|un − vn|

min (|un|, |vn|)
→ 0 .

This proves the “important estimate” Lemma.
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Proof of the Geometrical Lemma
Assume for a contradiction that ξ, η ∈ K⊤ are on co-parallel

configuration: . Choose a nonzero vector u ∈ E1(ξ), and
let v, w be as in the figure.

E2(ξ)

E1(ξ)
E1(η)E2(η)

uv

w

Apply the “important estimate” twice:

|||u||| ≤ |||v||| ≤ |||w|||. Contradiction!
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