
THE MULTIPLICATIVE ERGODIC THEOREM OF
OSELEDETS

1. S

Let (X, µ,A) be a probability space, and let T : X→ X be an ergodic
measure-preserving transformation.

Given a measurable map A : X→ GL(d,R), we can define a skew-
product F : X × Rd

→ X × Rd by (x, v) 7→ (T(x),A(x) · v). Write
Fn(x) = (Tn(x),A(n)(x) · v). The map F is called a linear cocycle.

Fix some norm ‖·‖ on Rd, and use the same symbol to indicate the
induced operator norm.

Theorem 1 (Multiplicative Ergodic Theorem of Oseledets [O]). Let
T be an invertible bimeasurable ergodic transformation of the probability
space (X, µ). Let A : X→ GL(d,R) be measurable such that log+ ‖A‖ and
log+ ‖A−1

‖ are integrable. Then there exist numbers

(1) λ1 > · · · > λk

and for µ-almost every x ∈ X, there exist a splitting

(2) Rd = E1
x ⊕ · · · ⊕ Ek

x

such that for every 1 ≤ i ≤ k we have A(x) · Ei
x = Ei

T(x) and

(3) lim
n→±∞

1
n

log ‖A(n)(x) · vi‖ = λi for all non-zero vi ∈ Ei
x .

The subspaces Ei
x are unique µ-almost everywhere, and they depend mea-

surably on x.

The numbers (1) are called Lyapunov exponents, and the splitting (2)
is called the Lyapunov splitting.

Invariance of the bundles Ei
x implies that their dimensions di are

constant a.e. Measurability means the following: there exist measur-
able maps u1, . . . , ud : X→ Rd such that for each j = 1, . . . , k, the space
Ei

x is spanned by the vectors ui(x) with d1 + · · ·+ di−1 < i ≤ d1 + · · ·+ di.

Exercise i. If T is not assumed to be ergodic then a similar result
still holds. The Lyapunov exponents (and their number) become
measurable T-invariant a.e. defined functions. State and prove this
assuming Theorem 1 and using ergodic decomposition.
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Exercise ii. Use the last exercise, state and prove a version of Os-
eledets’ Theorem for diffemorphisms of a compact manifold.

In the next section, we explain some additional conclusions that
could be added to Oseledets’ Theorem, and also state some results
that will be need later. The proofs will take the rest of the note. Some
exercises are given along the way. Those that are need for the proof
of Theorem 1 are marked with the symbol X.

2. A 

2.1. One-sided version. There is a version of Theorem 1 for non-
(necessarily)-invertible transformations:

Theorem 2. Let T be an ergodic transformation of the probability space
(X, µ). Let A : X → GL(d,R) be measurable such that log+ ‖A‖ and
log+ ‖A−1

‖ are integrable. Then there exist numbers

λ1 > · · · > λk

and for µ-almost every x ∈ X, there exist a flag

(4) Rd = V1
x ⊃ V2

x ⊃ · · · ⊃ Vk
x ⊃ Vk+1

x = {0}

depending measurably on the point, and invariant by the cocycle, such that

(5) lim
n→∞

1
n

log ‖A(n)(x) · vi‖ = λi for all vi ∈ Vi
x r Vi+1

x .

We call (4) the Lyapunov flag of the cocycle.

Exercise iii. In the case T is invertible, the flag is given in terms of
the Lyapunov splitting by Vi

x = E1
x ⊕ · · · ⊕ Ei

x.

2.2. Subadditivity. We will use the following result (see e.g. [L] for
a proof):

Theorem 3 (Kingman’s Subadditive Ergodic Theorem). Assume T is
ergodic. If (φn)n=1,2,... is a sequence of functions such that φ+1 is integrable
and φm+n ≤ φm + φn ◦ Tm for all m, n ≥ 1. Then 1

nφn converges a.e. to
some c ∈ R ∪ {−∞}. Moreover, c = infn

1
n

∫
φn.

An immediate corollary of Theorem 3 in the setting of cocycles
is the existence of the limit limn→∞

1
n log ‖A(n)(x)‖. (This is called the

Furstenberg-Kesten Theorem.) It can be shown that this limit is the
upper Lyapunov exponent λ1 given by Oseledets’ Theorem:
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Addendum 4. We have:

λ1 = lim
n→+∞

1
n

log ‖A(n)(x)‖ = lim
n→−∞

1
n

log m(A(n)(x)) ,

λk = lim
n→+∞

1
n

log m(A(n)(x)) = lim
n→−∞

1
n

log ‖A(n)(x)‖ .

Recall that the co-norm of a linear map L is m(L) = inf‖v‖=1 ‖Lv‖; it
equals ‖L−1

‖
−1 if L is invertible.

2.3. Angles. The angles between the spaces of the Lyapunov split-
ting are sub-exponential, in the sense made precise by the following:

Addendum 5. Let Rd = E1
x ⊕ · · · ⊕ Ek

x be the Lyapunov splitting, and
assume k ≥ 2. Let J1 t J2 be a partition of the set of indices {1, . . . , k} into
two disjoint non-empty sets. Let Fi

x =
⊕

j∈Ji
E j

x for i = 1, 2. Then, for
µ-a.e. x we have

lim
n→±∞

1
n

log sin ]
(
F1

Tn(x),F
2
Tn(x)

)
= 0.

We will deduce Addendum 5 directly from Oseledets Theorem.
For that, we need the following result (that will also be usuful in the
proof of the theorem itself):

Lemma 6. Let φ : X→ R be a measurable function such that φ ◦ T −φ is
integrable in the extended sense1. Then

lim
n→±∞

1
|n|
φ(Tnx) = 0 for a.e. x ∈ X.

(n < 0 is allowed if T is invertible.)

Proof. Let ψ = φ ◦ T − φ and let c =
∫
ψ ∈ [−∞,+∞]. By Birkhoff’s

Theorem,

φ ◦ Tn

n
=
φ

n
+

1
n

n−1∑
j=0

ψ ◦ T j
→ c a.e.

If c were non-zero then we would have |φ(Tnx)| → ∞ for a.e. x. But, by
the Poincaré’s Recurrence Theorem, the set of points x which satisfy
the latter condition has zero measure. Therefore c = 0, as we wanted
to show. If T is invertible then φ ◦ T−1

−φ is quasi-integrable as well,
so the previous reasoning applies. �

1ψ is said to be integrable in the extended sense if ψ+ or ψ− are integrable.
Another exercise: Verify that the Birkhoff Theorem still applies.
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Exercise iv. Let L : Rd
→ Rd be a invertible linear map and let v, w

be non-zero vectors. Then
1

‖L‖ ‖L−1‖
≤

sin ](Lv,Lw)
sin ](v,w)

≤ ‖L‖ ‖L−1
‖.

Proof of Addendum 5. The function φ : X → R defined by φ(x) =
log sin ](F1

x,F2
x) is measurable. By Exercise iv, we have |φ(Tx)−φ(x)| ≤

log ‖A(x)‖+ log ‖A(x)−1
‖, which is integrable, by the hypothesis of the

Oseledets Theorem. So Lemma 6 gives φ(Tn(x))/n→ 0 for a.e. x. �

2.4. Conjugacy. For a fixed T : X → X, we say a measurable map
C : X→ GL(d,R) is tempered if limn→∞

1
n log ‖C±1(Tnx)‖ = 0.

We say that two cocycles A, B : X → GL(d,R) are conjugate (or
equivalent) if there is a tempered C : X→ GL(d,R) such that

B(x) = C(Tx)−1A(x)C(x)

That is, (T,B) = (C, id)−1
◦ (T,A) ◦ (C, id).

Exercise v. If two cocycles are conjugate then they have the same
Lyapunov exponents.

2.5. Determinants. Another addendum to Oseledets Theorem (that
we will obtain along its proof) is this:

Addendum 7. For a.e. x, the convergence in (3) is uniform over unit
vectors in Ei

x.

Using this, do the following:

Exercise vi. Let ∅ , J ⊂ {1, . . . , k} and Fx =
⊕

j∈J E j
x. Prove that

lim
n→±∞

1
n

log |det A(n)(x)|Fx | =
∑
j∈J

λ j dim E j .

3. L O

The proof of Theorem 1 will take the rest of this note.
It is comparatively very easy to prove Theorem 2 if limits are

replaced by lim sup’s. Let

λ̄(x, v) = lim sup
n→∞

1
n

log ‖A(n)(x) · v‖, v , 0.

Lemma 8. There exist numbers λ1 > · · · > λk such that for a.e. x, λ̄(x, ·)
takes only these values. For a.e. x there is a flag into linear spaces

Rd = V1
x ⊃ V2

x ⊃ · · · ⊃ Vk
x ⊃ Vk+1

x = {0}
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such that
v ∈ Vi

x r Vi+1
x ⇒ λ̄(x, v) = λi .

Moreover, these spaces depend measurably on the point, and are invariant
by the cocycle.

Proof. First, the integrability of log+ ‖A±1
‖ implies that λ̄(x, v) is finite

for a.e. x and all v , 0. It is easy to see that:

λ̄(x, av) = λ̄(x, v),

λ̄(x, v + w) ≤ max
(
λ̄(x, v), λ̄(x,w)

)
with equality if λ̄(x, v) , λ̄(x,w).

It follows that for any t ∈ R,

Vx(t) =
{
v ∈ Rd; λ̄(x, v) ≤ t or v = 0

}
is a linear subspace. Also, vectors with different λ̄ are linearly
independent, so for all x, λ̄(x, ·) takes at most d distinct values
λ1(x) > · · · > λk(x)(x). Let Vi

x = Vx(λi(x)).

Exercise vii (X). Show that everything is measurable and conclude
the proof of the Lemma.

�

4. I: S    -

Let P be a compact metric space. Let S : X × P→ X × P be a skew-
product map over T (this means that π ◦ S = T where π : X × P→ X
is the projection) such that S(x, ·) : P→ P is continuous for a.e. x.

Given φ : X × P→ R, we write

ψ(n) =

{
ψ + ψ ◦ S + · · · + ψ ◦ Sn−1 if n > 0;
−ψ ◦ S−1

− ψ ◦ S−2
− · · · − ψ ◦ Sn if n < 0 and S is invertible.

Let F be the set of measurable functions φ : X × P → R such that
φ(x, ·) is continuous for a.e. x and x ∈ X 7→ supu∈P |φ(x,u)| belongs to
L1(µ).

Exercise viii. Prove that the norm ‖φ‖ =
∫

supu |φ(x,u)| dµ(x) makes
F a separable Banach space.

Lemma 9. Assume ψ ∈ F and c ∈ R are such that

for µ-a.e. x ∈ X, lim sup
n→∞

1
n
ψ(n)(x,u) ≥ c for all u ∈ P.
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Then the assertion remains true with the lim sup replaced with a lim inf
that is uniform over P. More precisely, for µ-a.e. x ∈ X and every ε > 0
there is n0 such that

1
n
ψ(n)(x,u) > c − ε for all u ∈ P and n > n0.

Furthermore, if S is invertible then for a.e. x, lim infn→−∞
1
nψ

(n)(x,u) ≥ c
uniformly in u.

Corollary 10. Assume ψ ∈ F and c ∈ R are such that

for µ-a.e. x ∈ X, lim sup
n→∞

1
n
ψ(n)(x,u) = c for all u ∈ P.

Then the assertion remains true with lim sup replaced with uniform lim
(or limn→±∞ if S is invertible).

The proof of Lemma 9 is a Krylov–Bogoliubov argument. For that,
we need:

Exercise ix (X). Let M be the set of probability measures on X × P
that project on µ (that is, π∗ν = µ). There is a topology onM which
makes it compact, and such that a sequence νn converges to ν if and
only if ∫

φ dνn →

∫
φ dν for every φ ∈ F .

Proof of Lemma 9. Let

In(x) = inf
u∈P
ψ(n)(x,u).

Then In is measurable, I1 is integrable, and In+m ≥ In ◦ Tm + Im. So the
Subadditive Ergodic Theorem 3 applies to−In, and thus 1

n In converges
a.e. to a constant b.

For a.e. x, let un(x) be such that ψ(n)(x,un(x)) = In(x).

Exercise x (X). It is possible to choose un measurable.

Take un measurable and define the following probability measures
on X × P:

ν0
n =

∫
δ(x,un(x)) dµ(x) and νn =

n−1∑
j=0

S j
∗ν

0
n.

All this measures project to µ. By Exercise ix, there is a converging
subsequence νni → ν.

Exercise xi (X). ν is a S-invariant measure.2

2Hint: for any η ∈ F , |
∫
ηd(F∗νn − νn)| ≤ (2/n)‖η‖, where ‖·‖ is the obvious norm

on the Banach space F .
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Moreover,
∫
ψ dν = lim

∫
ψ dνn = lim 1

n

∫
In dµ = b. By Birkhoff’s

Theorem, there is a set of full ν-measure formed by points (x,u) such
that the sequence 1

nψ
(n)(x,u) converges to b. By the assumption, the

lim sup’s of those sequences are ≥ c ν-a.e. Therefore b ≥ c. Since
b = limn→∞ n−1 infuψ(n)(x,u), we obtain the desired uniform lim inf.

Notice that for any S-invariant probability measure ν′, we have∫
ψ dν′ ≥ b (by Birkhoff again).
Now assume that S is invertible. Repeating the above reasoning

for S−1, we obtain a S-invariant probability ν′ such that

lim
n→−∞

inf
u∈P

1
n
ψ(n)(x,u) =

∫
ψ dν′.

So lim infn→−∞ n−1ψ(n)(x,u) ≥
∫
ψ dν′ ≥ b ≥ c uniformly with respect

to u. �

5. T    

Consider the exponents λ1 > · · · > λk and the flag V1
⊃ · · · ⊃ Vk

given by Lemma 8. We will focus the attention on λk and Vk. Write

λmin(A) = λk, Ex = Vk
x

We call E the bundle of least stretch for A. It has positive dimension.
By definition, lim supn→∞ n−1 log ‖A(n)v‖ = λmin(A) for a.e. x and all

non-zero v ∈ Ex. Let us improve this information:

Lemma 11. We have:

lim
n→±∞

1
n

log ‖A(n)(x) · v‖ = λmin(A) for a.e. x and all v ∈ Ex r {0}.

(n → −∞ allowed if T is invertible.) Moreover the limit is uniform over
unit vectors.

The conclusion of the lemma can be rephrased as:

lim
n→±∞

1
n

log ‖A(n)
|E (x)‖ lim

n→±∞

1
n

log m(A(n)
|E (x)) = λmin(A) .

Proof of Lemma 11. Let m = dim E. By conjugating with some mea-
surable C : X→ O(d,R), we can assume that Ex = Rm

⊂ Rd.
Let P be the projective space of Rm. Consider the induced skew-

product F : X × P → X × P over T. Let ψ(x, v̄) = log ‖A(x)·v‖
‖v‖ , where v̄

denotes the element of P corresponding to v. Then

1
n
ψ(n)(x, v̄) =

1
n

n−1∑
j=0

log
‖A( j+1)(x) · v‖
‖A( j)(x) · v‖

=
1
n

log
‖A(n)(x) · v‖
‖v‖
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has a lim sup as n → ∞ equal to λmin , for a.e. x and all v̄ ∈ P. Thus
Corollary 10 implies that the lim sup can be replaced with uniform
lim. �

By Lemma 8, we have

lim sup
n→∞

1
n

log ‖A(n)(x) · v‖ ≥ λmin(A) for a.e. x and all v ∈ Rd r {0}.

Using Lemma 9 and a similar argument as in the proof of Lemma 11,
we conclude that this lim sup can by replaced by a lim inf that is
uniform with respect to u. This can be rephrased as:

lim inf
n→+∞

1
n

log m(A(n)(x)) ≥ λmin(A) .

On the other hand,

lim sup
n→+∞

1
n

log m(A(n)(x)) ≤ lim sup
n→+∞

1
n

log m(A(n)
|E (x)) ≤ λmin(A) .

So we obtain

lim
n→+∞

1
n

log m(A(n)(x)) = λmin(A) .

This proves one of the assertions in Addendum 4. The others are
proven similarly.

6. I: H       

Let M(d) indicate the set of d × d real matrices.

Lemma 12. Let B : X → M(d) be measurable with log+ ‖B‖ integrable.
Assume γ ∈ R is such that

lim sup
n→+∞

1
n
‖B(n)(x)‖ ≤ γ a.e.

Then for any ε > 0 there exists a measurable function bε : X → R+ such
that

‖B(n)(Tix)‖ ≤ bε(x)e(γ+ε)n+ε|i| for a.e. x and all n ≥ 0, i ∈ Z.

(i < 0 is allowed if T is invertible.)

Proof. The formula

c(x) = sup
n≥0

e−(γ+ε)n
‖B(n)(x)‖
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defines a measurable a.e. finite function. By definition, ‖B(n)(x)‖ ≤
c(x)e(γ+ε)n. Now we need to bound the expression c(Tix). We have

c(Tx) = sup
n≥0

e−(γ+ε)n
‖B(n)(Tx)‖

≥ ‖B(x)‖−1 sup
n≥0

e−(γ+ε)n
‖B(n+1)(x)‖

= eγ+ε‖B(x)‖−1 sup
n≥1

e−(γ+ε)n
‖B(n)(x)‖

Either the rightmost sup equals c(x) or else c(x) = 1 and then c(Tx) ≥ 1.
In any case, we have

c(Tx) ≥ min
(
eγ+ε‖B(x)‖−1, 1

)
c(x) .

and so
log c ◦ T − log c ≥ min

(
γ + ε − log+ ‖B‖, 0

)
.

is quasi-integrable. So Lemma 6 applies, giving 1
i log c ◦ Ti

→ 0 a.e.
as i→ ±∞. We apply the sup trick a second time: Let

bε(x) = sup
i∈Z

e−ε|i|c(Tix) .

Then bε is the desired function. �

7. T 

As before, let E be the bundle of least stretch for A. Assume the
norm ‖·‖ comes from an inner product. For each x, let E⊥x be the
orthogonal complement of Ex; this is a measurable subbundle. With
respect to the splitting Rd = E⊥ ⊕ E, we write

(6) A =
(
B 0
C A|E

)
.

So B(x) : E⊥x → E⊥Tx gives a new cocycle.

Lemma 13. λmin(B) ≥ λk−1. In particular, λmin(B) > λmin(A).

Proof. Notice that m(B(n)(x)) ≥ m(A(n)(x)).3 So, by Addendum 4,
λmin(B) ≥ λmin(A) = λk.

Let E′ ⊂ E⊥ be the subbundle the bundle of least stretch for the
cocicle B. The measurable bundle F = E′ ⊕ E is A-invariant.

3Let w be the unit vector in E⊥x the most contracted by B(n)(x), and let v =
[A(n)(x)]−1 B(n)(x) · w. By Pythagoras, ‖v‖ ≥ ‖w‖. Hence m(A(n)(x)) ≤ ‖A(n)(x)v‖

‖v‖ ≤

‖B(n)(x)w‖
‖w‖ = m(B(n)(x)) .
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Fix ε > 0 small. We have

A(n)
|F =

B(n)
|E′ 0

Cn A(n)
|E

 , where Cn(x) =
n−1∑
i=0

A(n−i+1)
|E (Ti+1x) C(Tix) B(i)

|E′(x) .

Write σ = λmin(B). Applying Lemma 12, we find measurable func-
tions c, b, a such that for a.e. x and all n, i ≥ 0,

‖C(Tix)‖ ≤ c(x)eεi

‖B(n)
|E′ (x)‖ ≤ b(x)e(ε+σ)n

‖A(n)
|E (Tix)‖ ≤ a(x)e(ε+λk)n+εi

Thus

‖Cn(x)‖ ≤ n max
0≤i≤n−1

‖A(n−i+1)
|E (Ti+1x)‖ ‖C(Tix)‖ ‖B(i)

|E′(x)‖

≤ nd1(x) max
0≤i≤n−1

eε(i+1)+(λk+ε)(n−i−1)eεie(σ+ε)i

≤ nd2(x)e4εn max
0≤i≤n−1

e(n−i−1)λk+σi

≤ nd3(x)e4εneσn .

(In the last step we used that σ ≥ λk.) So, at a.e. point,

λk−1 ≤ lim sup
n→∞

1
n

log ‖A(n)
|F ‖ ≤ lim sup

n→∞

1
n

log max
(
‖A(n)
|E ‖ ‖B

(n)
|E′‖ ‖Cn‖

)
= max

(
lim sup

n→∞

1
n

log ‖A(n)
|E ‖, lim sup

n→∞

1
n

log ‖B(n)
|E′‖, lim sup

n→∞

1
n

log ‖Cn‖

)
≤ max(λk, σ, σ + 4ε).

So λk−1 ≤ σ + 4ε. As ε > 0 is arbitrary, λk−1 ≤ σ = λmin(B). �

Exercise xii. In the notation of the proof of Lemma 13, prove that
lim n−1 log ‖A(n)(x) · v‖ exists and equals λmin(B) for all v ∈ Fr E. Also
show that λmin(B) = λk−1 (that is, equality holds in Lemma 13) and
F = Vk−1 is the penultimate space of the Lyapunov flag. Use induction
to prove Theorem 2.

8. C     

Lemma 14. There is a measurable invariant subbundle G of Rd such that
G ⊕ E = Rd.

Remark. Here is the first time we need T to be invertible.

Proof. Let G be any (non-necessarily invariant) measurable subbun-
dle which is complementary to E, that is, such that G ⊕ E = Rd.
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Let L(x) : E⊥x → Ex be linear maps depending measurably on x.
The set of such maps is indicated by L. The graph of L, given by
Gx = {L(x)v + v; v ∈ Ex}, is a subbundle complementary to E.

The (forward) image of a subbundle G is the bundle whose fiber
over x is A(T−1x) · GT−1x.

Let Γ : L → L be the graph transform so that the image of the graph
of L is the graph of ΓL. Recalling (6), we see that

(7) ΓL = D + ΦL ,

where D ∈ L and Φ : L → L are given by:

D(x) = C(T−1x) [B(T−1x)]−1 , (ΦL)(x) = A|E(T−1(x)) L(T−1x) [B(T−1x)]−1 .

To prove Lemma 14 we need to prove that Γ has a fixed point. We
will prove that there is a measurable function a : X → R and τ > 0
such that

(8) ‖(ΦnD)(x)‖ ≤ a(x)e−τn for a.e. x and all n ≥ 0.

Then the formula L =
∑
∞

n=0Φ
nD will define a element of L which is

fixed by the graph transform (7).
We have (ΦnL)(x) = (A|E)(n)(T−n(x)) L(T−nx) B(−n)(x), so

(9) ‖(ΦnD)(x)‖ ≤ ‖(A|E)(n)(T−nx)‖ ‖D(T−nx)‖ ‖B(−n)(x)‖

We will bound each of the three factors using Lemma 12. Fix a small
ε > 0 be small (to be specified later). For the first factor in (9) we have

‖(A|E)(n)(T−nx)‖ ≤ a1(x)en(λk+2ε) , for some measurable a1.

Secondly,

log+ ‖D(x)‖ ≤ log+ ‖C(T−1x)‖ + log ‖B(T−1x)−1
‖

≤ log+ ‖A(T−1x)‖ + log ‖A(T−1x)−1
‖.

So log+ ‖D‖ is integrable and Lemma 12 gives

‖D(T−nx)‖ ≤ a2(x)eεn , for some measurable a2.

Now look to the third factor in (9). By Addendum 4 and Lemma 13,

lim
n→+∞

1
n

log ‖B(−n)(x)‖ = −λmin(B) ≤ −λk−1 .

The function log+ ‖B−1
‖ ≤ log+ ‖A−1

‖ is integrable. Thus we can apply
Lemma 12 to the cocycle B−1 over T−1 and conclude that

‖B(−n)(x)‖ ≤ a3(x)e(−λk−1+ε)n , for some measurable a3.

Putting the three bounds together in (9) we obtain

‖ΦnD(x)‖ ≤ (a1a2a3)(x) e(−λk−1+λk+4ε)
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Taking ε small we obtain the desired (8). This proves Lemma 14. �

9. C

Proof of Theorem 1 (and Addendum 7). Let V1
⊃ · · · ⊃ Vk be given by

Lemma 8. Let Ek = Vk. By Lemma 11, (3) holds for i = k (uniformly
with respect to unit vectors). If k = 1 then we are done. Otherwise,
apply Lemma 14 to find an invariant subbundle G complementary
to Ek. Now consider the cocycle restricted to G; its Lyapunov flag is:

G = V1
∩ G ⊃ · · · ⊃ Vk−1

∩ G ⊃ {0}

with corresponding exponents λ1 > · · · > λk−1. Then define Ek−1 =
Vk−1

∩ G and repeat the argument. �

10. C   ()

There are several proofs of the Oseledets’ Theorem. The more
conventional proofs use heavier Linear Algebra (exterior powers,
singular values etc). The more conventional approach has the ad-
vantage of providing more useful information about the Lyapunov
exponents and splittings: see the detailed treatment in [A], also [L].

The proof here is a combination of the proofs of [V] (which is on
its turn based on [M]), and [W]. Lemmas 8 and 9 come from [W],
and Lemma 14 comes from [V]. In [M, V], only the two-sided (i.e.,
invertible) case was considered, while [W] proves only the one-sided4

version of the Oseledets’ Theorem. Unlike [V, M], we used the
Subadditive Ergodic Theorem (in the proof of Lemma 9)5.
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4It is not clear to me how to deduce the two-sided theorem from its one-sided
version without using exterior powers.

5Maybe this could be avoided, if desired.


