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Plan of the talk

Recall basic definitions.
State a theorem on partial hyperbolicity of generic symplectic
diffeomorphisms.
Discuss consequences and further developments of that theorem
(including the ergodicity result).
Compare with a cousin theorem for volume-preserving
diffeomorphisms.
Sketch the main ideas of the proof, and so expain:

Ï why symplectic is more difficult than volume-preserving;
Ï the probabilistic method for constructing the perturbations.
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Lyapunov exponents, Oseledets splitting
f :M →M diffeomorphism of a compact manifold of dimension d .
By the Oseledets theorem, there exists a full probability set R ⊂M such
that for every (regular point) x ∈R there is a (Oseledets) splitting

TxM =E 1(x)⊕·· ·⊕E k(x)(x), (each 6= {0})

and numbers (Lyapunov exponents) Θλ1(x)> ·· · >Θλk(x)(x) such that

1
n
log‖Df n(x) ·v‖ −−−−−→

n→±∞
Θλi (x) ∀v ∈E i (x)à {0}.

The zipped Oseledets splitting is obtained by summing together all spaces
with exponents of the same sign:

TxM =E+(x)⊕E 0(x)⊕E−(x).

(E∗(x)= {0} now allowed, of course.)
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Lyapunov exponents, Oseledets splitting (continued)

The multiplicity of each Lyapunov exponent Θλj(x) is dimE j(x) (by
definition).
Indicate the Lyapunov exponents repeated according to multiplicity by:

λ1(x)≥λ2(x)≥ ·· · ≥λd (x), (d = dimM).

If f preserves a symplectic form ω on M then (d is even and) the
exponents are symmetric:

λ1 =−λd , λ2 =−λd−1, . . . , λ d
2
=−λ d

2+1 .

In particular, if TxM =E+(x)⊕E 0(x)⊕E−(x) is the zipped Oseledets
splitting then

dimE+(x)= dimE−(x), dimE 0(x)= even.
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A quote

Mañé ICM lecture (1983):

Oseledets’ theorem is essentially a measure theoretical result and
therefore the information it provides holds only in that category.
For instance, the Lyapunov splitting is just a measurable function
of the point

and the limits defining the Lyapunov exponents are
not uniform. It is clear that this is not a deficiency of the theorem
but the natural counterweight to its remarkable generality.
However, one can pose the problem (. . . ) of whether these
aspects can be substantially improved by working under generic
conditions.
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Invariant splittings with uniform properties

We’ll consider Df -invariant splittings of TΛM, where Λ is a f -invariant set.

1 A splitting TΛM =Eu ⊕E s is called uniformly hyperbolic if E s is
uniformly contracted and Eu is uniformly expanded (i.e. contracted in
the past): there are constants C > 0, τ> 1 such that

∀n≥ 0,

{
‖Df n(x) ·v s‖ ≤Cτ−n‖v s‖ ∀v s ∈E s(x)à {0}

‖Df −n(x) ·vu‖ ≤Cτ−n‖vu‖ ∀vu ∈Eu(x)à {0}

2 A splitting TΛM =Eu ⊕E c ⊕E s is called partially hyperbolic if:
Ï Eu is uniformly expanding (i.e. contracted in the past) and E s is
uniformly contracting;

Ï Eu dominates E c , and E c dominates E s .

Remark: These bundles are automatically uniformly continuous, and thus
extend (with the same hyperbolicity properties) to the closure ΨΛ.
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Domination: the weakest uniform form of hyperbolicity
If E , F are Df -invariant subbundles of TΛM then we say that E dominates
F (in symbols, E Â F ), if there are constants c > 0, τ> 1 such that for all
unit vectors ~e ∈E (x), ~f ∈ F (x) and all n≥ 0

‖Df n(x) ·~e‖
‖Df n(x) ·~f ‖

> cτn.

Dominated splitting: TΛM =E 1⊕·· ·⊕E k with E1 ÂE2 Â ·· · ÂEk .
“Morse–Smale-like” dynamics on projective space:

Domination is a.k.a. (in ODE theory) as exponential separation. It dates
back to Perron (rediscovered by Mañé.)
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Mañé’s statement

Diff1
ω(M) is the set of symplectic C 1-diffeomorphisms of (M ,ω), endowed

with the C 1 topology. We consider on M the volume measure µ induced by
ω.

Theorem (B. ’10)

For every f in a residual (dense Gδ) subset R of Diff1
ω(M), the following

properties hold: For µ-a.e. x ∈M, the zipped Oseledets splitting
TΛM =E+⊕E 0⊕E− on Λ= orb(x)= {f n(x); n ∈Z} is:

1 either trivial TΛM =E 0, i.e., all Lyapunov exponents at x are zero;
2 or uniformly hyperbolic with Eu =E+, E s =E−;
3 or partially hyperbolic with Eu =E+, E c =E 0, E s =E− (all 6= {0}).

Moreover, the 2nd alternative occurs for a positive µ-measure set of points
x ∈M if and only if f ∈R is Anosov.

Rem.: A weaker version (with no PH) was proved earlier in [B., Viana ’05].
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Discussion: dimM = 2

If dimM = 2 then the 3rd alternative in the theorem (partial hyperbolicity
with 3 bundles) is impossible, so we get:

Corollary (B. ’02)

C 1-generic area-preserving diffeomorphisms are either Anosov or have zero
Lyapunov exponents almost everywhere.

Rem.: The proof of this result appeared much before, and relied heavily on
Mañé’s ideas.
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Discussion: dimM > 2

For dimM > 2, the picture is not necessarily so nice. . .

One can break M (minus a zero set) invariantly:

M =Z t⊔
Λn mod 0 where

{
Z = {all λi = 0},
Λn = partially hyperbolic sets

Each Λn (or its closure ΨΛn) has of course its hyperbolicity constants
cn, τn.
However, these constants become weaker and weaker as n grows.

Please note that this is much stronger than what’s is given by Oseledets
theorem, which gives no uniformity along the orbits.
Also note that if f ∈R is ergodic then the situation is much simpler. . .
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The case of globally partially hyperbolic maps
Let PH1

ω(M) be the subset of Diff1
ω(M) formed by the diffeos that have a

partially hyperbolic splitting over the whole tangent bundle.

Theorem (B. ’10)

For the generic f ∈PH1
ω(M), all Lyapunov exponents in the center bundle

are zero almost everywhere.

Rem: It may be necessary to pass to a different global partially hyperbolic
splitting.

Proof of the theorem: Just combine the previous theorem with this:

Theorem (Corollary of Dolgopyat–Wilkinson)

Generic f ∈PH1
ω(M) are (accessible and) weakly ergodic (i.e., almost every

point has a dense orbit).

Nice thing: The zero exponents in the center give a nonuniform version of
Burns–Wilkinson’s center bunching.
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Ergodicity

Indeed many of Burns–Wilkinson’s arguments work with nonuniform center
bunching.
Putting these together with other [non obvious!] arguments, we get:

Theorem (Avila, B., Wilkinson ’09)

The generic f ∈PH1
ω(M) is ergodic.

(Curiosity: This paper was published before its ancestors [BW’10] and [B’10].)

This gives a C 1-generic, symplectic version of the Pugh–Shub ergodicity
conjecture.
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Proofs?

Now let’s give an idea of the proof of the theorem stated by Mañé:

Theorem
For every f in a residual (dense Gδ) subset R of Diff1

ω(M), the following
properties hold: For µ-a.e. x ∈M, the zipped Oseledets splitting
TΛM =E+⊕E 0⊕E− on Λ= orb(x)= {f n(x); n ∈Z} is:

1 either trivial TΛM =E 0, i.e., all Lyapunov exponents at x are zero;
2 or uniformly hyperbolic with Eu =E+, E s =E−;
3 or partially hyperbolic with Eu =E+, E c =E 0, E s =E− (all 6= {0}).

Moreover, the 2nd alternative occurs for a positive µ-measure set of points
x ∈M if and only if f ∈R is Anosov.

For the “moreover” part, we show that for C 2 (and hence C 1-generic)
diffeos, hyperbolic sets have either zero or full measure. [B., Viana ’04].
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Back to basics: domination, and the symplectic case

In fact, to prove the result above, one “only” needs to show the following:

Theorem (Main Theorem)

If f is generic in Diff1
ω(M) then for almost every x ∈M, the Oseledets

splitting along the orbit of x is either trivial or dominated.

A Df -invariant splitting TΛM =E 1⊕·· ·⊕E k is called
trivial if k = 1;
dominated if each Ei dominates Ei+1.

Then, to conclude the proof of Mañé’s statement, one has to use that for
symplectic maps, “domination implies partially hyperbolicity”. [B., Viana
’04].

Rem.: Actually we obtain more information than in Mañé’s statement,
since also get domination between different exponents of the same sign.
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Comparison with the volume-preserving case

The “Main Theorem” just stated is also true replacing “symplectic” by
“volume-preserving”:

Theorem (B. Viana ’05)

If f is generic in Diff1
vol(M) then for almost every x ∈M, the Oseledets

splitting along the orbit of x is either trivial or dominated.

The proof of the two results have many things in common; however the
symplectic result is more difficult, and we will see. . .

Rem.: There are some recent “global” improvements of this result: Avila–B. (ArXiv
2010), Jana Rodriguez–Hertz (in preparation), but that’s another story. . .
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Another reduction
Integrated summed Lyapunov exponent:

Lp(f )=
∫
M

(λ1+·· ·+λp)dµ

=
∫ (

lim
n→∞ log‖∧p (Df n)‖

)
dµ.

Easy fact: Lp :Diff1
ω(M)→R is upper-semicontinuous, and thus

continuous on a residual subset.

Let N = d/2.

Theorem
If f is a point of continuity of L1, . . . and LN then the Oseledets splitting is
trivial or dominated along almost every orbit.

Strategy of the proof: Suppose that one can detect non-domination of
the Oseledets splitting on a positive measure set. Then produce a
perturbation of f for which some Lp drops.
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Setup for the proof
Fix f , p ∈ {1, . . . ,N = d/2}. Assume that the following set has positive
measure:

Σp = {
x ∈M; x regular non periodic with λp(x)>λp+1(x)

}

Another “zipped” Oseledets splitting:

TΣpM =Eu ⊕E c ⊕E s where
{

dimEu = dimE s = p
dimE c = 2(N −p)

B Misleading notation: the splitting is not PH!

Denote Euc =Eu ⊕E c etc. Then

ω(Eu ,Euc)≡ω(E c ,Eus)≡ω(E s ,E cs)≡ 0.

Strategy: Assume Eu 6ÂE cs and perturb f so that Lp = ∫
(λ1+·· ·+λp)

drops.
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Main steps (sketchy)

If a point in Σp “sees” non-domination Eu 6ÂE cs (for example, if
^(Eu ,E cs) is small) then we can find a perturbation g of f that sends
a vector from Eu

f to E cs
f .

Do that in the middle of a long segment of orbit {x , . . . , f nx}. Then
one gets

1
n
log‖∧p Dgn(x)‖ <λ1(f ,x)+·· ·+λp(f ,x)−Something.

Ï Something = 1
2 (λp(f ,x)+λp+1(f ,x)) (which is POSITIVE).

Ï In fact we should obtain the inequality not only for x [a zero measure
set is useless], but for most z around x in the support of the
perturbation.
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Main steps (continued)

Example: dimM = 2

Df n(x)=
(
2 0
0 1/2

)k

Idm
(
2 0
0 1/2

)k

, k ' n/2ÀmÀ 1.

[draw a figure with the solution]

Back to the steps of the general proof:
Around a segment of orbit {x , . . . , f nx} that sees nondomination we
find a thin and long tower U t f (U)t·· ·t f n(U), and find a
perturbation supported in the tower so that the “finite-time” summed
exponent drops (as explained above).
Cover the a (“large”) positive measure set of the manifold with these
towers.
This causes a significant drop of Lp = ∫

(λ1+·· ·+λp), as we wanted.
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The 4 types of non-dominance

Assume x ∈Σp and the segment of orbit {x , . . . , f mx} is very long (mÀ 1)
and “sees” non-domination Eu 6ÂE cs ; more precisely:

‖Df m(x)|E cs(x)‖
m(Df m(x)|Eu(x))

≥ 1
2

. (m(L)= ‖L−1‖−1).

Lemma (of Symplectic Linear Algebra): one of the following 4 cases occurs:

Case I: small angle. There is a point y ∈ {x , . . . , f mx} such that
^(E cs(y),Eu(y))¿ 1.
How to perturb it: Compose with a single small rotation.

Case II: inverted behaviors. There are unit vectors v cs ∈E cs(x),
vu ∈Eu(x) such that ‖Df m(x) ·v cs‖À‖Df m(x) ·vu‖. (Replace if necessary
the whole segment of orbit by a subsegment.)
How to perturb it: Use two small rotations, one at the beginning and the
other at the end.
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The 4 types of non-dominance (continued)

Case III: Identity on a symplectic (ω 6≡ 0) plane.
There is a long subsegment of orbit such the following holds: There is a
(2-dim) plane spanned by a vector in Eu and a vector in E s such that the
restriction of Df to this plane “looks like the identity” (or more precisely,
becomes an isometry after a bounded change of coordinates).

Notice that ω 6≡ 0 in P .

How to perturb it: This case is essentially 2-dimensional. Use several
“nested” rotations, as explained in a previous example. . .
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The 4 types of non-dominance (continued)
Case IV: Expansion on a null (ω≡ 0) plane.
There is a (2-dim) plane P spanned by a vector in Eu and a vector in E c

which is uniformly expanded and conformal (along the segment of
orbit). That is, after a bounded change of coordinates we have

Df (f ix)|P =
(
τi 0
0 τi

)
, τi > c > 1.

The plane is necessarily null (ω≡ 0).

How to perturb it?

The 1st idea would be to imitate the previous case: rotate the plane P
around a complementary codimension-2 axis (where the rotation is the
identity).

However, this perturbation is not symplectic!

(In the volume-preserving case this idea would work; there are only 3
cases to be considered there.)
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4-dimensional problem
There are standard symplectic coordinates p1,. . . , pN , q1, . . . , qN (so
ω=∑

i dpi ∧dqi ) such that

P =
〈

∂

∂p1︸︷︷︸
∈Eu

,
∂

∂p2︸︷︷︸
∈E c

〉
,

Q =
〈

∂

∂q2︸︷︷︸
∈E c

,
∂

∂p1︸︷︷︸
∈E s

〉
.

Df |P ⊕Q =


τi

τi
τ−1
i

τ−1
i

 (order : p1,p2,q2,q1.)

If we rotate P we also need to rotate Q.

Nested rotations don’t work! The problem is that hyperbolicity of Df
quickly distorts the domain where the perturbation should be supported.

Jairo Bochi (PUC-Rio) Generic Symplectic Diffeomorphisms October 11, 2011 23 / 25



4-dimensional problem
There are standard symplectic coordinates p1,. . . , pN , q1, . . . , qN (so
ω=∑

i dpi ∧dqi ) such that

P =
〈

∂

∂p1︸︷︷︸
∈Eu

,
∂

∂p2︸︷︷︸
∈E c

〉
,

Q =
〈

∂

∂q2︸︷︷︸
∈E c

,
∂

∂p1︸︷︷︸
∈E s

〉
.

Df |P ⊕Q =


τi

τi
τ−1
i

τ−1
i

 (order : p1,p2,q2,q1.)

If we rotate P we also need to rotate Q.
Nested rotations don’t work! The problem is that hyperbolicity of Df
quickly distorts the domain where the perturbation should be supported.

Jairo Bochi (PUC-Rio) Generic Symplectic Diffeomorphisms October 11, 2011 23 / 25



Solution of Case IV
Start with a box D as a perturbation domain. (We can pretend
M =R4.)

Choose any symplectic perturbation of the identity h :D →D that
doesn’t leave the field of directions ∂

∂p1
invariant. Let g = f ◦h be the

perturbation of f .
Let Θ0 be the angle (in the p1p2 projection) that the field of directions
v0 = ∂

∂p1
is rotated as we apply h. View Θ0 as a random variable.

(Normalize measure µ(D)= 1).
Look the image g(D) and the image v1 of the field v0 = ∂

∂p1
by Dg .

Using Vitali Lemma, cover most of g(D) by many disjoint tiny boxes
Di that look like (basically after a change of scale) the original box:
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Solution of Case IV (continued)

Inside each small box Di , we make a perturbation which is just a
rescaling of h.

Let Θ1 be the angle (in the p1p2 projection) that v1 is rotated at this
step. We view Θ1 as a random variable (µ(g(D))= 1).
Then THE RANDOM VARIABLES Θ0 AND Θ1 ARE
(approximately) INDEPENDENT AND IDENTICALLY
DISTRIBUTED!
Continuing this process we obtain a RANDOM WALK
Sn =Θ0+Θ1+·· ·+Θn.
Since every (non-stopped) random walk is transient, most orbits
eventually reach ±π/2.
Thus we succeeded in sending the direction ∂

∂p1
∈Eu to the direction

∂
∂q1

∈E c (for most points).
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rescaling of h.
Let Θ1 be the angle (in the p1p2 projection) that v1 is rotated at this
step. We view Θ1 as a random variable (µ(g(D))= 1).
Then THE RANDOM VARIABLES Θ0 AND Θ1 ARE
(approximately) INDEPENDENT AND IDENTICALLY
DISTRIBUTED!

Continuing this process we obtain a RANDOM WALK
Sn =Θ0+Θ1+·· ·+Θn.
Since every (non-stopped) random walk is transient, most orbits
eventually reach ±π/2.
Thus we succeeded in sending the direction ∂

∂p1
∈Eu to the direction

∂
∂q1

∈E c (for most points).
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The end

THANK YOU!
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