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A. These are the lecture notes for the first week of the
course “Lyapunov exponents” at the School and Workshop on
Dynamical Systems, ICTP (Trieste, Italy), July 2008. In order to
explain interesting results keeping a low level of technicalities, we
restrict ourselves to SL(2,R) cocycles.

C

1. SL(2,R)-Cocycles and Their Lyapunov Exponents 1
1.1. Cocycles 1
1.2. The Lyapunov Exponent 3
1.3. Oseledets Theorem 4
1.4. Conjugacy 8
2. Examples 8
2.1. Uniform Hyperbolicity 8
2.2. Another example 12
3. Products of i.i.d. matrices 13
3.1. Statement of Furstenberg’s Theorem 13
3.2. Proof 14
4. Zero Lyapunov Exponents 20
4.1. Proof 21
References 26

1. SL(2,R)-C  T L E

1.1. Cocycles. Let T : X→ X be a discrete dynamical system. A skew
product over T is a dynamical system F acting on a product space X×Y
such that π ◦ F = T, where π : X×Y→ X is the projection on the first
coordinate. We are interested in skew-products that act linearly on
the second coordinate – so Y needs to be a vector space. Such skew
products are called linear cocycles.

Date: June 24, 2008.
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2 AVILA AND BOCHI

In these notes we will focus in a even more restricted class of
examples. Let SL(2,R) be the group of real 2 × 2 matrices with
determinant 1. A SL(2,R)-cocycle over the dynamical system T : X→
X is a map

F : (x, v) ∈ X×R2
7→ (Tx,A(x)·v) ∈ X×R2, where A : X→ SL(2,R) .

Since the pair (T,A) specifies F = FT,A, we also call it a cocycle.
Sometimes (when the underlying T is fixed) we also call the map A a
cocycle.

The powers Fn can be written as Fn(x, v) = (Tnx,An
T(x) · v), where

An
T(x) = A(Tn−1x) · · ·A(x) (for n > 0).

In the case T is invertible, so is F, so we can define

A−n
T (x) =

[
A(T−nx) · · ·A(T−1x)

]−1
(for n > 0), A0

T(x) = Id.

Thus the following “cocyle identity”

(1.1) Am+n
T (x) = Am

T (Tnx) An
T(x) for all x ∈ X, m, n ∈ Z.

Most of the time T will be fixed and we write for simplicity An(x)
instead of An

T(x).
Note. Of course these concepts can be generalized in several ways. One can define
similarly linear cocycles on vector bundles. Also, cocycles with continuous time
can be defined by means of an identity analogous to (1.1), with Z replaced by R.
See [2].

We will deal here with ergodic theory of SL(2,R)-cocycles.1 Thus
we let (X,A, µ) be a probability space; then we only deal with cocycles
(T,A) such that T preserves the measure µ and A : X → SL(2,R) is
measurable. (Sometimes we consider more regular classes of maps:
continuous, differentiable etc.)

Let us mention some situations where these cocycles appear:

Example 1.1. LetT2 = R2/Z2 be the 2-torus. Given a diffeomorphism
f : T2

→ T2 that preserves area and orientation, we can define a
SL(2,R)-cocycle (T,A) by taking X = T2, µ as Lebesgue measure,
T = f , and A as the derivative of f (because the tangent bundle is
trivial, i.e., TX = X ×R2).

Example 1.2. Let η be a Borel probability measure on SL(2,R). Let
Y0, Y1, . . . be a sequence of independent random matrices, identi-
cally distributed according to η. To study the behavior of the random

1In fact, in most of these notes SL(2,R) could have been replaced with the group
of real 2 × 2 matrices with determinant ±1.
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products Yn−1 · · ·Y1Y0, it is convenient to consider a cocycle as fol-
lows: Let X be the space SL(2,R)N of (one-sided) sequences of matri-
ces (M0,M1, . . .), endowed with the probability measure µ = ηN. The
shift T : X→ X defined by T(M0,M1, . . .) = (M1,M2, . . .) preserves the
measure µ (and is ergodic with respect to it). Let A : X→ SL(2,R) be
the map (M0,M1, . . . ) 7→ M0. Then if x is a random point in X, An

T(x)
is a random product of n i.i.d. matrices.

1.2. The Lyapunov Exponent. Given a cocycle F = FT,A, we want to
understand the behavior of typical orbits Fn(x, v) = (Tnx,An(x)·v), as it
is usual in Ergodic Theory. Thus we aim to obtain information about
the sequence of matrices An(x), for a full-measure set of points x. The
most basic information of this kind concerns asymptotic growth.

Let ‖·‖ indicate the euclidian norm on R2 and also the induced
operator norm on the space L(R2,R2) of linear maps (that is, ‖L‖ =
sup

‖v‖=1 ‖Lv‖). If L ∈ SL(2,R) then ‖L‖ = ‖L−1
‖ ≥ 1.

Theorem 1.3 (Furstenberg–Kesten Theorem [10] for SL(2,R)). Assume
T : X → X is a µ-preserving transformation and A : X → SL(2,R) is a
measurable map such that:

(1.2)
∫

log ‖A(x)‖ dµ(x) < ∞.

Then for µ-almost every x ∈ X, the following limit exists:

(1.3) λ(x) = lim
n→∞

1
n

log ‖An(x)‖.

The function λ : X → [0,∞) is T-invariant, µ-integrable, and its integral
is given by

(1.4) Λ =

∫
λ dµ = lim

n→∞

1
n

∫
log ‖An

‖ dµ = inf
n≥1

1
n

∫
log ‖An

‖ dµ .

We call (1.2) the integrability condition. The numberλ(x) is called the
(upper) Lyapunov exponent at the point x, and Λ is called the integrated
(upper) Lyapunov exponent. If T is ergodic then λ is constant equal to
Λ almost everywher, so we write λ = Λ for simplicity.

Also notice that any norm on L(R2,R2) would work equally well
in the statement of Theorem 1.3

The proof of Theorem 1.3 will be based on the following result (see
e.g. [13] for a proof):

Theorem 1.4 (Kingman’s Subadditive Ergodic Theorem [14]). Let fn :
X → R̄ be a sequence of measurable functions such that f +

1 is µ-integrable
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and
fm+n ≤ fm + fn ◦ Tm for all m, n ≥ 1.

Then 1
n fn converges a.e. to a function f : X → R̄. Moreover, f + is µ-

integrable and ∫
f = lim

n→∞

1
n

∫
fn = inf

n≥1

1
n

∫
fn ∈ R ∪ {−∞}

A sequence of functions as in the hypotheses of the theorem is
called subadditive.

Proof. Proof of Theorem 1.3 The sequence of functions fn(x) = log ‖An(x)‖
is subadditive, and f0 is integrable. Therefore Theorem 1.4 assures
that fn/n converges almost everywhere to a function λ. Since fn ≥ 0,
λ ≥ 0. Theorem 1.4 also gives (1.4). �

Note. For Theorem 1.3 in higher dimension, see [2].

1.3. Oseledets Theorem.

1.3.1. Statement. Theorem 1.3 gives information about the growth of
the matrices An(x), while the Oseledets [16] Theorems below describe
the asymptotic behavior of vectors An(x) · v.

Theorem 1.5 (One–Sided Oseledets). Let T : X → X be a µ-preserving
transformation and A : X → SL(2,R) satisfy the integrability condi-
tion (1.2). Let λ(·) be the Lyapunov exponent of the cocycle (T,A). If
λ(x) = 0 then

(1.5) lim
n→+∞

1
n

log ‖An(x) · v‖ = 0 for every v ∈ R2 r {0}.

For a.e. x ∈ X such that λ(x) > 0, there exists a one-dimensional vector
space E−x ⊂ R2 such that:

(1.6) lim
n→+∞

1
n

log ‖An(x) · v‖ =

{
λ for all v ∈ R2 r E−x
−λ for all v ∈ E−x r {0}

Moreover, the spaces E−x depend measurably on the point x and are invariant
by the cocycle.

Measurability of the spaces E−x means that they give a measurable
map from the set {x; λ(x) > 0} toP1 (the projective space ofR2), while
invariance means that A(x) · E−x = E−Tx.

Thus Theorem 1.5 says that if λ(x) > 0 then ‖An(x) · v‖ grows like
enλ(x) for v in all directions in R2, except for one direction for which
the growth is like e−nλ(x).

For invertible cocycles we have:
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Theorem 1.6 (Two-sided Oseledets). Let T be an invertible bimeasurable
transformation of the probability space (X, µ), and let A : X → SL(d,R)
satisfy the integrability condition. For a.e. point x where the Lyapunov
exponents is positive, there exists a splitting R2 = E+

x ⊕ E−x into two linear
one-dimensional subspaces such that (1.6) holds and

(1.7) lim
n→−∞

1
n

log ‖An(x) · v‖ =

{
λ for all v ∈ R2 r E+

x

−λ for all v ∈ E+
x r {0}

Moreover, the spaces E+
x and E−x are invariant by the cocycle, depend mea-

surably on the point x, and satisfy:

(1.8) lim
n→±∞

1
n

log ]
(
E+

Tnx,E
−

Tnx

)
= 0 .

We call E+
x and E−x the Oseledets spaces. In view of (1.8), we say that

the angle between them is subexponential.
Note. For more general versions of Oseledets Theorem, see [2].

1.3.2. Proof of Oseledets Theorem. Any matrix A ∈ SL(2,R) can be
written as A = RDS, where R and S belong to SO(2,R) (the group of
rotations), and D is diagonal with non-negative entries. Notice than
‖A‖ = ‖D‖. It follows that if A is not a rotation, then there are unit
vectors u(A) ⊥ s(A) unique modulo sign, such that

‖A · u(A)‖ = ‖A‖, ‖A · s(A)‖ = ‖A‖−1 .

Moreover A(u(A)) and A(s(A)) are collinear respectively to s(A−1) and
u(A−1). Notice u(A) and s(A) are the eigenvectors of the symmetric
matrix A∗A.

The following lemma will be used a few times:

Lemma 1.7. Let f : X → R be a measurable function such that f ◦ T − f
is integrable in the extended sense2. Then

lim
n→∞

1
n

f (Tnx) = 0 for a.e. x ∈ X.

Proof. Let 1 = f ◦T− f , and assume 1+
∈ L1(µ). By Birkhoff’s Theorem,

there is a function 1̃with 1̃+
∈ L1(µ) such that

f ◦ Tn

n
=

f
n

+
1
n

n−1∑
j=0

1 ◦ T j
→ 1̃ a.e.

2A measurable function 1 is said to be integrable in the extended sense if 1+ or
1− are integrable. Notice that the Birkhoff Theorem still applies.
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For every point x where convergence above holds and 1̃(x) , 0, we
have | f (Tnx)| → ∞. But, by the Poincaré’s Recurrence Theorem, the
set of points x which satisfy the latter condition has zero measure.
Therefore 1̃ = 0 a.e., as we wanted to show. �

Proof of Theorem 1.5. Let λ(·) be given by Theorem 1.3. For each point
such that (1.3) holds and λ(x) = 0. Then, for every non-zero v ∈ R2,

‖An(x)‖−1
‖v‖ ≤ ‖An(x) · v‖ ≤ ‖An(x)‖ ‖v‖ .

Taking log’s, dividing by n, and making n→ +∞ gives (1.5).
Now consider the T-invariant set [λ > 0] = {x ∈ X; λ(x) > 0}. For

a.e. x ∈ [λ > 0], the orthogonal directions sn(x) = s(An(x)), un(x) =
u(An(x)) are defined for sufficiently large n. We are going to show
that they converge to (necessarily measurable) maps [λ > 0] → P1,
and that lim sn(x) is exactly the E−x space we are looking for.

Fix some x with λ(x) > 0. We may write λ, sn instead of λ(x), sn(x)
etc. Take unit vectors in the directions of sn and un that by simplicity
of notation we indicate by the same symbols.

Let αn > 0 be the angle between sn and sn+1. That is, sn =
± cosαn sn+1 ± sinαn un+1. Since the vectors sn+1, un+1 are orthogonal
and so are their images by An+1(x), we get:

‖An+1(x) · sn‖ ≥ ‖An+1(x) · (sinαn un+1)‖ = (sinαn)‖An+1(x)‖ .

On the other hand:

‖An+1(x) · sn‖ ≤ ‖A(Tnx)‖ ‖An(x)sn‖ = ‖A(Tnx)‖ ‖An(x)‖−1 .

So it follows that

(1.9) sinαn(x) ≤
‖A(Tnx)‖

‖An(x)‖ ‖An+1(x)‖
.

From the definition (1.3) of λ, the integrability condition (1.2), and
Lemma 1.7 it follows that for a.e. x,

lim
n→∞

1
n

log sinαn = −2λ .

Thus αn(x) goes exponentially fast to zero, and, in particular, sn(x) is
a Cauchy sequence in P1, for a.e. x. Let s(x) be the limit. As the tail of
a geometric series goes to zero with the same speed as the summand,
we have:

(1.10) lim
n→∞

1
n

log sin ](sn, s) = −2λ .

Now write βn = ](sn, s). Then

An(x) · s = ±‖An(x)‖−1 cos βn ± ‖An(x)‖ sin βn
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Therefore, using (1.10),

lim sup
n→∞

1
n

log ‖An(x)·s‖ ≤ lim sup
n→∞

1
n

log max
(
‖An(x)‖−1, ‖An(x)‖ sin βn

)
= max(−λ, λ − 2λ) = −λ .

On the other hand, 1
n log ‖An(x) · s‖ ≥ 1

n log ‖An(x)‖−1
→ −λ, so it

follows that 1
n log ‖An(x) · s‖ → −λ. Now, if v is a unit vector not

collinear to s then

‖An(x) · v‖ ≥ ‖An(x)‖ sin ](v, sn),

which implies that 1
n log ‖An(x) ·v‖ → λ. So we have proved that (1.6)

holds taking E−x as the s direction. Finally, notice that if v ∈ A(x) ·E−x r
{0} then 1

n log ‖An(Tx) · v‖ → −λ. It follows that v ∈ E−Tx almost surely.
So invariance holds and the proof of Theorem 1.5 is completed. �

We now consider the invertible case:

Proof of Theorem 1.6. Let E− and E+ be the spaces given by Theorem 1.5
applied respectively to F = FT,A and F−1. Then (1.6) and (1.7) hold.
To show that E−x , E+

x a.e., it is sufficient to show that:

(1.11) lim
n→+∞

1
n

log ‖A−n(x)|E−x ‖ = −λ(x) for a.e. x ∈ [λ > 0]

By (1.7), the limit on the left hand side exists a.e. and defines a
measurable function 1(x). For all n ≥ 0 and x ∈ [λ > 0], we have

A−n(x)|E−x =
(
An(T−nx)|E−T−nx

)−1
,

Thus 1n = fn ◦ T−n, where fn = 1
n log ‖An

|E−‖ and 1n = 1
n log ‖A−n

|E−‖.
By (1.6), fn converges a.e. to −λ. Since λ is T-invariant, for all ε > 0,
µ[|1n + λ| > ε] = µ[| fn + λ| > ε] → 0. That is, 1n → −λ in measure.
Since 1n → 1 a.e., we conclude that 1 = −λ a.e., proving (1.11).

We are left to prove (1.8). It is easy to see that for any L ∈ SL(2,R)
and any non-zero vectors v, w ∈ R2,

‖L‖−2
≤

sin ](Lv,Lw)
sin ](v,w)

≤ ‖L‖2 .

Thus if φ = log sin ](E+,E−) then |φ ◦ T − φ| ≤ 2 log ‖A‖. By the
integrability condition and Lemma 1.7 we conclude that 1

nφ◦Tn
→ 0,

as we wanted to show. �
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1.4. Conjugacy. For a fixed T : X → X, we say a measurable map
C : X→ SL(2,R) is tempered if limn→∞

1
n log ‖C±1(Tnx)‖ = 0 for a.e. x.

We say that two cocycles A, B : X → SL(2,R) (over the same base
dynamics T) are conjugate (or cohomologous) if there is a tempered
C : X→ SL(2,R) such that

B(x) = C(Tx)−1A(x)C(x)

That is, FT,B = F−1
C,id ◦ FT,A ◦ FC,id.

It is evident that if the Lyapunov exponent is a conjugacy invariant
among SL(2,R)-cocycles. (Assume for simplicity that T is invert-
ible ergodic.) If the Lyapunov exponent of a certain A is positive
then using Oseledets Theorem (more specifically, property 1.8), we
can find a tempered conjugacy between A and a cocycle formed by
diagonal matrices. The conjugacy classes of cocycles with zero Lya-
punov exponent were studied by Thieullen [18]. He shows they fall
in three cases: elliptic, parabolic, and “flip”; we will see them in the
forthcoming Examples 3.1, 3.2, and 3.3, respectively.

Using a conjugacy with a diagonal cocycle, it is easy to prove the
following property about angles:

(1.12) v ∈ R2 r E−x ⇒ lim
n→∞

1
n

log ](An(x) · v,E+
Tnx) = −2λ(x).

2. E

2.1. Uniform Hyperbolicity. A whole class of examples that de-
serves to be studied in some detail is that of the uniformly hyperbolic
cocycles.

In this subsection we assume X is a compact Hausdorff space.
Let T : X → X and A : X → SL(2,R) be continuous maps. We say

the cocycle in uniformly hyperbolic if there exist constants c > 0 and
τ > 0 such that

(2.1) ‖An(x)‖ > ceτn, for all n ≥ 0.
Note. Our definition of uniform hyperbolicity is apparently weaker than the more
usual one; but we will establish their equivalence in Theorem 2.3 and Corollary 2.5
below.

Remark 2.1. For any k ≥ 1, a cocycle (T,A) is uniformly hyperbolic if
and only if so is its power (Tk,Ak

T).

Example 2.2 ([20]). Assume (T,A) is a measurable SL(2,R)-cocycle
where all matrices A(x) have positive entries. Let us prove that λ > 0.
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Notice that:

a, b, c, d, v1, v2 > 0, ad−bc = 1,
(
v′1
v′2

)
=

(
a b
c d

) (
v1
v2

)
⇒ v′1v′2 > (1+2bc)v1v2 .

Thus if v = (v1, v2) has positive entries then the product of the entries
of An(x) · v is at least v1v2

∏n−1
i=0 (1 + 2b(Tix)c(Tix)). This number grows

exponentially as n→ ∞ (by Birkhoff’s Theorem), and hence so does
‖An(x) · v‖. This shows that λ > 0. The argument also shows that
if the space is compact and the cocycle is continuous, so that the
matrix entries are bounded away from 0, then the cocycle is uniformly
hyperbolic.

Theorem 2.3 (Prop. 2 in [19]). If (T,A) is a uniformly hyperbolic cocycle
then there exist a map Es : X → P1 and constants C > 0 and σ > 0 such
that

(2.2) ‖An(x)|Es
x‖ < Ce−σn, for all x ∈ X and n ≥ 0.

Moreover, the map Es is unique, invariant by the cocycle, and continuous.

Proof. Assume (T,A) is uniformly hyperbolic, and fixτ > 0 so that (2.1)
is satisfied. We will use Oseledets Theorem 1.5 and its proof. Let
sn(x) be the direction the most contracted by An(x). We have the esti-
mate (1.9) for the angle αn(x) = ](sn(x), sn+1(x)). Here A is uniformly
bounded, so we obtain from (2.1) that αn(x) goes exponentially fast
to zero, uniformly in x. In particular, Es(x) = lim sn(x) exists and is a
continuous function.

We want to prove that Es is uniformly contracted. The matrix
calculations in the proof of Theorem 1.5 do not seem to give this, so
we will use an ergodic-theoretic argument. Let µ be any T-invariant
Borel probability measure. By the proof of Theorem 1.5, we know
that Es(x) is the Oseledets contracting direction for µ-a.e. x ∈ X.
Consider the continuous function φ(x) = log ‖A(x)|Es(x)‖. Its n-th
Birkhoff average is

Bn(x) =
1
n

(φ + φ ◦ T + · · · + φ ◦ Tn−1) =
1
n

log ‖An(x)|Es(x)‖ .

By Oseledets’ Theorem, for µ-a.e. x ∈ X, lim Bn(x) exists and equals
−λ(x) = − lim 1

n log ‖An(x)‖. By the hypothesis (2.1), λ(x) ≥ τ. Now
we need the following:

Lemma 2.4. Let φ : X → R be a continuous function, and let Bn denote
the n-Birkhoff average of φ under T. Assume that there is a ∈ R such
that for every T-invariant measure µ, we have limn→∞ Bn(x) ≤ a for µ-a.e.
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x ∈ X. Then lim supn→∞ Bn(x) ≤ a uniformly. That is, for every a′ > a
there exists n0 ∈N such that Bn(x) < a′ for every n ≥ n0 and every x ∈ X.

Proof. This is a standard Krylov–Bogoliubov argument. If the con-
clusion is false then there is a′ > a and sequences ni → ∞ and
xi ∈ X such that Bni(xi) ≥ a′. Consider the sequence of measures
µi = 1

ni

∑ni−1
j=0 δT jxi

. Passing to a subsequence, we can assume that
µi converges weakly to a measure µ. Then µ is T-invariant and∫
φ dµ = lim

∫
φ dµi = lim Bni(xi) ≥ a′. So by Birkhoff’s Theorem, the

set of points x such that lim Bn(x) ≥ a′ has positive µ measure. This
contradicts the assumption. �

Coming back to the proof of Theorem 2.3, it follows from the lemma
that lim supn→∞ Bn(x) ≤ −τ uniformly. In particular, for any σ < τ,
there exist n0 such that Bn0(x) < −σ for every x ∈ X. Thus (by the
same argument as for Remark 2.1), (2.2) holds for appropriate C.

Let us show uniqueness of Es. If for some x there existed two
linearly independent vectors v1, v2 inR2 such that limn→∞An(x)·vi = 0
for both i = 1, 2 then we would have ‖An(x)‖ → 0, which is impossible.
The invariance of Es is a consequence of uniqueness. �

Corollary 2.5. If T : X→ X is a homeomorphism and (T,A) is uniformly
hyperbolic then there is a continuous invariant splittingR2 = Eu

x ⊕Es
x such

that

‖A−n(x)|Eu
x‖ < Ce−σn, ‖An(x)|Es

x‖ < Ce−σn, for all x ∈ X and n ≥ 0,

where C > 0 and σ > 0 are constants. The spaces Eu
x and Es

x are uniquely
defined and are invariant by the cocycle.

Proof. Let Es and Eu be given by Theorem 2.3 applied respectively to
the cocycle and its inverse. Since ‖A−n(x)|Es

x‖ = ‖An(T−nx)|Es
T−nx‖

−1
→

∞ as n→ +∞, we see that Es
x , Eu

x . �

The spaces Eu and Es are called respectively the unstable and stable
directions. By continuity, the angle between them has a positive
lower bound.

Proposition 2.6. Let (T,A) be a uniformly hyperbolic cocycle. Then for
every continuous map B : X→ SL(2,R) sufficiently close to A, the cocycle
(T,B) is uniformly hyperbolic.

Proof. Let Es : X → P1 be the stable direction. For α > 0, define the
following cone field:

Cs
α(x) =

{
v ∈ R2; ](v,Es

x) ≤ α or v = 0
}
.
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It is easy to see that there is α and k ≥ 1 such that for every x ∈ X,

v ∈ Cα(Tk(x)), w = [Ak(x)]−1
· v ⇒

{
w ∈ Cα/2(x)
‖w‖ > 2‖v‖

Therefore if B is sufficiently close to A then

v ∈ Cα(Tk(x)), w = [Bk(x)]−1
· v ⇒

{
w ∈ Cα(x)
‖w‖ > 2‖v‖

It follows that for any m ≥ 1 and v ∈ Cα(Tkmx) we have ‖[Bkm(x)]−1
·

v‖ > 2m
‖v‖. So ‖Bkm(x)‖ > 2m. This proves that (Tk,Bk

T) is uniformly
hyperbolic, and thus by Remark 2.1, so is (T,B). �

Example 2.7. Let T : X→ X be a homeomorphism. Let f : X→ R be
a continuous positive function, and define diagonal matrices B(x) =
exp( f (x)Id). For any continuous C : X → SL(2,R), the cocycle (T,A)
with A(x) = C(Tx)−1 B(x) C(x) is uniformly hyperbolic. However, it is
not true that all uniformly hyperbolic cocycles (T,A) are of this form,
because topological obstructions may arise.

The existence of the continuous invariant direction imposes topo-
logical obstructions to uniform hyperbolicity:

Example 2.8. Let X be the circle T1 = R/Z. Assume (T,A) be a
uniformly hyperbolic cocycle with stable direction Es. There exist
integers3 t, a, e such that the maps

T : T1
→ T1 , A : T1

→ SL(2,R) , Es : T1
→ P1

are respectively homotopic to

x 7→ tx , x 7→ R2πax , x 7→ R(cosπex, sinπex) .

(Rθ denotes the rotation of angle θ.) Then the invariance relation
A(x) · Es(x) = Es(Tx) implies that 2a + e = te, that is,

(2.3) 2a = (t − 1)e .

Now, for some values of t and a, the equation above has no integer
solution e. Therefore there exist many homotopy classesU(t, a) that
contain no uniformly hyperbolic cocycle (T,A).

3We can say that these integers are the topological degrees of the maps, if we fix
the appropriate homotopy equivalences between T1, SL(2,R), and P1.
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2.2. Another example. We will present an interesting example of a
cocycle that has positive exponent without being uniformly hyper-
bolic. (Many more examples with those properties can be given using
Theorem 3.4 below.)

Theorem 2.9 (Herman [12]). Let T be a irrational rotation of the circle
T1 = R/Z. Fix c > 1 and let A : X→ SL(2,R) be given by

A(x) = HR2πx where Rθ =

(
cosθ − sinθ
sinθ cosθ

)
, H =

(
c 0
0 c−1

)
,

Then the following bound for the Lyapunov exponent holds:

(2.4) λ ≥ log
c + c−1

2
.

Note. In fact, it can be shown that equality holds in (2.4); see [3].

Thus if c , 1 the cocycle has positive Lyapunov exponent. More-
over, it is not uniformly hyperbolic, because (2.3) has no solution
with t = 1 and a = 1.

The proof below uses subharmonic functions; see e.g. [17].

Proof. Let α so that the rotation T is x 7→ x + α. We have

λ = lim
n→∞

1
2πn

∫ 2π

0
log ‖HRθ+2π(n−1)αH · · ·HRθ+2παHRθ‖∗ dθ

Where ‖·‖∗ is the norm of the maximum absolute value of the entries.
Define the following complex matrices:

T(z) =

(
(z2 + 1)/2 (−z2 + 1)/2i
(z2
− 1)/2i (z2 + 1)/2

)
for z ∈ C.

If z = eiθ then Rθ = z−1T(z). Write

Cn(z) = HT(e2π(n−1)αiz) · · ·HT(e2παiz)HT(z).

Then

λ = lim
n→∞

1
2πn

∫ 2π

0
log ‖Cn(eiθ)‖∗ dθ .

The log of the absolute value of a holomorphic function is subhar-
monic, and the maximum of subharmonic functions is subharmonic;
thus the function z ∈ C 7→ log ‖Cn(z)‖∗ is subharmonic. We obtain
λ ≥ lim 1

n log ‖Cn(0)‖∗. Now, Cn(0) = [HT(0)]n and the spectral radius
of HT(0) is (c + c−1)/2. So (2.4) follows. �

This kind of estimate is called Herman’s subharmonic trick.
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3. P  ... 

3.1. Statement of Furstenberg’s Theorem. We deal with Lyapunov
exponents of products of random i.i.d. matrices. Letµbe a probability
measure in SL(2,R) which satisfies the integrability condition∫

SL(2,R)
log ‖M‖ dµ(M) < ∞.

Let Y1, Y2, . . . be random independent matrices with distribution µ,
and letλ be the Lyapunov exponent, that is, the non-negative number
so that

λ = lim
n→∞

1
n

log ‖Yn · · ·Y1‖ almost surely.

(The existence of the Lyapunov exponent follows from Theorem 1.3
applied to the cocycle described in Example 1.2; λ is constant a.e.
because the base dynamics is ergodic.)

We will prove that λ > 0 for “most” choices of µ. Let us see some
examples where λ = 0:

Example 3.1. If µ is supported in the group of rotations SO(2,R) then
λ = 0.

Example 3.2. If µ is supported in the subgroup{(
t s
0 t−1

)
; t, s ∈ R, t , 0

}
then λ =

∣∣∣∫ log ‖M(1, 0)‖ dµ(M)
∣∣∣, which may be zero.

Example 3.3. Assume that only two matrices occur:(
2 0
0 1/2

)
and Rπ/2 =

(
0 −1
1 0

)
.

Then it is a simple exercise to show that λ = 0.

The result below says that the list above essentially covers all pos-
sibilities where the exponent vanishes:

Theorem 3.4 (Furstenberg [9]). Assume µ is a probability measure on
SL(2,R) satisfying the integrability condition and the following two as-
sumptions:

(i) The support of µ is not contained in a set of the form {CRC−1; R ∈
SO(2,R)}, where C ∈ GL(2,R).

(ii) There is no set L ⊂ P1 with 1 or 2 elements such that M(L) = L for
µ-a.e. M.

Then the Lyapunov exponent λ is positive.
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Note. The proof given here is based in [8]; also see that book for the higher-
dimensional related results. More recently, this kind of results were extended to
much broader classes of dynamical systems; see [4] and references therein.

The hypotheses of the theorem can be restated as follows:
(i’) The support of µ is not contained in a compact subgroup of

SL(2,R);
(ii’) There is no finite set ∅ , L ⊂ P1 such that M(L) = L for µ-a.e.

M.

Proof. Assumptions (i) and (i’) are equivalent. On the other hand, if
M ∈ SL(2,R) fixes three different directions then M = ±Id. Hence if
L ⊂ P1 is a finite set with #L ≥ 3 then the set of M ∈ SL(2,R) such that
M(L) = L is finite. Therefore (i) and (ii) imply (ii’). �

3.2. Proof.

3.2.1. Non-atomic measures in P1. LetM(P1) be the space of probabil-
ity Borel measures in P1. A measure ν ∈ M(P1) is called non-atomic
if ν({x}) = 0 for all x ∈ P1.

We collect some simple facts for later use.
If A ∈ GL(2,R) then we also denote by A the induced map A : P1

→

P1. If A is not invertible but A , 0 then there is only one direction
x ∈ P1 for which Ax is not defined. In this case, it makes sense to
consider the push-forward Aν ∈ M(P1), if ν ∈ M(P1) is non-atomic.

Lemma 3.5. If ν ∈ M(P1) is non-atomic and An is a sequence of non-zero
matrices converging to A , 0, then Anν→ Aν (weakly).

The proof is easy.

Lemma 3.6. If ν ∈ M(P1) is non-atomic then

Hν = {M ∈ SL(2,R); Mν = ν}

is a compact subgroup of SL(2,R).

Proof. Assume that there exists a sequence Mn in Hν with ‖Mn‖ →

∞. Up to taking a subsequence, we may assume that the sequence
‖Mn‖

−1Mn converges to a matrix C. We have ‖C‖ = 1, so Lemma 3.5
gives Cν = ν. On the other hand,

det C = lim
1

‖Mn‖
2 = 0.

Thus C has rank one and ν = Cνmust be a Dirac measure, contradic-
tion. �
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3.2.2. µ-invariant measures in P1. If ν ∈ M(P1), let the convolution µ ∗
ν ∈ M(P1) is the push-forward of the measure µ×ν by the evaluation
map ev: SL(2,R) × P1

→ P1. If µ ∗ ν = ν then ν is called µ-invariant.

Example 3.7. Assume the probability µ is (left-)invariant by rota-
tions, in the sense that LRµ = mu for every R ∈ SO(2,R), where LR :
M 7→ RM. Let ν0 denote the Lebesgue measure onP1, that is, the nor-
malized angle measure. Then for any ν ∈ M(P1), we have µ ∗ ν = ν0.
(Indeed, for any R ∈ SO(2,R), we have R(µ ∗ ν) = (LRµ) ∗ ν = µ ∗ ν; so
µ ∗ ν is invariant by rotations.) In particular, ν0 is µ-invariant.

By a Krylov–Bogoliubov argument, µ-invariant measures always
exist.

Lemma 3.8. If µ satisfies the assumptions of Furstenberg’s Theorem 3.4
then every µ-invariant ν ∈ M(P1) is non-atomic.

Proof. Assume that
β = max

x∈X
µ({x}) > 0.

Let L = {x; µ({x}) = β}. If x0 ∈ L then

β = ν({x0}) = (µ ∗ ν)({x0}) =

"
χ{x0}(Mx) dµ(M) dν(x)

=

∫
ν({M−1(x0)}) dµ(M).

But ν({M−1(x0)}) ≤ β for all M, so ν({M−1(x0)}) ≤ β for µ-a.e. M. We
have proved that M−1(L) ⊂ L for µ-a.e. M. This contradicts assump-
tion (ii’). �

From now on we assume that µ satisfies the assumptions of Furstenberg’s
Theorem 3.4, and that ν is a (non-atomic) µ-invariant measure in P1.

3.2.3. The measure ν and the exponent λ. The shift σ : SL(2,R)N ←↩
in the space of sequences ω = (Y1,Y2, . . .) has the ergodic invariant
measure µN.

The skew-product map T : SL(2,R)N×P1
←↩, T(ω, x) = (σ(ω),Y1(ω)x)

leaves invariant the measure µ× ν . Consider f : SL(2,R)N ×P1
→ R

given by

f (ω, x) = log
‖Y1(ω)x‖
‖x‖

.

(The meaning is obvious). Then

1
n

n∑
j=0

f (T j(ω, x)) =
1
n

log
‖Yn(ω) · · ·Y1(ω)x‖

‖x‖
.



16 AVILA AND BOCHI

By Oseledets’ Theorem, for a.e. ω and for all x ∈ P1 except x = E−ω
in the case λ > 0, the quantity on the right hand side tends to λ as
n → ∞. In particular, this convergence holds for µN × ν-a.e. (ω, x).
We conclude that

(3.1) λ =

"
f dµN dν =

"
log
‖Mx‖
‖x‖

dµ(M) dν(x).

Example 3.9. As in Example 3.7, assume that µ is (left-)invariant
by rotations, and let ν = ν0 be Lebesgue measure on P1. So (3.1)
becomes:

λ =
1

2π

∫
SL(2,R)

∫ 2π

0
log ‖M(cosθ, sinθ)‖ dθ dµ(M) .

The integral
∫ 2π

0
log
√

c2 cos2 θ + c−2 sin2 θ dθ equals 2π log c+c−1

2 (see [3]),
therefore:

λ =

∫
SL(2,R)

log
‖M‖ + ‖M‖−1

2
dµ(M) .

In particular, the Lyapunov exponent is positive unless µ is concen-
trated on SO(2,R).

3.2.4. Convergence of push-forward measures. Let Sn(ω) = Y1(ω) · · ·Yn(ω).
(Attention for the order of the product.)

Lemma 3.10. For µN-a.e. ω, there exists νω ∈ M(P1) such that

Sn(ω)ν→ νω.

For the proof we will need some background on probability (see
e.g. [11]). Given a probability space (X,F , µ), a martingale is com-
posed of a sequence of random variables X1, X2, · · · ∈ L1(µ) and a
sequence of σ-algebras F1 ⊂ F2 ⊂ · · · ⊂ F such that for each n, the
function Xn is Fn-measurable and E(Xn+1 | Fn) = Xn µ-almost surely.
Doob’s Martingale Converge Theorem asserts that there exists X ∈ L1(µ)
such that Xn → X µ-a.s.

Proof of Lemma 3.10. Fix f ∈ C(P1,R). Associate to f the function
F : SL(2,R)→ R given by

F(M) =

∫
P1

f (Mx) dν(x).



TRIESTE LECTURE NOTES ON LYAPUNOV EXPONENTS PART I 17

Let Fn be the σ-algebra of SL(2,R)N formed by the cylinders of
length n; then Sn(·) is Fn-measurable. Also

E(F(Sn+1) | Fn) =

∫
F(SnM) dµ(M)

=

"
f (SnMx) dµ(M) dν(x)

=

∫
f (Sny) dν(y) (since µ ∗ ν = µ)

= F(Sn) .

This shows that the sequence of functions ω 7→ F(Sn(ω)) is a martin-
gale. Therefore the limit

Γ f (ω) = lim
n→∞

F(Sn(ω))

exists for a.e. ω.
Now let { fk; k ∈ N} be a countable dense subset of C(P1,R). Take

ω in the full-measure set where Γ fk(ω) exists for all k. Let νω be a
(weak) limit point of the sequence of measures Sn(ω)ν. Then∫

fk dνω = lim
i→∞

∫
fk d(Sniν) = lim

i→∞

∫
f ◦ Sni dν = Γ fk(ω).

Since the limit is the same for all subsequences, we have in fact that
Sn(ω)ν→ νω. �

Let’s explore the construction of the measures to obtain more in-
formation about them:

Lemma 3.11. For µN-a.e. ω, the measures νω from Lemma 3.10 satisfy

Sn(ω)Mν→ νω for µ-a.e. M.

Proof. The proof is tricky. We have to show that, for any fixed f ∈
C(P1,R), that4

(3.2) limE(F(SnM)) = Γ f = limE(F(Sn)) for µ-a.e. M ∈ SL(2,R).

We are going to show that

(3.3) lim
n→∞
E

(
(F(Sn+1) − F(Sn))2

)
= 0.

This is sufficient, because

E
(
(F(Sn+1) − F(Sn))2

)
= E

(" ( f (SnMx) − f (Snx)) dν(x) dµ(M)
)2 .

4E is integration on ω.
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So (3.3) gives that, for a.e. ω,

lim
n→∞

∫
(F(SnM)−F(Sn)) dµ(M) = lim

n→∞

"
( f (SnMx)− f (Snx)) dν(x) dµ(M) = 0.

This implies (3.2).
We have

E
(
(F(Sn+1) − F(Sn))2

)
= E(F(Sn+1)2) + E(F(Sn)2) − 2E(F(Sn+1)F(Sn)).

But

E(F(Sn+1)F(Sn)) = E

(∫
f ◦ Sn+1 dν ·

∫
f ◦ Sn dν

)
=

E

("
f (SnMx) dν(x) dµ(M) ·

∫
f ◦ Sn dν

)
=

E

(∫ f ◦ Sn dν
)2 = E(F(Sn)2).

So
E

(
(F(Sn+1) − F(Sn))2

)
= E(F(Sn+1)2) − E(F(Sn)2).

Hence, by cancelation, for any p,
p∑

n=1

E
(
(F(Sn+1) − F(Sn))2

)
= E(F(Sp+1)2) − E(F(S1)2) ≤ ‖ f ‖2

∞
.

Therefore
∑p

n=1E
(
(F(Sn+1) − F(Sn))2) < ∞ and (3.3) follows. �

3.2.5. The limit measures are Dirac.

Lemma 3.12. For µN-a.e. ω, there exists Z(ω) ∈ P1 such that νω = δZ(ω).

Proof. Fix ω. We have, for µ-a.e. M,

lim Snν = lim SnMν.

Let B be a limit point of the sequence of norm 1 matrices ‖Sn‖
−1Sn.

Since ‖B‖ = 1, we can apply Lemma 3.5:

Bν = BMν.

If B were invertible, this would imply ν = Mν. That is, a.e. M
belongs to the compact group Hν (see Lemma 3.6), contradicting
hyphotesis (i). So B is non-invertible. Since Bν = νω, we conclude
that νω is Dirac. �
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3.2.6. Convergence to Dirac implies norm growth.

Lemma 3.13. Let m ∈ M(P1) be non-atomic and let (An) be a sequence in
SL(2,R) such that Anm→ δz, where z ∈ P1. Then

‖An‖ → ∞.

Moreover, for all v ∈ R2,
‖A∗n(v)‖
‖An‖

→ |〈v, z〉|.

Proof. If ‖An‖ does not converge to ∞ then there is a converging
subsequence Ani → Ã. But then Ãm = δz would not be atomic.

Write An = RαnHcnRβn , where cn = ‖An‖ and Hc is the diagonal
matrix with c, c−1 along the diagonal. We claim that αn → z. If this
were not the case, we could pass to a subsequence so that αn → α , z
and βn → β. Then Bn = An/‖An‖ converges to the non-invertible B
whose range is α. By Lemma 3.5 we have Bnm→ Bm = δα, so α = z.

Now the claim follows straightforwardly. �

3.2.7. Norm growth cannot be slower than exponential. We shall use the
following abstract lemma from ergodic theory:

Lemma 3.14. Let T : (X,m)←↩ be a measure preserving transformation of
a probability space (X,m). If f ∈ L1(m) is such that

n−1∑
j=0

f (T jx) = +∞ for m-almost every x,

then
∫

f dm > 0.

Proof. Let ·̃ denote limit of Birkhoff averages. Then f̃ ≥ 0. Assume,
by contradiction, that

∫
f = 0. Then f̃ = 0 a.e.

Let sn =
∑n−1

j=0 f ◦ T j. For ε > 0, let

Aε = {x ∈ X; sn(x) ≥ ε ∀n ≥ 1} and Bε =
⋃
k≥0

T−k(Aε).

Fix ε > 0 and let x ∈ Bε. Let k = k(x) ≥ 0 be the least integer such
that Tkx ∈ Aε. We compare the Birkhoff sums of f and χAε :

n−1∑
j=0

f (T jx) ≥
k−1∑
j=0

f (T jx) +

n−1∑
j=k

εχAε(T
jx) ∀n ≥ 1.

Dividing by n and making n→∞we get

0 = f̃ (x) ≥ εχ̃Aε(x)
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Therefore

µ(Aε) =

∫
χ̃Aε =

∫
Bε
χ̃Aε = 0.

Thus µ(Bε) = 0 for every ε > 0 as well.
On the other hand, if sn(x)→∞ then x ∈

⋃
ε>0 Bε. We have obtained

a contradiction. �

End of the proof of Theorem 3.4. Replace everywhere Yi by Y∗i . Note
that µ∗ also satisfies the hypothesis of the theorem if µ does.5

Let T and f be as in §3.2.3. By Lemmas 3.12 and 3.13 we have
n∑

j=0

f (T j(ω, x)) = log
‖S∗n(ω)x‖
‖x‖

→ ∞

for a.e. ω and all x ∈ P1 r {Z(ω)⊥}. In particular, convergence holds
µN × ν-a.e. By Lemma 3.14, this implies

∫
f > 0. Then, by (3.1),

λ > 0. �

4. Z L E

The Furstenberg Theorem 3.4 leads to the impression that very
few cocycles with zero Lyapunov exponents exist. The following is
a result that goes in the opposite direction:

Theorem 4.1. Let T be a homeomorphism of a compact Hausdorff space X,
and letµ be a T-invariant ergodic fully supported probability measure. Then
there is a residual subset R of the space C(X, SL(2,R)) such that for any
A ∈ R, either (T,A) is uniformly hyperbolic or the Lyapunov exponent of
the cocycle (T,A) which respect to the measure µ is zero.

Here C(X, SL(2,R)) is the space of continuous maps X → SL(2,R)
endowed with the topology of uniform convergence. It is a Baire
space, therefore every residual6 set is dense.
Note. Theorem 4.1 was proved in [6], which also contains its (harder) version for
area-preserving diffeomorphisms. The proof presented here is specific for cocycles
and follows [5]. For results for higher dimensional cocycles and diffeomorphisms,
see [7].

Recall from Example 2.8 that there may exist non-empty open sets
of C(X, SL(2,R)) formed by A’s such that (T,A) is not uniformly hy-
perbolic. Thus Theorem 4.1 gives many cocycles with zero exponents.
For example, the cocycle from Theorem 2.9 can be perturbed (keeping
the base dynamics unchanged) so that the exponent becomes zero.

5Because A(v) = w⇒ A∗(w⊥) = v⊥.
6A residual set is a countable intersection of open and dense sets.
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Example 4.2. It is necessary to assume that µ is fully supported in
Theorem 4.1. (Notice the definition of uniform hyperbolicity in [6]
is different and automatically entails this.) Let T be a homeomor-
phism of the circle homotopic to the identity and with an unique
fixed pointp. Let A : T1

→ SL(2,R) be not homotopic to constant
and such that A(p) is a hyperbolic matrix. (These conditions define
an open subset of C(X, SL(2,R)).) In the notation of Example 2.8,
we have t = 1, a , 0, thus (2.3) has no solution and (T,A) is not
uniformly hyperbolic. The unique T-invariant probability measure
µ is supported on the point p, so the associated Lyapunov exponent
is positive.

4.1. Proof. In all this section we assume X, T, and µ are as in the
hypotheses of Theorem 4.1.

4.1.1. Semicontinuity.

Lemma 4.3. The Lyapunov exponent is an upper-semicontinuous function

λ : C(X, SL(2,R))→ [0,∞).

Proof. This is an easy consequence of (1.4) in Theorem 1.3. �

Another semicontinuity property that we will use is:

Lemma 4.4. Given A ∈ L∞(X, SL(2,R)), M > ‖A‖∞, and δ > 0 there
exists η > 0 such that

‖B‖∞ < M, µ{x ∈ X; B(x) , A(x)} < η ⇒ λ(B) < λ(A) + δ.

Proof. Let A, M, and δ be given. Take n such that

1
n

∫
X

log ‖An(x)‖ dµ(x) < λ(A) +
δ
2
.

Let η be very small, and let B be such that ‖B‖∞ < M and the set
R = [B , A] has measure less than η. Then S =

⋃n−1
j=0 T− jR has

measure < nη. We estimate

λ(B) ≤
1
n

∫
log ‖Bn

‖ =
1
n

∫
S

log ‖Bn
‖ +

1
n

∫
XrS

log ‖An
‖

≤ (log M)µ(S) + λ(A) +
δ
2
< λ(A) + δ ,

provided η was chosen small enough. �

Note. For semicontinuity in a stronger sense (that is, with respect to a weaker
topology), see [1].
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4.1.2. Interchanging the Oseledets Directions.

Lemma 4.5. If T is an aperiodic invertible transformation, Y is a measurable
set with µ(Y) > 0 and n ≥ 1, then there exists Z ⊂ Y with µ(Z) > 0 and
such that Z, TZ, . . . , TnZ are disjoint sets.

The set Z =
⊔n

j=0 T jZ is called a tower of height n + 1.

Proof. Take Y1 ⊂ Y such that µ(Y1 M TY1) > 0 (it exists because
otherwise a.e. point of Y would be fixed). Then Z1 = Y1 r TY1
has positive measure and Z1 ∩ T(Z1) = ∅. Take Y2 ⊂ Z1 such that
µ(Y2 M T2(Y2)) > 0 and let Z2 = Y2 r f 2(Y2). Continuing in this
way we will find Z = Zn such that Z, TZ, . . . , TnZ are two-by-two
disjoint. �

Lemma 4.6. Assume A ∈ C(X, SL(2,R)) is such that the cocycle (T,A) has
positive exponent and is not uniformly hyperbolic. Then for every ε > 0
there exist m ∈N, a measurable set Y ⊂ X of positive measure such that Y,
TY, . . . , Tm−1Y are disjoint, and a measurable map B : X→ SL(2,R) with
the following properties:

• ‖B(x) − A(x)‖ < ε everywhere;
• B equals A outside of

⊔m−1
j=0 T jY;

• Bm(x) · E+
x = E−Tmx and Bm(x) · E−x = E+

Tmx for all x ∈ Y, where E+, E−
denote the Oseledets directions of the unperturbed cocyle (T,A).

Proof. The proof has two parts: In the first part, we will see how to
send E+ to E−, without caring about the image of E−. More precisely,
we will find m, Y, and B satisfying all the desired conclusions except
for Bm(x) · E−x = E+

Tmx. Then in the second part of the proof, we will
see how to modify the construction and obtain m̃, Ỹ, and B̃ with all
the desired properties.

First part: sending E+ to E−. Fix ε′ with 0 < ε′ � ε. If the set of points
x where ](E+(x),E−(x)) < ε′ has positive measure then we are done:
take Y as that set, m = 1, and for x ∈ Y, let B(x) be A(x) composed
with a small rotation in order to have B(x) · E+

x = E−Tx.
So assume the angle between E+ and E− is at least ε′ almost every-

where.
For m ∈N, consider the set

Γm =

{
x ∈ X;

‖Am(x)|E−x ‖
‖Am(x)|E+

x ‖
>

1
2

}
.



TRIESTE LECTURE NOTES ON LYAPUNOV EXPONENTS PART I 23

We claim that µ(Γm) > 0 for every m. To show this, assume on the
contrary that there is m such that

‖Am(x)|E−x ‖
‖Am(x)|E+

x ‖
≤

1
2

for a.e. x ∈ X.

Then for any k ≥ 1 and a.e. x ∈ X,

‖Akm(x)‖2 ≥
‖Akm(x)|E+

x ‖

‖Akm(x)|E−x ‖
≥ 2k .

By continuity, ‖Akm(x)‖ ≥ 2k/2 for all x in the support of the measure
µ, which by assumption is the whole space X. This implies that (T,A)
is uniformly hyperbolic, contrary to the assumption.

Now fix m � 1. Use Lemma 4.5 and take Y ⊂ Γm with positive
measure such that Y, TY, . . . , Tm−1Y are disjoint. For each x ∈ Y and
j with 0 < j < m− 1, let B(T jx) be A(T jx) composed with a linear map
close to the identity that fixes the directions E+

T jx
and E−

T jx
, expanding

the former and contracting the latter by some definite factor. (Here
we use that there is a lower bound on ](E+,E−).) This gives

‖A(Tm−1x)B(Tm−2x) · · ·B(Tx)A(x)|E−x ‖
‖A(Tm−1x)B(Tm−2x) · · ·B(Tx)A(x)|E+

x ‖
� 1.

This implies that there is a direction close to E+
Tx which is sent by

B(Tm−2x) · · ·B(Tx) to a direction close to E−
Tm−1x

. Now define B(x) and
B(Tm−1x) respectively as A(x) and A(Tm−1x) composed with appropri-
ate small rotations in order to have Bm(x) · E+

x = E−Tmx.

Second part: sending E− to E+. We had found B, m, and Y such that for
x ∈ Y, Bm(x) · E+

x = E−Tmx and, in particular, Bm(x) · E−x , E−Tmx. Hence
(recall (1.12))

]
(
An(Tmx) · Bm(x) · E−x ,E

+
Tm+nx

)
→ 0 as n→∞.

On the other hand, by Poincaré recurrence,

lim sup
n→∞

]
(
E−Tm+nx,E

+
Tm+nx

)
> 0.

Thus we can find some n and some positive measure set Ỹ ⊂ Y
such that for all x ∈ Ỹ, ]

(
An(Tmx) · Bm(x) · E−x ,E+

Tm+nx

)
is very small,

while
(
E−Tm+nx,E

+
Tm+nx

)
is not very small. By Lemma 4.5, we can assume

Ỹ ∩ T jỸ = ∅ for all j with 1 ≤ j ≤ n + m. Let us define a map
B̃ : X → SL(2,R) as follows: On

⊔m−1
j=0 T jỸ, B̃ equals B. For each

x ∈ Y, let B̃(Tm+n−1x) be A(Tm+n−1x) composed with a linear map close
to the identity that fixes E−Tm+nx and sends An(Tmx) ·Bm(x) ·E−x to E+

Tm+nx.



24 AVILA AND BOCHI

Finally, over the rest of X, let B̃ equal A. Then m̃ = m + n + 1, Ỹ, and
B̃ have all the desired properties. This proves Lemma 4.6. �

4.1.3. Vanishing of the Exponent. We write Z � Z′ if Z and Z′ are
measurable sets and their symmetric difference Z M Z′ has zero mea-
sure. A measurable set Z ⊂ X is called a coboundary if there exists a
measurable set W ⊂ X such that Z � W M TW.

Lemma 4.7. Assume T is an ergodic automorphism of the Lebesgue space
X. Given a set Y ⊂ X with positive measure, there exists a set Z ⊂ Y which
is not a coboundary.

Proof. See [15]. �

The following key lemma is essentially due to Knill [15]:

Lemma 4.8. If B is the map given by Lemma 4.6 and the set Y is not a
coboundary then the Lyapunov exponent of (T,B) is zero.

(Compare with Example 3.3.)

Proof. We analyze two cases separately.

First case: m = 1
First we need to make some general considerations. One can define

the skew-product

ΦA : (x, v) ∈ X × P1
7→ (T(x),A(x) · v) ∈ X × P1 .

If λ(A) > 0 then there are two measures µ+ and µ− that are invariant
for ΦA, given by

µ±(B) = µ
{
x ∈ X; (x,E±x ) ∈ B

}
If π : X × P1

→ X denotes the projection on the first coordinate then
π∗(µ+) = π∗(µ−) = µ and we say that µ+ and µ− project on µ.

Claim. If µ is ergodic and λ(A) > 0 then there are only two ergodic
measures for ΦA which project on µ, namely µ+ and µ−.

Proof. Let η be an ergodic measure for ΦA which projects on µ. Let
us define a function f : X × P1

→ R by

f (x, v) = log
‖A(x) · v‖
‖v‖

For µ-a.e. x ∈ X and all v ∈ R2 r {0}, we have

lim
n→∞

1
n

n−1∑
j=0

f ◦Φ
j
A(x, v) =

{
λ(A)
−λ(A)

if v < E−(x)
if v ∈ E−(x)



TRIESTE LECTURE NOTES ON LYAPUNOV EXPONENTS PART I 25

Therefore, by Birkhoff’s theorem,

η
{
(x, v) ∈ X × P1; v < E−(x)

}
= 0 or 1.

By the same reasoning,

η
{
(x, v) ∈ X × P1; v < E+(x)

}
= 0 or 1.

Thus the only possibilities are η = µ+ or η = µ− and the claim is
proved. �

We now return to the proof of the lemma. The skew-product T×B
has the invariant measure

µ̂ =
1
2

(µ+ + µ−).

Claim. µ̂ is an ergodic measure for ΦB.

Proof. Assume that there exists a measurable set Q ⊂ X × P1 with
0 < µ̂(Q) < 1 which is invariant for ΦB. For each x ∈ X, denote
Qx = {v ∈ P1; (x, v) ∈ Q}. By definition of µ̂ we can suppose that
Qx ⊂ {E+(x),E−(x)} for every x. Since π(Q) is T-invariant, we have
Qx , ∅. Further, the T-invariant set {x; Qx = {E+(x),E−(x)}}must have
µ-measure zero. To simplify notations, let us write Qx = + or −, with
the obvious meanings. Let

W = {x ∈ X; Qx = +} .

Then

W M T−1W = {x ∈ X; Qx = +, QTx = −}∪{x ∈ X; Qx = −, QTx = +} = Z.

This contradicts the assumption that Z is not a coboundary. �

Finally, if we had λ(B) > 0 then µ̂ would be a measure of the type
given by the first claim. This is clearly impossible.

Second case: n > 1
We will reduce this case to the first one, but again some background

information is needed. Given a measurable set, one can define the
induced first-return system (U,TU, µU) as follows:

x ∈ U⇒ r(x) = min{n ≥ 1; Tnx ∈ U} and TU(x) = Tr(x)x,

V ⊂ U⇒ µU(V) =
µ(V)
µ(U)

.

We can also define a induced cocycle AU over this system as

x ∈ U⇒ AU(x) = Ar(x)(x).
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By [15, Lemma 2.2], the system (U,TU, µU) is ergodic and

λ(AU) =
λ(AU)
µ(U)

.

Let U = X r (TZ ∪ · · · ∪ Tn−1Z) ⊃ Z. It follows from [15, Lemma 3.4]
that Z is not a coboundary for (U,TU, µU).

We have

x ∈ U ⇒ BU(x) =

{
Bn(x) if x ∈ Z
A(x) otherwise

Hence the first case guarantees that λ(BU) = 0 and therefore λ(B) = 0.
�

4.1.4. Conclusion of the proof.

Proof of Theorem 4.1. LetH , resp.Uδ, is the set of A’s such that (T,A)
is uniformly hyperbolic, resp. the Lyapunov exponent is less than δ.
Then H and Uδ are open subsets of C(X, SL(2,R)), respectively by
Proposition 2.6 and Lemma 4.3. To prove the Theorem, we will show
that for every δ > 0,H ∪Uδ is dense in C(X, SL(2,R)). It is sufficient
to show that given A < H and δ > 0, there exists Ã ∈ Uδ arbitrarily
close to A.

So fix A and δ as above, and let ε > 0. We can assume T is
aperiodic. Let the cocycle B and the set Y be given by Lemma 4.6,
with ‖B − A‖∞ < ε. Because of Lemma 4.7, we can assume Y is not a
coboundary. Thus Lemma 4.8 gives that λ(B) = 0. Take M � ‖B‖∞.
Using Lusin’s theorem (see [17], for instance), we see that can find
a continuous Ã : X → SL(2,R) that differs from B only in a set of
very small measure, and such that ‖Ã−A‖∞ = O(ε). By Lemma 4.4 it
follows that λ(Ã) < δ. �
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