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Abstract. Conditions are provided under which lack of domination of
a homoclinic class yields robust heterodimensional cycles. Moreover,
so-called viral homoclinic classes are studied. Viral classes have the
property of generating copies of themselves producing wild dynamics
(systems with infinitely many homoclinic classes with some persistence).
Such wild dynamics also exhibits uncountably many aperiodic chain
recurrence classes. A scenario (related with non-dominated dynamics)
is presented where viral homoclinic classes occur.

A key ingredient are adapted perturbations of a diffeomorphism along
a periodic orbit. Such perturbations preserve certain homoclinic rela-
tions and prescribed dynamical properties of a homoclinic class.

1. Introduction

There are two sort of cycles associated to periodic saddles that are the
main mechanism for breaking hyperbolicity of systems:

• Homoclinic tangencies: A diffeomorphism f has a homoclinic tangency
associated to a transitive hyperbolic set K if there are points X and Y in K
whose stable and unstable manifolds have some non-transverse intersection.
The homoclinic tangency is Cr-robust if there is a Cr-neighborhood N of f
such that the hyperbolic continuation Kg of K has a homoclinic tangency
for every g ∈ N .

• Heterodimensional cycles: A diffeomorphism f has a heterodimen-
sional cycle associated to a pair of transitive hyperbolic sets K and L of f if
their stable bundles have different dimensions and their invariant manifolds
meet cyclically, that is, W s(K)∩W u(L) 6= ∅ and W u(K)∩W s(L) 6= ∅. The
heterodimensional cycle is Cr-robust if there is a Cr-neighborhood V of f
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such that the continuations Kg and Lg of K and L have a heterodimensional
cycle for every g ∈ V.

Given a closed manifold M consider the space Diffr(M) of Cr-diffeomor-
phisms defined on M endowed with the usual Cr-topology. There is the
following conjecture about hyperbolicity and cycles:

Conjecture 1 (Palis’ density conjecture, [32]). Any diffeomorphism f ∈
Diffr(M), r ≥ 1, can be Cr-approximated either by a hyperbolic diffeomor-
phism (i.e. satisfying the Axiom A and the no-cycles condition) or by a
diffeomorphism that exhibits a homoclinic tangency or a heterodimensional
cycle.

This conjecture was proved for C1-surface diffeomorphisms in [35]. For
some partial progress in higher dimensions see [12, 20].

Besides this conjecture one also aims to understand the dynamical phe-
nomena associated to homoclinic tangencies and heterodimensional cycles
and the interplay between them. We discuss these topics in the next para-
graphs.

Homoclinic tangencies of C2-diffeomorphisms are the main source of non-
hyperbolic dynamics in dimension two, see [33, 30]. Namely, as a key mecha-
nism a homoclinic tangency of a surface C2-diffeomorphism yields C2-robust
homoclinic tangencies and generates open sets of diffeomorphisms where the
generic systems display infinitely many sinks or sources, [28, 29]. This leads
to the first examples of the so-called wild dynamics (i.e. systems having
infinitely many elementary pieces of dynamics with some persistence, see
[16, Chapter 10] for a discussion and precise definitions). Moreover, these
homoclinic tangencies also yield infinitely many regions containing robust
homoclinic tangencies associated to other hyperbolic sets (this follows from
[29] and [18], see also the comments in [16, page 33]). Using the terminol-
ogy in [6], this means that, for surface diffeomorphisms, the existence of
C2-robust tangencies is a self-replicating or viral property, for more details
see Section 1.6.

Comparing with the C2-case, C1-diffeomorphisms of surfaces do not have
hyperbolic sets with robust homoclinic tangencies, see [27] and also [6,
Corollary 3.5] for a formal statement. However, in higher dimensions C1-
diffeomorphisms can display robust tangencies, see for instance [38, 5].

In higher dimensions, the first examples of robustly non-hyperbolic dy-
namics were obtained by Abraham and Smale in [4] by constructing diffeo-
morphisms with robust heterodimensional cycles (although this terminology
is not used there). Moreover, the diffeomorphisms with heterodimensional
cycles in [4] also exhibit robust homoclinic tangencies (this follows from
[13]).

In the C1-setting, the generation of homoclinic tangencies is a quite well
understood phenomenon that is strongly related to the existence of non-
dominated splittings, [39, 17, 24]. Contrary to the case of tangencies, the
generation of heterodimensional cycles is not well understood and remains
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the main difficulty for solving Palis conjecture in the C1-case. In contrast
with the case of C1-homoclinic tangencies, heterodimensional cycles yield
C1-robust cycles after small C1-perturbations, [12]. However, in dimension
d ≥ 3, we do not know “when and how” homoclinic tangencies may oc-
cur C1-robustly. In fact, all known examples of C1-robust tangencies also
exhibit C1-robust heterodimensional cycles1. For further discussion see [6,
Conjecture 6].

These comments lead to the following strong version of Palis’ conjecture
(in fact, this reformulates [12, Question 1]):

Conjecture 2 ([6, Conjecture 7]). The union of the set of hyperbolic diffeo-
morphisms (i.e. satisfying the Axiom A and the no-cycle condition) and of
the set of diffeomorphisms having a robust heterodimensional cycle is dense
in Diff1(M).

This conjecture holds in two relevant C1-settings: the conservative diffeo-
morphisms in dimension d ≥ 3 and the so called tame systems (diffeomor-
phisms whose chain recurrence classes are robustly isolated), see [19] and
[12, Theorem 2]. See also previous results in [1, 23].

1.1. Some informal statements and questions. In what follows we fo-
cus on C1-diffeomorphisms defined on closed manifolds of dimension d ≥ 3.
We now briefly and roughly describe some of our results and the sort of
questions we will consider (the precise definitions and statements will be
given throughout the introduction).

A) When do homoclinic tangencies yield heterodimensional cycles? In terms
of dominated splittings, Theorem 1 and Corollary 2 give a natural setting
where homoclinic tangencies generate heterodimensional cycles after arbi-
trarily small C1-perturbations.

B) What are obstructions to the occurrence of heterodimensional cycles?
Sectional dissipativity prevents the “coexistence” of periodic saddles with
different indices and hence the occurrence of heterodimensional cycles. For
homoclinic classes that do not have dominated splittings, we wonder if this is
the only possible obstruction for the generation of heterodimensional cycles.
Corollary 4 shows that sectional dissipativity is indeed the only obstruction
for the occurrence of heterodimensional cycles in homoclinic classes without
any dominated splitting.

C) Is it possible to turn the lack of domination into a robust property? For
homoclinic classes, Theorem 5 shows that the non-existence of a dominated
splitting of index i can always be made a robust property when the class
contains some saddle of stable index different from i.

D) Which are the dynamical features associated to robust non-dominated
dynamics? In contrast to the case of surfaces, homoclinic tangencies and

1The converse is false: there are diffeomorphisms (of partially hyperbolic type with one
dimensional central direction) that display robust heterodimensional cycles but cannot
have homoclinic tangencies, see for instance [26, 9].
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“some” lack of domination do not always lead to wild dynamics. A ho-
moclinic tangency corresponds to the lack of domination of some index.
For homoclinic classes containing saddles of several stable indices, Theo-
rem 7 and Corollary 8 claim that the robust lack of any domination leads to
wild dynamics. In fact, Theorem 7 asserts that the property of “total non-
domination plus coexistence of saddles of several indices” provides another
example of a viral property of a chain recurrence class. This property leads
to the generic coexistence of a non-countable set of different (aperiodic)
classes, extending previous results in [11]

We next define precisely the main definitions involved in this paper and
state our main results.

1.2. Basic definitions. We will focus on two types of elementary pieces of
the dynamics: homoclinic classes and chain recurrence classes.

The homoclinic class of a hyperbolic periodic point P , denoted byH(P, f),
is the closure of the transverse intersections of the stable and unstable mani-
folds of the orbit of P . Note that the class H(P, f) coincides with the closure
of the saddles Q homoclinically related with P : the stable manifold of the
orbit of Q transversely meets the unstable manifold of the orbit of P and
vice-versa.

To define a chain recurrence class we need some preparatory definitions.
A finite sequence of points (Xi)

n
i=0 is an ǫ-pseudo-orbit of a diffeomorphism f

if dist (f(Xi),Xi+1) < ǫ for all i = 0, . . . , n−1. A point X is chain recurrent
for f if for every ǫ > 0 there is an ǫ-pseudo-orbit (Xi)

n
i=0, n ≥ 1, starting

and ending at X (i.e. X = X0 = Xn). The chain recurrent points form
the chain recurrent set of f , denoted by R(f). This set splits into disjoint
chain recurrence classes defined as follows. The class of a point X ∈ R(f),
denoted by C(X, f), is the set of points Y ∈ M such that for every ǫ > 0
there are ǫ-pseudo-orbits joining X to Y and Y to X. A chain recurrence
class that does not contain periodic points is called aperiodic.

As a remark, in general, for hyperbolic periodic points their chain re-
currence classes contain their homoclinic ones. However, for C1-generic
diffeomorphisms the equality holds, [8, Remarque 1.10].

A key ingredient in this paper is the notion of dominated splitting :

Definition 1.1 (Dominated splitting). Consider a diffeomorphism f and a
compact f-invariant set Λ. A Df-invariant splitting TΛM = E ⊕ F over Λ
is dominated if the fibers Ex and Fx of E and F have constant dimensions
and there exists k ∈ N such that

||Dxf
k(u)||

||Dxfk(w)||
≤

1

2
, (1.1)

for every x ∈ Λ and every pair of unitary vectors u ∈ Ex and w ∈ Fx.
The index of the dominated splitting is the dimension of E.
When we want to stress on the role of the constant k we say that the

splitting is k-dominated.
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Given a periodic point P of f ∈ Diff1(M) denote by π(P ) its period. We

order the eigenvalues λ1(P ), . . . , λd(P ) of DP f
π(P ) in increasing modulus

and counted with multiplicity, that is, |λi(P )| ≤ |λi+1(P )|. We call λi(P )
the i-th multiplier of P . The i-th Lyapunov exponent of P is χi(P ) =

1
π(P ) log |λi(P )|. If χi(P ) < χi+1(P ) < 0 then one can define the strong

stable manifold of dimension i of the orbit of P , denoted by W ss
i (P, f), as

the only f -invariant embedded manifold of dimension i tangent to the i-
dimensional eigenspace corresponding to the multipliers λ1(P ), . . . , λi(P ).
There are similar definitions for strong unstable manifolds.

Recall that if Λ is hyperbolic set of f then every diffeomorphism g close
to f has a hyperbolic set Λg (called the continuation of Λ) that is close and
conjugate to Λ. If the set Λ is transitive the dimension of its stable bundle
is called its stable index or simply s-index.

Throughout this paper we consider diffeomorphisms defined on closed
manifolds of dimension d ≥ 3. Unless it is explicitly mentioned, we always
consider C1-diffeomorphisms, C1-neighborhoods, and so on. We repeatedly
consider perturbations of diffeomorphisms. By a perturbation of a diffeo-
morphism f we mean here a diffeomorphism g that is arbitrarily C1-close to
f . To emphasize the size of the perturbation we say that a diffeomorphism
g is a ε-perturbation of f ∈ Diff1(M) if the C1-distance between f and g is
less than ε.

1.3. Heterodimensional cycles generated by homoclinic tangencies.
Recall that the generation of homoclinic tangencies is closely related to the
absence of dominated splittings over homoclinic classes. In fact, in [24]
it is proved that if the stable/unstable splitting over the periodic points
homoclinically related to a saddle P is not dominated then there are diffeo-
morphisms g arbitrarily C1-close to f with a homoclinic tangency associated
to Pg. See also previous results in [39].

Our main result about the interplay between homoclinic tangencies and
heterodimensional cycles is stated in the following theorem.

Theorem 1. Let f be a diffeomorphism and P a hyperbolic periodic saddle
of f with stable index i ≥ 2. Assume that

(1) there is no dominated splitting over H(P, f) of index i,
(2) there is no dominated splitting over H(P, f) of index i− 1, and
(3) the Lyapunov exponents of P satisfy χi(P ) + χi+1(P ) ≥ 0.

Then there are diffeomorphisms g ∈ Diff1(M) arbitrarily C1-close to f with
a heterodimensional cycle associated to Pg and a saddle Rg ∈ H(Pg, g) of
stable index i− 1.

Moreover, the diffeomorphisms g can be chosen such that there are hy-
perbolic transitive sets Lg and Kg containing Pg and Rg, respectively, hav-
ing simultaneously a robust heterodimensional cycle and a robust homoclinic
tangency.

Remark 1.2.
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(i) In fact, we prove Theorem 1 under the following slightly weaker hypothesis
replacing condition (3).

(3’) For every δ > 0 there exists a periodic point Qδ homoclinically related
to P whose Lyapunov exponents satisfy χi(Qδ) + χi+1(Qδ) ≥ −δ.

(ii) Hypothesis (2) can be replaced by the following condition (see Proposi-
tion 8.2).

(2’) There is a diffeomorphism g arbitrarily C1-close to f having a pe-
riodic point Rg that is homoclinically related to Pg and that has a
strong stable manifold of dimension i − 1 intersecting the unstable
manifold of the orbit of Rg.

Theorem 1 will be proved in Section 8.1. Let us observe that for three
dimensional diffeomorphisms a version of this theorem was proved in [37]
replacing condition (3) by a stronger one requiring existence of a saddle Q
homoclinically related to P such that χ1(Q)+χ2(Q)+χ3(Q) > 0. Note that
conditions (3) and (3’) are related to the notion of a sectionally dissipative
bundle that is also considered in [34, 36], see Section 1.4.

Condition (1) is used to get homoclinic tangencies associated to P . Con-
ditions (2) and (2’) assure that the homoclinic class is not contained in a
normally hyperbolic surface (this would be an obstruction for the genera-
tion of heterodimensional cycles). Finally, condition (3) implies that these
tangencies generate saddles of index i− 1.

We would like to replace condition (3) (or (3’)) by a weaker one about
Lyapunov exponents of measures supported over the class, namely requiring
the existence of an ergodic measure µ whose i-th and (i + 1)-th Lyapunov
exponents satisfy χi(µ)+χi+1(µ) ≥ 0. This potential extension is related to
the still open problem of approximation of ergodic measures supported on a
homoclinic class by measures supported on periodic points of the class, see
[6, Conjecture 2] and [2].

There is also the following “somewhat symmetric” version of Theorem 1
that is an immediate consequence of it.

Corollary 2. Consider a hyperbolic saddle P of stable index i, 2 ≤ i ≤ d−2,
of a diffeomorphism f . Assume that there are no dominated splittings over
H(P, f) of indices i − 1, i, and i + 1. Then there is a diffeomorphism g
arbitrarily C1-close to f with a heterodimensional cycle associated to Pg

and a saddle Rg ∈ H(Pg, g) of stable index i− 1 or i+ 1.
Moreover, the diffeomorphism g can be chosen such that there are hy-

perbolic transitive sets Lg and Kg containing Pg and Rg, respectively, hav-
ing simultaneously a robust heterodimensional cycle and a robust homoclinic
tangency.

Theorem 1 has the following consequence for C1-generic diffeomorphisms
of three dimensional manifolds that slightly generalizes the dichotomy “dom-
ination versus infinitely many sources/sinks” in [15].
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Corollary 3. Let M be a closed manifold of dimension three. There is
a residual subset R of Diff1(M) such that for every diffeomorphism f and
every saddle P of stable index 2 of f (at least) one of the following three
possibilities holds:

• H(P, f) has a dominated splitting;
• H(P, f) is the Hausdorff limit of periodic sinks;
• f has a robust heterodimensional cycle associated to P and H(P, f)

is the Hausdorff limit of periodic sources.

1.4. Non-domination far from heterodimensional cycles implies sec-
tional dissipativity. One approach for settling Palis conjecture is to study
dynamics far from homoclinic tangencies. In this case the diffeomorphisms
necessarily have nice dominated splittings that are adapted to their index
structure, see for instance [39]. In contrast, dynamics far from heterodimen-
sional cycles is yet little understood. To address this point we will make
the following “local version” of Conjecture 2 where a given homoclinic class
is specified.

Conjecture 2’. Let P be a hyperbolic saddle of a diffeomorphism f such
that for every diffeomorphism g that is C1-close to f there is no heterodi-
mensional cycle associated to the continuation Pg of P . Then there exists
a diffeomorphism g arbitrarily C1-close to f such that the homoclinic class
H(Pg, g) is hyperbolic.

To discuss Conjecture 2’ let us first consider a simple illustrating case
involving the notion of sectional dissipativity . Let P be a hyperbolic saddle
of a diffeomorphism f of stable index 1 whose homoclinic class H(P, f)
satisfies the following two properties:

• H(P, f) has no dominated splitting of index 1 and
• H(P, f) is uniformly sectionally dissipative for f−1, that is, there is
n > 0 such that the Jacobian of f in restriction to any 2-plane is
strictly larger than 1.

Under these hypotheses, the lack of domination of H(P, f) corresponding
to the index of P enables a homoclinic tangency associated to P after a
perturbation. However, the sectional dissipativity prevents the existence of
saddle points of stable index larger than 1 in a small neighborhood of the
homoclinic class of P . Thus any diffeomorphism g that is C1-close to f
cannot have a heterodimensional cycle associated to Pg.

We wonder if the case above is the only possible setting where homoclinic
tangencies far from heterodimensional cycles can occur. We provide a par-
tial result to this question by considering homoclinic classes without any
dominated splitting and a weaker notion of sectional dissipativity.

Consider a set of periodic points P of a diffeomorphism f and a Df -
invariant subbundle E defined over the set P. The bundle E is said to be
sectionally dissipative at the period if for any point R ∈ P there is a constant

0 < αR < 1 such that |λk λk+1| < α
π(R)
R for every pair of multipliers λk and
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λk+1 of R whose eigendirections are contained in E. When E = TPM then
we call the set of periodic points P sectionally dissipative at the period. In
the case that the constant αR can be chosen independently of R we call the
bundle E (or the set P) uniformly sectionally dissipative at the period.

Corollary 4. Let M be a closed manifold M with dim(M) ≥ 3 and f : M →
M a diffeomorphism. Consider a homoclinic class H(P, f) without any dom-
inated splitting that is far from heterodimensional cycles. Then the set of
periodic points of f homoclinically related to P is uniformly sectionally dis-
sipative at the period either for f or for f−1.

1.5. Robust non-domination. We first recall that the existence of a dom-
inated splitting is (in some sense) an open property. More precisely, if Λ is
an f -invariant compact set with a dominated splitting TΛM = E ⊕ F , then
there are neighborhoods U of Λ in M and U of f in Diff1(M) such that for
every g ∈ U and every g-invariant set Σ contained in U there is a dominated
splitting for Σ of the same index as E⊕F , see for instance [16, Chapter B.1].
Observe that the next theorem implies that, in some cases, the absence of
domination of a homoclinic class can, after a perturbation, be turned into a
robust property.

Theorem 5. Let H(P, f) be a non trivial homoclinic class of a periodic
point P of stable index i. Assume that for some j 6= i there is no dominated
splitting of index j. Then there exists a diffeomorphism g arbitrarily C1-
close to f having a periodic point Q that is homoclinically related to Pg and
such that λj(Q) and λj+1(Q) are non-real, have the same modulus, and any
k-th multiplier of Q has modulus different from |λj(Q)|, (k 6= j, j + 1).

An immediate consequence of this theorem is that for every diffeomor-
phism h close to g the homoclinic class H(Ph, h) does not have a dominated
splitting of index j.

A more detailed version of this theorem is given in Proposition 5.2. Un-
fortunately, it still remains to settle the hardest case in which the lack of
domination of the class H(P, f) corresponds to the stable index of P .

Observe that, under the hypotheses of Theorem 5, the constructions in
[15] imply that there are points Q homoclinically related to P whose mul-
tipliers λj(Q) and λj+1(Q) can be made non-real by small perturbations.
The difficulty in the theorem is to preserve the homoclinic relation between
P and Q throughout the perturbation process.

The following result is a consequence of Theorem 5 and the fact that for
C1-generic diffeomorphisms two saddles in the same chain recurrence class
robustly belong to the same chain recurrence class (see Section 5 for the
proof).

Corollary 6. There is a residual set G of Diff1(M) such that for every f ∈ G
and every homoclinic class H(P, f) of f having periodic points of different
stable indices the following holds:
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if the class H(P, f) has no dominated splitting of index j then for any dif-
feomorphism g in a neighborhood of f the chain recurrence class of Pg has
no dominated splitting of index j.

1.6. Robust non-domination and self-replication. In [11, Definition
1.1], for diffeomorphisms defined on three-dimensional manifolds, we con-
sider the following open property for chain recurrence classes that we call
Property U.

(i) The class contains two transitive hyperbolic sets L andK of different
stable indices related by a robust heterodimensional cycle.

(ii) Each of these sets K, L contains a saddle with non-real multipliers.
(iii) Each of these sets contains a saddle whose Jacobian is greater than

one and a saddle whose Jacobian is less than one.

A key ingredient in [11] is the notion of universal dynamics: Given a
diffeomorphism f with Property U by perturbation we can produce “any
type” of dynamics in a ball isotopic to the identity (for large iterations of
the diffeomorphisms). In particular, after perturbations one can re-obtain
properties of any orientation preserving diffeomorphism of a closed ball, see
[11, Definition 1.3]. As a consequence, chain recurrence classes satisfying
Property U generate new different classes satisfying also this property. Thus
Property U is a “self-replicant” or “viral” property. This is the main moti-
vation behind the definition of a viral property in [6, Sections 7.3-7.5].

Definition 1.3 (Viral property). A property P of chain recurrence classes
of saddles is said to be Ck-viral if for every diffeomorphism f and every
saddle P of f whose chain recurrence class C(P, f) satisfies P the following
conditions hold:

Robustness. There is a Ck-neighborhood U of f such that C(Pg, g) also
satisfies P for all g ∈ U .

Self-replication. For every Ck-neighborhood V of f and for every neigh-
borhood V of C(P, f) there are a diffeomorphism g ∈ V and a hyperbolic
periodic point Qg ∈ V of g such that C(Qg, g) is different from C(Pg, g) and
satisfies property P.

As observed above, the existence of a robust homoclinic tangency (asso-
ciated to a transitive hyperbolic set in the class) is an example of a C2-viral
property for chain recurrence classes in dimension two.

As a consequence of the above results we now confirm [6, Conjecture
14] claiming that the property of robust non-existence of any dominated
splitting over a chain recurrence class of a saddle is viral in the case that the
class contains saddles whose stable indices are different from 1 and dim(M)−
1. We formulate the following generalization of Property U.

Definition 1.4 (Property V). Given a saddle P of a diffeomorphism f ,
the chain recurrence class C(P, f) of P satisfies Property V if there is a
C1-neighborhood U of f such that for all g ∈ U the chain recurrence class
C(Pg, g) of Pg satisfies the following two conditions:
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• (non-domination) C(Pg, g) does not have any dominated splitting,
• (index variability) C(Pg, g) contains a saddle Qg whose stable index

is different from the one of Pg.

Observe that the set of C1-diffeomorphisms satisfying Property V is in-
deed non-empty, see Section 9.3.

Theorem 7. Property V is C1-viral for chain recurrence classes.

The following result is a consequence of Theorem 7 and the properties of
C1-generic diffeomorphisms extending [11]. In fact, the corollary holds for
any viral property of a chain recurrence class containing a saddle.

Corollary 8. Let C(P, f) be a chain recurrence class satisfying Property V.
Then there are a neighborhood U of f and a residual subset GU of U such
that for every g ∈ GU

• there are infinitely (countably) many pairwise disjoint homoclinic
classes, and

• there are uncountably many aperiodic chain recurrence classes.

Indeed the homoclinic classes obtained in the corollary can be chosen to
also satisfy Property V. The proofs of Theorem 7 and Corollary 8 are in
Section 9.

Let us observe that nature of the proof of Theorem 7 is quite different
from the approach in [11], where universal dynamics is the key ingredient.
In [11] this universal dynamics is obtained by considering saddles in the
chain recurrence class whose Jacobians are larger and smaller than one, re-
spectively. A restriction of this construction is that all Lyapunov exponents
of the aperiodic classes obtained in [11] are zero. This follows from the fact
that one considers maps whose “returns” are close to the identity. Here we
use directly the self-replication property. This allows us to obtain aperiodic
classes with regular points having Lyapunov exponents uniformly bounded
away from zero. See [6, Section 7.4], specially Problem 6, for further discus-
sion.

Finally, bearing in mind the results in [37] and Corollary 2, we intro-
duce the following variation of Property V for diffeomorphisms defined on
manifolds of dimension d ≥ 4.

Definition 1.5 (Property V′). Given a saddle P of a diffeomorphism f
the chain recurrence class C(P, f) of P has Property V′ if there is a C1-
neighborhood U of f such that for all g ∈ U the chain recurrence class
C(Pg, g) of Pg satisfies the following two conditions:

• C(Pg, g) does not have any dominated splitting and
• C(Pg, g) contains a saddle with stable index i 6∈ {1,dim(M) − 1}.

Corollary 2 implies that in this case, after a perturbation, the chain recur-
rence class C(Pg, g) robustly satisfies the index variability condition. Thus,
after a perturbation, Property V′ implies Property V. In fact, we will
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see that these two properties are “essentially equivalent”, see Lemmas 9.2
and 9.3. Finally, we have the following:

Remark 1.6. Theorem 7 and Corollary 8 hold for Property V′.

Organization of the paper. We first observe that we will use systemati-
cally several C1-perturbation results imported from [24, 25, 7]. These results
allow us to realize dynamically perturbations of cocycles associated to the
derivatives of diffeomorphisms along periodic orbits (see specially Section 3.2
and 4.2).

• In Section 2 we recall results about the generation of homoclinic tangencies
and heterodimensional cycles associated to homoclinic classes.

• An ingredient of our paper is the notion of an adapted perturbation of a dif-
feomorphism, that is, a small perturbation of a diffeomorphism throughout
the orbit of a periodic point that preserves some homoclinic relations and
some prescribed dynamical properties of a given homoclinic class, (see Def-
inition 3.1). An essential feature of adapted perturbations is that one can
perform simultaneously finitely many of them preserving some prescribed
properties of the homoclinic class. These perturbations are introduced in
Section 3.

• Using adapted perturbations we prove in Section 4 two important technical
results (Propositions 4.7 and 4.8) claiming that the lack of domination of a
homoclinic class yields periodic orbits having multiple Lyapunov exponents
and weak hyperbolicity.

• In Sections 5 and 6, in the non-dominated setting we get periodic orbits
inside a homoclinic class having non-real multipliers and prove Theorem 5.
This proof is based on Proposition 5.2 whose proof is the most difficult step
of the paper.

• In Section 7 we obtain homoclinic intersections associated to strong invari-
ant manifolds of periodic points that will allow us to get heterodimensional
cycles and finally prove Theorem 1 in Section 8.

• Finally, we study viral properties of chain recurrence classes and prove
Theorem 7 and Corollary 8 in Section 9 .

2. Homoclinic tangencies and heterodimensional cycles

In this section we recall some results about generation of homoclinic tan-
gencies and robust heterodimensional cycles associated to homoclinic classes.

2.1. Homoclinic tangencies. Next lemma states the relation between the
lack of domination over a periodic orbit and the generation of homoclinic
tangencies.

Lemma 2.1 ([24, Theorem 3.1]). For any K > 1, ε > 0, and d ∈ N, there
are constants k0 and ℓ0 with the following property.

• For every f ∈ Diff1(M) with dim(M) = d such that the norms of
Df and Df−1 are both bounded by K, and
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• for every periodic point P of f of saddle-type such that
– the period of P is larger than ℓ0 and
– the stable/unstable splitting Es(f i(P ))⊕Eu(f i(P )) over the or-

bit of P is not k0-dominated,

there is an ε-perturbation g of f whose support is contained in an arbitrarily
small neighborhood of the orbit of P and such that the stable and unstable
manifolds W s(P, g) and W u(P, g) of P have a homoclinic tangency.

Moreover, if Q is homoclinically related to P for f then the perturbation
g can be chosen such that Qg and P are homoclinically related (for g).

Remark 2.2. Lemma 2.1 implies that the perturbation g of f can be chosen
such that the saddle P has a homoclinic tangency and its homoclinic class
H(P, g) is non-trivial. Moreover, the orbit of tangency can be chosen inside
the homoclinic class H(P, g).

2.2. Robust heterodimensional cycles. Let us observe that a homo-
clinic class H(P, f) may contain saddles of different indices. But, in princi-
ple, it is not guaranteed that such a property still holds for perturbations
of f . We next collect some results from [14] that will allow us to get such a
property in a robust way.

We say that a heterodimensional cycle associated to a pair of transitive
hyperbolic sets has coindex one if the s-indices of theses sets differ by one.

Lemma 2.3 ([14]). Let f ∈ Diff1(M) be a diffeomorphism having a coindex
one heterodimensional cycle associated to a pair of hyperbolic periodic points
P and Q such that the homoclinic class H(P, f) is non trivial. Then there is
a diffeomorphism g arbitrarily C1-close to f with a pair of hyperbolic transi-
tive sets Lg and Kg having a robust heterodimensional cycle and containing
the continuations Pg and Qg of P and Q, respectively.

There is the following consequence of this lemma for C1-generic systems:

Corollary 2.4 ([14]). There is a residual subset G of Diff1(M) such that for
every diffeomorphism f ∈ G and every pair of periodic points P and Q of
stable indices i < j in the same homoclinic class there is a (finite) sequence
of transitive hyperbolic sets Ki,Ki+1 . . . ,Kj such that

• P ∈ Ki, Q ∈ Kj,
• the stable index of Kn is n, n = i, i+ 1, . . . , j, and
• the sets Kk and Kk+1 have a robust heterodimensional cycle for all
k = i, . . . , j − 1.

3. Adapted perturbations and generalized Franks’ lemma

In this section, we collect some results about C1-perturbations of diffeo-
morphisms. Observe that if g1, . . . , gn are ε-perturbations of f with disjoint
supports V1, . . . , Vn then there is an ε-perturbation g of f supported in the
union of the sets Vi such that g coincides with gi over the set Vi.
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3.1. Adapted perturbations. We next introduce a kind of perturbation
of diffeomorphisms along periodic orbits that preserves homoclinic relations.
Moreover, these perturbations can be performed simultaneously and inde-
pendently along different periodic orbits.

In what follows, given ̺ > 0, we denote by W s,u
̺ (P, f) the stable/unstable

manifolds of size ̺ of the orbit of P .

Definition 3.1 (Adapted perturbations). Consider a property P about pe-
riodic points. Given f ∈ Diff1(M), a pair of hyperbolic periodic points P and
Q of f that are homoclinically related, and a neighborhood U ⊂ Diff1(M) of
f we say that there is a perturbation of f in U along the orbit of Q that is
adapted to H(P, f) and property P if

• for every neighborhood V of the orbit of Q and
• for every ̺ > 0 and every pair of compact sets Ks ⊂ W s

̺ (Q, f) and
Ku ⊂W u

̺ (Q, f) disjoint from V

there is a diffeomorphism g ∈ U such that:

• g coincides with f outside V and along the f-orbit of Q,
• the points Pg and Qg are homoclinically related for g,
• the sets Ks,Ku are contained in W s

̺ (Q, g) and W u
̺ (Q, g), respec-

tively, and
• the saddle Q satisfies property P.

When the neighborhood U of f is the set of diffeomorphisms that are ε-
C1-close to f we say that g is an ε-perturbation of f along the orbit of Q
that is adapted to H(P, f) and property P.

Examples of property P for periodic points are the existence of non-real
multipliers and negative Lyapunov exponents.

3.2. Generalized Franks’ lemma. We need the following extension of the
so-called Franks Lemma [22] about dynamical realizations of perturbations
of cocycles along periodic orbits. The novelty of this extension is that be-
sides the dynamical realization of the cocycle throughout a periodic orbit
the perturbations also preserve some homoclinic/heteroclinic intersections.
Next lemma is a particular case of [25, Theorem 1] and is a key tool for
constructing adapted perturbations. Recall that a linear map B ∈ GL(d,R)
is hyperbolic if every eigenvalue λ of B satisfies |λ| 6= 1.

Lemma 3.2 (Generalized Franks’ Lemma, [25]). Consider ε > 0, a diffeo-
morphism f ∈ Diff1(M) and a hyperbolic periodic point Q of period ℓ = π(Q)
of f . Then

• for any one-parameter family of linear maps (An,t)n=0,...,ℓ−1, t∈[0,1],,
An,t ∈ GL(d,R), d = dim(M), such that
(1) An,0 = Df(fn(Q)),
(2) for all n = 0, . . . , ℓ− 1 and all t ∈ [0, 1] it holds

max
{

‖Df(fn(Q)) −An,t‖, ‖Df
−1(fn(Q)) −A−1

n,t‖
}

< ε,
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(3) Bt = Aℓ−1,t ◦ · · · ◦A0,t is hyperbolic for all t ∈ [0, 1],
• for every neighborhood V of the orbit of Q, every ̺ > 0, and every

pair of compact sets Ks ⊂ W s
̺ (Q, f) and Ku ⊂ W u

̺ (Q, f) disjoint
from V ,

there is an ε-perturbation g of f such that

(a) g and f coincide throughout the orbit of Q and outside V ,
(b) Ks ⊂W s

̺ (Q, g) and Ku ⊂W u
̺ (Q, g), and

(c) Dg(gn(Q)) = Dg(fn(Q)) = An,1 for all n = 0, . . . , ℓ− 1.

4. Lyapunov exponents of periodic orbits

In this section we see that the lack of domination of a homoclinic class
yields perturbations such that there are periodic points of the class whose
Lyapunov exponents are multiple or close to zero, see Propositions 4.7 and
4.8. We first state some preparatory results and prove these propositions in
Section 4.3.

4.1. Lyapunov exponents and homoclinic relations. We will use re-
peatedly throughout the paper the following result.

Lemma 4.1. There is a residual subset G of Diff1(M) such that for every
f ∈ G, every saddle P of f , every non-trivial and locally maximal transitive
hyperbolic set Λ of f containing P , and every ε > 0 there is a saddle Q ∈ Λ
such that

• |χj(Q) − χj(P )| < ε for all j ∈ {1, . . . , d}, and
• the orbit of Q is ε-dense in Λ.

In particular, the saddle Q can be chosen with arbitrarily large period.

This results follows from the arguments in the proofs of [3, Corollary 2]
and [2, Theorem 3.10] using standard constructions that allow us to dis-
tribute these orbits throughout the “whole” transitive hyperbolic set while
keeping the control of the exponents.

4.2. Dominated splittings and cocycles over periodic orbits. We
next study the lack of domination of homoclinic classes. For that we consider
periodic orbits (of large period) in the class and their associated cocycles.
Next result is a standard fact about dominated splittings (see for instance
[16, Appendix B]).

Lemma 4.2 (Extension of a dominated splitting to a closure). Consider
an f-invariant set Λ having a k-dominated splitting of index i. Then the
closure of Λ also has a k-dominated splitting of index i that coincides with
the one over Λ.

As in the case of periodic points of diffeomorphisms, given a family of
linear maps A1, . . . , Aℓ ∈ GL(d,R) we consider the product B = Aℓ ◦· · ·◦A1

and the eigenvalues λ1(B), . . . , λd(B) of B ordered in increasing modulus
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and counted with multiplicity. We define the i-th Lyapunov exponent of B
by

χi(B) =
1

ℓ
log |λi(B)|.

The family of linear maps above is bounded by K if ‖An‖ and ‖A−1
n ‖ are

both less than or equal to K for all n = 1, . . . , ℓ.
Note that Definition 1.1 of a dominated splitting over an invariant set of

a diffeomorphism can be restated for sequences of linear maps.

Next lemma relates the lack of domination of a cocycle and the generation
of sinks or sources.

Lemma 4.3 ([17, Corollary 2.19 and Remark 2.20]). For every K > 1,
ε > 0, and d ∈ N, there are constants k0 and ℓ0 with the following property.

• For every f ∈ Diff1(M) with dim(M) = d such that the norms of
Df and Df−1 are both bounded by K, and

• for every periodic point P of f of period larger than ℓ0 such that
there is no any k0-dominated splitting over the orbit of P ,

there is an ε-perturbation g of f whose support is contained in an arbitrarily
small neighborhood of the orbit of P and such that P is either a sink or a
source of g.

Next result is a finer version of the previous lemma that allows us to
modify only two consecutive Lyapunov exponents of a cocycle.

Lemma 4.4 ([7, Theorem 4.1 and Proposition 3.1]). For every K > 1,
ε > 0 , and d ≥ 2, there are constants k0 and ℓ0 with the following property.

Consider ℓ ≥ ℓ0 and linear maps A1, . . . , Aℓ in GL(d,R), such that:

• every An is bounded by K,
• for any i ∈ {1, . . . , d − 1}, the linear map B = Aℓ ◦ · · · ◦ A1 has no

any k0-dominated splitting of index i.

Then for every j ∈ {1, . . . , d−1}, there exist one parameter families of linear
maps (An,t)t∈[0,1] in GL(d,R), n = 1, . . . , ℓ, such that

(1) An,0 = An for all n = 1, . . . , ℓ, and

(2) An,t − An and A−1
n,t − A−1

n are bounded by ε for all t ∈ [0, 1] and all
n = 1, . . . , ℓ.

Consider the linear map

Bt = Aℓ,t ◦ · · · ◦A1,t.

Then, for any t ∈ [0, 1], the Lyapunov exponents of the map Bt satisfies

(3) χm(Bt) = χm(B) if m 6= j, j + 1,
(4) χj(Bt) + χj+1(Bt) = χj(B) + χj+1(B),
(5) χj(Bt′) is non-decreasing and χj+1(Bt′) is non-increasing, that is

χj(Bt′) ≤ χj(Bt) ≤ χj+1(Bt) ≤ χj+1(Bt′), for all t′ < t,

(6) χj+1(B1) = χj(B1), and
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(7) the eigenvalues of B1 are all real.

Remark 4.5. Note that if A ∈ GL(d,R) has real eigenvalues and if its Lya-
punov exponents χj(A) and χj+1(A) are equal then there is Ā ∈ GL(d,R)
arbitrarily close to A whose eigenvalues are real and whose Lyapunov expo-
nents satisfy χm(Ā) 6= χj(Ā) = χj+1(Ā) for all m 6= j, j + 1. Moreover,
there is a “small path of cocycles” joining A and Ā that preserves the j and
j + 1 Lyapunov exponents. Thus in the conclusions of Lemma 4.4 we can
replace item (3) by

(3’) χm(Bt) is close to χm(B) for all m 6= j, j + 1 and all t ∈ [0, 1] and
χm(B1) 6= χj(B1) = χj+1(B1).

In order to get cocycles with real eigenvalues we also use the following
result (see also previous results in [8, Lemme 6.6] and [17, Lemma 3.8]).

Proposition 4.6 ([7, Proposition 4.1]). For every K > 1, ε > 0 , and
d ≥ 2, there is a constant ℓ0 with the following property.

Consider ℓ ≥ ℓ0 and linear maps A1, . . . , Aℓ in GL(d,R), such that:
For every family of linear maps (An)ℓn=1 in GL(d,R) such that ℓ ≥ ℓ0 and

An and A−1
n are bounded by K for every n, there are one parameter families

of linear maps (An,t)
ℓ
n=1,t∈[0,1], in GL(d,R), such that

• An,0 = An,

• An,t −An and A−1
n,t −A−1

n are bounded by ε for every n,

• let Bt = Aℓ,t ◦ · · · ◦A1,t, then for every j ∈ {1, . . . , d} the Lyapunov
exponent χj(Bt) is constant for t ∈ [0, 1], and

• all the multipliers of B1 are real.

4.3. Multiple Lyapunov exponents and weak hyperbolicity. In Pro-
positions 4.7 and 4.8 we combine Lemmas 3.2 and 4.4 to prove that the lack
of domination of a homoclinic class yields periodic orbits whose Lyapunov
exponents are multiple or close to zero.

Proposition 4.7. For every K > 1, ε > 0, and d ∈ N, there is a constant
k0 with the following property.

Consider a diffeomorphism f ∈ Diff1(M), dim(M) = d, such that the
norms of Df and Df−1 are bounded by K, a hyperbolic periodic point P
of s-index i whose homoclinic class H(P, f) is non-trivial, and an integer
j ∈ {1, . . . , d} with j 6= i such that the homoclinic class H(P, f) has no any
k0-dominated splitting of index j.

Then there is a periodic point Q ∈ H(P, f) homoclinically related with P
and an ε-perturbation g of f along the orbit of Q that is adapted to H(P, f)
and to the following property Pj,j+1:

Pj,j+1
def
=











χj(Qg) = χj+1(Qg),

χm(Qg) 6= χj(Qg) for all m 6= j, j + 1,

λm(Qg) ∈ R for all m.
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Proof. Consider the constants d ∈ N, K > 1, and ε > 0. Applying
Lemma 4.4 to these constants we obtain the constants k0 and ℓ0.

Since the homoclinic class H(P, f) is non-trivial, the set Σℓ0 of all saddles
Q of period larger than ℓ0 that are homoclinically related to P is dense in
H(P, f). Observe that there is a saddle Q ∈ Σℓ0 such that there is no k0-
dominated splitting of index j over the orbit ofQ. Otherwise, by Lemma 4.2,
the closure of the set Σℓ0 (that is the whole class H(P, f)) would have a k0-
dominated splitting of index j, which is a contradiction.

Thus we can apply Lemma 4.4 to the linear maps Df(Q), . . . ,Df ℓ−1(Q),
ℓ = π(Q) ≥ ℓ0, obtaining one-parameter families of linear maps (Ai,t)t∈[0,1],
i = 0, . . . , ℓ− 1, satisfying the conclusions of Lemma 4.4.

We now fix a neighborhood V of the orbit Q and compact sets Ks ⊂
W s(Q, f) and Ku ⊂ W u(Q, f) disjoint from V as in Definition 3.1. Since
Q is homoclinically related to P there are transverse intersections Y s ∈
W s(Q, f) ⋔ W u(P, f) and Y u ∈ W u(Q, f) ⋔ W s(P, f) and (small) com-
pact disks ∆s ⊂ W s(Q, f) and ∆u ⊂ W u(Q, f) (of the same dimension as
W s(Q, f) and W u(Q, f)) containing the points Y s and Y u. We consider the
compact sets

K̃s = Ks ∪ ∆s and K̃u = Ku ∪ ∆u.

We now apply Lemma 3.2 to ε, f , the small path of cocycles (An,t) above,

and the compact sets K̃s and K̃u to get an ε-perturbation g of f along the
orbit of Q adapted to H(P, f) and Property Pj,j+1:

• adapted to H(P, f): By the choice of ∆s and ∆u the saddle Qg is
homoclinically related to Pg.

• adapted to Property Pj,j+1: By item (6) in Lemma 4.4 it holds
χj(B1) = χj+1(B1), by Remark 4.5 we have χm(B1) 6= χj(Bi) if
m 6= j, j + 1, and by item (7) all the eigenvalues of B1 all are real.

This concludes the proof of the proposition. �

Proposition 4.8. For every K > 1, ε > 0, and d ∈ N, there is a constant
k0 with the following property.

Consider δ > 0, a diffeomorphism f ∈ Diff1(M), dim(M) = d, and a
hyperbolic periodic point P of f of s-index i such that:

• the norms of Df and Df−1 are bounded by K,
• χi(P ) + χi+1(P ) > −δ,
• the homoclinic class H(P, f) is non-trivial and has no k0-dominated

splitting of index i.

Then there is a periodic point Q ∈ H(P, f) homoclinically related with P
and an ε-perturbation g of f along the orbit of Q that is adapted to H(P, f)
and to the following property

Pi,δ
def
= The i-th Lyapunov exponent of Q satisfies χi(Q) ∈ (−δ, 0). (4.2)

Proof. The strategy of the proof is analogous to the one of Proposition 4.7,
so we will skip some repetitions. As in the proof of Proposition 4.7 we
consider constants k0 and ℓ0 associated to K, ε, and d.
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Since the homoclinic class H(P, f) has no dominated splitting of index
i, there is a locally maximal transitive hyperbolic subset L of H(P, f) con-
taining P and having no k0-dominated splitting of index i. We can also
assume that for every f ′ close to f the continuation Lf ′ of L has no such a
k0-dominated splitting.

We choose f ′ in the residual subset G of Diff1(M) in Lemma 4.1. Then
there is a periodic point Qf ′ ∈ Lf ′ such that χi(Qf ′) + χi+1(Qf ′) > −δ
and whose orbit has no k0-dominated splitting of index i. Otherwise, by
Lemma 4.2, the set Lf ′ has a k0-dominated splitting.

Consider the point Q = Qf . We take a first small path of hyperbolic
cocycles (Ān,t)t∈[0,1], n = 0, . . . , ℓ− 1, ℓ = π(Q), over the orbit of Q joining

the derivatives Df and Df ′. Note that, by definition, the cocycle (Ān,1)
does not have a k0-dominated splitting and the Lyapunov exponents of B̄1 =
Āℓ−1,1 ◦ · · · ◦ Ā0,1 satisfy χi(B̄1) + χi+1(B̄1) > −δ.

Observe that if χi(B̄1) > −δ we are done. Otherwise we apply Lemma 4.4
to the cocycle Ān,1, n = 0, . . . , ℓ− 1, and j = i. This provides new families

of linear maps (Ãn,t)t∈[0,1], n = 0, . . . , ℓ− 1, satisfying the conclusions of the

lemma. Define the composition B̃t as above. Let

τ
def
= χi(B̃t) + χi+1(B̃t) > −δ.

Note that by item (4) of Lemma 4.4 this number does not depend on t.
By item (6) in Lemma 4.4, there is some t0 such that

χi(B̃t0) = min

(

τ − δ

2
,
−δ

2

)

.

As the map χi(B̃t) is non-decreasing (recall item (5) in Lemma 4.4) we have

χi(B̃t) ≤
−δ
2 < 0 for all t ∈ [0, t0]. Also

χi+1(B̃t) ≥ τ − min

(

τ − δ

2
,
−δ

2

)

≥
τ + δ

2
+

max(0, τ)

2
> 0.

Therefore (Ãn,t)n,t∈[0,t0] is a path of hyperbolic cocycles.
We next consider the concatenation of the paths of hyperbolic cocycles

(Ān,t)t∈[0,1] and (Ãn,t)t∈[0,t0]. The end of the proof is the same as the one

of Proposition 4.7 and involves the definition of the sets K̃s and K̃u. We
apply Lemma 3.2 to get an ε-perturbation g of f along the orbit of Q that
is adapted to H(P, f) and to property Pi,δ, since by construction

χi(Qg) = χi(B̃t0) = −δ + min

(

τ + δ

2
,
δ

2

)

> −δ.

This ends the proof of the proposition. �

5. “Robustizing” lack of domination

In this section we analyze the existence of dominated splittings for homo-
clinic classes. In some cases these splittings will have several bundles.
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Definition 5.1 (Dominated splittings II). Let Λ be an invariant set of a
diffeomorphism f . A Df-invariant splitting E1 ⊕ · · · ⊕ Es, s ≥ 2, over the

set Λ is dominated if for all j ∈ {1, . . . , s − 1} the splitting Ej
1 ⊕ Es

j+1 is

dominated, where Ej
1 = E1 ⊕ · · · ⊕Ej and Es

j+1 = Ej+1 ⊕ · · · ⊕Es.
As in the case of two bundles, the splitting is k-dominated if the splittings

Ej
1 ⊕Ek

j+1 are k-dominated for all j.
There are analogous definitions for cocycles.

Note that if there is a saddle Q homoclinically related to P such that
χj(Q) = χj+1(Q) then the class has no dominated splitting of index j.
Moreover, if

χj−1(Q) < χj(Q) = χj+1(Q) < χj+2(Q) and λj(Q), λj+1(Q) ∈ (C \ R)

then the lack of domination of the homoclinic class is C1-robust. In this
section we study when the converse holds (up to perturbations).

A saddle Q of a diffeomorphism f satisfies property Pj,j+1,C if

Pj,j+1,C
def
=











(i) χj(Q) = χj+1(Q),

(ii) χm(Q) 6= χj(Q) for all m 6= j, j + 1,

(iii) λj(Q) and λj+1(Q) are non-real.

(5.3)

The main technical step of our constructions is the next proposition whose
proof is postponed to the next section. It immediately implies Theorem 5.

Proposition 5.2. For any K > 1, ε > 0, and d ∈ N, there is a constant k0

with the following property.
Consider a diffeomorphism f ∈ Diff1(M), dimM = d, such that the

norms of Df and Df−1 are bounded by K, a hyperbolic periodic point P
of s-index i, and an integer j ∈ {1, . . . , d − 1}, j 6= i. Assume that the
homoclinic class H(P, f) is non trivial and has no k0-dominated splitting of
index j.

Then there is a periodic point Q that is homoclinically related with P and
an ε-perturbation of f along the orbit of Q that is adapted to H(P, f) and
property Pj,j+1,C.

Remark 5.3. The proof of the proposition provides a point Q with arbitrar-
ily large period. In particular, there exist infinitely many periodic points Q
satisfying the conclusion of the proposition.

We postpone the proof of this proposition to Section 6. We now deduce
from it Corollaries 5.4 and 5.5 below.

Corollary 5.4. For any K > 1, ε > 0, and d ∈ N, there is a constant k0

with the following property.
Consider a diffeomorphism f ∈ Diff1(M), dimM = d, such that the

norms of Df and Df−1 are bounded by K, a homoclinic class H(P, f) of
f , and integers 0 < j1 < · · · < jℓ < d that are different from the s-index of
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P and such that there is no k0-dominated splitting of index jk over H(P, f)
for every k ∈ {1, . . . , ℓ}.

Then there exists an ε-perturbation g of f supported in a small neigh-
borhood of H(P, f) such that for each k ∈ {1, . . . , ℓ} there exists a periodic
point Qk,g of g homoclinically related to Pg satisfying property Pjk,jk+1,C in
equation (5.3).

In particular, for every diffeomorphism ḡ close to g and for every k ∈
{1, . . . , ℓ} there is no dominated splitting of index jk over H(Pḡ, ḡ).

Proof. By Proposition 5.2, for each index jk there is a periodic point Qk

homoclinically related to P and ε-perturbations of f along the orbit of Qk

that are adapted to H(P, f) and to property Pjk,jk+1,C. For each saddle Qk

consider a pair of transverse heteroclinic points

Y s
k ∈W s(Qk, f) ⋔ W u(P, f) and Y u

k ∈W u(Qk, f) ⋔ W s(P, f).

For each k we also fix compact disks

Ks
k ⊂W s(Qk, f) and Ku

k ⊂W u(Qk, f)

of the same dimensions as W s(Qk, f) and W u(Qk, f) containing Y s
k and

Y u
k in their interiors. By Remark 5.3, we can assume that the orbits of

the saddles Qk are different. Thus there are small neighborhoods V1, . . . , Vℓ

of these orbits whose closures are pairwise disjoint and such that for each
k 6= k′ the orbits of Y s

k and Y u
k do not intersect Vk′ . Thus taking the disks

Ks
k and Ku

k small enough, we can assume that this also holds for the forward
orbit of Ks

k and the backward orbit of Ku
k .

For each k we get an adapted ε-perturbation gk supported in Vk (and
associated to the compact sets Ks

k and Ku
k ). Since the supports of these

perturbations are disjoint, we can perform all them simultaneously obtain-
ing a diffeomorphism g that is ε-close to f and has saddles Qk,g satisfying
Pjk,jk+1,C, j = 1, . . . , ℓ.

It remains to check that these saddles are homoclinically related to Pg.
Observe that for each k the points Y s

k and Y u
k are transverse heteroclinic

points (associated to Qk and P ) for gk. The choices of the orbits of these
heteroclinic points and of the sets Vj imply that Y s

k and Y u
k are also trans-

verse heteroclinic points (associated to Qk and P ) for g (in fact, the orbits
of the points Y s

k and Y u
k are the same for gk and g). This completes the

proof of the corollary. �

We also get the following genericity result.

Corollary 5.5. There exists a residual subset G of Diff1(M) such that every
diffeomorphism f ∈ G satisfies the following property:

For every i, j ∈ {1, . . . , d − 1}, i 6= j, and for every periodic point P
of s-index i of f such that there is no dominated splitting of index j over
H(P, f) there exists a periodic point Q homoclinically related to P satisfying
property Pj,j+1,C.
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The corollary follows from standard genericity arguments after noting that
for a homoclinic class H(P, f) to have a saddle Q homoclinically related to
P satisfying property Pj,j+1,C is an open condition.

We are now ready to prove Corollary 6.

Proof of Corollary 6. The residual subset G in Corollary 5.5 can be chosen
with the following additional property, see [8]. For every f ∈ G and for every
pair of hyperbolic periodic points P and Q of f ∈ G that are in the same
chain recurrent class the following holds

• the homoclinic classes of P and Q are equal and
• there is a neighborhood U of f such that for all g ∈ U the chain

recurrence classes of Pg and Qg are equal.

Now it is enough to consider a point Q ∈ H(P, f) of s-index different from
the one of P and to apply Corollary 5.5 to P (if j is different to the index
of P ) or to Q (otherwise). �

Comment. We wonder if in the conclusion of Corollary 6 it is possible to
consider homoclinic classes instead of chain recurrence classes. One difficulty
is that in general one may have two hyperbolic periodic points with different
stable index that are robustly in the same chain recurrence class but whose
homoclinic classes do not coincide robustly. More precisely:

Question 1. Consider an open set U of Diff1(M) and two hyperbolic saddles
Pf and Qf whose continuations are defined for all f ∈ U , have different
stable indices, and whose chain recurrence classes coincide for all f ∈ U .

Does there exist an open and dense subset V of U such that for any f ∈ V
one has Qf ∈ H(Pf , f)? Or even more, H(Pf , f) = H(Qf , f)?

By [8] the answer to this question is affirmative when the saddles have
the same index. It is also true when the chain recurrence class is partially
hyperbolic with a central direction that splits into one-dimensional central
directions. This follows using quite standard arguments and we will provide
the details of this construction in a forthcoming note.

6. Obtaining non-real multipliers: Proof of Proposition 5.2

In this section we prove Proposition 5.2. This proposition follows from
the next lemma:

Lemma 6.1. Consider a homoclinic class H(P, f) and j ∈ N satisfying the
hypothesis of Proposition 5.2. Then there are a hyperbolic periodic point Q
homoclinically related to P and path of cocycles (Ai,t)t∈[0,1], 0 ≤ i < ℓ and

ℓ = π(Q), over the orbit of Q that are ε-perturbations of Df(f i(Q)) and
satisfy the following properties:

(A) the composition Bt = Aℓ−1,t ◦ · · · ◦A0,t is hyperbolic for all t ∈ [0, 1],
(B) Ai,0 = Df(f i(Q)) for all i = 0, . . . ℓ− 1, and
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(C) the multipliers λm and the exponents of χm of the composition B1

satisfy the conclusions in Proposition 5.2:

χj = χj+1, χm 6= χj if m 6= j, j + 1, λj, λj+1 6∈ R.

We briefly introduce some formalism that we will use only in this section.
Consider a set Σ and a bijection g : Σ → Σ. Let E be a vector bundle over
the base Σ such that it fibers Ex, x ∈ Σ, are endowed with an Euclidean
metric. A linear cocycle on E over g is a map A : E → E that sends each
fiber Ex to a fiber Eg(x) by a linear isomorphism Ax. The map g is called
the base transformation of the cocycle A.

The distance between two linear cocycles A and B above the same base
transformation g is

dist(A,B) = sup
x∈Σ

{‖Ax − Bx‖, ‖(Ax)−1 − (Bx)−1‖}.

A path of cocycles defined on the bundle E is a one-parameter family of
cocycles (At)t∈[0,1] above the same base transformation g such that the map
t 7→ At is continuous for the metric above. The radius of the path (At)t∈[0,1]

is defined by

max
t∈[0,1]

dist(A0,At).

Here we only deal with continuous cocycles (for the ambient topology of E)
whose base transformations are diffeomorphisms or restrictions of diffeomor-
phisms to invariant subsets of the ambient.

Finally, hyperbolicity and domination of cocycles are defined in the nat-
ural way, see for example Definition 5.1.

We will deduce Lemma 6.1 from the following result:

Lemma 6.2. Consider a homoclinic class H(P, f) and j ∈ N satisfying
the hypothesis of Proposition 5.2. Then there is an arbitrarily small path of
continuous cocycles (At)t∈[0,1] on TM above the diffeomorphism f , a point

Q̄ homoclinically related to P , and a horseshoe K containing Q̄ such that:

• A0 coincides with Df ,
• the cocycle At restricted to TKM is hyperbolic, for all t ∈ [0, 1],
• the cocycle A1 restricted to TKM has a dominated splitting

TKM = E ⊕Ej,j+1 ⊕ F

such that E has dimension j − 1 and Ej,j+1 has dimension 2,
• the cocycle A1 restricted to the (periodic) orbit of Q̄ does not admit

any dominated splitting over Ej,j+1.

Here a small path, means path of small radius.

Proof of Lemma 6.2. Observe first that arguing as in the previous proposi-
tions we just get a periodic point Q̄ homoclinically related to P and a small
path of hyperbolic cocycles (Āi,t)t∈[0,1], 0 ≤ i < π(Q̄), defined over the or-

bit of Q̄ such that the Lyapunov exponents of the final composition B̄1 are
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real and χj(B̄1) and χj+1(B̄1) are equal, see Proposition 4.7. Moreover, by
Remark 4.5, we can assume that, for all m 6= j, j + 1, the m-th exponent
χm(B̄1) is different from χj(B̄1) = χj+1(B̄1) for all m 6= j, j + 1. Note that
if the multipliers λj(B̄1) and λj+1(B̄1) are equal then one can make them
non-real and conjugate by a small perturbation. However they might have
opposite signs, which is why Lemma 6.1 is not obvious.

We now go to the details of the proof of the lemma. Fix a transverse
homoclinic point X for Q̄ and let

Λ = {fn(Q̄), 0 ≤ n < π(Q̄)} ∪ {fn(X), n ∈ Z}.

The compact invariant set Λ is hyperbolic for the cocycle Df . The path At

of cocycles is obtained as a concatenation of the following three paths:

• The first path A
[1]
t “linearizes” the dynamics around Q̄.

• The second path A
[2]
t is a path of cocycles on TM that extends the

path (Āi,t)t∈[0,1] of cocycles over the orbit of Q̄ introduced above in
such a way that the set Λ is a hyperbolic set for all t.

• The third path A
[3]
t provides a cocycle having the required dominated

splitting over a horseshoe containing the set Λ.

For simplicity of notations, we will assume that Q̄ is a fixed point for
f (the argument is identical in the general case), thus we write (Āt)t∈[0,1]

instead of (Āi,t)t∈[0,1]. Finally, in what follows, the path of cocycles (Āt)t∈[0,1]

becomes a path of matrices of GL(d,R).

(I) The first path of cocycles A
[1]
t . Fix a chart around the point Q̄ so

that for any x in a neighborhood V of the orbit of Q̄, we can identify the
derivative Df (or any neighboring cocycle) at x to a matrix of GL(d,R).

Claim 6.3. There is an arbitrarily small path of continuous cocycles (A
[1]
t )t∈[0,1]

on TM above f , starting at A
[1]
0 = Df , and a neighborhood W ⊂ V of Q̄,

such that

• by considering the restriction to the fiber of each point x ∈ W , the

cocycle A
[1]
1 is identified to the derivative of f at Q̄.

• the set Λ is hyperbolic for all the cocycles A
[1]
t .

Proof. Build a candidate cocycle A
[1]
1 arbitrarily close to Df , by a unit

partition on a (small enough) neighborhood of Q̄. On each fibre of TM ,

take for the matrix of A
[1]
t the (1 − t, t)-barycenter of the matrices of Df

and A
[1]
1 . Since the set Λ is hyperbolic for Df , it will also be for all the

cocycles A
[1]
t , provided we chose A

[1]
1 close enough to Df . �

(II) The second path of cocycles A
[2]
t . Fix a neighborhood W of Q̄ and

a path (A
[1]
t )t∈[0,1], as given by Claim 6.3.
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Claim 6.4. There is a path (A
[2]
t )t∈[0,1] of continuous cocycles on TM above

f , starting at A
[2]
0 = A

[1]
1 , such that:

• its radius is arbitrarily close to that of
(

Āt

)

t∈[0,1]
,

• A
[2]
1 coincides with Ā1 over Q̄,

• for all t ∈ [0, 1], the set Λ is hyperbolic for the cocycle A
[2]
t .

Proof. For all t ∈ [0, 1], denote by Eu
t and Es

t the stable and unstable di-
rections of the hyperbolic point Q̄ for the cocycle Āt. These directions
vary continuously with t. Hence given any ǫ > 0 there exists a sequence
0 = t0 < .... < tN = 1 of times such that, for all 0 ≤ n < N , there is a path
of linear maps θn,t ∈ GL(d,R), with θn,tn = Id, and for all tn ≤ t ≤ tn+1:

• θn,t is ǫ-close to identity,
• θn,t(E

u
tn) = Eu

t and θn,t(E
s
tn) = Es

t .

Assume that the neighborhood W of Q̄ is small enough and consider n0 ∈ N

such that f±n(X) ∈W , for all n ≥ n0. First, we define the cocycle A
[2]
t over

the segment of orbit {fn(X)}n≥0 and for all t ∈ [0, 1]. We denote by Bn,t

the linear map corresponding to the cocycle A
[2]
t over the point fn(X).

For all tn ≤ t ≤ tn+1, define Bn,t as follows:

• Bk,t coincides with A
[1]
1 at fn(X), if 0 ≤ k < n0,

• Bn0+k,t = Ātk ◦ θk,tk+1
, if k < n,

• Bn0+n,t = Āt ◦ θn,t,
• Bn0+k,t = Āt, if k > n.

Recall that the set Λ is hyperbolic for A
[1]
1 . Let Es

X and Eu
X be the stable

and unstable directions at X for the cocycle A
[1]
1 .

By construction, the iterations of the cocycle (Bn,t)n∈N
maps Es

X and Eu
X

into the stable and unstable directions of Q̄ for the map Āt, respectively.
Hence, the bundles Es

X and Eu
X are uniformly contracted and uniformly

expanded, respectively, by positive iterations of (Bn,t)n∈N
.

We define Bn,t symmetrically for the backward orbit {fn(X)}n≤0 of X.

Let A
[2]
t,Λ be the linear cocycle on TΛM given by the linear maps Bn,t over

the orbit of X and by the matrix Āt over the point Q̄. Then the orbits of

the bundles Es
X and Eu

X is a hyperbolic splitting for A
[2]
t,Λ. By construction,

the family (A
[2]
t,Λ)t∈[0,1] is a path of continuous linear cocycles starting at

the restriction of A
[1]
1 to the set Λ. The radius of this path can be found

arbitrarily close to the radius of
(

Āt

)

t∈[0,1]
: just take both ǫ > 0 and the

neighborhood W of Q̄ small enough. Now, all we need to do is to extend

the path A
[2]
t,Λ of cocycles above the restriction of f to Λ to a small path

(A
[2]
t )t∈[0,1] of continuous cocycles above f starting at A

[1]
1 .
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Note that, for all n > n0 + N , the matrix of A
[2]
t,Λ is At at the iterate

f±n(X). So is it also at Q̄. Fix a small neighborhood UQ̄ ⊂ M of the set

formed by these points and Q̄. Fix a small neighborhood Un for each other
iterate fn(X). Do this such that we have a disjoint union

U = UQ̄ ∪
n0+N
⋃

−n0−N

Un.

Let 1 = φ+ ψ be a unit partition on M such that φ = 1 on Λ and φ = 0

outside of U . Let A
[2]
t be the cocycle above f whose matrix on the fiber

TxM is the (φ(x), ψ(x))-barycenter of the following two matrices:

• the matrix of A
[1]
1 at x,

•

{

the matrix of A
[2]
t,Λ at fn(X), if x ∈ Un,

the matrix Āt, if x ∈ UQ̄.

Choosing the neighborhood U of Λ small enough, one finds the radius of

(A
[2]
t )t∈[0,1] as close as wished to the radius of (A

[2]
t,Λ)t∈[0,1], hence as close as

wished to the radius of
(

Āt

)

t∈[0,1]
. This ends the proof of the claim. �

(III) The third path of cocycles A
[3]
t . We fix a path A

[1]
t and a path

A
[2]
t , as given by Claims 6.3 and 6.4.

Claim 6.5. There is an arbitrarily small path of cocycles (A
[3]
t )t∈[0,1] defined

on TM above the diffeomorphism f , starting at A
[3]
0 = A

[2]
1 , such that:

• A
[3]
1 coincides with A1 at Q̄,

• A
[3]
1 admits, over Λ, a dominated splitting of the form

TΛM = E ⊕Ej,j+1 ⊕ F

such that E has dimension j − 1, and Ej,j+1 has dimension 2,

• for all t ∈ [0, 1], the cocycle A
[3]
t is hyperbolic over the set Λ.

Proof. Since A
[2]
1 is equal to Ā1 at Q̄, recalling the properties of the ex-

ponents of Ā1, we have that there is a dominated splitting TQ̄M = E ⊕

Ej,j+1 ⊕ F with the required dimensions and such that Ej,j+1 is either uni-

formly contracted or uniformly expanded by A
[2]
1 . We need to extend this

splitting to the whole orbit of X.
Observe that there are (j − 1) and (j + 1)-dimensional spaces EX and

ẼX at the point X such that their positive iterations by A
[2]
1 converge to

E and Ẽ = E ⊕ Ej,j+1, respectively. Symmetrically, there are (j − 1) and

(j + 1)-codimensional spaces F̃X and FX whose negative iterations by A
[2]
1

converge to F̃ = Ej,j+1 ⊕ F and F , respectively.

One can perturb slightly A
[2]
1 at the point X in order to make ẼX trans-

verse to FX and EX transverse to F̃X . Then the iterates of ẼX and FX
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by the perturbed cocycle along the orbit of X extend the dominated split-
ting Ẽ ⊕ F to the whole set Λ. Symmetrically, we get an extension of the
dominated splitting E ⊕ F̃ to the set Λ. Taking Ej,j+1 = Ẽ ∩ F̃ we get the
dominated splitting E ⊕Ej,j+1 ⊕ F over Λ for that perturbed cocycle.

That perturbation of A
[2]
1 may be reached by an arbitrarily small path of

cocycles A
[3]
t on TM such that A

[3]
1 coincides with Ā1 at Q̄. In particular,

it can be chosen so that A
[3]
t is hyperbolic over Λ for all t. �

End of the proof of Lemma 6.2. Define the path (At)t∈[0,1] as the

concatenation of the paths (A
[1]
t )t∈[0,1], (A

[2]
t )t∈[0,1], and (A

[3]
t )t∈[0,1] given

by the three previous claims. By construction, the path (At)t∈[0,1] can be

found having radius arbitrarily close to the radius of (Āt)t∈[0,1]. Choosing

Q̄ conveniently, this last radius can be taken arbitrarily small.
Note that the diffeomorphism f has horseshoes K containing the set Λ

that are arbitrarily close to Λ for the Hausdorff distance. Choosing the
horseshoe K Hausdorff-close enough to Λ, we have the following:

• for all t ∈ [0, 1], the cocycles At are continuous on TM and hyper-
bolic over Λ. Thus, by a compactness argument on t ∈ [0, 1], the
cocycles At are also hyperbolic over K for all t ∈ [0, 1].

• The dominated splitting TΛM = E ⊕ Ej,j+1 ⊕ F for A1 = A
[3]
1

extends to K, see [16, Appendix B]).

All the conclusions of Lemma 6.2 are then satisfied. This ends its proof. �

Proof of Lemma 6.1. Let At, Q̄, K, and TKM = E ⊕ Ej,j+1 ⊕ F be as
in Lemma 6.2. Consider a transverse homoclinic point X of Q̄, X ∈
W u

loc(Q̄, f) ∩ K, and an iterate of it f r(X) ∈ W s
loc(Q̄, f) ∩ K. These two

points can be chosen arbitrarily close to Q̄.

Q̄

first loop

second loop

Qn

Figure 1. Two-loops orbits Qn

We next consider periodic points Qn passing close to X and having orbits
with “two loops”. For every large n there is a periodic point Qn ∈ K of
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period 2n+2+2 r as follows (see Figure 1): Let Qn = Q0
n and Qi

n = f i(Qn),
where

• Q0
n is close to f r(X) and Q0

n, . . . , Q
n
n are close to Q̄,

• Qn+i
n is close to f i(X) for all i = 0, . . . , r,

• Qn+r
n , . . . , Qn+r+n+2

n are close to Q̄, and

• Q2 n+r+2+i
n is close to f i(X) for all i = 0, . . . , r.

(6.4)

Claim 6.6. For n large enough, the linear cocycle A1 preserves the orien-
tation of the central bundle Ej,j+1 at the periodic orbit of Qn.

Proof. Let Ac
1 be the restriction of A1 to the central bundle Ej,j+1. Since

the base K of the 2-dimensional bundle Ej,j+1 is a Cantor set, there is a
continuous identification between Ej,j+1 and K ×R

2. Thus, for any x ∈ K,
the restriction Ac

1,x of Ac
1 to the fiber TxM identifies to a 2 × 2 matrix.

By continuity, if the distance between a pair of points x, y ∈ K is less
than some η > 0, then the determinants of the matrices Ac

1,x and Ac
1,y have

the same sign. One then easily checks that for n great enough (when “close”
in (6.4) means distance less than η/2), the composition of the matrices Ac

1,x

along the (finite) entire orbit of Qn has positive determinant. �

If the multipliers λj and λj+1 of the first return map of A1 at some Qn

are complex, then all the conclusions of Lemma 6.1 are satisfied by Q = Qn

and the restriction (Ai,t)t∈[0,1] of the path At to the orbit of Q.
Otherwise, by Claim 6.6, these multipliers are real and have the same

sign. Recall that the linear cocyle Ac
1 admits no dominated splitting at the

point Q̄. Since the orbits of Qn accumulate on Q̄, then with increasing n
the strength of domination (if any) of the splitting of the bundle Ei,j along
the orbit of Qn for the cocycle A1 will decrease. We can now apply [15,
Proposition 3.1]. This result claims that, for n great enough, the cocycle
A1 can be perturbed along the two-dimensional bundle Ej,j+1 and along the
orbit of Qn to get a pair of non-real and conjugate eigenvalues.

For n great enough, that perturbation can be reached through a small
path (Bt,n)t∈[0,1] of cocycles over the orbit of Qn. If the perturbation is
small enough then, for all t, the hyperbolicity and the domination of the
splitting E ⊕ Ei,j ⊕ F of A1 over the horseshoe K are preserved. Thus
the conclusions of Lemma 6.1 are all satisfied for Q = Qn and the cocycle
(Ai,t)t∈[0,1] defined as the concatenation of

• the restriction of the path At to the orbit of Q = Qn and
• the path Bt,n.

This concludes the proof of the Lemma 6.1. �

7. Formation of strong homoclinic connections

We say that a saddle P has a strong homoclinic intersection if there is a
strong stable manifold of the orbit of P that intersects the unstable manifold



28 CH. BONATTI, S. CROVISIER, L. J. DÍAZ, AND N. GOURMELON

of the orbit of P or vice-versa. That is, let i be the s-index of P , then either
W ss

k (P ) ∩W u(P ) 6= ∅ for some k < i or W uu
j (P ) ∩W s(P ) 6= ∅ for some

j < dim(M)−i (recall the definitions ofW ss
k (P ) andW uu

j (P ) in Section 1.2).
In this section, we see how the lack of domination of a homoclinic class yields
strong homoclinic intersections.

Proposition 7.1. For every K > 1, ε > 0 and d ≥ 2, there exists a constant
k0 with the following property.

Consider f ∈ Diff1(M), dim(M) = d, and a hyperbolic periodic point P
of s-index i, i ∈ {2, . . . , d − 1}, such that H(P, f) is non-trivial and has
no k0-dominated splitting of index i − 1. Then there is a periodic point Q
homoclinically related to P and an ε-perturbation of f along the orbit of Q
that is adapted to H(P, f) and to property Pss defined as follows

Pss
def
=

{

(i) χi−1(Q) < χi(Q),

(ii) W ss
i−1(Q) ∩W u(Q) 6= ∅.

(7.5)

Proof. By Proposition 5.2 there is a hyperbolic periodic point Q that is
homoclinically related to P and an ε

2 -perturbation f ′ of f along the orbit of
Q that is adapted to H(P, f) and to property Pi−1,i,C (see equation (5.3)).
This means that fixed small ̺ > 0, a neighborhood V of the orbit of Q, and
compact sets Ks ⊂ W s

̺ (Q) and Ku ⊂ W u
̺ (Q) disjoint from V , there is a

diffeomorphism f ′ that is ε
2 -close to f such that

(1) f ′ = f outside V and along the f -orbit of Q,
(2) the points P and Q are homoclinically related for f ′,
(3) Ks ⊂W s

̺ (Q, f ′) and Ku ⊂W u
̺ (Q, f ′), and

(4) the saddle Qf ′ = Q satisfies property Pi−1,i,C.

By Remark 5.3, the period of Q can be chosen arbitrarily large. Hence
Proposition 4.6 provides a small path of hyperbolic cocycles joining the
restriction of Df ′ over the orbit of Q and a cocycle with real multipliers.
Applying Lemma 3.2 to this cocycle and to f ′ we get an ε

2 -perturbation f ′′

of f ′, such that Q = Qf ′′ has a pair of real multipliers λi−1(Q) and λi(Q)
such that |λi−1(Q)| = |λi(Q)| and |λi(Q)| 6= |λj(Q)| for all j 6= i, i− 1, and
such that conditions (1)–(3) also hold for f ′′. Note that f ′′ is ε-close to f .

Consider now local coordinates around Q such that

W s
loc(Q, f

′′) = [−1, 1]i × {0d−i} and W u
loc(Q, f

′′) = {0i} × [−1, 1]d−i.

To conclude the proof of the proposition it is enough to get a diffeomorphism
g arbitrarily C1-close to f ′′ and a small neighborhood V0 ⊂ V of the orbit
of Q such that

(a) g = f ′′ outside V0 and along the g-orbit of Qg = Q,

(b) W s
loc(Q, g) = [−1, 1]i × {0d−i} and W u

loc(Q, g) = {0i} × [−1, 1]d−i,
and

(c) Qg satisfies property Pss.

This will be done in several steps. To simplify the presentation, let us
assume in the remainder steps of the proof that the period of Q is one.
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Claim 7.2. There is an arbitrarily C1-small perturbation g′ of f ′′ satisfying
(a) and (b) and such that the restriction of g′ to a small neighborhood of Q
in W s

loc(Q, g
′) is linear. Moreover, one has that Dg′(Q) = Df ′′(Q).

This claim allows us to define a two dimensional locally invariant center-
stable manifold W cs

τ (Q, g′) of Q tangent to the space corresponding to the
(i − 1)-th and i-th multipliers of Q. Up to a linear change of coordinates,
we have

W cs
τ (Q, g′) = {0i−2} × [−τ, τ ]2 × {0d−i} and Df ′′(Q)(xs, xu) = (As, Au).

Proof of Claim 7.2. Using the coordinates (xs, xu) corresponding to the sta-
ble and unstable bundles, in a neighborhood of Q, we write

f ′′(xs, xu) = (fs(xs, xu), fu(xs, xu)).

By the invariance of the local stable and unstable manifolds we have that
fu(xs, 0) = 0u and fs(0s, xu) = 0s.

Next step is to linearize the restriction of fs to the local stable manifold.
Consider a local perturbation f̃s of xs 7→ fs(xs, 0u) supported in a small

neighborhood of 0s such that f̃s(xs) = As(xs) for small xs. Note that

f̃s(xs) = fs(xs, 0u) + hs(xs),

where hs is C1-close to the zero map and has support in a small neighbor-
hood of 0s.

Finally, we choose a bump-function ψ(xu) such that ψ = 1 in a neighbor-
hood of 0u, it is equal to 0 outside another small neighborhood of 0u, and
it has small derivative. We define g′ in a neighborhood of (0s, 0u) by

g′(xs, xu) =
(

fs(xs, xu) + hs(xs)ψ(xu), fu(xs, xu)
)

.

By construction, the restriction of g′ to a small neighborhood in the local
stable manifold of Q coincides with f̃s = As. Moreover, the local unstable
manifold of Q is also preserved and Dg′(Q) = Df ′′(Q). This completes the
proof of the claim. �

Claim 7.3. There is an arbitrarily small C1-perturbation g′′ of g′ satisfy-
ing Claim 7.2 (in particular, (a) and (b)) and such that there is a trans-
verse homoclinic point of Q in Fi−1, where Fi−1 is a Dg′′(Q)-invariant one-
dimensional linear space corresponding to the Lyapunov exponent χi−1(Q).

Proof. Note first that as the homoclinic class of Q is non-trivial there is a
transverse homoclinic point Y of Q that belongs to the local stable manifold
of Q where the dynamics is linear. Next two steps are quite standard. First,
by a perturbation we can assume that Y 6∈W ss

i−2(Q).
Second, after replacing the point Y by some forward iterate of it and after

a new perturbation, we can assume that Y belongs to the Dg′(Q)-invariant
(central) two-dimensional linear space F corresponding to the Lyapunov
exponents χi−1(Q) and χi(Q). This follows noting that any stable non-zero
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vector of Q that is not in the linear space corresponding to the first (i− 2)
Lyapunov exponents has normalized iterations which approximate to F .

There are two cases according to the restriction of g′ to the two dimen-
sional space F .

Case 1: the restriction of g′ to F is a homothety. In this case, the point Y
belongs to a one-dimensional Dg′(Q)-invariant space and we are done.

Case 2: the restriction of g′ to F is parabolic. In this case, the restriction
of Dg′(Q) to F is conjugate to a matrix of the form

(

λi 1
0 λi

)

, 0 < |λi| < 1.

Then the normalized iterations of any non-zero vector in F accumulate to
the unique one-dimensional invariant sub-space Fi−1 of Dg′(Q) in F . As
above, after a new perturbation we can assume that there is some iterate of
Y in Fi−1 ending the proof of the claim. �

To conclude the proof of the proposition it is now enough to make the
Lyapunov exponent χi−1(Q) smaller than χi(Q) so that the space Fi−1 is
now locally contained in the strong stable manifold of Q of dimension i− 1.
To perform this final perturbation we argue as in Claim 7.2. �

8. Homoclinic tangencies yielding heterodimensional cycles

In this section we prove Theorem 1 and its alternative version in item (ii)
of Remark 1.2. For that we need the following two propositions.

Proposition 8.1. Consider f ∈ Diff1(M), dim(M) = d, and a hyperbolic
periodic point P of f of s-index i ∈ {2, . . . , d− 1} such that:

(i) for any C1-neighborhood U of f there exist a hyperbolic periodic point
R homoclinically related to P and perturbations of f in U along the
orbit of R that are adapted to H(P, f) and to property Pss,

(ii) for any C1-neighborhood U of f and any δ > 0 there exist a hyperbolic
periodic point Q homoclinically related to P and perturbations of f
in U along the orbit of Q that are adapted to H(P, f) and to property
Pi,δ,

Then there exists a diffeomorphism g ∈ U arbitrarily C1-close to f having
a heterodimensional cycle associated to Pg and a saddle Sg of s-index i− 1.

Recall that properties Pss and Pi,δ, see (7.5) and (4.2), mean that the
saddles R and Q satisfy

χi−1(R) < χi(R) and W ss
i−1(R) ∩W u(R) 6= ∅,

χi(Q) ∈ (−δ, 0).

Proposition 8.2. Consider f ∈ Diff1(M), dim(M) = d, having a hyperbolic
periodic point P of s-index i ∈ {2, . . . , d− 1} such that:

(1) H(P, f) is non trivial and has no dominated splitting of index i,
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(2’) there is a diffeomorphism g arbitrarily C1-close to f with a hyperbolic
periodic point Rg homoclinically related to Pg satisfying property Pss,
and

(3’) for every δ > 0 there exists a hyperbolic periodic point Qδ homoclin-
ically related to P such that χi(Qδ) + χi+1(Qδ) ≥ −δ.

Then, there exists a diffeomorphism g arbitrarily C1-close to f with a het-
erodimensional cycle associated to a P and to a saddle of s-index i− 1.

Note that item (1) in Proposition 8.2 corresponds exactly to the same
item in Theorem 1, items (2’) and (3’) are exactly items (2’) and (3’) in Re-
mark 1.2. Therefore Proposition 8.2 implies the conclusions in Remark 1.2.

We postpone the proof of these propositions to Sections 8.4 and 8.5. As-
suming these propositions we now prove Theorem 1 and Corollary 3

8.1. Proof of Theorem 1. Proposition 7.1 and assumption (2) in the the-
orem imply that condition (i) in Proposition 8.1 is satisfied.

Proposition 4.8 and assumptions (1) and (3) in the theorem imply that
condition (ii) in Proposition 8.1 is satisfied.

Proposition 8.1 now provides a diffeomorphism g with a heterodimen-
sional cycle associated to Pg and a saddle Sg of s-index i−1. By Lemma 2.3,
we can assume that the diffeomorphism g has a pair of transitive hyperbolic
sets Lg and Kg having a robust heterodimensional cycle, where Lg contains
Pg and Kg contains a periodic point Rg of stable index i− 1.

We now explain how to improve the previous arguments to obtain robust
homoclinic tangencies.

Fix ε > 0 and consider the integer k0 associated to ε in Proposition 5.2.
Since H(P, f) has no dominated splittings of indices i − 1 and i, there are
r > 0 and a neighborhood U of f such that for any f ′ ∈ U and any f ′-
invariant set K having an r-neighborhood containing H(P, f) there is no
k0-dominated splitting over K.

We perform a first perturbation g0 of f , g0 ∈ U , as above, obtaining a
robust heterodimensional cycle between two transitive hyperbolic sets con-
taining the saddles Pg0

and Rg0
. By [8], taking g0 in a residual subset of

Diff1(M), we can assume that H(P, g0) and H(Rg0
, g0) coincide. In particu-

lar, these homoclinic classes are non-trivial and their r-neighborhoods con-
tain H(P, g). Thus for every diffeomorphism h close to g0, the homoclinic
classes H(Ph, h) and H(Rh, h) have no k0-dominated splittings of indices
i− 1 and i.

We now consider another small perturbation g1 ∈ U of g0 such that the
saddles Pg1

and Rg1
have a heterodimensional cycle.

Since the classes H(Pg1
, g1) and H(Rg1

, g1) have no k0-dominated split-
tings of indices i − 1 and i, Proposition 5.2 provides a pair of hyperbolic
periodic points Qg1

and Tg1
homoclinically related to Pg1

and Rg1
, respec-

tively, and two “independent” local ε-perturbations gQ and gT of g1 such
that
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• the supports of gQ and gT are disjoint and contained in arbitrarily
small neighborhoods of the orbits of Qg1

and Tg1
, respectively,

• these perturbations preserve the heterodimensional cycle associated
to Pg1

and Tg1
,

• the i-th and (i−1)-th multipliers of Qg1
for gQ and of Tg1

for gT are
non-real.

As the supports of the perturbations gQ and gT are disjoint, combining these
perturbations one gets a diffeomorphism g2 such that Pg2

and Tg2
have a

heterodimensional cycle and the classes H(Pg2
, g2) and H(Tg2

, g2) robustly
have no dominated splittings of indices i and i− 1, respectively.

By Lemma 2.3, one can perform a last perturbation g so that Pg ∈ Kg

and Tg ∈ Lg where Kg and Lg are transitive hyperbolic sets having a ro-
bust heterodimensional cycle. Finally, we choose g in the residual subset of
Diff1(M) in [13, Theorem 1], this choice implies that the sets Kg and Lg

have robust homoclinic tangencies. �

8.2. Proof of Corollary 3. We first recall that there is a residual subset
R of Diff1(M) such that every homoclinic class H(P, f) of f ∈ R that does
not have any dominated splitting is the Hausdorff limit of sinks or sources,
see [15, Corollary 0.3]. More precisely, if there is a saddle Q homoclinically
related to P whose Jacobian is less (resp. greater) than one then the class
H(P, f) is the Hausdorff limit of sinks (resp. sources), see the proof of [15,
Proposition 2.6]. Thus to prove the corollary it is enough to consider a
saddle P of s-index two whose homoclinic class H(P, f) does not have any
dominated splitting and such that every saddle Q homoclinically related
to P has Jacobian greater than one. By the previous comments, the class
H(P, f) is limit of sources.

Observe that the assumption on the Jacobians implies that χ2(Q) +
χ3(Q) > 0. Thus the homoclinic class satisfies all hypotheses in Theo-
rem 1. Hence there is a perturbation g of f with a robust heterodimensional
cycle associated to a hyperbolic set containing Qg and Pg. The corollary
now follows from standard genericity arguments. �

8.3. Sectional dissipativiness. Corollary 4. Let P be a hyperbolic sad-
dle of a diffeomorphism f such that:

• for every diffeomorphism g that is C1-close to f there is no heterodi-
mensional cycle associated to Pg, and

• let i the stable index of P , then the homoclinic class H(P, f) has no
dominated splitting of index i.

Under these hypotheses we consider a dominated splitting with three bundles
(see Definition 5.1)

TH(P )M = E1 ⊕Ec ⊕E3

such that dim(E1) < i < dim(E1 ⊕ Ec) and Ec does not admit any domi-
nated splitting. Note that the bundles E1 and E3 may be empty and that
dim(Ec) ≥ 2.
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We now see some properties of the homoclinic class H(P, f) that follow
from Theorem 1 and will imply the corollary. There are the following cases:

• dim(Ec) = 2: Assume that Ec is sectionally dissipative. Then, by
Theorem 1 and Remark 1.2, for every diffeomorphism g C1-close
to f and every saddle Rg homoclinically related to Pg the unstable
and strong stable manifolds of Rg have empty intersection. There is
similar statement when Ec is sectionally dissipative for f−1.

• dim(Ec) ≥ 3. Since the diffeomorphisms close to f cannot have
heterodimensional cycles, Corollary 2 implies that

(I) i = dim(E1 ⊕Ec) − 1 or (II) i = dim(E1) + 1.

In case (I), by Theorem 1, the bundle Ec is uniformly sectionally
dissipative. Moreover, by Remark 1.2, for every diffeomorphism g
C1-close to f and every saddle Rg homoclinically related to Pg the
unstable and strong stable manifolds of Rg have empty intersection.
There is similar statement for case (II) considering f−1.

The previous discussion implies Corollary 4. �

8.4. Proof of Proposition 8.1. We fix a small neighborhood U of f and
small δ > 0. Conditions (i) and (ii) in the proposition provide saddles R
and Q having different orbits and local perturbations gR and gQ throughout
these orbits as follows. Consider small neighborhoods VR and VQ of the
orbits of R and Q having disjoint closures. Then there are perturbations gR

and gQ of f in U whose supports are contained in VR and VQ such that R
satisfies Pss for gR and Q satisfies Pi,δ for gQ.

As the supports of these perturbations are disjoint, we can consider a
perturbation g0 of f which coincides with gR in VR, with gQ in VQ, and
with f outside these neighborhoods. Note that if U is small then the diffeo-
morphism g0 can be chosen arbitrarily close to f . Moreover, since we are
considering adapted perturbations, we have that the saddles R and Q are
all homoclinically related to P (recall the proof of Corollary 5.4).

The proposition is an immediate consequence of the following two claims.
We observe that there are similar results in [31] and [20, section 2.5], so we
just sketch their proofs.

Claim 8.3. There is a perturbation g1 of g0 having a hyperbolic periodic
point Sg1

that is homoclinically related to Pg1
and that satisfies simultane-

ously properties Pss and Pi,δ.

Claim 8.4. The dynamical configuration in Claim 8.3 yields diffeomor-
phisms g having heterodimensional cycles associated to a periodic orbit ho-
moclinically related to Pg and to a saddle of index i− 1. Moreover, if δ > 0
is small and g1 is close enough to f then g ∈ U .

Sketch of the proof of Claim 8.3. The idea of the proof of the claim is the
following. First, consider a strong homoclinic intersection X of the orbit of
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R. Then there are N1 and N2 > 0 such that

X ∈ g−N1

0

(

W ss
loc(R, g0)

)

∩ gN2

0

(

W u
loc(R, g0)).

Observe also that, since R and Q are homoclinically related, there is
a locally maximal transitive hyperbolic set L of g0 containing R and Q.
Moreover, we can assume (and we do) that L is disjoint from the orbit of
the point X.

We consider a “generic” perturbation g′0 of g0 given by Lemma 4.1 ob-
taining a periodic point Sg′0

∈ Lg′0
which satisfies Pi,δ and having iterates

arbitrarily close to Rg′
0
. This implies that

(g′0)
−N1

(

W ss
loc(Sg′0

, g′0)
)

and (g′0)
N2

(

W u
loc(Sg′0

, g′0)
)

have points that are close to X. Since X is disjoint from the orbit of Sg′0
we

can perform a local perturbation g1 of g′0 in a small in a neighborhood of X
having a strong homoclinic intersection associated to Sg1

. This completes
the sketch of the proof of the claim. �

Sketch of the proof of Claim 8.4. By a small local perturbation g2 of g1 bi-
furcating the point Sg1

we get two points R̄g2
and S̄g2

of indices i− 1 and i
such that

• S̄g2
is still homoclinically related to Pg2

,
• the manifolds W u(R̄g2

, g2) and W s(S̄g2
, g2) have a transverse inter-

section point Y , and
• the N2-th iterate of W u

loc(S̄g2
, g2) and the N1-th iterate by g−1

2 of
W s

loc(R̄g2
, g2) have points that are close.

As above, there is a small local perturbation g of g2 such that the intersec-
tion W u(S̄g, g) ∩W s(R̄g, g) is non-empty. The support of this perturbation
is disjoint from the orbits of the saddles S̄g2

and R̄g2
, the transverse inter-

section point Y , and a pair of transverse heteroclinic points between S̄g2

and Pg2
. As a consequence, the diffeomorphism g has a heterodimensional

cycle associated to S̄g and R̄g and S̄g is homoclinically related to Pg. This
completes the proof of the claim. �

This completes the proof of Proposition 8.1. �

8.5. Proof of Proposition 8.2. Consider any small ε, δ > 0. The proof of
this proposition follows exactly as the one of Proposition 8.1 after finding an
ε-perturbation g0 of f and two saddles R and Q of g0 that are homoclinically
related to Pg0

and satisfy properties Pss and Pi,δ, respectively.
Let k0 ≥ 1 be an integer associated to ε given by Proposition 4.8. Fix a

point Q = Qδ as in item (3) in the proposition. For an arbitrarily small per-
turbation g′ given by item (2’) consider the point Rg′ homoclinically related
to Pg′ and satisfying Pss. Note that Qg′ also satisfies item (3). Moreover,
the homoclinic class H(Pg′ , g

′) does not have any dominated splitting of
index i.
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We now apply Proposition 4.8 to get a perturbation g0 of g′ supported on
an arbitrarily small neighborhood of the orbit of Qg′ and such that property
Pi,δ holds for Qg0

and g0. Therefore all conditions in the proposition are
satisfied. �

9. Viral classes

In this section we prove Theorem 7. We begin with a definition.

Definition 9.1 (Property V′′). The chain recurrence class C(P, f) of a
saddle P of a diffeomorphism f ∈ Diff1(M), dim(M) = d, satisfies Property
V′′ if the following conditions hold:

(1) for every j ∈ {1, . . . , d − 1} there exists a periodic point Qj whose
multipliers λj(Q) and λj+1(Q) are non-real and whose Lyapunov
exponents satisfy χk(Q) 6= χj(Q) for all k 6= j, j + 1,

(2) let i be the s-index of P , if j is different from i then the points P
and Qj are homoclinically related,

(3) if j = i then Qi has s-index i+1 or i−1 and there are two hyperbolic
transitive sets L and K containing P and Qi and having a robust
heterodimensional cycle, and

(4) there are saddles Q+ and Q− homoclinically related to P such that

χ1(Q
−) + χ2(Q

−) < 0 and χd−1(Q
+) + χd(Q

+) > 0. (9.6)

Note that the points Qj in the definition belong to the chain recurrence
class C(P, f). This is obvious for the saddles Qj , j 6= i, that are homoclini-
cally related to P . For the saddle Qi this follows from the existence of the
hyperbolic transitive sets L and K containing P and Qi and related by a
heterodimensional cycle.

Note also that properties V, V′, and V′′ (recall Definitions 1.4 and 1.5) are
open by definition. The next two lemmas imply that these three properties
are equivalent “open and densely”.

Lemma 9.2. Consider a saddle P and its chain recurrence class C(P, f). If
Property V′′ holds for C(P, f) then Property V holds for C(P, f). Moreover,
if the dimension d ≥ 4, then property V′ also holds for C(P, f).

Proof. Let i be the s-index of P and denote by Qj the saddles in Property
V′′. Condition (1) and the fact that Qj belongs to C(P, f) robustly implies
that there is a neighborhood Vj of f such that, for all h ∈ Vj , the class
C(Ph, h) cannot have a dominated splitting E ⊕ F of index j. Since this
holds for all j = 1, . . . , d − 1, the non-domination condition follows for the
class C(Ph, h) for every diffeomorphism h ∈ V = ∩d−1

j=1Vj .

The fact that C(Ph, h) contains a saddle of s-index different from i for
all h ∈ V follows from condition (3) after recalling that Qi,h ∈ C(Ph, h) and
that its s-index is i ± 1. In dimension d ≥ 4, either P or Qi has s-index
different from 1 and d− 1. �
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Lemma 9.3. Consider a saddle Pf and its chain recurrence class C(Pf , f).
Let V be an neighborhood of f such that Property V holds for C(Pg, g) for all
g ∈ V. Then there is an open and dense subset W of V such that C(Pg, g)
satisfies V′′ for all g ∈ W. In dimension d ≥ 4, the same holds when V is
replaced by V′.

Proof. Assume that C(Pg, g) satisfies property V for all g ∈ V. Let i be
the s-index of Pf . Proposition 5.2 implies that there is an open and dense
subset W ′ of V such that for all j 6= i and all g ∈ W ′ there is a saddle Qj,g of
s-index i homoclinically related to Pg whose j-th multipliers and exponents
satisfy condition (1). This implies items (1) and (2) in Property V′′ for
j 6= i.

In what follows we use some properties of C1-generic diffeomorphisms.
Given two hyperbolic saddles Pf and Qf of a generic diffeomorphism f then
C(Pf , f) = H(Pf , f). Moreover, if Q ∈ C(P, f) then there is a neighborhood
U of f such that Qg ∈ C(Pg, g) for all g ∈ U , see [8]. Furthermore, if H(P, f)
contains saddles of s-indices i < j then it contains a saddle of s-index k for
all k ∈ (i, j) ∩ N, see [3].

By the comments above, after a perturbation, we can assume that the
saddle Qg in Property V has s-index i±1 for all g ∈ W ′. Let us assume, for
instance, that this index is i + 1. Note that C(Pg, g) = C(Qg, g) and that,
by hypothesis, this class has no dominated splitting. Arguing as above, but
now considering the saddle Qg of s-index i+1, we get saddles Q′

g homoclin-
ically related to Qg whose multipliers and exponents satisfy condition (1)
for j = i+ 1. By construction, these saddles are robustly in the same chain
recurrence class of Qg and therefore in C(Pg, g).

By Corollary 2.4, there exists two hyperbolic transitive sets L and K
containing Pg and Q′

g with a robust heterodimensional cycle. Taking Qi,g =
Q′

g we get condition (1) for j = i and condition (3).
Observe that condition (4) is trivial if the s-index of Pf is i 6= 1, d − 1.

Suppose that the index is 1 (the case d− 1 is analogous). In this case every
saddle Q+ homoclinically related to Pf satisfies χd−1(Q

+) + χd(Q
+) > 0.

Note that, after a perturbation if necessary, we can assume that the ho-
moclinic class of Pf contains saddles Qf of stable index 2. After a new
perturbation, one gets a diffeomorphism h with a heterodimensional cycle
associated to Qh and Ph. By the arguments in [3] (see Corollary 2) the
unfolding of these cycle provides diffeomorphisms g with a saddle Q−

g homo-

clinically related to Pg whose Lyapunov exponent χ2(Q
−
g ) is arbitrarily close

to 0+ while χ1(Q
−
g ) is negative and uniformly away from 0. In particular,

one has χ1(Qg) + χ2(Qg) < 0. This proves that property V′′ holds for g.

When d ≥ 4, let us now assume that C(pg, g) satisfies property V′ for all
g ∈ V. Corollary 2 implies that there is a dense and open subset of V consist-
ing of diffeomorphisms g such that there exists a hyperbolic periodic point
Qg in C(Pg, g) with s-index different from the s-index of P . In particular
Property V holds and for a smaller dense and open subset V′′ holds. �
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Theorem 7 is now a consequence of the two lemmas above and the fol-
lowing proposition.

Proposition 9.4 (Viral contamination). Consider f ∈ Diff1(M) and a sad-
dle P of f . Assume that the chain recurrence class C(P, f) of P satisfies
Property V′′. Then for every neighborhood V of H(P, f) there exist a dif-
feomorphism g arbitrarily C1-close to f and a hyperbolic periodic point Qg

of g such that:

(1) the orbit of Qg is arbitrarily close to H(Pf , f) for the Hausdorff
distance,

(2) there is an open neighborhood U ⊂ V of the orbit of Qg such that

P 6∈ U and either f(U) ⊂ U or f−1(U) ⊂ U , and
(3) C(Qg, g) satisfies Property V′′.

Note that item (2) implies that C(Qg, g) is disjoint from the chain-recu-
rrence class of Pg (that contains H(Pg, g)). Recall that property V is robust.
Thus this proposition implies that Property V′′ satisfies the self-replication
condition in Definition 1.3.

9.1. Proof of Proposition 9.4. We consider small ε > 0 and an upper
bound K of the norms of Df and Df−1. Let k0 and ℓ0 be the constants
associated to ε and K in Lemmas 2.1 and 4.3. Let i be the s-index of P .
For clearness, we split the proof of the proposition into six steps.

Step I: Construction of the saddle Q. Consider periodic points Q+ and
Q− as in equation (9.6) in Definition 9.1, i.e. χ1(Q

−) + χ2(Q
−) < 0 and

χd−1(Q
+)+χd(Q

+) > 0. Note that there exists a locally maximal transitive
hyperbolic set Λf such that

• Λf contains P , Q+, and Q−,
• Λf ⊂ H(P, f), and
• Λf is arbitrarily close to H(P, f) for the Hausdorff metric.

In particular, the set Λ has no k0-dominated splitting.

Claim 9.5. There is a perturbation g0 of f such that the continuation Λg0

of Λ is the Hausdorff limit of the orbits of periodic points Qg0
∈ Λg0

such
that

χ1(Qg0
) + χ2(Qg0

) < 0 and χd−1(Qg0
) + χd(Qg0

) > 0. (9.7)

Moreover, the set Λg0
has no k0-dominated splitting of any index.

Proof. If the s-index i of P belongs to {2, . . . , d− 2} then the condition on
the Lyapunov exponents holds for any saddle homoclinically related to P .
Thus it is enough to consider the cases i = 1 and i = d.

Let assume that i = 1 (the case i = d − 1 is similar). In this case,
χd−1(Q)+χd(Q) > 0 for every saddle Q that is homoclinically related to P .
Consider the saddle Q− ∈ Λ. Taking a perturbation g of f in the residual
set G in Lemma 4.1, we can to “spread” the property χ1(Q) + χ2(Q) < 0
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over the hyperbolic set Λg0
, obtaining the point Qg0

. This completes the
first part of the claim.

Since g0 is close to g and Λg0
is close to Λ, there is no k0-dominated

splitting over Λg0
. This ends the proof of the claim. �

By Lemma 4.2, we can take the point Qg0
in Claim 9.5 such that its

orbit does not have any k0-dominated splitting, has period larger than ℓ0,
and its distance to the homoclinic class H(Pg0

, g0) is arbitrarily small. This
completes the choice of the point Q = Qg0

.

Step II: Separation of homoclinic classes. By Lemma 4.3 there is an ε-
perturbation g1 of g0 supported on an arbitrarily small neighborhood of
the orbit of Qg0

such that the orbit of Qg1
is a sink or a source for g1.

In what follows, let us assume that Qg1
is a sink. Thus there is an open

set U ⊂ V containing the orbit of Qg1
such that g1(U) ⊂ U and U is

disjoint from the homoclinic class of Pg1
. Note that these properties hold

for any diffeomorphism g that is C0-close to g1. This implies item (2) in the
proposition.

Recall that the choice of Q and the neighborhood U imply that, for any
perturbation g of g1, the homoclinic class H(Qg, g) is close to H(Pf , f).
This gives item (1) of the proposition.

Step III: Non-trivial homoclinic class of Q. Note that after an ε-perturba-
tion we can “recover” the original cocycle given by the derivative Dg0 over
the orbit of Qg0

, now defined over the orbit of Qg1
. In particular, there is

no k0-dominated splitting over the orbit of Qg1
, conditions in equation (9.7)

hold, and the saddle Qg1
has s-index i. In what follows all perturbations

g we consider will preserve the cocycle over the orbit of Qg1
. Hence the

homoclinic class of Qg will satisfy item (4) in Property V′′.
Finally, by Lemma 2.1 and Remark 2.2, there is an ε-perturbation g2 of

g1 supported on an arbitrarily small neighborhood of the orbit of Qg1
such

that the homoclinic class of Qg2
is not-trivial.

Step IV: No domination for the homoclinic class of Q. Since there is no
k0-dominated splitting over the orbit of Qg1

, by Corollary 5.4, there is a
ε-perturbation g3 of g2 such that for any j 6= i, j ∈ {1, . . . , d − 1}, there is
a periodic point Qj,g3

homoclinically related to Qg3
that satisfies Property

Pj,j+1,C. In what follows, all perturbations that we will perform will preserve
these properties. This implies that the homoclinic class will satisfy items
(1) and (2) in the definition of Property V′′ for every j 6= i.

Finally, for j = i, as the class H(Qg3
, g3) is not k0-dominated, using

Lemma 2.1 and Remark 2.2 we can generate a homoclinic tangency inside
the class after an ε-perturbation g4 of g3. This prevents the existence of a
dominated splitting of index i for g4.

Note that to complete the proof of the proposition it remains to get items
(1) for j = i and (3) of Property V′′.
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Step V: Generation of a robust heterodimensional cycle. Recall that the
homoclinic class H(Qg4

, g4) has no any dominated splitting. There are three
possibilities for the s-index i of P . If i ∈ {2, . . . , d − 2} we can apply
Corollary 2 to get g5 close to g4 with a robust heterodimensional cycle
associated to a hyperbolic set Lg5

containing Pg5
and a hyperbolic set Kg5

of stable index i+ 1 or i− 1.
Assume now that i = d− 1. Recall that χd−1(Qg4

) + χd(Qg4
) > 0. Thus

the hypotheses in Theorem 1 are satisfied by g4 and we get a diffeomorphism
g5 having a robust heterodimensional cycle as before.

Finally, the case i = 1 is analogous to the case i = d−1. Hence we obtain
item (3) in Property V′′.

Step VI: And finally Property V′′ holds. Note that since the sets Lg5
and

Kg5
have a robust heterodimensional cycle, for all g close to g5 they are

contained in the same chain recurrence class. Thus by [8, Remarque 1.10]
there is a residual subset G′ of Diff1(M) such that for every f ∈ G′, every
periodic point of f is hyperbolic and its homoclinic and chain recurrence
classes coincide. In particular, for diffeomorphisms in G′ the homoclinic
classes of two periodic points either coincide or are disjoint.

Therefore for any g6 ∈ G′ close to g5 there is a periodic point Rg6
∈ Kg6

such that the homoclinic classes H(Rg6
, g6) and H(Qg6

, g6) coincide. Hence
the homoclinic class H(Rg6

, g6) does not have any k0-dominated splitting of
index i.

By Proposition 5.2, there is a saddle Qi,g6
homoclinically related to Rg6

such that there is an ε-perturbation of g along the orbit of Qi,g6
that is

adapted to H(Rg6
, g6) and to property Pi,i+1,C. Since the perturbation is

adapted, there is a transitive hyperbolic set K ′
g containing Qi,g and Kg.

Thus the diffeomorphism g has a robust heterodimensional cycle associated
to Lg and K ′

g. This ends the proof of the proposition. �

9.2. Proof of Corollary 8. Recall that the residual subset G′ of Diff1(M)
introduced in Step VI consists of diffeomorphisms whose periodic points are
all hyperbolic. In particular, these diffeomorphisms have at most countably
many periodic points and hence countably many homoclinic classes which
are either disjoint or coincide.

By Lemma 9.3, there exists a dense open subset W ⊂ V such that C(Pg, g)
satisfies V′′ for all g ∈ U .

Recall that a filtrating neighborhood is an open set U such that U = U+∩
U− where U+ and U− are open sets such that f(U+) ⊂ U+ and f−1(U−) ⊂
U−. Observe that there is filtrating neighborhood for the chain recurrence
class of Qg separating this class and the class of Pg. In particular, these
two recurrence classes are disjoint. Thus Theorem 7 allows to repeat this
process, generating new classes satisfying Property V′′. Inductively, for each
n ∈ N we get an open and dense subset Un of U consisting of diffeomorphisms
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having (at least) n disjoint homoclinic classes. Therefore, the set

GU = G′ ∩
⋂

n∈N

Un

is a residual subset of U consisting of diffeomorphisms with infinitely (count-
ably) many homoclinic classes. This implies the first part of the corollary.

To see that there are uncountably many chain recurrence classes note that
the first step of the construction provides two disjoint filtrating open sets,
the set V0 = U containing the chain recurrence class of Pg = Q0 and the set
V1 containing the chain recurrence class of Qg = Q1.

Repeating this process n times, we can assume that for each map g ∈ GU

at each step we get 2n open filtrating sets Vi1,...,in, ik = 0, 1, that are pairwise
disjoint and nested (i.e. Vi1,...,in ⊂ Vi1,...,in−1

), and each set contains a chain
recurrence class with property V′′. Note that these classes are different and
pairwise disjoint.

Arguing inductively, we can repeat the construction of the first step for
every finite sequence i1, . . . , in, getting a new pair of filtrating neighborhoods
Vi1,...,in,0 and Vi1,...,in,1 contained in Vi1,...,in and each of them containing a
chain recurrence class satisfying Property V′′.

Finally, for each infinite sequence ι = (ik) consider the set

Kι =
∞
⋂

k=1

Vi1,...,ik .

By construction, each set Kι contains some recurrent point Xι and given
two different sequences ι and ι′ the chain recurrence classes of Xι andXι′ are
different. Thus for g ∈ GU to each sequence ι we associate a chain recurrent
class C(Xι, g) and this map is injective.

We have shown that every g ∈ GU has uncountably many chain recurrence
classes. Since, by the definition of G′, the diffeomorphism g has only count-
ably many periodic points, there are uncountably many aperiodic classes.
This completes the proof of the corollary. �

9.3. Examples. We close this paper by providing examples of diffeomor-
phisms satisfying viral properties that do not exhibit universal dynamics.

Proposition 9.6. Given any closed manifold M of dimension d ≥ 3 there
is a non-empty open set of diffeomorphisms having homoclinic classes sat-
isfying Property V. Moreover, the open set can be chosen such that the
Jacobians of the diffeomorphisms are strictly less than one over these homo-
clinic classes.

The construction follows arguing exactly as in [11, Appendix 6]. Just note
that in this case we do not assume the existence of a pair of points P ′ and
Q′ with Jacobians less and larger than one as in [11]. A different approach
is to consider perturbations of systems having heterodimensional tangencies
as in [21].
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