Estruturas Algébricas II Lista, 03/12/2010

- 1. Para cada um dos polinômios abaixo, seja $K \supset \mathbb{Q}$ o menor corpo contendo todas as raízes. Calcule o grupo de Galois da extensão $\mathbb{Q} \subset K$.
 - (a) $X^3 2$
 - (b) $X^3 + X^2 2X 1$
 - (c) $X^4 + X^3 + X^2 + X + 1$
 - (d) $X^5 7$
- 2. Diga se cada uma das afirmações abaixo é verdadeira ou falsa. Justifique.
 - (a) Sejam $K_0, K_1, K_2 \subset \mathbb{C}$ corpos de números algébricos com $K_1 \subset K_0$, $K_2 \subset K_0$, $\dim_{\mathbb{Q}} K_0 < \infty$, $\dim_{K_1} K_0 = \dim_{K_2} K_0 = 2$. Então $\dim_{K_1 \cap K_2} K_0 \leq 4$.
 - (b) Se as extensões $K_1\subset K_2$ e $K_2\subset K_3$ são normais então a extensão $K_1\subset K_3$ também é normal.
 - (c) Seja $P \in \mathbb{Z}[X]$ irredutível. Seja $n = \operatorname{grau}(P)$ e $m = \dim_{\mathbb{Q}} K$ onde K é o menor corpo contendo todas as raízes de P. Então m = n!.
 - (d) Seja $P \in \mathbb{Z}[X]$ irredutível. Seja $n = \operatorname{grau}(P)$ e $m = \dim_{\mathbb{Q}} K$ onde K é o menor corpo contendo todas as raízes de P. Então n|m.
 - (e) Seja $P \in \mathbb{Z}[X]$ irredutível. Seja $n = \operatorname{grau}(P)$ e $m = \dim_{\mathbb{Q}} K$ onde K é o menor corpo contendo todas as raízes de P. Então m|n!.
 - (f) Seja $P \in \mathbb{Z}[X]$ irredutível. Seja n = grau(P) e G o grupo de Galois da extensão $\mathbb{Q} \subset K$ onde K é o menor corpo contendo todas as raízes de P. Então existe em G pelo menos um elemento de ordem n.