P1 de Álgebra Linear (turma especial) MAT 1200 - 2010.1

Data: 16 de abril de 2010

Nome:	Matrícula:
Assinatura:	Turma:

Questão	Valor	Nota	Revisão
1	2.5		
2a	1.0		
2b	1.0		
3	2.5		
4a	1.0		
4b	1.0		
4c	1.0		
Prova	10.0		

Instruções

- Mantenha seu celular desligado durante toda a prova.
- Não é permitido usar nenhum tipo de calculadora.
- Não destaque as folhas da prova.
- A prova pode ser resolvida a lápis, caneta azul ou preta. Não use caneta vermelha ou verde.
- Você **não** tem o direito de consultar anotações.
- Todas as respostas devem ser justificadas.

1. Considere o sistema linear 3×3 :

$$\begin{cases} 3333x + 3333y + 3333z = a, \\ 6666x + 6667y + 6668z = b, \\ 9999x + 10000y + 10002z = c, \end{cases}$$

onde a, b e c são constantes.

Determine todos os valores de $a,\,b$ e c para os quais o sistema admite uma única solução e encontre esta solução em função de $a,\,b$ e c.

- $2.\ \,$ Diga se cada uma das afirmações abaixo é verdadeira ou falsa. Justifique brevemente.
 - (a) Para quaisquer vetores $u, v \in \mathbb{R}^3$ temos

$$\langle u + v, u - v \rangle = |u|^2 - |v|^2.$$

(b) Todo sistema linear 2×3 admite pelo menos uma solução.

3. Seja $V_1 \subset \mathbb{R}^5$ gerado pelos vetores (1,1,1,1,1), (0,1,2,3,4) e (0,0,1,3,6). Seja $V_2 \subset \mathbb{R}^5$ o núcleo da matriz

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

Determine a dimensão de $W=V_1\cap V_2$ e ache geradores para W.

4. Os pontos

$$p_0 = (1, 1, 1, 0), \quad p_1 = (1, -1, -1, 0),$$

 $p_2 = (-1, 1, -1, 0), \quad p_3 = (-1, -1, 1, 0)$

são os vértices de um tetraedro regular de aresta $a=2\sqrt{2}$, isto é, a distância entre dois quaisquer pontos distintos é igual a a:

$$|p_0 - p_1| = |p_0 - p_2| = |p_0 - p_3| = |p_1 - p_2| = |p_1 - p_3| = |p_2 - p_3| = a.$$

(a) Encontre $p_4 \in \mathbb{R}^4$ que esteja a uma distância igual a a de p_0, p_1, p_2, p_3 :

$$|p_0 - p_4| = |p_1 - p_4| = |p_2 - p_4| = |p_3 - p_4| = a.$$

(b) Encontre $q \in \mathbb{R}^4$ que seja equidistante de p_0, p_1, p_2, p_3, p_4 , isto é, tal que

$$|p_0 - q| = |p_1 - q| = |p_2 - q| = |p_3 - q| = |p_4 - q|.$$

(c) Determine o valor de $|p_0 - q|$.