P1 de Equações diferenciais e de diferenças MAT 1154 — 2004.2

Data: 11 de Setembro de 2004

Nome:	Matrícula:	
Assinatura:	Turma:	

Questão	Valor	Nota	Revisão
1	2.5		
2	2.5		
3	2.5		
4	2.5		
Total	10.0		

Instruções

- Não é permitido usar nenhum tipo de calculadora.
- A prova pode ser resolvida a lápis ou a caneta.
- $\bullet\,$ Você tem direito a uma folha de consulta.
- Todas as respostas devem ser justificadas.

 $1.\ Resolva$ as equações diferenciais abaixo:

$$-\sin x + 2yy'\cos x = 0$$

$$(y + e^x) + (2y + x)y' = 0$$

2. Resolva as equações de diferenças abaixo:

$$y_{n+1} = y_n + n, \quad y_0 = 0.$$

(b)
$$y_{n+1} = (n+1)2^n y_n + n(n+1)! \ 2^{\frac{n(n+1)}{2}}, \quad y_0 = 1.$$

3. Considere o seguinte problema de valor inicial:

$$y'(t) = y(t) + t$$
, $y(0) = 0$.

- (a) Encontre a função y e calcule o valor de f(1).
- (b) Escreva a equação de iteração de Euler para calcular uma solução aproximada (em função do passo h).
- (c) Calcule a aproximação para y(1) obtida pelo método de Euler com h=1/2.
- (d) Resolva a equação de diferenças obtida no item (b) para encontrar a aproximação para y(nh) obtida pelo método de Euler (em função do passo h e do número de passos n).

- 4. A função contínua e derivável $f: \mathbb{R} \to \mathbb{R}$ tem as propriedades abaixo:
 - 1. f(0) = 1, f(1) = 2.
 - 2. Para todo $x \neq 0$, a reta tangente ao gráfico de f no ponto (x,y) corta a reta y=1 no ponto (x/2,1).

Calcule f(2).