P4 de Equações diferenciais e de diferenças MAT 1154 — 2006.2

Data: 5 de dezembro de 2006

Nome:	Matrícula:
Assinatura:	Turma:

Questão	Valor	Nota	Revisão
1a	2.0		
1b	2.0		
1c	2.0		
2	2.0		
3	2.0		
Total	10.0		

Instruções

- Desligue o seu celular.
- $\bullet\,$ Não destaque as folhas da prova.
- Não é permitido usar nenhum tipo de calculadora.
- A prova pode ser resolvida a lápis ou a caneta.
- Você não tem o direito de consultar anotações.
- Todas as respostas devem ser justificadas.

1. Resolva os problemas de valor inicial abaixo:

$$y''(t) - 6y'(t) + 9y(t) = e^{5t}, \quad y(0) = 1, \quad y'(0) = 0.$$

(b)
$$y''(t) - 9y'(t) + 20y(t) = \begin{cases} 2 - t, & 0 \le t \le 2\\ 0, & t \ge 2, \end{cases}$$

$$y(0) = 0, \quad y'(0) = 0.$$

$$y'(t) - Ay(t) = b$$
, $A = \begin{pmatrix} 4 & -5 \\ 5 & -4 \end{pmatrix}$, $b = \begin{pmatrix} 3 \\ -3 \end{pmatrix}$, $y(0) = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$.

2. Sabendo que

$$y''(t) - ty'(t) + y(t) = 1$$
, $y(0) = 0, y'(0) = 1$,

determine $y^{(k)}(0)$ para k = 2, 3, 4.

3. A seqüência (y_n) satisfaz

$$y_{n+2} = 2y_{n+1} - 2y_n, \quad y_0 = y_1 = 1.$$

Determine y_{38} e y_{39} (simplifique sua resposta).