
HOMOTOPY TYPE OF SPACES OF CURVES WITH CONSTRAINED

CURVATURE ON FLAT SURFACES

NICOLAU C. SALDANHA AND PEDRO ZÜHLKE

Abstract. Let S be a complete flat surface, such as the Euclidean plane. We determine the

homeomorphism class of the space of all curves on S which start and end at given points in given

directions and whose curvatures are constrained to lie in a given open interval, in terms of all

parameters involved. Any connected component of such a space is either contractible or homotopy

equivalent to an n-sphere, and every integer n ≥ 1 is realizable. Explicit homotopy equivalences

between the components and the corresponding spheres are constructed.

0. Introduction

Let −∞ ≤ κ1 < κ2 ≤ +∞ and Q = (q, z) ∈ R2 × S1. Let Cκ2
κ1

(Q) denote the set, furnished with

the Cr topology for some r ≥ 2, of all regular curves γ : [0, 1]→ R2 of class Cr such that:

(i) γ starts at 0 ∈ R2 in the direction of 1 ∈ S1 and ends at q in the direction of z;
(ii) The curvature κγ of γ satisfies κ1 < κγ(t) < κ2 for all t ∈ [0, 1].

A more accurate reformulation of (i) is that γ(0) = 0, tγ(0) = 1, γ(1) = q and tγ(1) = z, where
tγ : [0, 1]→ S1 denotes the unit tangent to γ.

There is a natural decomposition of Cκ2
κ1

(Q) as the disjoint union of its subspaces Cκ2
κ1

(Q; θ1),

where the latter contains those curves which have total turning θ1, for eiθ1 = z. By Theorems 4.19
and 7.1 in [17], each of these subspaces is either empty or a contractible connected component of
Cκ2
κ1

(Q), except when κ1, κ2 have opposite signs and |θ1| < π. To study what happens in this case,
it may be assumed without loss of generality that κ1 = −1 and κ2 = +1, by Theorem 2.4 in [17].
For a fixed Q = (q, z) with z 6= −1, there exists exactly one subspace C+1

−1(Q; θ1) with θ1 ∈ (−π, π);

it contains the curves in C+1
−1(Q) of minimal total turning in absolute value. Let it be denoted by

M(Q).
The central result of this work states that M(Q) is homotopy equivalent to Sn for some n ∈

{0, 1, . . . ,∞}, and allows one to determine n by means of a simple construction (recall that S∞ is
contractible). In particular, any of the indicated values is possible.

In the sequel R2 is identified with C for convenience. Also, E denotes the separable Hilbert space,
Cr(a) denotes the circle of radius r > 0 centered at a ∈ C and X ≈ Y (resp. X ' Y ) means that X
is homeomorphic (resp. homotopy equivalent) to Y .

Theorem. Let Q = (q, z) ∈ C× S1, z 6= −1. Then M(Q) ≈ E× S2k or E× S2k+1 (k ≥ 0) for q in
the open region intersecting the ray from 0 through 1 + z and bounded by the three circles{

C4k+4(iz − i) and C4k+2(±(i+ iz)), or

C4k+4(i− iz) and C4k+6(±(i+ iz)), respectively
(see Figure 1).

If q does not lie in the closure of any of these regions, then M(Q) ≈ E. If q lies on the boundary of
one of them, then M(Q) ≈M

(
(q − δ(1 + z), z)

)
for all sufficiently small δ > 0.

Remark. Let Sn denote the set of all (q, θ1) ∈ C ×R such that C+1
−1(Q; θ1) is homotopy equivalent

to Sn, where Q = (q, eiθ1) and n ∈ {0, 1, . . . ,∞}. Together with the aforementioned results of [17],
the theorem implies that Sn is a bounded subset of C× (−π, π), neither open nor closed but having
nonempty interior, for any finite n. Moreover, if

Sn(z) =
{
q ∈ C : M(Q) ' Sn, Q = (q, z)

}
,
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Figure 1. This drawing to scale indicates the homeomorphism class of M(Q) in
terms of q, for Q = (q, z) ∈ C × S1 and a fixed z 6= −1 (here z ≈ exp( iπ7 )). If
q lies in the unshaded region, then M(Q) ≈ E, the separable Hilbert space. The
line segments are only auxiliary elements and do not bound any regions. The line
through 0 and 1 + z (not drawn) contains ±(i− iz) and is an axis of symmetry of
the figure. The radii of the circles are indicated inside parentheses near their centers.
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then limn→∞Area(Sn(z)) = +∞ = Area(S∞(z)) for any z ∈ S1 r {−1}, as suggested by Figure 1.
The precise determination of Area(Sn(z)) in terms of n and z will be left as an exercise.

Example. Let Qx = (x, 1) ∈ R× S1. Then M(Qx) ≈ E if x ≤ 0 and

M(Qx) ≈

{
E× S2k if x

4 ∈
(√
k2 + k , k + 1

]
E× S2k+1 if x

4 ∈
(
k + 1 ,

√
k2 + 3k + 2

] (k ∈ N).

Note that the size of the interval where M(Qx) ≈ E× Sn approaches 2 as n increases.

Figure 2. The homeomorphism class of M(Qx) as a function of x ∈ R.

The following concepts are essential to all that follows.

(0.1) Definition (condensed, critical and diffuse). Let γ : [0, 1] → C be a regular curve,
tγ : [0, 1] → S1 its unit tangent vector, and θγ : [0, 1] → R a continuous argument function for
tγ , that is, one satisfying tγ = exp(iθγ). We call γ condensed, critical or diffuse according as its
amplitude

ω = sup
t∈[0,1]

θγ(t)− inf
t∈[0,1]

θγ(t)

satisfies ω < π, ω = π or ω > π, respectively. The open set of all condensed (resp. diffuse) curves
in M(Q) shall be denoted by Uc (resp. Ud). A sign string σ is an alternating finite sequence of
signs, such as +−+ or −+−+. Its length |σ|, the number of terms in the string, is required
to satisfy |σ| ≥ 2, and σ(k) denotes its k-th term (1 ≤ k ≤ |σ|). Its opposite −σ is the sign
string satisfying |−σ| = |σ| and (−σ)(k) = −σ(k). A critical curve γ is of type σ if there exist
0 ≤ t1 < t2 < · · · < t|σ| ≤ 1 with θγ(tk) = sup θγ or inf θγ according as σ(k) = + or −, but it is
impossible to find 0 ≤ s1 < · · · < s|σ|+1 ≤ 1 such that tγ(sk+1) = −tγ(sk) for each k = 1, . . . , |σ|.

Example. Suppose that M(Q) ' S1. Then a generator of π1M(Q) is represented by any family of
curves γs ∈M(Q) (s ∈ [0, 1]) such that:

(i) γs is condensed for s ∈ [0, 1
4 ) ∪ ( 3

4 , 1] and γ0 = γ1;

(ii) γs is diffuse for s ∈ ( 1
4 ,

3
4 );

(iii) γs is critical of type +− when s = 1
4 and critical of type −+ when s = 3

4 .

As πkM(Q) = 0 for k > 1, the resulting map S1 →M(Q) is actually a weak homotopy equivalence,
and hence a homotopy equivalence, since M(Q) is a Banach manifold (cf. Theorem 15 of [14]).

In particular, suppose that 4 < x ≤ 4
√

2 and let Qx = (x, 1) ∈ C × S1, as in the preceding
example. A generator of π1M(Qx) can be visualized by completing Figure 3 to obtain a family
γs ∈ M(Qx) as above. For s = 1

2 one may take the concatenation of a figure eight curve (that is, a
curve of total turning 0, not drawn in the figure) with γ0 = γ1, where the latter denotes the straight
segment from 0 to x. Of course, it needs to be checked that this homotopy can actually be carried
out within M(Qx). This is the case if and only if x > 4; this was originally proved as Theorem 5.3
in [4] and then generalized in Theorem 6.1 of [17].

A generator of πnM(Q) when M(Q) ' Sn is constructed in §6, and an informal description is
given at the end of this introduction.

Let S be a complete flat surface, κ1 < κ2 and u, v ∈ UTS, the unit tangent bundle of S;
throughout the article, UTC is identified with C×S1. Let CSκ2

κ1
(u, v) denote the space of all curves

on S whose lift to UTS joins u to v and whose geodesic curvature takes values in (κ1, κ2), with the
implicit convention that κ2 = −κ1 > 0 if S is nonorientable (for the formal definition, see §8 of [17]).

When κ1 and κ2 have opposite signs, the homeomorphism class of CSκ2
κ1

(u, v) can be determined
from the theorem as follows, provided only that a description of S as a quotient of C by a group of
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Figure 3. Constructing a generator of π1M(Q) when Q = (x, 1) ∈ R × S1 and

4 < x ≤ 4
√

2.

isometries is known. If the coordinates of C are chosen (as they may be) so that the vector 1 ∈ S1

at 0 ∈ C projects to u under the induced map pr: UTC→ UTS, then by Proposition 8.3 in [17]

(1) CSκ2
κ1

(u, v) ≈
∐

Q∈pr−1(v)

Cκ2
κ1

(Q),

where the inverted product denotes disjoint union. Moreover, there is a homeomorphism h : C×S1 →
C×S1 (depending on κ1, κ2) such that Cκ2

κ1
(Q) ≈ C+1

−1(h(Q)) for all Q ∈ UTC. A simple expression
for h is available from Theorem 2.4 in [17]; hence, the homeomorphism class of CSκ2

κ1
(u, v) can

actually be computed explicitly.
The homeomorphism in (1) always holds, but for κ1κ2 ≥ 0, each of the spaces Cκ2

κ1
(Q) appearing

on the right side decomposes as a union of infinitely many components homeomorphic to E, as
shown in Theorem 7.1 of [17]. This case is thus not as interesting as the one where κ1κ2 < 0. (To
determine the sign of κ1κ2, we set 0(±∞) = 0 by convention.)

Corollary. Let S be a complete flat surface, κ1 < κ2 and u, v ∈ UTS. Then each component of
CSκ2

κ1
(u, v) is homeomorphic to E × Sn, for some n ∈ {1, . . . ,∞} depending upon the component.

The number of components homeomorphic to E× Sn is finite for n <∞, and infinite for n =∞.

Proof. Only the last assertion for the case κ1κ2 < 0 still needs to be justified. For this, consider
the decomposition (1). The existence of the homeomorphism h : UTC→ UTC such that Cκ2

κ1
(Q) ≈

C+1
−1(h(Q)) for all Q ∈ UTC shows that it may be assumed that κ1 = −1, κ2 = +1.

Now for any Q ∈ pr−1(v), each of the infinitely many components of C+1
−1(Q) is contractible

except possibly one, namely, M(Q). Write S = C/Γ, for some group Γ of isometries of C. By
proper discontinuity of the action of Γ, for each n <∞, the intersection of pr−1(v) ⊂ UTC with{

Q ∈ UTC : M(Q) ≈ E× Sn
}

is finite, since the latter is a bounded subset of UTC for all finite n. �

Example. For a ∈ C, denote by Ta : C→ C the translation x 7→ x+ a. Let S = C/Γ be a flat torus,
where Γ is the group 〈T1, Ti〉, and let u ∈ UTS be arbitrary. Then for every n ∈ {1, 2, . . . ,∞},
there exists a connected component of CS+1

−1(u, u) homeomorphic to E × Sn. Since S is isotropic,

we may assume that u = pr(O), where O = (0, 1) ∈ C × S1. Then according to (1), CS+1
−1(u, u)

contains homeomorphic copies of M(Qk) for every k ∈ Z, where Qk = (k, 1) ∈ C × S1 is as in the
first example. The same conclusion holds even if T1 and Ti are replaced by T2 and T2i, because
the lattice 2(Z × Z) intersects the interior of each of the shaded regions in the analogue of Figure
1 for z = 1. In contrast, for S = C/ 〈T4, T4i〉, no connected component of CS+1

−1(u, u) is homotopy

equivalent to S1. This illustrates the general fact that the topology of CSκ2
κ1

(u, v) is closely linked to
the global geometry of S.
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Outline of the proof. Although the proof of the main theorem is somewhat technical, the un-
derlying idea is quite simple. For each sign string σ, we define the concept of “quasicritical curves
of type σ”. These form an open set Uσ ⊂ M(Q) containing all critical curves of type σ in M(Q),
with Uσ = ∅ if there exists no curve of the latter type. The naive plan is to prove that Uc, Ud
and the Uσ (for σ ranging over all possible sign strings) form a good cover of M(Q), meaning that
their k-fold intersections are either empty or contractible for any k ≥ 1. Since M(Q) is a Banach
manifold, its homeomorphism class is completely determined by the incidence data of this cover,
which is equivalent either to that of the good cover of Sn−1 by the hemispheres

(2) U±k =
{

(x1, . . . , xn) ∈ Sn−1 : ± xk > 0
}

(k = 1, . . . , n)

or else to the cover of Sn−1 r {(0, . . . , 0,−1)} obtained by omitting U−n.
More precisely, let τ be a top sign string for M(Q), i.e., one having maximum length |τ | among

those strings σ such that M(Q) contains critical curves of type σ. The fact that Uτ 6= ∅ will
immediately imply that Uσ 6= ∅ whenever |σ| < |τ |. The integer n appearing in (2) equals |τ |, and
the combinatorial equivalence between the cover of M(Q) and that in (2) is given by

(3) Uc ↔ U+1, Ud ↔ U−1 and Uσ ↔ Uσ(1)|σ| (for Uσ 6= ∅).

Thus, M(Q) is contractible if U−τ = ∅, and it has the homotopy type of Sn−1 if U−τ 6= ∅. Note
that n = |τ | ≥ 2 by the definition of sign string. If M(Q) does not admit a top sign string (or,
equivalently, if it contains no critical curves at all), then it has the homotopy type of a point or of
S0 according as Uc is empty or not; this situation was already considered in Theorem 6.1 of [17].

Briefly stated, denoting by T the subset of M(Q) consisting of all critical curves:

Uc = ∅ ⇒M(Q) ≈ E;

Uc 6= ∅ and T = ∅ ⇒M(Q) ≈ E× S0;

Uc 6= ∅ and T 6= ∅ ⇒M(Q) ≈ E× Sn−1 or E (n = |τ | , τ a top sign string),

depending on whether M(Q) contains critical curves of type −τ or not, respectively. (It is shown in
[17] that Ud is never empty, and that Uc = ∅ implies T = ∅.) The determination of whether M(Q)
contains condensed or critical curves of any given type in terms of Q was already carried out in
Propositions 3.17 and 5.3 of [17], and this is essentially what is depicted in Figure 1.

Informally, γ : [0, 1]→ C is quasicritical of type σ if it is possible to find ϕ ∈ R and t1 < · · · < t|σ|
such that the unit tangent vector tγ to γ satisfies tγ(tk) ≈ σ(k)ieiϕ for each k = 1, . . . , |σ| and〈
tγ , e

iϕ
〉
> 0 away from these points. In words, γ is nearly vertical with respect to the “axis” eiϕ

near the points γ(tk), with orientation prescribed by σ, but elsewhere its image is the graph of a
function.

Unfortunately, the set of all ϕ ∈ R with respect to which a curve is quasicritical of type σ need
not be an interval. Given a continuous family K → Uσ, p 7→ γp, this makes it difficult to choose
ϕp continuously so that each γp is quasicritical with respect to ϕp. To circumvent this, we work
instead with a certain space N(Q) ⊂M(Q)×R. The strategy to understand the topology of N(Q)
is exactly as described above: First an open cover V of N(Q) by subsets Vc, Vd and Vσ is defined,
where roughly Vc and Vd are products of Uc and Ud with R, and for each sign string σ, Vσ consists
of pairs (γ, ϕ) such that γ is quasicritical of type σ with respect to ϕ. It is then proved that these
sets form a good cover of N(Q), whose combinatorics is determined by (3) when U is replaced by V.
Finally, it is established that the restriction to N(Q) of the natural projection M(Q)×R→ M(Q)
is a homotopy equivalence.

Outline of the sections. Given a sign string σ2 and a substring σ1 of σ2, there are in general
many ways to embed σ1 into σ2. For instance, if σ1 = −+ and σ2 = −+−+, then there are three
substrings of σ2 isomorphic to σ1, namely, those determined by the pairs of coordinates (1, 2), (1, 4)
and (3, 4). In §1 we consider certain subspaces of Rn determined by inequalities involving a set of
strings σ1, . . . , σm, each a substring of the next, which encode the purely combinatorial difficulties
that arise in the study of the topology of Vσ1

∩ · · · ∩Vσm . The main result of the section states that
the former subspaces are in fact all weakly contractible. In the case of two strings, we construct
homeomorphisms from the resulting spaces onto Euclidean spaces, and for larger sets of strings we
use induction and certain collapsing maps which are quasifibrations.
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One of the tools in the proof that the cover V of N(Q) is good is a procedure for “stretching”
curves, illustrated in Figures 9 and 10, which generalizes the grafting construction of [17]. This
procedure is explained in §2, along with some of its properties that are needed later.

The formal definitions of quasicritical curve, the space N(Q) and its cover V are contained in §3.
Most of the results in this section concern basic properties of quasicritical curves, and how to con-
tinuously choose “stretchable” subarcs for a given family of such curves so that when the stretching
construction is actually carried out, the resulting homotopy will preserve important properties of
the original family, such as being condensed or simultaneously quasicritical of several types. It is
also shown there that the projection N(Q)→M(Q) induces surjections on homotopy groups.

The combinatorics of the cover V of N(Q) is determined in §4. It is very easy to see that
Vc ∩ Vd = ∅ and Vσ ∩ V−σ = ∅ for any sign string σ. On the other hand, given sign strings
σ1, . . . , σm with |σ1| < · · · < |σm|, with some care one can deform a critical curve of type σm to
make it simultaneously quasicritical of type σj for each j. Thus an intersection of elements of V is
empty if and only if it involves some “opposite” pair, just as for the cover in (2).

The objective of §5 is to prove that V is a good cover. Given a continuous family (γp, ϕp) ∈
Vσ1 ∩ · · · ∩ Vσm , with p ranging over a compact space, each γp can be stretched to become nearly
critical (as in Figure 10), and then deformed to a concatenation of circles and line segments (as in
Figure 11) which is essentially determined by the slopes of the segments. The results of §1 can then
be used to conclude that the resulting family is nullhomotopic.

The proof that N(Q) and M(Q) are homeomorphic is completed in §6. Moreover, when M(Q) '
Sn−1, where n = |τ | ≥ 2 is as above, explicit homotopy inverses f : Sn−1 →M(Q) and g : M(Q)→
Sn−1 are constructed. Let Cτ denote the set of all critical curves of type τ in M(Q). Intuitively,
the map g measures the failure of curves in M(Q) to belong to Cτ . If α is a generator of H∗(Sn−1),
then g∗(α) is the “Poincaré dual” of Cτ , except that the latter is not really a submanifold of M(Q).
The map f represents a generator of πn−1M(Q) and admits the following description: Regard Sn−1

as a CW complex with two k-cells ek± for every k = 0, . . . , n− 1. Then

f
(
en−1

+

)
⊂ Ud, f

(
en−1
−
)
⊂ Uc,

and for each k = 0, . . . , n − 2, f maps ek± into the set of critical curves of type ±σn−k in M(Q),

where σn−k denotes any of the two sign strings of length n − k. The actual construction of f is a
bit different, but more precise; in particular, it shows that these inclusions can indeed be satisfied.

Related work. As far as we know, the first person to systematically study planar curves with
constrained curvature was L. E. Dubins. In the much-cited paper [3], he investigated curves of
minimal length in C+κ0

−κ0
(P,Q),† and in [4] he attempted to determine the connected components of

this space, obtaining some partial results and formulating several conjectures. Much later, in [17],
the components of Cκ2

κ1
(P,Q) were characterized, and most of his conjectures were proved.

Of course, the definition of CSκ2
κ1

(u, v) makes sense for any Riemannian surface S. One can even
consider analogous spaces CMκ2

κ1
(u, v) of curves on a Riemannian manifold M of dimension n ≥ 2

by replacing the geodesic curvature of a curve by its (n − 1)-th curvature (also called its torsion,
cf. [10], p. 18). The important special case where κ1 = −∞ and κ2 = +∞ (that is, where the curves
are regular but no conditions are imposed on their torsion) was a precursor to the Hirsch-Smale
theory of immersions. Smale showed in [21], Theorem C, that for any u ∈ UTM , CM+∞

−∞ (u, u) is
weakly homotopy equivalent to the loop space ΩUTM . In one direction, the homotopy equivalence
comes simply from lifting a regular curve on M to UTM . The special case where M = R2 yields
the classical Whitney-Graustein theorem ([23], Theorem 1).

Later work on the subject was mostly concerned with characterizing the connected components
of spaces of closed nondegenerate curves, i.e., those having nonvanishing curvature (torsion). In the
present notation, these correspond to CM0

−∞(u, u)t CM+∞
0 (u, u). Papers treating this problem for

the simplest manifolds, such as Rn, Sn and RPn, include [1], [5], [6], [8], [9], [11], [12], [13], [16],
[19] and [20]. In [18] the connected components of C(S2)κ2

κ1
(u, u) are characterized for all κ1 < κ2,

and in [15] the homotopy type of spaces of (not necessarily closed) nondegenerate curves on S2 is
computed.

†Actually, for the purposes of [3] it is more natural to work with curves whose curvatures are allowed to be

discontinuous and to take values in the closed interval [−κ0,+κ0], otherwise the minimal length may not be attained.
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The present paper relies strongly on [17]. Some familiarity with the contents of sections 0, 1, 3, 4
and 5 therein will make a few of the proofs here more easily understood.

1. On certain subspaces of Euclidean space determined by sign strings

A cell decomposition of Rn. Throughout the article, the set {1, . . . , n} will be denoted by [n].
Let 2 ≤ n ∈ N, m ∈ [n] and let ∅ 6= J1, . . . , Jm ⊂ [n] satisfy [n] =

⊔m
j=1 Jj . Define

WJ1,...,Jm =
{
x ∈ Rn : xk < xk′ if and only if k ∈ Jj , k′ ∈ Jj′ for some j < j′ ∈ [m]

}
.

It is easy to check that each cell WJ1,...,Jm is an m-dimensional convex cone. Furthermore, Rn is
the disjoint union of all such cells. There is only one 1-cell W[n], which consists of the multiples
of (1, 1, . . . 1) in Rn. At the other end, there are n! cells of dimension n, each WJ1,...,Jn being
determined by the permutation π ∈ Sn such that π(k) is the unique element of Jk. These n-cells
are open in Rn, while the k-cells for 1 < k < n are neither open nor closed. See Figure 4(a) for an
illustration of the case n = 3.

Remark. The k-cells in this decomposition are dual to the (n − k)-faces of the (n − 1)-dimensional
permutohedron. The total number of cells (faces) is given by the n-th ordered Bell number.

Figure 4. The decomposition of R3 into the 13 cells W∗ and into the sets M ,
S and Lσ, for |σ| ≥ 2. More precisely, what is depicted here is the orthogonal
projection of these sets onto the plane

{
(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0

}
.

We are actually more interested in another decomposition of Rn, obtained by comparing even
and odd cordinates.

(1.1) Definition (mixed, level, split). Given x = (x1, . . . , xn) ∈ Rn, let

(4) t(x) = min
{
xk − xk′ : k is odd and k′ is even, k, k′ ∈ [n]

}
.

We call x mixed, level or split according as t(x) < 0, t(x) = 0 or t(x) > 0, respectively. Define

M =
{
x ∈ Rn : x is mixed

}
, S =

{
x ∈ Rn : x is split

}
, L =

{
x ∈ Rn : x is level

}
.

It is convenient to represent a point x = (x1, . . . , xn) ∈ Rn as an ordered set of n beads, each of
which is allowed to slide along a vertical line. The height of the k-th bead (above a certain fixed
ground height) gives the value of xk; see Figure 5.

An interval J ⊂ [n] is a set of the form (a, b)∩ [n] for some a < b ∈ R. Given two intervals J1, J2,
we write J1 < J2 if k1 < k2 whenever k1 ∈ J1, k2 ∈ J2.
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Figure 5. Split, level and mixed points in R10, respectively, represented by beads
(black for odd-indexed coordinates and white for even-indexed coordinates).

(1.2) Definition (sign string, level type). When x ∈ Rn is level, there exists a unique e(x) ∈ R
satisfying xk = e(x) = xk′ for some odd k and even k′ (see Fig. 5(b); ‘e’ stands for “elevation”).
For each integer m ≥ 2, define

(5) σm,−σm : [m]→ {±1} ≡ {±} , by σm(j) = (−1)j and − σm(j) = (−1)j+1.

For example, σ3 is represented by −+−, and −σ4 by + − +−. By definition, a sign string σ is of
the form ±σm for some m ≥ 2, and |σ| denotes its length m. A level point x = (x1, . . . , xn) ∈ Rn

is of type σ if we can find nonempty intervals J1, . . . , J|σ|, such that:

(i) J1 < J2 < · · · < J|σ| and [n] =
⋃|σ|
j=1 Jj .

(ii) For each j, there exists at least one k ∈ Jj with xk = e(x), and (−1)k = σ(j) for all such k.

The set of all level points of type σ in Rn will be denoted by Lnσ or simply Lσ.

In other words, to determine the type of a level point x ∈ Rn, we assign a tag − (resp. +) to
each odd (resp. even) bead lying at height e(x), and read off the corresponding signs, omitting any
repetitions; see Figure 6.

Figure 6. An element of L10
σ4 and two elements of L11

−σ4 , respectively. According

to (1.4), the latter space is homeomorphic to R8. In particular, the two points
represented in (b) and (c) can be joined without leaving L11

−σ4 .

Observe that the sets M , S and Lσ are pairwise disjoint cones. Moreover, Lσn = W[n] and Lτ = ∅
if τ = −σn or |τ | > n. The sets M , S are open in Rn, while the Lσ are neither open nor closed
for |σ| < n. Each of the sets M , S and Lσ, for any sign string σ, is a union of cells W∗ of Rn.
Equivalently, each cell of Rn is contained in one of these sets. The proofs of these assertions are all
straightforward. See Figure 4(b) for the case n = 3.

(1.3) Definition. For an integer m ≥ 1, let

Hm =
{

(x1, . . . , xm) ∈ Rm : xm ≥ 0
}

and −Hm =
{

(x1, . . . , xm) ∈ Rm : xm ≤ 0
}
.

For a space Y ≈ Hm, define ∂Y to consist of all y ∈ Y such that the local homology H∗(Y, Y r{y}) at
y is trivial. Note that ∂Y is exactly the image of Rm−1×{0} under any homeomorphism Hm → Y .

Our first goal is to prove the following result.

(1.4) Proposition. For σ a sign string with 2 ≤ |σ| ≤ n− 1, let

Y± =
{

(y1, . . . , yn) ∈ Rn : ± y1 > 0
}
,

Yσ =
{

(y1, . . . , yn) ∈ Rn : yk = 0 for all k < |σ| and σ(1)y|σ| > 0
}
,

Yσn =
{

(y1, . . . , yn) ∈ Rn : yk = 0 for all k < n
}
.

Then there exists a homeomorphism f : Rn → Rn such that f(M) = Y−, f(S) = Y+ and f(Lσ) = Yσ
for all sign strings σ with |σ| ≤ n, σ 6= −σn.
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(1.5) Corollary. Let M, S, Lnσ ⊂ Rn. Then M ≈ S ≈ Rn, M ≈ S ≈ Hn, Lnσ ≈ Rn+1−|σ| and

L
n

σ ≈ Hn+1−|σ| (|σ| < n). Also, Lnσn = L
n

σn ≈ R and Ln−σn = ∅. �

In particular, each of the sets Lσ and Lσ is contractible. It is a good exercise to try to visualize
a contraction using the representation by beads, as in Figure 6.

(1.6) Remark. Any homeomorphism ∂Hk → ∂Hk may be extended to a homeomorphism of Hk onto
itself.

(1.7) Lemma. Let H1 ∪H2 be a topological space with H1 ≈ H2 ≈ Hk and ∂H1 = ∂H2 = H1 ∩H2.
Then there exists a homeomorphism f : H1 ∪H2 → Rk such that f(H1) = Hk and f(H2) = −Hk.

Proof. Let g1 : H1 → Hk and g2 : H2 → −Hk be homeomorphisms. Then the restriction of g2◦(g1)−1

to ∂Hk is a homeomorphism ∂Hk → ∂Hk. Using (1.6), extend this to a homeomorphism g : Hk →
Hk. Now glue g ◦ g1 and g2 along ∂H1 = ∂H2. �

(1.8) Lemma. Let H1 ∪H2 be a topological space with H1 ≈ H2 ≈ Hk and ∂Hi = C ∪Di, where
C ≈ Di ≈ Hk−1, C ∩Di = ∂C = ∂Di and H1 ∩H2 = C (i = 1, 2). Then H1 ∪H2 ≈ Hk.

Proof. Let f0 : C → Hk−1 be a homeomorphism. Using (1.7), f0 may be extended to a homeomor-
phism f1 : C ∪D1 → Rk−1, and then since ∂H1 = C ∪D1, f1 has an extension to a homeomorphism
g1 : H1 → Hk, by (1.6). Finally, we compose g1 with the homeomorphism

Hk → Q1 =
{

(x1, . . . , xk) ∈ Rk : xk−1 ≥ 0 and xk ≥ 0
}
,

obtained by taking the square root (in C) of the last two coordinates (xk−1, xk) of points x ∈ Hk.
The result is a homeomorphism h1 : H1 → Q1 such that h1|C = f0.

Repeating the argument for H2, starting from f0 again, we obtain a homeomorphism

h2 : H2 → Q2 =
{

(x1, . . . , xk) ∈ Rk : xk−1 ≥ 0 and xk ≤ 0
}
,

with h2|C = f0. Glueing h1 and h2 along C, we finally obtain the desired homeomorphism

h : H1 ∪H2 → Q1 ∪Q2 =
{

(x1, . . . , xk) ∈ Rk : xk−1 ≥ 0
}
≈ Hk. �

(1.9) Lemma. Let M, S, L ⊂ Rn be as in (1.1). Then there exists a homeomorphism g : Rn →
L×R with g(M) = L× (−∞, 0) and g(S) = L× (0,+∞). In particular, M ∩ S = L.

Proof. Define a map h : L×R→ Rn by

h(x, t) = (x1 + t, x2 − t, . . . , xn + (−1)n−1t) (x = (x1, . . . , xn) ∈ L, t ∈ R).

Given x ∈ Rn, let t(x) be as in eq. (4) and t̄(x) = 1
2 t(x). Let

g : Rn → L×R, g(x) =
(
(x1 − t̄(x), x2 + t̄(x), . . . , xn + (−1)nt̄(x)) , t̄(x)

)
.

Then g and h are inverse maps. Moreover, it is an immediate consequence of (1.1) that g(M) =
L× (−∞, 0) and g(S) = L× (0,+∞), as claimed. �

(1.10) Lemma. For any sign string σ, the closure Lσ of Lσ in Rn satisfies Lσ = Lσ ∪
⋃
|τ |>|σ| Lτ .

In particular, Lσm ∩ L−σm =
⋃
|τ |>m Lτ .

Proof. Let τ be a sign string and suppose that x ∈ Lτ . Define

µ =
1

2
min

{
|xk − e(x)| : xk 6= e(x), k ∈ [n]

}
.

Then the set

U =
{

(y1, . . . , yn) ∈ Rn : |yk − xk| < µ for each k ∈ [n]
}

is a neighborhood of x with the property that U ∩ Lτ ′ = ∅ if τ ′ is not a substring of τ (see (1.12)
for the formal definition of “substring”). It follows that, Lσ ⊂ Lσ ∪

⋃
|τ |>|σ| Lτ .

Conversely, if |τ | > |σ| and x ∈ Lτ , choose indices k1 < · · · < kl such that:

(i) xki = e(x) for each i ∈ [l];
(ii) If k′1 < · · · < k′r are all the remaining indices such that xk′ = e(x), then r = |σ| and

(−1)k
′
j = σ(j) for each j ∈ [r].
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This is possible since σ is a substring of τ . Points in Lσ arbitrarily close to x can be obtained by mov-
ing the coordinates xki away from e(x). More precisely, for s ∈ [0, 1], let x(s) = (x1(s), . . . , xn(s)) ∈
Rn be defined by:

xk(s) =

{
xk + (−1)k−1s if k ∈ {k1, . . . , kl};
xk otherwise

(k ∈ [n]).

Then x(0) = x and x(s) ∈ Lσ for all s > 0 by construction. Hence x ∈ Lσ. �

Proof of (1.4). By induction on n. If n = 2, then L = L−+ =
{

(x1, x2) ∈ R2 : x1 = x2

}
, while M

(resp. S) consists of those points above (resp. below) this line. Thus, rotation by π
4 about the origin

is the desired homeomorphism.
Let n ≥ 3 and assume that the assertion has been proved for all dimensions smaller than n. (The

case n = 3 also follows from Figure 4(b).) The homeomorphism Rn → Rn will be constructed
stepwise. We start with a homeomorphism f : Lnσn → Yσn , which exists since both of these sets are
lines in Rn. Suppose that f has already been extended to a homeomorphism f :

⋃
|σ|≥m+1 L

n
σ →⋃

|σ|≥m+1 Yσ for some m satisfying 2 ≤ m ≤ n− 1.

Let φ : L→ Rn−1 and λ : L→ [0,+∞) be the maps which forget and recover the last coordinate:

φ(x) = (x1, . . . , xn−1), λ(x) = |xn − e(x)| (x = (x1, . . . , xn) ∈ L),

where e(x) is as in (1.2). Let us suppose for concreteness that m ≡ n (mod 2); the only difference
in the other case is that the roles of Lnσm and Ln−σm are switched. A straightforward verification
shows that

φ× λ : L
n

−σm → L
n−1

−σm × [0,+∞)

is a homeomorphism, hence L
n

−σm ≈ Hn−m× [0,+∞) ≈ Hn+1−m by the induction hypothesis on n.

To understand L
n

σm , we consider its decomposition into H1 ∪H2, where

H1 : =
{
x ∈ Lnσm : λ(x) = 0, φ(x) ∈ Ln−1

σm−1

}
≈ Hn−m+1 via φ,

H2 : =
{
x ∈ Lnσm : λ(x) ≥ 0, φ(x) ∈ Ln−1

σm
}
≈ Hn−m × [0,+∞) ≈ Hn−m+1 via φ× λ,

C := H1 ∩H2 =
{
x ∈ Lnσm : λ(x) = 0, φ(x) ∈ Ln−1

σm
}
≈ Hn−m via φ,

by the induction hypothesis on n. Moreover, ∂H1 = C ∪D1 and ∂H2 = C ∪D2, where

D1 =
{
x ∈ Lnσm : λ(x) = 0, φ(x) ∈ Ln−1

−σm
}
≈ Hn−m via φ,

D2 =
{
x ∈ Lnσm : λ(x) ≥ 0, φ(x) ∈ Ln−1

−σm+1 ∪ L
n−1

σm+1

}
≈ Rn−m−1 × [0,+∞) ≈ Hn−m via φ× λ,

again by the induction hypothesis on n. Thus we are in the setting of (1.8), and the conclusion is

that L
n

σm = H1 ∪H2 ≈ Hn−m+1.
Now by (1.10),

L
n

σm ∩ L
n

−σm =
⋃

|τ |≥m+1

Lnτ .

Since by assumption we already have a homeomorphism from the latter set to
⋃
|τ |≥m+1 Yτ ≈ Rn−m,

(1.7) guarantees the existence of a homeomorphism

f :
⋃
|τ |≥m

Lnτ →
⋃
|τ |≥m

Yτ ≈ Rn+1−m.

Continuing this down to m = 2, a homeomorphism f : L→
⋃
|τ |≥2 Yτ ≈ Rn−1 taking each Lσ onto

Yσ is obtained. Finally, an application of (1.7) using (1.9) shows that this can be extended to a
homeomorphism f : Rn → Rn having the required properties. �

Subspaces determined by nested strings. Let E, Y be topological spaces, q : E → Y be a
(continuous) surjective map and for each y ∈ Y , let Fy = q−1(y) denote the fiber of y. Then q is a
quasifibration if for any k ≥ 0, y ∈ Y and e ∈ Fy, the induced map q∗ : πk(E,Fy, e) → πk(Y, y) on

homotopy groups is an isomorphism.†

†See [2], Bemerkung 1.2 for the definition of π0(E,Fy , e). For k = 0, 1, when the set on the left side has no natural

group structure, it should be understood that q∗ : πk(E,Fy , e)→ πk(Y, y) is a bijection.
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Thus, if q : E → Y is a quasifibration, then for any y ∈ Y and e ∈ Fy, there is a long exact
sequence

(6) · · · → πk(Fy, e)
j∗−→ πk(E, e)

q∗−→ πk(Y, y)
∂−→ πk−1(Fy, e)→ · · · → π0(E, e)→ 0

which is obtained from the long exact sequence of the triple (E,Fy, e) by identifying πk(E,Fy, e)
with πk(Y, y); here j is the inclusion Fy ↪→ E. Just as for a Serre fibration, it can be shown that if
Y is path-connected, then all fibers Fy have the same weak homotopy type.

(1.11) Proposition ([2], Satz 2.2). Let q : E → Y be a surjective map and suppose that U =
(Uν)ν∈I is an open cover of Y satisfying:

(i) For each ν ∈ I, q|q−1(Uν) : q−1(Uν)→ Uν is a quasifibration;
(ii) If y ∈ Uν1 ∩ Uν2 , then there exists ν such that y ∈ Uν ⊂ Uν1 ∩ Uν2 (for ν1, ν2, ν ∈ I).

Then q is a quasifibration. �

(1.12) Definition. An extended string τ is a function τ : [l]→ {±} (l ≥ 2). Thus, in contrast to sign
strings, in an extended string some signs may be repeated. Given extended strings τi : [li] → {±}
(i = 1, 2), τ1 is a substring of τ2, denoted τ1 4 τ2 (or τ1 ≺ τ2 if in addition τ1 6= τ2), if there is a
strictly increasing f : [l1]→ [l2] such that τ1 = τ2 ◦ f . For τ an extended string, its reduced string is
the unique sign string % of maximal length such that % 4 τ . It is obtained by omitting all repetitions
in τ ; e.g., the reduced sign string of +−−++ is +−+.

(1.13) Definition. Let σ1 4 . . . 4 σm (m ≥ 1), where σm is an extended string and the remaining
σj are sign strings. Let n = |σm|. Define X(σ1,...,σm) ⊂ Rn to be the subspace consisting of all
x = (x1, . . . , xn) satisfying the following conditions:

(i) σm(k)xk ≤ 0 for all k ∈ [n];
(ii) |xk| ≤ m for all k ∈ [n] and for each j ∈ [m − 1], if k1 < · · · < kl are all the indices in [n]

such that |xk| ≤ j, then σj is the reduced string of τ : [l]→ {±}, τ(i) = σm(ki).

Representing a point in Rn by beads, to determine whether it satisfies (ii) we assign a tag σm(k)
to its k-th bead for each k ∈ [n] and read off the tags of those coordinates that lie at or below
height j and at or above height −j; the corresponding reduced string should coincide with σj for
each j ∈ [m− 1], and |xk| ≤ m should hold for all k ∈ [n]. See Figure 7.

(1.14) Remark. Note that if m = 1, then the resulting space is just an n-dimensional cube.

Figure 7. An element of X(σ1,σ2,σ3) for σj as indicated in the figure.

(1.15) Proposition. Let σ1 4 . . . 4 σm (m ≥ 1), where σm is an extended string and the remaining
σj are sign strings. Then X(σ1,...,σm) is weakly contractible.

We are only interested in the case where σm is a sign string, but for the proof given below to
work, this more general version is needed, as well as another definition: Let σ2 be an extended string
and σ1 4 σ2 be a sign string, |σ2| = n. Define Lσ2

σ1
⊂ Rn by declaring that x = (x1, . . . , xn) ∈ Lσ2

σ1

if and only if it satisfies condition (i) above (with m = 2) together with:

(iii) |xk| ≤ 1 for all k ∈ [n] and if k1 < · · · < kl are all the indices in [n] such that xk = 0, then
σ1 is the reduced string of τ : [l]→ {±}, τ(i) = σ2(ki).

(1.16) Lemma. Let σ1 4 σ2 be a sign and an extended string, respectively. Then Lσ2
σ1

is contractible.
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Proof. Let n = |σ2| and

L0 =
{

(x1, . . . , xn) ∈ Lσ2
σ1

: xk = xk+1 if σ2(k) = σ2(k + 1), for each k ∈ [n− 1]
}
.

Let % be the reduced string of σ2, r = |%| and J1 < · · · < Jr be the maximal intervals in [n] such
that σ2(Ji) = {%(i)}. Define a deformation retraction f : [0, 1]× Lσ2

σ1
→ Lσ2

σ1
onto L0 by:

fk(s, x) = (1− s)xk + sµi(x) if k ∈ Ji (k ∈ [n]), where

µi(x) =

{
min

{
xj : j ∈ Ji

}
if %(i) = −;

max
{
xj : j ∈ Ji

}
if %(i) = +.

No generality is lost in assuming that % = σr instead of −σr (as defined in (5)). Then L0 is
homeomorphic to the subspace of Lrσ1

consisting of those y for which |yi| ≤ 1 for all i ∈ [r]. But
clearly, this subspace is a deformation retract of Lrσ1

, hence Lσ2
σ1
' Lrσ1

is contractible by (1.5). �

Proof of (1.15). By induction on m. The case m = 1 follows from (1.14). Suppose that m ≥ 2 and
that the assertion has been established for m− 1. Set

E = X(σ1,...,σm), Y = Lσmσm−1
and n = |σm| .

Let q : E → Y be the map which collapses everything at height between −(m− 1) and (m− 1). To
be precise, if x = (x1, . . . , xn) ∈ E, then its image y = q(x) has coordinates

yk = −σm(k) max{|xk| − (m− 1), 0} (k ∈ [n]).

Although q is generally not a Serre nor a Dold fibration, we claim that it is a quasifibration.
Given y ∈ Y , let Fy = q−1(y) and let τ be the substring of σm determined by all indices k such

that yk = 0. Note that σm−1 is the reduced string of τ . The map Fy → X(σ1,...,σm−2,τ) which sends

x ∈ Fy to the point in R|τ | obtained by deleting its coordinates xk such that |xk| > m − 1 is a
homeomorphism. Hence Fy is weakly contractible by the induction hypothesis.

For y ∈ Y , let δ(y) = min
{
|yk| : yk 6= 0, k ∈ [n]

}
. Then the sets

Uy,δ =
{

(z1, . . . , zn) ∈ Y : |zk − yk| < δ for each k ∈ [n]
} (

y ∈ Y, 0 < δ < δ(y)
)

form an open cover U of Y . Condition (ii) in (1.11) is obviously satisfied by U. Moreover, each
Uy,δ ∈ U is star-shaped with respect to y, hence contractible. A deformation retraction

g : [0, 1]× q−1(Uy,δ)→ q−1(Uy,δ)

onto Fy can be defined through

gk(s, x) =

{
xk if |xk| ≤ m− 1

(1− s)xk + s
[
yk − σm(k)(m− 1)

]
if |xk| ≥ (m− 1)

(k ∈ [n]).

Therefore, condition (i) in (1.11) is trivially satisfied: From the long exact sequence of homotopy
groups of the pair

(
q−1(Uy,δ) , Fy

)
, it follows that πi(q

−1(Uy,δ) , Fy , e) is trivial for all i ≥ 0 and
e ∈ Fy, and so is πi(Uy,δ , y). Hence q is a quasifibration. By (1.16), Y is weakly contractible. Using
exactness of (6) we conclude that E is weakly contractible. �

(1.17) Definition. Define X(d,σ1,...,σm) ⊂ Rn as in (1.13), but replacing (i) by:

(id) There exist k1, k2 ∈ [n] with σm(k2) = −σm(k1) and σm(ki)xki > 0.

The ‘d’ here refers to the relation of this condition to diffuse curves, as will become clear later.

(1.18) Proposition. The space X(d,σ1,...,σm) is weakly contractible.

Proof. Analogous to the proof of (1.15): Use induction on m and the same collapsing map q as
before to reduce to the case where m = 1. Then consider the map

p : X(d,σ1) → L =
{
x ∈ Rn : x is level

}
, pk(x) =

{
xk if σm(k)xk ≤ 0;

0 if σm(k)xk ≥ 0.
(k ∈ [n]).

This is a quasifibration with convex fibers, and L ≈ Rn−1 by (1.4). �
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(1.19) Remark. For the sake of simplicity, in condition (ii) of (1.13) the “heights” appearing in the
inequalities were chosen to be elements of [m]. However, we clearly could have replaced j by εj
without affecting the subsequent results, for any 0 < ε1 < · · · < εm. Furthermore, since only weak
contractibility is asserted, it follows from this more general version of (1.15) and (1.18) that if some
of the inequalities in (i) and (ii) are replaced by strict inequalities, then the resulting space is again
weakly contractible.

2. Stretching

Stretching of functions. In this section we shall describe a procedure for “stretching” curves (as
illustrated in Figure 9), generalizing the grafting construction of [17]. We rely heavily on the results
of §3 of [17] and retain the notation introduced there. The procedure is more clearly formulated in
terms of real functions. For a (Lebesgue integrable) function g : J → R,

∫
g denotes

∫
J
g.

(2.1) Notation. Let b > 0, κ0 ∈ (0, 1), r0, rb, A ∈ R be fixed but otherwise arbitrary and f : [0, b]→
R be an absolutely continuous function whose derivative f ′ lies in L2[0, b]. Assume that:

(i) |f ′(x)| ≤ κ0

[
1 + f(x)2

] 3
2 for almost every x in the domain of f ;

(ii) f(0) = r0, f(b) = rb and
∫
f = A.

At this point the reader is referred to (2.10) and (2.11) for the motivation for these conditions
and the following results, which will otherwise be lacking.

Let g± : R → R̄ and hb± = h± : R → R̄ be as in (24) and (25) of [17], where R̄ = R ∪ {±∞}.
The functions g± are the solutions of the differential equations g′ = ±κ0(1 + g2)

3
2 with g(0) = r0.

Similarly, hb± are the solutions of h′ = ∓κ0(1 + h2)
3
2 satisfying h(b) = rb. Since g+ is strictly

increasing and hb+ is strictly decreasing, the graphs of these functions either do not intersect, or do
so at a single point. In the latter case let λ+(b) denote their common value at this point, and in the
former set λ+(b) = +∞. Let λ−(b) be defined analogously.†

(2.2) Remark. Let c > b > 0. Then hc± is obtained from hb± by a shift of the parameter through

c− b, that is, hc±(x) = hb±
(
x− (c− b)

)
for all x ∈ R. The monotonicity of hb± implies that hb+ ≤ hc+

and hc− ≤ hb− throughout R, whence

(7) λ−(c) ≤ λ−(b) ≤ λ+(b) ≤ λ+(c).

(2.3) Lemma. Let f : [0, b]→ R be as in (2.1). Then

(8) λ−(b) ≤ max
{
g−(x), hb−(x)

}
≤ f(x) ≤ min

{
g+(x), hb+(x)

}
≤ λ+(b) for all x ∈ [0, b].

Proof. The innermost inequalities were already established in (26) of [17]. The other two are imme-
diate from the definition of λ±(b) and the monotonicity of g±, hb±. �

(2.4) Definition (ζ(µ,b)). For b > 0 and µ ∈ [λ−(b), λ+(b)] ∩R, define ζ(µ,b) : [0, b]→ R by

(9) ζ(µ,b)(x) = median
(
hb−(x) , g−(x) , µ , g+(x) , hb+(x)

)
(x ∈ [0, b]).

Notice that by monotonicity of g±, hb±,

(10) inf
x∈[0,b]

ζ(µ,b)(x) = min {r0, rb, µ} and sup
x∈[0,b]

ζ(µ,b)(x) = max {r0, rb, µ} .

(2.5) Lemma. Let µ1 < µ2 ∈ [λ−(b), λ+(b)] ∩R. Then ζ(µ1,b)(x) ≤ ζ(µ2,b)(x) for all x ∈ [0, b] and

strict inequality holds for at least one x. In particular,
∫
ζ(µ,b) is a strictly increasing function of

µ ∈ [λ−(b), λ+(b)].

Proof. Left to the reader. �

(2.6) Lemma. Let c ≥ b and µ ∈ [λ−(b), λ+(b)] ∩ R. Then
∫
ζ(µ,c) −

∫
ζ(µ,b) = µ(c − b) and

ζ−1
(µ,c)({µ}) is a closed interval of length at least c− b.

†Notice that g± depend upon the values of κ0, r0 and hb± depend upon the values of κ0, rb, even though this is

not indicated explicitly in the notation. The same comment applies to the numbers λ±(b).
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Figure 8.

Proof. Notice that ζ(µ,c) is defined (that is, µ ∈ [λ−(c), λ+(c)]) by (7). The inverse image of µ under
ζ(µ,b) is a (possibly degenerate) closed interval [x0, x1]. By (2.2),

(11) ζ(µ,c)(x) =


ζ(µ,b)(x) if x ∈ [0, x0];

µ if x ∈ [x0, x1 + (c− b)];
ζ(µ,b)(x− (c− b)) if x ∈ [x1 + (c− b), c].

The assertions of the lemma are consequences of this expression. �

(2.7) Corollary. Let b > 0, µ(b) ∈ [λ−(b), λ+(b)] ∩ R be fixed and A =
∫
ζ(µ(b),b). Suppose that

0 ∈ [λ−(b), λ+(b)]. Then for each c ≥ b, there exists a unique µ(c) ∈ R such that
∫
ζ(µ(c),c) = A. The

resulting function µ : [b,+∞) → R, c 7→ µ(c), is continuous and |µ(c)|↘0 as c → +∞. Moreover,
|µ(c)| is strictly decreasing if µ(b) 6= 0.

Proof. From 0 ∈ [λ−(b), λ+(b)] and (2.2), it follows that 0 ∈ [λ−(c), λ+(c)] for all c ≥ b. No generality
is lost in assuming that µ(b) ≥ 0. In this case, (2.5) and (2.6) yield:∫

ζ(0,c) =

∫
ζ(0,b) ≤ A =

∫
ζ(µ(b),b) ≤

∫
ζ(µ(b),b) + (c− b)µ(b) =

∫
ζ(µ(b),c).

Hence, by (2.5), there exists a unique µ(c) ∈ [0, µ(b)] such that
∫
ζ(µ(c),c) = A. Moreover, µ(c) ∈

(0, µ(b)) in case µ(b) > 0, because then the first two inequalities above are strict. The same argument
also shows that µ(d) ∈ [0, µ(c)] whenever d ≥ c (and µ(d) ∈ (0, µ(c)) in case µ(b) > 0). Thus, µ(c)
is a decreasing function of c (strictly decreasing if µ(b) > 0), λ = limc→+∞ µ(c) exists and is
nonnegative. The continuity of c 7→ µ(c) follows from the fact that

∫
ζ(µ(c),c) = A is constant as a

function of c. Finally, λ = 0 because

A =

∫
ζ(µ(c),c) ≥

∫
ζ(λ,c) = λ(c− b) +

∫
ζ(λ,b) for all c ≥ b. �

(2.8) Definition (flattening and stretching functions). Let f = f−1 : [0, b]→ R be as in (2.1).
The flattening of f is the family fs : [0, b]→ R (s ∈ [−1, 0]) obtained by applying Construction 3.8
in [17] to f (note that there s goes from 1 to 0, instead of from −1 to 0 as here).

We say that f is κ0-stretchable if 0 ∈ [λ−(b), λ+(b)]. In this case, the stretching of f is the
extension of the above family to s ∈ [−1,+∞) obtained by setting fs = ζ(µ(b+s),b+s) for s ≥ 0,
where µ : [0,+∞)→ R is as in (2.7). See Figure 8.

(2.9) Lemma. Let f−1 = f : [0, b] → R be a κ0-stretchable function and (fs)(s∈[−1,+∞)) be the
stretching of f . Then:
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(a) If f is piecewise smoooth, then so is fs for all s ∈ [−1,+∞).
(b) sup |fs| is a decreasing function of s.
(c) If f does not change sign inside its domain, then none of the fs do.
(d) For s ∈ [−1, 0], sup[0,b] fs (resp. inf [0,b] fs) is a decreasing (resp. increasing) function of s.

(e) Let fs = ζ(µ(b+s),b+s) (s ≥ 0) and let Ls denote the length of the interval{
x ∈ [0, b+ s] : fs(x) = µ(b+ s)

}
.

Then Ls ∼ s (that is, lims→+∞
Ls
s = 1).

(f) There exists κ2 > 0 such that

|µ(b+ s)| ≤ κ2

s+ 1
for all s ≥ 0.

Moreover, if f > 0 over [0, b], then there also exists κ1 > 0 such that

κ1

s+ 1
≤ µ(b+ s) for all s ≥ 0.

(g) fs is κ0-stretchable for all s ∈ [−1,+∞).

Proof. The proof will be split into the corresponding parts.
(a): By definition, fs is the median of a finite collection of piecewise smooth functions for all s.
(b): For s ≥ 0, this follows from (2.7). For s ∈ [−1, 0], this follows from Corollary 3.12 of [17].
(c): No generality is lost in assuming that f = f−1 ≥ 0 over [0, b]. Then, by Corollary 3.12 of

[17],

0 ≤ inf
x∈[0,b]

f−1(x) ≤ inf
x∈[0,b]

fs(x) for all s ∈ [−1, 0].

Let r0 = f(0), rb = f(b); both are nonnegative by hypothesis. By (10),

inf
x∈[0,b+s]

fs(x) = inf
x∈[0,b+s]

ζ(µ(b+s),b+s)(x) = min {r0, rb, µ(b+ s)} for all s ≥ 0.

By (2.7), µ(b+ s) ≥ 0 for all s ≥ 0, hence fs ≥ 0 for all s ≥ 0.
(d): This was proved in Corollary 3.12 of [17].
(e): The functions g±, hb± all blow up to ±∞ in finite time (compare eqs. (24) and (25) of [17]).

The length of [0, b+ s] is asymptotically equal to s, hence Ls ∼ s as well.
(f): Let Ls be as in part (e). We can write

A =

∫
fs =

∫
{fs=µ(b+s)}

fs +

∫
{fs 6=µ(b+s)}

fs = Lsµ(b+ s) +

∫
{fs 6=µ(b+s)}

fs.

A straightforward calculation shows that the improper integrals of g± and hb± over the respective
intervals where these functions assume real (finite) values are all finite. Hence the last term in the
preceding equation admits a bound independent of s. The first assertion thus follows from (f).

The proof of the second assertion is similar. If f > 0, then µ(b) > 0 and∫
ζ(0,b) < A =

∫
f0 =

∫
fs ≤ Lsµ(b+ s) +

∫
ζ(0,b),

so again the assertion follows from (f).
(g): This is immediate from (7). �

Stretching of curves. We shall now reinterpret the preceding definitions and results in terms of
planar curves. Let P = (p, w), Q = (q, z) ∈ C × S1 and γ ∈ L+1

−1(P,Q) (see §1 of [17] for the

definition of this space). Recall that tγ : [0, 1]→ S1 denotes the unit tangent to γ.

(2.10) Definition (stretchable curve). Suppose that 〈tγ , eiψ〉 > 0 throughout [0, 1] (ψ ∈ R).
After translating p to the origin, rotating C about the latter through ψ, and relabeling the x- and
y-axes accordingly, γ may be reparametrized as γ(x) = (x, y(x)) for x in some interval [0, b]. Let
f = y′ : [0, b]→ R. We call γ κ0-stretchable (with respect to eiψ) if f is κ0-stretchable in the sense of
(2.8). Also, γ will be called stretchable (with respect to eiψ) if it is κ0-stretchable for some κ0 ∈ (0, 1).
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(2.11) Remark. In this context, f(x) = tan(θγ(x)) for all x ∈ [0, b], where θγ measures the angle
from eiψ to tγ . Condition (i) in (2.1) means that the curvature κγ of γ satisfies |κγ | ≤ κ0 almost
everywhere. The numbers r0, rb in (ii) represent the slopes of w, z, respectively, A = Im(q− p) and
b = Re(q − p) (all of these with respect to the new coordinate axes determined by eiψ and ieiψ).
The reader may have noticed that the condition of being stretchable does not really concern γ, but
rather the pair (P,Q). The geometric interpretation is that curves in L+1

−1(P,Q) are κ0-stretchable

if and only if there exists a curve η in this space such that |κη| ≤ κ0 a.e., 〈tη, eiψ〉 > 0 everywhere
and tη(t0) = eiψ for some t0 ∈ [0, 1].

(2.12) Definition (flattening and stretching curves). Let γ be a κ0-stretchable curve as in
(2.10) and let (fs)s∈[−1,+∞) be the corresponding stretching of f = f−1, as in (2.8). Let γs : Js → C
be defined by

(12) γs(x) =
(
x , y(0) +

∫
Js

fs(u)du
)
, where Js =

{
[0, b] if s ∈ [−1, 0];

[0, b+ s] if s ≥ 0.

The family (γs)(s∈[−1,+∞)) will be called the stretching of γ with respect to eiψ, and the fam-

ily (γs)(s∈[−1,0]) the flattening of γ with respect to eiψ. The stretching of γ by M is the family
(γs)(s∈[−1,M ]), M > 0; see Figure 9.

Figure 9. Flattening and stretching a curve γ in the direction of eiψ.

Notice that γs ∈ L+1
−1(P,Qs) for Qs = (qs, z) ∈ C × S1, where qs = q for all s ∈ [−1, 0] and

qs = q + seiψ for s ≥ 0. The curves γs are independent of the starting curve γ = γ−1 for s ≥ 0
(and fixed ψ and κ0); they are each a concatenation of an arc of circle of curvature ±κ0, a straight
line segment, and another such arc, where both arcs have amplitude at most π (cf. Figure 9).
The functions g±, hb± appearing above correspond to the arcs of circles of curvature ±κ0 starting
(resp. ending) at P (resp. Q). In vague but suggestive language, the family (γs) is obtained from γ
by “stretching” it in the direction of eiψ. Clearly, the stretching and flattening of a curve γ depend
upon the chosen axis ψ. Nonetheless, the curve γ0 is independent of both γ and ψ; see Remark 3.9
of [17].

Exercise. Translate the assertions of (2.9) into statements about the curves γs, using that fs(x) =
tan(θγs(x)). (For instance, part (b) states that supx |θγs(x)| is a decreasing function of s.)

(2.13) Lemma. Let γ ∈ L+1
−1(P,Q). Suppose that |κγ | ≤ κ0 a.e. and 〈tγ , eiψ〉 > 0 over [0, 1].

(a) If tγ(t0) = eiψ for some t0 ∈ [0, 1], then γ is κ0-stretchable with respect to eiψ.
(b) Suppose that eiψ /∈ tγ([0, 1]) and that γ is κ0-stretchable with respect to eiψ. Then γ is

κ0-stretchable with respect to any z lying in the shortest arc (in S1) joining eiψ to tγ([0, 1]).
(c) If 〈q − p, eiψ〉 is sufficiently large, then any γ as above is κ0-stretchable with respect to eiψ.
(d) If I ⊂ [0, 1] is an interval and γ|I is κ0-stretchable with respect to eiψ, then so is γ.
(e) If γs is the flattening of γ and γ|I is a line segment of length L > 2π, then there exists a

subinterval I ′ such that γs|I′ is a line segment of length > L− 2π for all s ∈ [−1, 0].
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(f) If γ is a line segment of length greater than 4
κ0

, then γ is κ0-stretchable with respect to eiψ.

Proof. The proof of each part is given separately; in all of them, f = y′ is as in (2.10).
(a): This is clear from the geometric interpretation described in (2.11). Alternatively, in terms

of f , the hypothesis means that there exists some x0 ∈ [0, b] satisfying f(x0) = 0. Hence 0 ∈
[λ−(b), λ+(b)] by (2.3), so that f is κ0-stretchable.

(b): In terms of (2.11), the hypothesis means that there exists some η ∈ L+1
−1(P,Q) such that

|κη| ≤ κ0 a.e., 〈tη, eiψ〉 > 0 throughout, and the image of tη includes eiψ. As proved in Remark 3.9
of [17], the flattenings γ0 and η0 of γ, η with respect to eiψ are the same curve. Therefore, there
exists a homotopy s 7→ αs ∈ L+1

−1(P,Q) such that α0 = γ, α1 = η, |καs | ≤ κ0 and 〈tαs , eiψ〉 > 0 for
each s ∈ [0, 1]. Let s0 be the smallest s ∈ [0, 1] for which z ∈ tαs([0, 1]). Then 〈tαs0 (t), z〉 > 0 for all

t ∈ [0, 1], as is readily verified, hence any curve in L+1
−1(P,Q) is κ0-stretchable with respect to z.

(c): Since the functions g±, h
b
± go to ±∞ in finite time which is independent of b = 〈q − p, eiψ〉,

if the latter is large enough, then we shall have λ−(b) = −∞ and λ+(b) = +∞, so that certainly
0 ∈ [λ−(b), λ+(b)].

(d): Let I = [c, d] and denote by ḡ± and h̄± the solutions to the differential equations g′ =

±κ0(1 + g2)
3
2 and h′ = ∓κ0(1 + h2)

3
2 respectively, with g±(c) = f(c) and h±(d) = f(d). If λ̄±

denote the common values of ḡ+, h̄+ and ḡ−, h̄−, respectively, at the points where their graphs
intersect, then the hypothesis means that 0 ∈ [λ̄−, λ̄+]. This implies that 0 ∈ [λ−(b), λ+(b)] because
ḡ+ ≤ g+, ḡ− ≥ g−, h̄+ ≤ h+ and h̄− ≥ h−. These inequalities follow from the fact that the graph of

f stays within the region bounded by the graphs of g± and h±, since |f ′(x)| ≤ κ0

[
1 + f(x)2

] 3
2 for

almost every x ∈ [0, b].
(e): This is immediate from [17], Construction 3.8.
(f): If κ0 = 1 this follows from Figure 3, which shows that there exists η ∈ L+1

−1(P,Q) such that

|κη| ≤ κ0 a.e. , 〈tη, eiψ〉 > 0 over [0, 1] and eiψ ∈ tη([0, 1]), provided that |q − p| > 4; the latter
inequality holds by hypothesis. For other values of κ0, just apply a dilation. �

The details of the construction of the family (γs) may be now be safely forgotten. Only the
properties listed in (2.9) and (2.13) will be used.

3. Quasicritical curves

Notation. Throughout the rest of the paper, Q = (q, z) denotes a fixed element of C×S1 ≡ UTC
with z 6= −1. For our purposes, it is more convenient to work with the space L+1

−1(Q) (see §1 of [17])

instead of the space C+1
−1(Q) defined in the introduction; these are homeomorphic by Lemma 1.12 in

[17]. Accordingly, M(Q) shall denote the subspace L+1
−1(Q; θ1) ⊂ L+1

−1(Q) with |θ1| < π.
Let γ ∈M(Q). We denote by θγ : [0, 1]→ R the unique continuous function satisfying exp(iθγ) =

tγ and θγ(0) = 0. Also,

(13) ϕ̄γ :=
1

2

(
max
t∈[0,1]

θγ(t) + min
t∈[0,1]

θγ(t)
)
.

Finally, given ϕ ∈ R, it will be very convenient to use the abbreviations ϕ± := ϕ± π
2 .

Quasicritical curves. The central definition of this paper is the following generalization of the
concept of critical curves.

(3.1) Definition (quasicritical curve). Let σ be a sign string, n = |σ|, γ ∈ M(Q), ϕ ∈ R and
ε ∈ (0, π4 ). Then γ is (ϕ, ε)-quasicritical of type σ if there exist closed intervals J1 < · · · < Jn such
that for each k ∈ [n]:

(i) θγ(Jk) ⊂ (ϕ− + 2ε, ϕ+ + ε) if σ(k) = + and θγ(Jk) ⊂ (ϕ− − ε, ϕ+ − 2ε) if σ(k) = −;
(ii) |θγ(t)− ϕ| < π

2 − 2ε for all t /∈ Int
(⋃n

k=1 Jk
)
;

(iii) Jk contains at least one closed subinterval Ik such that |θγ(t)−ϕσ(k)| < ε for all t ∈ Ik and
γ|Ik is stretchable with respect to ϕσ(k).

Condition (i) means that tγ is far from ∓ieiϕ throughout Jk if σ(k) = ±, while (iii) states roughly
that there should exist a subinterval of Jk where tγ is vertical enough with respect to the axis eiϕ

to allow γ to be stretched in the direction of σ(k)ieiϕ. Outside of
⋃
Jk, tγ is far from both ieiϕ and

−ieiϕ.
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(3.2) Remark. The combination of (i) and (ii) in (3.1) implies that θγ([0, 1]) ⊂ (ϕ− − ε, ϕ+ + ε).

(3.3) Remark. Being quasicritical of type σ is an open condition on (γ, ϕ, ε). In fact, the same
intervals Jk satisfy (i)–(iii) for the triple (η, ψ, δ) if the latter is close enough to (γ, ϕ, ε).

(3.4) Lemma. Let γ ∈M(Q) be a critical curve of type σ. Then γ is (ϕ̄γ , ε)-quasicritical of type σ
for all sufficiently small ε > 0.

Proof. Immediate from (2.13)(a) and the definition of critical curves, given in (0.1) �

We will sometimes abuse the terminology by saying that I is a stretchable interval for γ if γ|I is
stretchable (with respect to ϕ±). Notice that there is a lot of freedom in the choice of the intervals
Jk and their stretchable subintervals. The next two results compensate for this ambiguity.

(3.5) Lemma. Let γ ∈M(Q) be (ϕ, ε)-quasicritical of type σ, n = |σ|.
(a) Let 0 < δ ≤ 2ε and Wα ⊂ [0, 1] (α ∈ A) be all the connected components of

W =
{
t ∈ [0, 1] : |θγ(t)− ϕ| > π

2 − δ
}
.

Then there exists a decomposition A = A1t. . .tAn such that for any choice of J1 < · · · < Jn
as in (3.1), Wα ⊂ Jk if and only if α ∈ Ak (k ∈ [n]).

(b) Let Jj1 < · · · < Jjn, Jjk = [ajk, b
j
k], be as in (3.1) (j ∈ [m]). For each k ∈ [n], set a′k = maxj a

j
k

and b′k = minj b
j
k. Then the intervals J ′k = [a′k, b

′
k] also satisfy (i)–(iii).

(c) Let J ′1 < · · · < J ′n be as in (3.1) and J1 < · · · < Jn be such that Jk ⊃ J ′k for each k ∈ [n].
Then the Jk also satisfy (i)–(iii).

Proof. The proof of each part will be given separately.
(a): Let J1 < · · · < Jn, J ′1 < · · · < J ′n be intervals as in (3.1). Set Ak =

{
α ∈ A : Wα ⊂ Jk

}
.

Then A = A1 t . . . t An since (ii) of (3.1) implies that any Wα must be completely contained in
some J . We claim that A′k = Ak for each k ∈ [n], where A′k =

{
α ∈ A : Wα ⊂ J ′k

}
. This follows

from the following simple observations (which also hold with A′ in place of A):

• Each Ak is nonempty, by (iii) of (3.1).
• If α ∈ Ak, α′ ∈ Ak′ with k < k′, then Wα < Wα′ ; indeed, Jk < Jk′ .
• If α ∈ Ak, then sign(θγ(t)− ϕ) = σ(k) for all t ∈Wα, by (i) of (3.1).

Suppose that α ∈ A1 ∩ A′k for some k > 1. Then the third observation implies that k ≥ 3. Choose
β ∈ A′2. By the second observation, Wβ < Wα. Hence β ∈ A1 ∩ A′2, contradicting the third
observation. It follows that A1 = A′1. An entirely similar argument shows that if A′j = Aj for all
j ∈ [k], then A′k+1 = Ak+1 as well.

(b): Let j0, j1 ∈ [m] be such that a′k = aj0k and b′k = bj1k . By part (a), if α ∈ Ak, then

Wα ⊂ Jj0k ∩ J
j1
k . In particular, a′k < b′k and

[a′k, b
′
k] = Jj0k ∩ J

j1
k .

Since the latter two intervals satisfy condition (i) by hypothesis, so does [a′k, b
′
k]. Set δ = 2ε in the

definition of W . If I is a stretchable subinterval of Jj0k as in (iii), then I ⊂Wα for some α ∈ Ak. By

(a), Wα ⊂ Jj0k ∩ J
j1
k = [a′k, b

′
k], hence the latter satisfies (iii). To establish (ii), let j2 ∈ [m] be such

that a′k+1 = aj2k+1. As above, part (a) implies that aj2k < b′k and a′k+1 < bj1k+1. Hence

(14) [b′k, a
′
k+1] =

[
b′k, b

j1
k+1

]
∩
[
aj2k , a

′
k+1

]
.

Moreover, [
b′k, b

j1
k+1

]
=
[
b′k, a

j1
k+1

]
∪ Jj1k+1 and

[
aj2k , a

′
k+1

]
= Jj2k ∪ [bj2k , a

′
k+1

]
.

By (i) and (ii) of (3.1), any t ∈
[
b′k, b

j1
k+1

]
thus satisfies |θγ(t)−ϕ−σ(k+1)| > 2ε and any t ∈

[
aj2k , a

′
k+1

]
satisfies |θγ(t)− ϕ−σ(k)| > 2ε. Together with (14), this implies that (ii) holds for the J ′k.

(c): Conditions (ii) and (iii) of (3.1) are obviously satisfied by the Jk. Suppose that t ∈ Jk but∣∣θγ(t)− ϕ−σ(k)

∣∣ < 2ε. Then t ∈ J ′k′ with σ(k′) = −σ(k), contradicting the fact that Jk and Jk′ ⊃ J ′k′
are disjoint. �

Notation. In all that follows, K denotes (the geometric realization of) a finite simplicial complex;
actually, most of the time all that is required is that K be a compact Hausdorff topological space.
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(3.6) Lemma. Let σ be a sign string of length n and

p 7→ γp ∈M(Q), p 7→ ϕp ∈ R, p 7→ εp ∈ R+ (p ∈ K)

be continuous maps such that γp is (ϕp, εp)-quasicritical of type σ for all p ∈ K. Then:

(a) There exist continuous functions ak, bk : K → [0, 1] such that for all p ∈ K, the intervals
Jk(p) = [ak(p), bk(p)] (k ∈ [n]) satisfy (3.1) when (γ, ϕ, ε) = (γp, ϕp, εp).

(b) There exist an open cover (Ui)i∈[l] of K and real numbers ci,k < di,k (i ∈ [l], k ∈ [n]) such

that for each p ∈ U i and k ∈ [n], Ii,k := [ci,k, di,k] ⊂ Jk(p), γp|Ii,k is stretchable with respect
to ϕpσ(k) and

(15) θγp
(
Ii,k
)
⊂
(
ϕpσ(k) − ε

p, ϕpσ(k) + εp).

Remark. The inclusion Ii,k ⊂ Jk(p) in (b) is asserted to hold only when p ∈ U i. Nonetheless, it will
hold for such p independently of the choice of the Jk(p) in (a).

It is generally impossible to obtain globally (and continuously) defined intervals [ck(p), dk(p)]
restricted to which γp is stretchable. The problem is similar to that of choosing points t(p) ∈ [0, 1]
where a family fp : [0, 1]→ R of continuous functions attain their maxima.

Proof of (3.6). Let p ∈ K. Choose intervals [a1, b1] < · · · < [an, bn] satisfying (i) and (ii) of (3.1) for
(γ, ϕ, ε) = (γp, ϕp, εp) and subintervals [ck, dk] ⊂ [ak, bk] as in (iii). Since these conditions are open,
they actually hold for the same choice of intervals for all q in the closure of some neighborhood Up of p.
Let (Ui)i∈[l] be a finite subcover of the cover (Up)p∈K so obtained, and let ai,k, bi,k, ci,k, di,k ∈ [0, 1]
(i ∈ [l], k ∈ [n]) be the endpoints of the corresponding intervals.

Let ρi : K → [0, 1] (i ∈ [l]) form a partition of unity subordinate to the cover (Ui),

ak(p) :=

l∑
i=1

ρi(p)ai,k(p), bk(p) :=

l∑
i=1

ρi(p)bi,k(p) and Jk(p) := [ak(p), bk(p)] (k ∈ [n]).

Because ai,k < bi,k < ai,k+1 for each i and k by hypothesis, the definition of Jk(p) makes sense and
J1(p) < · · · < Jn(p) holds for all p ∈ K. Now fix p and let i1, . . . , im ∈ [l] be all the indices i such
that ρi(p) > 0. Set

a′k := max
j∈[m]

aij ,k(p), b′k := min
j∈[m]

bij ,k(p) (j ∈ [m]).

Then [a′k, b
′
k] ⊂ Jk(p), hence the combination of (b) and (c) of (3.5) shows that Jk(p) satisfies (i)–(iii)

for each k ∈ [n]. This proves (a).
Fix i ∈ [l]. By the choice of the intervals Ii,k := [ci,k, di,k], the restriction of γp to Ii,k is stretchable

with respect to ϕpσ(k) and (15) holds whenever p ∈ U i. Again by choice, Ii,k ⊂ [ai,k, bi,k]. Since the

[ai,k, bi,k] and the Jk(p) satisfy (i)–(iii) provided that p ∈ U i, (3.5)(a) implies that Ii,k ⊂ Jk(p) for
such p and each k ∈ [n]. This proves (b). �

(3.7) Lemma. In the situation of (3.6), (Ui)i∈[l] and Ii,k = [cik, d
i
k] can be chosen so that:

(a) If i < i′ and U i ∩ U i′ 6= ∅, then for each k ∈ [n], either Ii,k ⊂ Ii′,k or Ii,k ∩ Ii′,k = ∅.
(b) For all k ∈ [n], i ∈ [l] and p ∈ U i, either

∣∣θγp(ci,k)− ϕpσ(k)

∣∣ > 1
2ε
p or ci,k = 0, and either∣∣θγp(di,k)− ϕpσ(k)

∣∣ > 1
2ε
p or di,k = 1.

Remark. The purpose of part (a) is to guarantee that when γp|Ii,k is stretched for p ∈ Ui ∩ Ui′ ,
the “stretchability” of γp|Ii′,k will not be affected. By (2.13)(d) and (2.9)(g), this can be arranged

simply by stretching these arcs successively for each i = 1, . . . , l. Part (b) will be used to ensure
that stretching γp will not affect its property of being quasicritical of type τ for τ 6= σ.

Proof. Let Ui be open sets as in (3.6), with associated stretchable intervals Ik(Ui) := Ii,k ⊂ Jk(p),

for k ∈ [n] and p ∈ U i. We shall write Ui 4 Ui′ if U i ∩ U i′ = ∅ or if U i ∩ U i′ 6= ∅ and for every
k ∈ [n], either Ik(Ui) ⊂ Ik(Ui′) or Ik(Ui) ∩ Ik(Ui′) = ∅; it is not required that the same option hold
for every k. (This is generally not a transitive relation.) The complement of a set W in K will be
denoted by W c. The rough idea behind the proof is to repeatedly apply the following procedure: If
U i1 ∩ · · · ∩ U iµ is nonempty, then we excise it from each of the open sets Uij and add a new open
set V to the cover which contains the intersection but is still sufficiently small. If Ik(V ) is taken to
be a component of

⋃
j Ik(Uij ) for each k, then Ui 4 V for every i = i1, . . . , iµ.
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Let m be the largest integer for which there exist distinct i1, . . . , im ∈ [l] with U i1 ∩· · ·∩U im 6= ∅.
Note that there are only finitely many such m-tuples. Choose one of them, say Tm = {i1, . . . , im},
and let VTm be an open set such that

m⋂
µ=1

U iµ ⊂ VTm ⊂ V Tm ⊂
⋂
i6=ij

U
c

i .

Such a set exists because U i1 ∩ · · · ∩ U im ⊂ U
c

i for every i 6= ij , by maximality of m. Set

(new)Uij := (old)Uij r
m⋂
µ=1

U iµ (j ∈ [m]).

For each k ∈ [n], take Ik
(
Uij
)

to be the same intervals as for the original sets Uij and Ik
(
VTm

)
to be

any connected component of
⋃m
j=1 Ik

(
Uij
)
. Fix k ∈ [n]; if p ∈

⋂m
µ=1 U iµ , then every interval Ik(Uij )

(j ∈ [m]) satisfies the conditions stated in (3.6)(b). Therefore, by (2.13)(d), if VTm is sufficiently
small, then Ik

(
VTm

)
satisfies these conditions for all p ∈ V Tm . Further, by construction Ik

(
VTm

)
either contains or is disjoint from Ik(Uij ) for each j, k. Thus:

• The open sets Ui (i ∈ [l]) and VTm cover K.
• If U i ∩ V Tm 6= ∅ then i = ij for some j. Hence, Ui 4 VTm for every i ∈ [l].

• No new m-fold intersection has been created among the U i.

If there still exists an m-tuple T ′m = {i′1, . . . , i′m} such that U i′1 ∩ · · · ∩ U i′m 6= ∅, the construction
is repeated to excise the latter from each Ui′j and create an open set VT ′m such that

m⋂
µ=1

U i′µ ⊂ VT ′m ⊂ V T ′m ⊂
⋂
i 6=i′j

U
c

i′ ∩
(
V Tm

)c
.

Such a set exists because there are no (m+ 1)-fold intersections among the U i and i′j /∈ {i1, . . . , im}
for at least one j ∈ [m]. By definition, V Tm ∩ V T ′m = ∅, and V T ′m ∩ U i = ∅ unless i = i′j for some

j ∈ [m]. Again, let Ik
(
VT ′m

)
be a connected component of

⋃m
j=1 Ik

(
Ui′j
)

for each k, so that Ui 4 VT ′m
for all i ∈ [l]. If VT ′m is sufficiently small, then all of the conditions in (b) are satisfied by the Ik

(
VT ′m

)
whenever p ∈ V T ′m . After finitely many iterations, there will be no more m-tuples of indices in [l]

for which the corresponding U i intersect. Notice that by construction:

• VTm 4 VT ′m for any Tm 6= T ′m, since their closures are disjoint.
• Ui 4 VTm for any Tm and i ∈ [l].
• Every m-fold intersection among the U i is empty.

Now the same procedure is carried out for (m− 1)-fold intersections among the U i. Assume that
V T νm−1

has been defined for all ν = 1, . . . , ν0 − 1, where each T νm−1 ⊂ [l] has cardinality m− 1, with

U i ∩ V T νm−1
6= ∅ only if i ∈ T νm−1. If T ν0m−1 = {i1, . . . , im−1} is such that U i1 ∩ · · · ∩ U im−1 6= ∅,

choose a sufficiently small open set VT ν0m−1
satisfying

m−1⋂
µ=1

U iµ ⊂ VT ν0m−1
⊂ V T ν0m−1

⊂
⋂
i 6=ij

U
c

i ∩
ν0−1⋂
ν=1

(
V T νm−1

)c
,

excise
⋂m−1
µ=1 U iµ from each Uij and let Ik

(
VT ν0m−1

)
be a connected component of

⋃m−1
j=1 Ik

(
Uij
)
. The

choice of VT ν0m−1
is possible because by hypothesis there are no m-fold intersections among the U i

and for each ν ≤ ν0 − 1, we have ij /∈ T νm−1 for at least one j ∈ [m− 1]. At the end of this step we
have sets Ui and VT (with |T | = m− 1 or m) covering K such that:

• VT 4 VT ′ whenever |T | ≤ |T ′|.
• Ui 4 VT for every i ∈ [l] and every set VT .
• There exists no nonempty (m− 1)-fold intersection among the U i.

Continuing this down to twofold intersections, we obtain open sets VT and Ui with |T | = 2 and
U i ∩U i′ = ∅ whenever i 6= i′. Finally, for each i ∈ [l], set V{i} = Ui. Then the sets VT form an open
cover of K and VT 4 VT ′ whenever |T | ≤ |T ′|. To establish (a) we simply relabel the VT in order of
nondecreasing |T |, for |T | = 1, . . . ,m.
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By (2.13)(d), the original intervals Ii,k given by (3.6) can always be enlarged so as to satisfy the
condition on the enpoints stated in (b). Furthermore, if some intervals I1, . . . , Im satisfy (b), then
so does any component of

⋃m
j=1 Ij . Hence the proof of (a) preserves this property. �

(3.8) Lemma. Let σ1 ≺ · · · ≺ σm be sign strings and γ ∈ M(Q) be (ϕ, εj)-quasicritical of type σj
for each j ∈ [m]. Then εj+1 > 2εj for each j ∈ [m− 1].

Proof. Clearly, the lemma can be deduced from the special case where m = 2. Let n = |σ2|, l = |σ1|
and let J1 < · · · < Jn, J ′1 < · · · < J ′l be intervals as in (3.1) for (σ, ε) = (σ2, ε2) and (σ1, ε1),
respectively. For each k ∈ [n], let Ik ⊂ Jk be a subinterval where |θγ − ϕ| > π

2 − ε2 throughout, as
guaranteed by (iii). By (ii), if t /∈

⋃
i∈[l] J

′
i , then |θγ(t)− ϕ| < π

2 − 2ε1. Therefore, if ε2 ≤ 2ε1, then

each Ik must be contained in a J ′i . Further, because n > l, there must exist k ∈ [n− 1], i ∈ [l] such
that Ik ∪ Ik+1 ⊂ J ′i . From σ2(k) = −σ2(k + 1) it follows that

θγ(J ′i) ∩
(
ϕ+ − ε2, ϕ+ + ε2

)
6= ∅ and θγ(J ′i) ∩

(
ϕ− − ε2, ϕ− + ε2

)
6= ∅.

But this contradicts (i) of (3.1) (for σ = σ1). Hence, ε2 > 2ε1. �

(3.9) Lemma. Let σ be a sign string, 0 < ε < ε′ and suppose that γ ∈ M(Q) is simultaneously
(ϕ, ε)- and (ϕ, ε′)-quasicritical of type σ. Then γ is (ϕ, δ)-quasicritical of type σ for any δ ∈ [ε, ε′].

Proof. Let n = |σ| and J1 < · · · < Jn, J ′1 < · · · < J ′n be as in (3.1), corresponding to ε, ε′,
respectively. The inequalities ε ≤ δ ≤ ε′ and (3.2) imply that the intervals J ′k still satisfy (i) and
(ii) of (3.1) if ε′ is replaced by δ. An argument similar to the proof of (3.5)(a) shows that if Ik ⊂ Jk
is any subinterval where |θγ − ϕ| > π

2 − ε ≥
π
2 − δ throughout, then Ik ⊂ J ′k. By (iii), for each

k ∈ [n], there exists such an Ik which, additionally, is stretchable. Hence the J ′k also satisfy (iii) if
ε′ is replaced by δ. �

(3.10) Remark. Let 0 < δ ≤ ε, γ be (ϕ, ε)-quasicritical of type σ, and Jk (k ∈ [n]) be intervals as
in (3.1) for the pair (ϕ, ε). Suppose that θγ([0, 1]) ⊂ (ϕ− − δ, ϕ+ + δ) and that each Jk contains a
stretchable subinterval Ik where

∣∣θγ − ϕσ(k)

∣∣ < δ throughout. Then the Jk also satisfy (i)–(iii) of
(3.1) for the pair (ϕ, δ), hence γ is (ϕ, δ)-quasicritical of type σ.

(3.11) Lemma. Let γ ∈M(Q) be a critical curve of type σ. Let

S =
{
ϕ ∈ R : there exists ε > 0 for which γ is (ϕ, ε)-quasicritical of type σ

}
.

Then S is an open interval containing ϕ̄γ .

Proof. Let ϕ̄ = ϕ̄γ be as in (13). By (3.3), S is open and by (3.4), ϕ̄ ∈ S. Suppose that γ is
(ϕ, ε)-quasicritical of type σ; no generality is lost in assuming that ϕ̄ ≤ ϕ. Since γ is critical,
inft∈[0,1] θγ(t) = ϕ̄−. Hence, by (3.2),

(16) ε > ϕ− ϕ̄.

Let ψ ∈ (ϕ̄, ϕ), δ = ε − (ϕ − ψ) and let J1 < · · · < Jn be as in (3.1) for the pair (ϕ, ε). We claim
that these intervals also satisfy (i)–(iii) for the pair (ψ, δ).

Notice that θγ([0, 1]) = [ϕ̄−, ϕ̄+] ⊂ (ψ− − δ, ψ+ + δ), as a consequence of (16). It is also easy to
check that

ψ+ − 2δ > ϕ+ − 2ε and ψ− + 2δ < ϕ− + 2ε.

Consequently, the Jk satisfy (i), (ii) of (3.1) for the pair (ψ, δ).
Let t1 < · · · < tn be such that θγ(tk) = ϕ̄σ(k). Using (16), one deduces that each tk must be

contained in an interval Jk′ with σ(k′) = σ(k). Therefore, no two of the tk can be contained in the
same J , so that tk ∈ Jk for all k ∈ [n]. Since ϕ̄− < ψ−, if σ(k) = − then Jk must contain some t
such that θγ(t) = ψ−. In particular, by (2.13)(a), condition (iii) of (3.1) is satisfied by Jk for the
pair (ψ, δ) whenever σ(k) = −. If σ(k) = +, let I ⊂ Jk be an interval as in (iii) for the pair (ϕ, ε).
By (2.13)(b), this interval is also stretchable with respect to ψ+. Moreover,

ψ+ − δ = ϕ+ − ε < θγ(t) ≤ ϕ̄+ < ψ+ + δ for all t ∈ I;

hence Jk also satisfies (iii) for the pair (ψ, δ) in case σ(k) = +. �
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(3.12) Definition (N(Q), V∗). Let Q = (q, z) ∈ C×S1, z 6= −1. Let R(Q) denote the open interval
of size π−|θ1| centered at θ1

2 , where eiθ1 = z and |θ1| < π. Let Uc, Ud be the open subsets of M(Q)
consisting of all all condensed (resp. diffuse) curves. Define

Vd := Ud ×R(Q);

Vc :=
{

(γ, ϕ) ∈M(Q)×R(Q) : θγ([0, 1]) ⊂ (ϕ−, ϕ+)
}
.

If M(Q) does not contain critical curves of type σ, set Vσ := ∅. Otherwise, define

Vσ :=
{

(γ, ϕ) ∈M(Q)×R(Q) : γ is (ϕ, ε)-quasicritical of type σ for some ε ∈ (0, π4 )
}
.

The union of Vc, Vd and all the Vσ will be denoted by N(Q), and the cover of N(Q) by these sets
will be denoted by V. Note that each V∗ is an open subset of M(Q) ×R, hence so is N(Q). For
sign strings σ1 ≺ · · · ≺ σm, the intersection Vσ1

∩ · · ·∩Vσm will be denoted by V(σ1,...,σm). Similarly,
V(c,σ1,...,σm) := Vc ∩ V(σ1,...,σm) and V(d,σ1,...,σm) := Vd ∩ V(σ1,...,σm).

Remark. Observe that R(Q) =
(
θ1 − π

2 ,
π
2

)
if θ1 ≥ 0 and R(Q) =

(
− π

2 , θ1 + π
2

)
if θ1 ≤ 0. In either

case, it consists of all ϕ ∈ R such that ϕ− < 0 , θ1 < ϕ+.

(3.13) Lemma. Let pr: N(Q)→M(Q) be the restriction of the canonical projection M(Q)×R→
M(Q). Let K be any compact space and g : K → M(Q) a continuous map. Then there exists
g̃ : K → N(Q) such that pr ◦g̃ = g.

Proof. Let g : p 7→ γp ∈ M(Q) and ϕ̄p := ϕ̄γ
p

, as in (13). Let ω(p) denote the amplitude of γp.
Since θ1

2 always lies in R(Q), if γp is diffuse then
(
γp, θ12

)
∈ Vd. If γp is condensed, then ϕ̄p also lies

in R(Q) and (γp, ϕ̄p) ∈ Vc. Finally, if γp is critical, then ϕ̄p ∈ R(Q).
Using (3.11) and compactness of K, choose s0 ∈ (0, 1] and δ > 0 so small that:

• γp is (ψ, ε)-quasicritical of type σ (for some σ and ε > 0, whose values are irrelevant) for
ψ = (1− s0)ϕ̄p + s0

θ1
2 whenever s ∈ [0, s0] and |ω(p)− π| ≤ 2δ.

Further reducing δ > 0 if necessary, it can be achieved that

• (γp, ψ) ∈ Vd for ψ = (1− s)ϕ̄p + s θ12 , whenever s ∈ [s0, 1] and π ≤ ω(p) ≤ π + 2δ.

Let s : R→ [0, 1] be an increasing continuous function satisfying:

s(u) =


0 if u ≤ π − 2δ;

s0 if |u− π| ≤ δ;
1 if u ≥ π + 2δ;

and set ϕp := [1− s(ω(p))]ϕ̄p + s(ω(p)) θ12 . Then g̃(p) = (γp, ϕp) ∈ N(Q) for all p ∈ K. �

(3.14) Corollary. If N(Q) is contractible, then so is M(Q).

Proof. Indeed, pr : N(Q)→M(Q) induces surjections on homotopy groups and a weakly contractible
Hilbert manifold is contractible. �

(3.15) Lemma. Let p : X → Y be a continuous map between topological spaces. Suppose that X '
Sn for some n ∈ N and that given any compact space K and any map g : K → Y , there exists
g̃ : K → X such that pg̃ = g. Then Y is either weakly contractible or a homology n-sphere.

Proof. The hypothesis immediately implies that Y is a Moore space M(Z/(k), n) for some k ∈ N.
Let K be a CW complex obtained by attaching an (n + 1)-cell to Sn via a map of degree k. Let
g : K → Y be such that g∗ : H∗(K) → H∗(Y ) is an isomorphism. By hypothesis, g factors through
X. Since Hn(X) ' Z, this implies that either k = 0 or k = 1. �

The homotopy type of M(Q) will be determined as follows. If M(Q) contains no critical curves,
then M(Q) ≈ E or E×S0 depending on whether Uc = ∅ or not; see Theorem 6.1 in [17]. Otherwise,
let n denote the greatest length |σ| among those sign strings σ for which Vσ 6= ∅. In §4 the cover
V will be shown to have the same combinatorics as that in (2), and in §5 it will be shown that
V is a good cover of N(Q). Then (3.15), together with an easy topological lemma, will imply
that either M(Q) is contractible or it has the homotopy type of Sn−1. Finally, if N(Q) ' Sn−1,
then M(Q) ' Sn−1 as well, because in this case a non-nullhomotopic map Sn−1 → M(Q) can be
constructed explicitly; this is done in §6.
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(3.16) Lemma. Let σ1 ≺ · · · ≺ σm be sign strings and f : K → V(σ1,...,σm), p 7→ (γp, ϕp), be a

continuous map. Then there exist continuous εj : K → R+, p 7→ εpj , such that for each p ∈ K, γp is

(ϕp, εpj )-quasicritical of type σj. Moreover, εj+1 > 2εj for each j ∈ [m− 1] throughout K.

Proof. By (3.3), such functions can be defined on a neighborhood of every p ∈ K. Globally defined
εj : K → R+ (j ∈ [m]) are obtained through convex combinations using partitions of unity; this
works in view of (3.9). The last assertion is just a restatement of (3.8). �

(3.17) Definition. Let (γ, ϕ) ∈ Vσ, n = |σ|, and let Jk (k ∈ [n]) be intervals satisfying the condi-
tions in (3.1) for some ε ∈ (0, π4 ). Define h : Vσ → Rn by:

(17) hk(γ, ϕ) =

{
supt∈Jk {θγ(t)− ϕ+} if σ(k) = +;

inft∈Jk {θγ(t)− ϕ−} if σ(k) = −;
(k ∈ [n]).

(3.18) Remark. Even though ε and the Jk are not uniquely determined, (3.5)(a) implies that h is
well-defined. Furthermore, it is continuous. Indeed, by (3.3), for (η, ψ) sufficiently close to (γ, ϕ),
we may choose the same intervals Jk in (3.1) for (η, ψ) as for (γ, ϕ); but for fixed Jk ⊂ [0, 1], it is
clear that (17) depends continuously upon (γ, ϕ).

Notation. Given intervals I1, . . . , In, let I1 ∗ · · · ∗ In denote the smallest closed interval containing
I1 ∪ · · · ∪ In.

(3.19) Lemma. Let σ1 ≺ σ2 be sign strings and suppose that γ ∈ M(Q) is (ϕ, εj)-quasicritical of
type σj, j = 1, 2. Let |σ1| = l, |σ2| = n and J1 < · · · < Jn be intervals as in (3.1) for the pair
(σ2, ε2). Then there exist intervals J ′1 < · · · < J ′l satisfying (3.1) for (σ1, ε1) such that:

(a) Each J ′i has the form Jk ∗ Jk′ , for some k ≤ k′ ∈ [n] depending on i ∈ [l].
(b) If k ∈ [n] is such that |hk(γ, ϕ)| ≤ 2ε1, then Jk ⊂ J ′i for some i ∈ [l].
(c) For each i ∈ [l], there exists k ∈ [n] such that |hk(γ, ϕ)| < ε1 and Jk ⊂ J ′i .

Proof. Let k1 < · · · < km be all the indices k ∈ [n] such that |hk(γ, ϕ)| ≤ 2ε1. Define τ : [m]→ {±}
by τ(j) = σ2(kj). For each j ∈ [m], choose tj ∈ Jkj such that θγ(tj) = ϕσ2(kj) + hkj (γ, ϕ). Let
J ′′1 < · · · < J ′′l be any intervals as in (3.1) for the pair (σ1, ε1). Then:

• Each tj must be contained in some J ′′i with σ2(kj) = σ1(i). This follows immediately from
condition (ii) of (3.1) for the pair (σ1, ε1).

• For each i ∈ [l], J ′′i must contain one of the tj . Indeed, by (iii) of (3.1), for any i there exists
si ∈ J ′′i such that |θγ(si)−ϕσ1(i)| < ε1. By (3.8), 2ε1 < ε2, hence si ∈ Jk for some k, which
forces |hk(γ, ϕ)| < ε1. Therefore k = kj for some j, and it follows that tj must be contained
in J ′′i .

Let % be the reduced string of τ . The first assertion implies that % is a substring of σ1, while the
second one implies that it cannot be a proper substring. Consequently % = σ1.

Thus, there exists a decomposition of {k1, . . . , km} as the disjoint union of nonempty sets S1 <
· · · < Sl with σ2(k) = σ1(i) whenever k ∈ Si. Set J ′i = ∗k∈Si Jk. Then J ′1 < · · · < J ′l , and parts
(a) and (b) hold by construction. Moreover, |θγ(t)− ϕ| < π

2 − 2ε1 if t /∈ Int
(⋃

i J
′
i

)
: If t /∈

⋃
k Jk,

then this is obvious from (ii) of (3.1), since ε2 > 2ε1 by (3.8); if t ∈ Jk for some k, then necessarily
|hk(γ, ϕ)| > 2ε1, hence again the inequality holds. This proves that condition (ii) of (3.1) is satisfied
by the J ′i . Condition (i) is also easily verified using that ε2 > 2ε1.

Since γ is (ϕ, ε1)-quasicritical, there exist intervals I1 < · · · < Il such that Ii is stretchable and

(18)
∣∣θγ(t)− ϕσ1(i)

∣∣ < ε1 for all t ∈ Ii and i ∈ [l].

The inequality implies that each of these intervals must be contained in some J ′, and no two
subsequent intervals may be contained in the same J ′. Hence Ii ⊂ J ′i for each i ∈ [l]. This proves
that condition (iii) of (3.1) is satisfied by the J ′. Since ε1 < ε2, (18) also implies that each Ii must
be contained in some Jk with |hk(γ, ϕ)| < ε1, so that Jk ⊂ J ′i by the definition of the J ′. This proves
part (c). �
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4. Incidence data of the cover of N(Q)

Good covers of Hilbert manifolds. An open cover U = (Uν)ν∈I of a space is good if for any
finite J ⊂ I, the intersection

⋂
ν∈J Uα is either empty or contractible. Let V = (Vν)ν∈I be a good

cover of another space, indexed by the same set I. Then U and V will be called (combinatorially)
equivalent when for any finite J ⊂ I,

⋂
ν∈J Uν = ∅ if and only if

⋂
ν∈J Vν = ∅. Recall that the nerve

KU of an open cover U of a space is a simplicial complex whose n-simplices correspond bijectively
to the nonempty (n+ 1)-fold intersections of distinct elements of U, for each n ∈ N.

(4.1) Lemma. If U is a good cover of a paracompact space X, then X is homotopy equivalent to the
nerve KU.

Proof. See [7], Corollary 4G.3 or [22], p. 141. �

Because the spaces Lκ2
κ1

(P,Q) are closed submanifolds of the separable Hilbert space E (see Defini-
tion 1.6 of [17]), they are second-countable and metrizable. It follows that they are also paracompact.
It will be tacitly assumed below that all Hilbert manifolds are separable and metrizable.

(4.2) Corollary. If two Hilbert manifolds M and N admit equivalent good covers, then M ≈ N.

Proof. Let U and V be equivalent good covers of M and N, respectively. Let K be the nerve of U,
which is homeomorphic to the nerve of V by hypothesis. By (4.1), there exist homotopy equivalences
M→ K and K → N. The corollary thus follows from the fact that a homotopy equivalence between
two Hilbert manifolds is homotopic to a homeomorphism, see [17], Lemma 1.7(b). �

(4.3) Corollary. If a Hilbert manifold M and a finite-dimensional manifold N admit equivalent
good covers, then M ≈ E×N . �

Incidence data of the cover of N(Q). The purpose of this subsection is to determine which of
the open sets V∗ ⊂ N(Q) described in (3.12) intersect each other.

(4.4) Lemma. Suppose that γ ∈ M(Q) is simultaneously (ϕ, ε)-quasicritical of type σ and (ϕ, ε′)-
quasicritical of type σ′, for some ϕ ∈ R, ε, ε′ ∈ (0, π4 ) and sign strings σ, σ′. Then σ′ 6= −σ.

Proof. No generality is lost in assuming that ε ≤ ε′. Let n = |σ|, l = |σ′| and J1 < · · · < Jn,
J ′1 < · · · < J ′l be intervals as in (3.1), for the pairs (σ, ε) and (σ′, ε′), respectively. For each k ∈ [n],
choose an interval Ik ⊂ Jk such that

θγ(Ik) ⊂ (ϕσ(k) − ε, ϕσ(k) + ε).

Then for each k ∈ [n], Ik must be contained in some J ′i with σ(k) = σ′(i). In particular, Ik and
Ik+1 are not contained in the same J ′ for any k. Therefore, either l > n or l = n and σ′ = σ. �

(4.5) Lemma. Let σk (2 ≤ k ≤ n) be sign strings satisfying |σk| = k. Then there exist intervals
R2 ⊂ . . . ⊂ Rn = [n], |Rk| = k, such that for each k = 2, . . . , n, if Rk = {r1 < · · · < rk}, then
σn(ri) = σk(i) for all i ∈ [k]. �

In words, we can find nested copies of each σk inside of σn by an appropriate choice of the Rk.
The proof is an easy induction which will be left to the reader.

(4.6) Lemma. Let κ1 ∈ (0, 1). Suppose that α ∈ L+1
−1(P,Q) is condensed, tα(0) = tα(1) and

κα([0, 1]) ⊂ [−κ1 +κ1], but α is not a line segment. Then for all sufficiently small ε > 0, there exists
a homotopy s 7→ αs ∈ L+1

−1(P,Q) (s ∈ [0, 1]) with α1 = α and ω(α1)− ω(α0) = ε.†

Proof. Let κ0 ∈ (κ1, 1) and H be as in Proposition 3.4 of [17]. Then u 7→ αu = H(u, α) (u ∈ [0, 1]),
the flattening of α = α1 with curvature κ0, is a deformation within L+1

−1(P,Q) such that ω(αu) is an
increasing function of u. Moreover, δ = ω(α1)−ω(α0) > 0 by Lemma 3.16 of [17] and the hypotheses
on α. Hence, for any ε ∈ (0, δ], there exists u0 ∈ [0, 1] such that ω(α1)− ω(αu0) = ε. �

(4.7) Lemma. Let σk (2 ≤ k ≤ n) be sign strings satisfying |σk| = k. Suppose that M(Q) contains
critical curves of type σn. Then V(c,σ2,...,σn) and V(d,σ2,...,σn) are nonempty.

†Recall that ω(γ) = sup θγ − inf θγ denotes the amplitude of γ.
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Proof. Write Q = (q, z) ∈ C× S1. By Proposition 5.3 of [17], the region

Rσn =
{
p ∈ C : M(P ) contains critical curves of type σn, P = (p, z)

}
is open in C. Hence, there exists κ1 ∈ (0, 1) such that κ1q ∈ Rσn . Let Q̃ = (κ1q, z). If η̃ ∈M(Q̃) is a
critical curve of type σn, then the dilated curve η = 1

κ1
η̃ is a critical curve of type σn in M(Q) whose

curvature takes values in [−κ1,+κ1]. A quasicritical curve of the required type can be obtained by
modifying η in neighborhoods of the points η(t) where θη(t) = ϕ̄η ± π

2 .

By Corollary 5.7 of [17], the set of all ϕ ∈ R such that M(Q̃) contains a critical curve η̃ with
ϕ̄η̃ = ϕ is an open interval. Hence it may be assumed that 0, θ1 ∈ (ϕ̄η−, ϕ̄

η
+), so that

(19) µ = min
{
|ϕ̄η±|, |ϕ̄

η
± − θ1|, π4

}
> 0,

where θ1 = θη(1) is the unique number in (−π, π) such that eiθ1 = z. Since

C =
{
t ∈ [0, 1] : θη(t) = ϕ̄η±

}
is compact, it intersects only finitely many components V1 < · · · < Vl of

V =
{
t ∈ [0, 1] : |θη(t)− ϕη| > π

2 − µ
}
.

Observe that Vi is an open subinterval of (0, 1) for each i ∈ [l], and either the maximum or the
minimum of θη|V i is attained at both endpoints. Let

λ =
π

2
− sup

{
|θη(t)− ϕ̄η| : t /∈

⋃
i Vi
}
> 0.

By grafting η at points of C if necessary (see Definition 4.13 and Figure 9 of [17]), it may be assumed
that for each i, η|V i contains a line segment of some large length L where θη = ϕ̄η±.

Let αi = η|V i . Then each αi satisfies the hypothesis of (4.6). Hence there exists δ, 0 < 2δ <

min {λ, µ}, such that for each i ∈ [l], if εi ≤ δ then αi can be deformed (keeping initial and final
frames fixed) to a curve βi such that ω(αi) − ω(βi) = εi. We claim that an appropriate choice of
the εi yields a curve of the required type.

Since η is a critical curve of type σn, there is a partition of [l] into sets A1 < · · · < An such that
for every k ∈ [n] and i ∈ Ak, there exists t ∈ Vi for which θη(t) = ϕ̄ησn(k). In view of (4.5), no

generality is lost in assuming that σk = σn|[k] for each k = 2, . . . , n. Set εi = 0 if i ∈ A1 ∪ A2 and

εi = 8k−nδ if i ∈ Ak for k > 2. Let γ be the curve which results by deforming each αi to βi, as
described above. Notice that ϕ̄γ = ϕ̄η. Furthermore:

(a) γ is not condensed, because for every i1 ∈ A1, i2 ∈ A2, there exist t1 ∈ Vi1 , t2 ∈ Vi2 such
that θγ(ti) = ϕ̄γσ2(i) (i = 1, 2).

(b) γ is not diffuse, since η is not diffuse and each βi was obtained from αi by a deformation
which decreases amplitude.

(c) γ is
(
ϕ̄γ , 8k−n2δ

)
-quasicritical of type σk for each k = 2, . . . , n by construction. Indeed,

setting Jk = ∗i∈Ak Vi (the smallest closed subinterval containing these Vi) for each k ∈ [n],
J1 < · · · < Jk satisfy (i) and (ii) of (3.1) for ε = 8k−n2δ (k ≥ 2) since

8k−nδ < 8k−n2δ <
1

2
8k+1−nδ.

Condition (iii) is a consequence of (2.13)(c) and our assumption that each arc η|Vi contains
a line segment of some large length L where θη = ϕ̄η±.

Therefore, by (19), (γ, ϕ̄γ) ∈ V(σ1,...,σm). By Proposition 5.1 of [17], the boundaries of Uc and
Ud in M(Q) are both equal to the set of all critical curves in M(Q). Therefore, by (3.3), a slight
perturbation of γ yields a curve γ̃ such that (γ̃, ϕ̄γ) ∈ V(c,σ1,...,σm) or (γ̃, ϕ̄γ) ∈ V(d,σ1,...,σm). �

Let us say that τ is a top sign string for M(Q) if the latter contains critical curves of type τ ,
but does not contain critical curves of type τ ′ for any sign string τ ′ with |τ ′| > |τ |. Set n = |τ |.
Proposition 5.3 of [17] determines whether M(Q) contains critical curves of type σ in terms of Q,
for any sign string σ. Notice in particular that M(Q) always admits a top sign string τ , except in
case it does not contain critical curves at all.

(4.8) Proposition. Let τ be a top sign string for M(Q), n = |τ |, V be the cover of N(Q) described
in (3.12) and U = {U±k}k∈[n], where U±k ⊂ Sn−1 are as in (2).
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(a) If M(Q) contains critical curves of type −τ , then (3) defines a combinatorial equivalence
between V and the cover U of Sn−1.

(b) If M(Q) does not contain critical curves of type −τ , then (3) defines a combinatorial equiv-
alence between V and the cover Ur {U−n} of Sn−1 r {(0, 0, . . . ,−1)}.

Proof. It is clear that Vc ∩ Vd = ∅, and by (4.4), Vσ ∩ V−σ = ∅ for any sign string σ. On the other
hand, (4.7) implies that an intersection of nonempty sets in V is empty only if it involves one such
pair. The combinatorics of V is thus the same as that of U, as asserted. �

5. Topology of the cover of N(Q)

(5.1) Proposition. Let σ1 ≺ · · · ≺ σm be sign strings. Then the subspaces V(σ1,...,σm), V(c,σ1,...,σm)

and V(d,σ1,...,σm) of N(Q) are either empty or contractible.

Let V denote any of these subspaces. Since V is a Hilbert manifold, it suffices to prove that it
is either empty or weakly contractible. Given a family (γp, ϕp) ∈ V, for p ranging over a compact
space, the idea is to stretch each γp in the direction of ±ieiϕp so that it becomes nearly critical (see
Figure 10), and then flatten it piecewise to obtain a concatenation of circles and line segments of a
special form (see Figure 11). The results of §1 are then used to conclude that the resulting family
is contractible. The proof is quite technical since the conditions in (3.1) need to be verified at each
step; it will be split into several lemmas.

For the sake of convenience, a curve γ ∈M(Q) will be called of the form cl if it is the concatenation
of an arc of circle of amplitude < π and a line segment, where either of these may degenerate to a
point and the circle has radius 1

κ0
; the value of κ0 will be clear from the context. The analogous

abbreviation for a more general word on {c, l} will also be used.

Figure 10. Streching a curve in the direction of ±ieiϕp .

(5.2) Lemma. Let g0 : K → V(c,σ1,...,σm), g0(p) 7→ (γp0 , ϕ
p), be a continuous map. Then for all

sufficiently large C > 0, there exists a homotopy gs : K → V(c,σ1,...,σm) (s ∈ [0,m]), gs(p) = (γps , ϕ
p),

such that for each p ∈ K and j ∈ [m]:

(i) γpm is (ϕp, δj)-quasicritical of type σj, where δj = arccot
(
C2(m−j)+1

)
;

(ii) If Jj,1(p) < · · · < Jj,|σj |(p) are intervals satisfying (3.1) for the quadruple (γpm, ϕ
p, δj , σj),

then for each k ∈ [|σj |], there exists an interval I ⊂ Jj,k(p) such that
∣∣θγpm(t)− ϕpσj(k)

∣∣ < δj
for all t ∈ I and γpm|I is a line segment of length greater than cot(δj).

Proof. Let γp0 be denoted simply by γp. By Corollary 1.11 of [17], it may be assumed that each γp

is smooth and that all of its derivatives depend continuously on p ∈ K. Let R > 0 be such that
the image of γp is contained in the open disk of radius R centered at the origin for all p ∈ K. Take
κ0 ∈ ( 1

2 , 1) large enough so that κγp([0, 1]) ⊂ [−κ0,+κ0] for every p ∈ K. For each j ∈ [m], let
εj : K → R+ (j ∈ [m]) be as in (3.16), nj = |σj | and let Jj,k(p), Ii,j,k be the intervals corresponding
to σj as in (3.6) and (3.7), for k ∈ [nj ] and some open cover (Ui,j)i∈[lj ] of K. For each j ∈ [m], let
ρi,j : K → [0, 1] (i ∈ [lj ]) form a partition of unity subordinate to the cover (Ui,j)i∈[lj ]. By choosing
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a larger κ0 ∈ ( 1
2 , 1) if necessary, it may be assumed that γp|Ii,j,k is κ0-stretchable with respect to

ϕpσj(k) for each p ∈ U i,j and k ∈ [nj ]. Again by compactness, there exists κ1 > 0 such that the

inequality in (2.9)(f) is satisfied by the function corresponding to the stretching of γp|Ii,j,k for all

j ∈ [m], i ∈ [lj ], k ∈ [nj ] and p ∈ U i,j . Take C > 0 to be so large that

(20) C > 8 max
{
R+ πκ−1

0 , mκ−1
1 , sup

p∈K
cot(εp1)

}
.

For the sake of simplicity, it will be assumed that Ii,j,k∩Ii′,j,k = ∅ whenever i 6= i′ and Ui,j∩Ui′,j 6=
∅. The only difference if this did not occur is that it would be necessary to stretch the restriction of
γp to these intervals one i at a time; see (3.7) and the remark following it.

Define a homotopy (s, p) 7→ γps (s ∈ [0,m]) inductively as follows (compare Figure 10). For
s ∈ [j− 1, j], let γps be obtained from γpj−1 by stretching its restriction to Ii,j,k linearly with s in the

direction of exp
(
iϕpσj(k)

)
by:†

(21) ljρi,j(p)C
2(m+1−j) for each i ∈ [lj ], k ∈ [nj ].

Actually, if nj is odd, then one must introduce different constants into the above formula for k even

and for k odd to guarantee that
〈
γs(1), ieiϕ

p〉
is constant for s ∈ [j − 1, j]. Since these factors do

not affect the estimates below, they will be ignored.
It is an immediate consequence of (2.9)(c) that (γps , ϕ

p) ∈ Vc for all s ∈ [0,m] since this is true
when s = 0. Let δj be as in the statement. We claim that for each p ∈ K and j ∈ [m]:

(a) If s ∈ [0, j], then γps is (ϕp, εpj )-quasicritical of type σj .

(b) If s ∈ [j,m], then γps satisfies (i) and (ii) (with s in place of m).

In particular, (γps , ϕ
p) ∈ V(c,σ1,...,σm) for all s ∈ [0,m] as claimed.

To establish (a), we prove by induction on j′ ∈ [j] that the intervals Jj,k(p) (k ∈ [nj ]) satisfy the
conditions in (3.1) for the quadruple (γps , ϕ

p, εpj , σj) for any s ∈ [j′−1, j′]. By hypothesis, this is true

when s = 0. By (3.8), 2εpj′ < εpj for all p ∈ K. Hence, by (3.5)(a), for any i′ ∈ [lj′ ] and k′ ∈ [nj′ ],

the interval Ii′,j′,k′ is contained in some Jj,k(p) whenever p ∈ Ui′,j′ . It follows immediately from
(2.9)(b) that the Jj,k(p) satisfy (i) and (ii) of (3.1) for (γps , ϕ

p, εpj , σj) and all s ∈ [j′−1, j′]. If Jj,k(p)

contains Ii′,j′,k′ for some i′ ∈ [lj′ ] with p ∈ Ui′,j′ , then condition (iii) of (3.1) is satisfied by Ii′,j′,k′

for all s ∈ [j′ − 1, j′] by (2.9)(g). If not, then Jj,k(p) is disjoint from Ii′,j′,k′ whenever p ∈ Ui′,j′ , so
that θγps (t) = θγp

j′−1
(t) for all t ∈ Jj,k(p) and s ∈ [j′− 1, j′]. In particular, if I ⊂ Jj,k(p) satisfies (iii)

for (γps , ϕ
p, εpj , σj) when s = j′− 1, then I is not affected by the stretching, hence it satisfies (iii) for

this quadruple for all s ∈ [j′−1, j′]. This completes the proof of the induction step and of claim (a).
Now write Ii,j,k = [ci,j,k, di,j,k]. If i ∈ [lj ] is such that ρi,j(p) ≥ 1

lj
, then

(22)

〈
γpj (di,j,k)− γpj (ci,j,k) , exp(iϕpσj(k))

〉
> C2(m+1−j) − 2R, while∣∣〈γpj (di,j,k)− γpj (ci,j,k) , exp(iϕp)

〉∣∣ < 2R.

The first inequality is immediate from (21) and the hypothesis that the image of γp is contained
in the open disk BR(0). The second one comes from the fact that 〈γps (di,j,k) − γps (ci,j,k) , eiϕ

p〉 is

actually independent of s ∈ [0, j], as all stretchings are in the direction of ±ieiϕp and Ii,j,k is either
disjoint or contains Ii′,j′,k′ when ρi′,j′(p) > 0, by (3.7)(b) and the inequalities 2ε′j < εj (j′ < j).

By the definition of stretching, γpj |Ii,j,k is a curve of the form clc. Using (20) we conclude that

Ii,j,k ⊂ Jj,k(p) contains a subinterval I such that γpj |I is a line segment of length greater than

C2(m+1−j) − 2R− 2πκ−1
0 > C2(m−j)+1

and slope greater in absolute value than

1

2R

(
C2(m+1−j) − 2R− 2πκ−1

0

)
>

1

4R
C2(m+1−j) > C2(m−j)+1 = cot(δj).

Hence
∣∣θγpj (t)− ϕpσj(k)

∣∣ < δj throughout I, and by (3.10), γpj is (ϕp, δj)-quasicritical of type σj . This

proves (b) when s = j.

†When appearing inside or multiplying an exponential, the letter i denotes the imaginary unit, not an index.
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We now establish (b) for all s ∈ [j,m]. Fix p ∈ K. Observe first that no t ∈ [0, 1] can belong to
two intervals Ii′,j′,k′ and Ii′′,j′′,k′′ with ρi′,j′(p) > 0, ρi′′,j′′(p) > 0 and σj′(k

′) = −σj′′(k′′). Moreover,
if j′ is the smallest index such that t ∈ Ii′,j′,k′ and ρi′,j′(p) > 0 for some i′ ∈ [lj′ ] and k′ ∈ [nj′ ], then∣∣tan

(
θγps (t)− ϕpσj′ (k′)

)∣∣ ≥ κ1

mC2(m+1−j′) >
4

C2(m+1−j′)+1
= 4 tan(δj′−1) for all s ∈ [0,m].

Here (20) has been used; the factor m in the denominator of the second term comes from the fact
that t belongs to at most (m+ 1− j′) ≤ m such intervals. Since 4 tanx > tan(2x) for x ∈

(
0, π8

)
,

(23)
∣∣θγps (t)− ϕpσj′ (k′)

∣∣ > 2δj′−1 for all s ∈ [0,m].

Now suppose that t ∈ Jj,k(p) for some k ∈ [nj ]. There are three possibilities:

• If t does not belong to any Ii′,j′,k′ with ρi′,j′(p) > 0, then θγps (t) = θγp0 (t) for all s ∈ [0,m]
by construction, hence∣∣θγps (t)− ϕp−σj(k)

∣∣ > 2εpj > 2δj for all s ∈ [0,m].

• If t ∈ Ii′,j′,k′ with ρi′,j′(p) > 0 and σj′(k
′) = σj(k), then (2.9)(b) implies that∣∣θγps (t)− ϕp−σj(k)

∣∣ > π

2
> 2δj for all s ∈ [0,m].

• If t ∈ Ii′,j′,k′ with ρi′,j′(p) > 0 and σj′(k
′) = −σj(k), then j′ ≥ j+1, otherwise the inequality

2εpj′ < εpj would immediately yield a contradiction. Hence, by (23),∣∣θγps (t)− ϕp−σj(k)

∣∣ > 2δj for all s ∈ [0,m].

Thus, in any case condition (i) of (3.1) is satisfied by (γps , ϕ
p, δj , σj) for all s ∈ [0,m]. Similarly, if

t /∈ Int
(⋃nj

k=1 Jj,k(p)
)
, then either t does not belong to any Ii′,j′,k′ with ρi′,j′(p) > 0 or t ∈ Ii′,j′,k′

with ρi′,j′(p) > 0 for some j′ ≥ j+ 1. Then, by the same reason as in the first and third possibilities
above, ∣∣θγps (t)− ϕp±

∣∣ > 2δj for all s ∈ [0,m].

This proves that condition (ii) of (3.1) is also satisfied for all s ∈ [0,m]. Finally, we shall prove
by induction on j′ (j ≤ j′ ≤ m) that condition (iii) holds for all s ∈ [j, j′]. For j′ = j, this
was established in the preceding paragraph; let I ⊂ Jj,k(p) be as described there and assume that
j′ > j. By (3.8), εpj′ > 2εpj , hence (3.7)(b) implies that if ρi′,j′(p) > 0 and k′ ∈ [nj′ ], then either

I ⊂ [ci′,j′,k′ , di′,j′,k′ ] or these two intervals are disjoint. If I is disjoint from any such interval, then
θγps (t) = θγp

j′−1
(t) for all t ∈ I and s ∈ [j′ − 1, j′]. Hence I ⊂ Jj,k(p) satisfies condition (iii) of (3.1)

for all such s, since by the induction hypothesis this is true when s = j′ − 1. Suppose then that
I ⊂ [ci′,j′,k′ , di′,j′,k′ ] for some i′, k′ with ρi′,j′(p) > 0. Using (2.13) (e) and reducing I if necessary, it
can be assumed that γps |I is a line segment for all s ∈ [j′ − 1, j′]. Let s0 ∈ [j′ − 1, j′] correspond to
the instant where the flattening deformation ends and the stretching begins. The same estimates as
in (22) show that the slope of γps0 |I is greater than cot(δj). Since this is also true when s = j′− 1 by
the induction hypothesis, it follows from the monotonicity of θγps (t) with respect to s ∈ [j′ − 1, s0]
(see Lemma 3.11 of [17]) that this holds for all s ∈ [j′−1, s0]. For s ∈ [s0, j−1] the same conclusion
holds by (2.7). �

(5.3) Lemma. Let % > 0 g : [0,m]×K → V(c,σ1,...,σm) be as in (5.2) and n = |σm|. Then g admits
an extension to [0,m+ 2n]×K, gs(p) = (γps , ϕ

p), such that γpm+2n is of the form

c lc. . . lc︸ ︷︷ ︸
n

and each line segment has length > 8 and slope greater in absolute value than %, for all p ∈ K.

Proof. Again, we carry out the proof only for V(c,σ1,...,σm), since the proof for V(σ1,...,σm) is the same,
except for a few omissions. We retain the notation of the proof of (5.2). Let Jk(p) = [ak(p), bk(p)]
(k ∈ [n]) be intervals satisfying the conditions of (5.2) for the quadruple (γp0 , ϕ

p, εpm, σm), and hence
the same conditions for (γpm, ϕ

p, δm, σm). Set t0(p) = 0, t2n(p) = 1,

(24) t2k−1(p) =
1

2
[ak(p) + bk(p)] (k ∈ [n]) and t2k(p) =

1

2
[bk(p) + ak+1(p)] (k ∈ [n− 1]).
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Figure 11. An illustration of a curve obtained by the homotopy in (5.3).

Notice that t2k−1(p) ∈ Jk(p) for all k ∈ [n] and Jk(p) < t2k(p) < Jk+1(p) for all k ∈ [n−1]. For each
ν ∈ [2n], let Iν(p) = [tν−1(p), tν(p)]. Since Iν(p) intersects exactly one Jk(p) for all ν, the amplitude

ω
(
γpm|Iν(p)

)
= sup
t∈Iν(p)

{
θγpm(t)

}
− inf
t∈Iν(p)

{
θγpm(t)

}
is less than π for all ν ∈ [2n]. Thus, γpm|Iν(p) can be flattened; let

ψpν =
1

2

(
sup

t∈Iν(p)

θγpm(t) + inf
t∈Iν(p)

θγpm(t)
)

(ν ∈ [2n]).

Extend the homotopy of (5.2) to [0,m+ 1]×K by letting γpm+s|Iν(p) be the flattening of γpm|Iν(p) in

the direction of eiψ
p
ν (s ∈ [0, 1]). It follows immediately from (2.9)(d) that (γpm+s, ϕ

p) ∈ Vc for all
s ∈ [0, 1].

Again, it needs to be verified that (γpm+s, ϕ
p) ∈ V(σ1,...,σm). We claim that γpm+s is (ϕp, δj)-

quasicritical of type σj for all s ∈ [0, 1] and j ∈ [m]. Fix p ∈ K and let

Jj,1(p) < · · · < Jj,nj (p) (j ∈ [m])

be intervals as in (5.2) for σj . Using (3.19), it may be assumed that any such interval has the form
Jk1(p) ∗ Jk2(p) for some k1, k2 ∈ [n]. (It is however unnecessary to assume that the endpoints of
Jj,k(p) depend continuously on p, since no constructions using them will be carried out.)

Let ν ∈ [2n]. As Iν(p) intersects exactly one Jk(p), it intersects at most one Jj,r(p). Thus, if
Iν(p) ∩ Jj,r(p) 6= ∅, then

∣∣θγpm+s
(t)− ϕp−σj(r)

∣∣ > 2δj for s = 0 and all t ∈ Iν(p). By (2.9)(d), this

inequality holds for all s ∈ [0, 1]. Since
⋃
ν Iν(p) = [0, 1], we conclude that

(25)
∣∣θγpm+s

(t)− ϕp−σj(r)
∣∣ > 2δj for all s ∈ [0, 1], t ∈ Jj,r(p).

Now let I ⊂ Jj,r(p) be an interval as in (ii) of (5.2). Let ν ∈ [2n] be such that I ⊂ Iν(p)∪Iν+1(p).
Then the restriction of γpm to one of I ∩ Iν(p) or I ∩ Iν+1(p) has length equal to at least half the
length of γpm|I . Suppose without loss of generality that the former occurs. Let R > 1 and C be as
in the proof of (5.2). Then∣∣〈γpm(tν(p))− γpm(tν−1(p)) , i exp(iϕp)

〉∣∣ > 1

2
C2(m+1−j) − 2R, while∣∣〈γpm(tν(p))− γpm(tν−1(p)) , exp(iϕp)

〉∣∣ < 2R.

Recall that by the definition of flattening, γpm+s(tν(p)) = γpm(tν(p)) for all s ∈ [0, 1], and similarly at
tν−1(p). Moreover, γpm+1|Iν(p) is of the form clc. Its subarc which is a line segment must thus have
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slope greater in absolute value than

1

2R

(1

2
C2(m+1−j) − 2R− 2πκ−1

0

)
>

1

8R
C2(m+1−j) > C2(m−j)+1 = cot(δj).

Let I ′ ⊂ I ∩ Iν(p) be an interval such that γpm+s|I′ is a line segment of length > 8 for all s ∈ [0, 1], as
guaranteed by (2.13) (e). Then γpm+s|I′ is κ0-stretchable by (2.13) (f). Further, the above estimate

implies that
∣∣θγpm+s

(t)− ϕpσj(k)

∣∣ < δj throughout I ′ when s = 1, and this is also true when s = 0 by

(5.2). By the monotonocity of θγpm+s(t)
with respect to s (see Lemma 3.11 of [17]), this inequality

holds for all s ∈ [0, 1]. Thus, condition (iii) of (3.1) is satisfied.
To verify condition (ii), let ν0, ν1 be the greatest (resp. smallest) index satisfying tν0(p) < Jj,k(p) <

tν1(p). Since tνi(p) /∈
⋃
k Jk(p) by definition,∣∣θγm+s(tνi(p))− ϕp

∣∣ = |θγm(tνi(p))− ϕp| <
π

2
− 2εpm for i = 0, 1 and all s ∈ [0, 1].

Therefore, it is possible to enlarge Jj,r(p) to a subinterval of
(
tν0(p), tν1(p)

)
so that∣∣θγpm+s

(t)− ϕp
∣∣ < π

2
− 2δj for all t ∈

[
tν0(p), tν1(p)

]
r Jj,r(p) and s ∈ [0, 1].

If this enlargement is carried out for each k ∈ [nj ], then condition (ii) of (3.1) will be satisfied by
the Jj,r(p). It is easily verified that the validity of conditions (i) and (iii) is not affected.

Now γpm+1 is of the form

(clc)(clc) . . . (clc)︸ ︷︷ ︸
n

for all p ∈ K.

To prove the lemma, it thus suffices to reduce subarcs of the form cclc to arcs of the form clc. Let Lp

denote the length of γpm+1; no generality is lost in assuming that γpm+1 : [0, 1] → C is parametrized
proportionally to arc-length for all p. Set

(26) Aν(p) :=
[
tν(p)− π

κ0Lp
, tν+1(p)

]
For each ν = 1, . . . , 2n−1 in turn, let γpm+ν+1 be obtained from γpm+ν by flattening the arc γpm+ν |Aν(p)

in the direction of
1

2

(
sup

t∈Aν(p)

θγpm+ν
(t) + inf

t∈Aν(p)
θγpm+ν

(t)
)
.

Using estimates similar to the preceding ones, it is not hard to check that γps ∈ V(c,σ1,...,σm) for all
s ∈ [m+ 1,m+ 2n]. Moreover, γpm+2n has the desired form for all p ∈ K by construction. �

The next objective is to prove a version of (5.2) and (5.3) for V(d,σ1,...,σm). The proof is a repetition
of the arguments used to establish these results, aside from some preliminary deformations which
are needed to guarantee that γps will remain diffuse throughout the homotopy. We begin with a
lemma which allows us to deform a family K → V(σ1,...,σm) to have image contained in V(d,σ1,...,σm).

(5.4) Lemma. Let K → V, p 7→ (γp0 , ϕ
p) be a continuous map, where V = V(d,σ1,...,σm) or V =

V(σ1,...,σm). Then there exists a homotopy (s, p) 7→ (γps , ϕ
p) ∈ V such that [ϕp−, ϕ

p
+] ⊂ Int(θγp1 ([0, 1]))

for all p ∈ K.

Thus, by deforming γp0 they can be made not only diffuse but “diffuse with respect to ϕp”.

Proof. Let εj : K → R+ be such that γp = γp0 is (ϕp, εp)-quasicritical of type σj for each j ∈ [m]
and p ∈ K. Assume first that V = V(d,σ1,...,σm) and that K consists of a single point p. Since γp

is diffuse, the image of θγp has diameter greater than π, and it contains [ϕp− + εp1, ϕ
p
+ − ε

p
1] in its

interior by condition (iii) of (3.1). Hence there exist t, t′ ∈ [0, 1] such that

θγp(t′) = π + θγp(t) and θγp(t) < ϕp− + εp1 < ϕp+ − ε
p
1 < θγp(t′).

Define a homotopy (s, p) 7→ γps (s ∈ [0, 1
2 ]) by grafting straight line segments having directions

tγp(t), tγp(t′) and length greater than 4 at γp(t) and γp(t′) (see [17], Definition 4.13). Note that
(γps , ϕ

p) ∈ V for all s ∈ [0, 1
2 ], since θγps is essentially the same function as θγp0 . Extend the homotopy

to all of [0, 1] by deforming each of these segments to create a “bump” (see Figure 10 of [17]) so that
[ϕp−, ϕ

p
+] ⊂ Int(θγp1 ([0, 1])). This is possible because M(P ) is connected if P = (x, 1) ∈ R× S1 with

x > 4, by Theorem 6.1 of [17]; this also follows from Figure 3 above. Moreover, γps ∈ V(d,σ1,...,σm)
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for all s ∈ [0, 1]. For a general finite simplicial complex K, the same idea works if partitions of unity
are used. The details will be omitted since they are technical and an entirely similar construction
(for deforming segments into eight curves, instead of bumps) was already carried out in Lemmas
4.15 and 4.16 of [17].

Now take V = V(σ1,...,σm). By Corollary 1.11 of [17], it may be assumed that each γp is smooth

and that all of its derivatives depend continuously upon p ∈ K. Choose κ0 ∈ ( 1
2 , 1) such that

κγp([0, 1]) ⊂ (−κ0,+κ0) for every p ∈ K. Assume first that K = {p}. Let Jk(p) be intervals
satisfying (3.1) for the sign string σm and some ε > 0, and choose stretchable intervals I ⊂ Jk(p),
I ′ ⊂ Jk′(p) with σm(k) = + and σm(k′) = −. By choosing a larger κ0 ∈ ( 1

2 , 1) if necessary, it may
be assumed that the restriction of γp to each of I, I ′ is κ0-stretchable with respect to ϕpσm(k). Define

a homotopy (s, p) 7→ γps by stretching each of γp0 |I , γ
p
0 |I′ in the direction of ±ieiϕp by more than

4 + 2π, linearly with s ∈ [0, 1
2 ]. Extend this to [0, 1] by choosing straight line segments of length

greater than 4 within each of γp1
2

|I , γp1
2

|I′ and deforming them to create bumps as above so as to have

[ϕp−, ϕ
p
+] ⊂ Int(θγp1 ([0, 1])). For a general finite simplicial complex K, use partitions of unity, (3.6)

and (3.7)(a). �

(5.5) Lemma. Let K → V(d,σ1,...,σm), p 7→ (γp, ϕp) be a continuous map and assume that [ϕp−, ϕ
p
+] ⊂

Int(θγp([0, 1])) for all p ∈ K. Then given δ0 > 0, there exists a homotopy (s, p) 7→ (γps , ϕ
p) ∈

V(d,σ1,...,σm) such that γp0 = γp and [ϕp−, ϕ
p
+] ⊂ Int(θγp1 ([0, 1])) ⊂ [ϕp− − δ0, ϕ

p
+ + δ0] for all p ∈ K.

Moreover, the homotopy is obtained by stretching subarcs of γp in the direction of ±ieiϕp .

Proof. By Corollary 1.11 of [17], no generality is lost in assuming that γp is smooth for every p ∈ K,
and that its derivatives depend continuously on p. In particular, there exists κ0 ∈ (0, 1) such that
κγp([0, 1]) ⊂ (−κ0,+κ0) for all p ∈ K. Fix p and let

Wp =
{
t ∈ [0, 1] :

∣∣θγp(t)− ϕp
∣∣ > π

2

}
, Cp =

{
t ∈ [0, 1] :

∣∣θγp(t)− ϕp
∣∣ ≥ π

2 + δ0
2

}
.

By (2.13)(a), the closure of any component of Wp is a κ0-stretchable interval for γp. Moreover, Cp
is compact, hence it intersects only finitely many of the components of Wp. Choose disjoint intervals
[ck, dk] (k ∈ [n], n = n(p) ∈ N), such that:

• Cp ⊂
⋃n
k=1[ck, dk];

• γp|[ck,dk] is κ0-stretchable with respect to ϕp± for every k ∈ [n];

•
∣∣θγp − ϕp∣∣ > π

2 throughout [ck, dk];

•
∣∣θγp(ck)− ϕp

∣∣ < π
2 + δ0

2 and
∣∣θγp(dk)− ϕp

∣∣ < π
2 + δ0

2 .

Let Up ⊂ K be a neighborhood of p such that these conditions still hold if p is replaced by any

q ∈ Up. Cover K by finitely many such open sets Ui (i ∈ [l]), with associated stretchable intervals
[cik, d

i
k] ⊂ [0, 1], k ∈ [n(i)]. By the argument used in the proof of (3.7)(a), it may be assumed that

if i < i′ and U i ∩ U i′ 6= ∅, then for each k ∈ [n(i)] and k′ ∈ [n(i′)], either [cik, d
i
k] ⊂ [ci

′

k′ , d
i′

k′ ] or
these two intervals are disjoint. Let (ρi)i∈[l], ρi : K → [0, 1], be a partition of unity subordinate to
(Ui)i∈[l]. Let m±(i) denote the cardinality of

S±(i) =
{
k ∈ [n(i)] : ± sign

(
θγp(t)− ϕp

)
> 0 for all t ∈ [cik, d

i
k]
}
.

Observe that m+(i), m−(i) ≥ 1 by hypothesis. Let M > 0 and for each i = 1, . . . , l successively, let
γps (s ∈ [ i−1

l ,
i
l ]) be obtained by stretching

(27) γpi−1
l

|[cik,dik] by

{
m−(i)ρi(p)M if k ∈ S+(i)

m+(i)ρi(p)M if k ∈ S−(i)
for each k ∈ [n(i)].

The factors m±(i) are incorporated here to guarantee that γs(1) = q for all s ∈ [0, 1]. By (2.9)(b),
(c) and (g), for each p ∈ K, the four conditions listed above remain valid for γps (s ∈ [0, 1]), so that
this deformation is well-defined. Further, by (2.9)(f), if M is large enough, then the resulting curves
γp1 will satisfy the required property for all p ∈ K. �

(5.6) Lemma. Let g : K → V(d,σ1,...,σm), g(p) 7→ (γp, ϕp), be a continuous map. Then there exists
a homotopy g : [0, 5]×K → V(d,σ1,...,σm), gs(p) = (γps , ϕ

p), such that γp0 = γp and γp5 is of the form

c lc. . . lc︸ ︷︷ ︸
n
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and each of its straight arcs has length greater than 8, for all p ∈ K.

Proof. Let the notation be as in the first paragraph of (5.2) and let θp := θγp and θps := θγps (where

γps is to be defined below). Since 0 ∈ R(Q) by definition (see (3.12)), cosϕp =
〈
1, eiϕ

p〉
> 0 for all

p ∈ K. By (5.4), it may be assumed that [ϕp−, ϕ
p
+] ⊂ Int(θγp1 ([0, 1])) for all p ∈ K. Given p, choose

uj ∈ [0, 1] (j = 1, 2) such that

θp(u1) < ϕp − π
2 < ϕp + π

2 < θp(u2)

and the origin 0 ∈ C lies in the interior of the triangle whose vertices are 1, eiθ
p(u1) and eiθ

p(u2).
These conditions are still satisfied throughout a neighborhood Up of p. Let (Ui)i∈[l0] be a subcover
of the resulting cover of K and ui,j ∈ [0, 1] be the corresponding numbers. Then we can write

0 = ai,0(p) + ai,1(p)eiθ
p(ui,1) + ai,2(p)eiθ

p(ui,2) for some ai,j(p) > 0 and all p ∈ Ui.

Moreover, ai,j : Ui → R+ can be chosen to depend continuously on p and as large as desired for each
j = 0, 1, 2. Let ρi : K → [0, 1] be a partition of unity subordinate to (Ui)i∈[l0]. Set γp0 := γp and
define a homotopy [0, 1]×K → V(d,σ1,...,σm), (s, p) 7→ (γps , ϕ

p), by grafting straight segments linearly
with s onto γp at t = 0, ui,1(p) and ui,2(p) of lengths Li,j(p) = ρi(p)ai,j(p) (j = 0, 1, 2, respectively)
for all i ∈ [l0] and p ∈ K. As before, let R > 0 be such that the image of γp0 is contained in BR(0)
for all p ∈ K. By taking the ai,j to be sufficiently large, it can be guaranteed that for each p ∈ K
there exists i ∈ [l0] such that〈

Li,j(p)e
iθp1 (ui,j), eiϕ

p〉
< −2(R+ 2π) for j = 1, 2.

In words, γp1 “retrocedes” by at least 2(R + 2π) at t = ui,1 and t = ui,2, with respect to the axis

eiϕ
p

. Thus if kj ∈ [nm] is such that ui,j ∈ Jkj (p) (j = 1, 2 and Jk(p) as at the beginning of the proof
of (5.3)), then

(28)
〈
γp1
(
t2kj (p)

)
− γp1

(
t2kj−2(p)

)
, eiϕ

p〉
< −4π.

Here tν(p) is as in (24); note that t2kj−2(p) < Jkj (p) < t2kj (p). The crucial observation here is that

(28) implies the existence of t′ ∈ [t2kj−2(p), t2kj (p)] such that (−1)j
(
θp1(t′)− ϕp

)
> π

2 .
Let δ0 be given by as in (5.2)(i) and apply (5.5) to γp1 , extending the homotopy to [0, 2] × K.

(This deformation is necessary to be able to apply (3.10) as in the proof of (5.2).) Because the
subarcs of γp1 which are stretched in this homotopy all lie in the interior of some Jk(p), and they
are stretched in the direction of i ± eiϕp , the coordinate

〈
γps (t), eiϕ

p〉
is the same for all s ∈ [1, 2]

provided that t /∈
⋃
k Jk(p). Hence, (28) is valid with γs in place of γ1 (s ∈ [1, 2]). Now take R′ > 0

such that the image of γp2 is contained in the open disk BR′(0) for all p ∈ K, and take C as in
(20), but replacing R by R′. Finally, extend the homotopy to [0, 5] × K by repeating the proofs
of (5.2) and (5.3), with R′ in place of R. We claim that (28) is sufficient to guarantee that γps
remains diffuse when the constructions in (5.2) and (5.3) are carried out for s ∈ [2, 5]. There are
three constructions to consider, which will be assumed to take place for s ∈ [2, 3], [3, 4] and [4, 5],
respectively. The first one, in the proof of (5.2), involves stretching subarcs of γp2 in the direction of
±eiϕp ; as above, this does not affect the validity of (28) since tν(p) /∈

⋃
k Jk(p) for all even ν. The

second, at the beginning of the proof of (5.3), involves flattening each of the subarcs γp3 |[tν−1(p),tν(p)];
clearly, this also does not affect (28), because by the definition of flattening, γps (t) remains constant
at the endpoints t = tν−1(p) and tν(p), as well as outside of [tν−1(p), tν(p)]. The last step, near the
end of the proof of (5.3), is to flatten the restriction of γp4 to the intervals (26). This may affect (28),
but it can still be guaranteed that〈

γps
(
t2kj (p)

)
− γps

(
t2kj−2(p)

)
, eiϕ

p〉
< 0 for all s ∈ [4, 5], j = 1, 2,

because the restriction of γp4 to Aν(p) r [tν(p), tν+1(p)] has length π
κ0

< 2π. Thus, for each p ∈ K
and s ∈ [0, 5], there exist v1, v2 ∈ [0, 1] satisfying θps(v1) < ϕp− < ϕp+ < θps(v2), so that γs is diffuse
for all s. �

Given any family (γp, ϕp) ∈ V(c,σ1,...,σm), V(σ1,...,σm) or V(d,σ1,...,σm) indexed by a finite simplicial
complex, we have shown that γp can be continuously deformed to look like a curve ηp as in Figure 11.
To finish the proof of (5.1), it thus suffices to show that any such family is contractible. This is true
because any η as in the figure is essentially determined by p(η, ϕ) = (x, ϕ), where x = (x1, . . . , xn)
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is obtained as indicated there and n = |σm|. To make this more precise, we begin by describing
a construction which implies that each fiber of p is contractible. It will then be shown that p is a
quasifibration.

(5.7) Construction. Let γ0, γ1 : [0, 1] → C be two regular curves parametrized proportionally to
arc-length and θγj : [0, 1] → R be continuous functions satisfying exp

(
iθγj

)
= tγj (j = 0, 1). Let

ϑ0, ϑ1 ∈ R and κ1 ∈ (0, 1). Suppose that γ = γ0, γ1 satisfies:

(i) θγ(0) = ϑ0 and θγ(1) = ϑ1;
(ii) κγ : [0, 1]→ [0, κ1] is a step function.

Recall that θ̇η = |η̇|κη for any piecewise C2 curve (except at finitely many points). Condition (ii)
thus implies that θγ is an increasing, piecewise linear function. We shall describe a homotopy s 7→ γs
(s ∈ [0, 1]) joining γ0 to γ1 through regular curves satisfying (i) and (ii). The idea is to parametrize
both γj by the argument θ ∈ [ϑ0, ϑ1] and use convex combinations; this works only if both θγj are
strictly increasing, but an easy adaptation also covers the general case. See Figure 12.

Figure 12. An illustration of (5.7).

Let {α1 < · · · < αn} ⊂ [ϑ0, ϑ1] be the union of the set of critical values of θγ0 and θγ1 . For each k ∈
[n], let [akj , b

k
j ] ⊂ [0, 1] denote the interval θ−1

γj ({αk}). Define a reparametrization ηj : [ϑ0, ϑ1+n]→ C
of γj as follows: The restriction of ηj to an interval of the form[

αk−1 + (k − 1) , αk + (k − 1)
]

(k ∈ [n+ 1], α0 := ϑ0, αn+1 := ϑ1)

is the reparametrization of γj |[bk−1
j ,akj ] by the argument θ ∈ [αk−1, αk], where bj0 := 0 and an+1

j := 1.

The restriction of ηj to an interval of the form

[αk + (k − 1) , αk + k] (k ∈ [n])

is the reparametrization of γj |[akj ,bkj ] proportional to arc-length. Let ηs : [ϑ0, ϑ1 + n] → C be given

by

ηs(t) = (1− s)η0(t) + sη1(t) (s ∈ [0, 1]).

A straightforward computation shows that the radius of curvature ρs = 1
κγs

satisfies

ρs = (1− s)ρ0 + sρ1 ∈
[

1
κ1
,+∞

)
(s ∈ [0, 1])

in the interior of intervals of the first type. The restriction of ηs to an interval of the second type is
a parametrization of a (possibly degenerate) line segment parallel to eiαk . Thus ηs satisfies (i) and
(ii). The desired homotopy s 7→ γs is obtained by reparametrizing ηs proportionally to arc-length.
Furthermore:

(iii) If γ0(0) = p = γ1(0), then γs(0) = p for all s ∈ [0, 1]; similarly at t = 1.
(iv) Let Is = θ−1

γs ({ϑ0}). If γj |Ij is a line segment of length > L (j = 0, 1) and slope %, then γs|Is
is also a line segment of length > L and slope % for all s ∈ [0, 1]; similarly for ϑ1. �

(5.8) Definition. Let σ1 ≺ · · · ≺ σm be sign strings, n = |σm| and δj > 0 (j ∈ [n]) satisfy δj+1 > 2δj
for all j ∈ [m− 1]. Define Hd ⊂ Rn to consist of all x = (x1, . . . , xn) ∈ Rn such that:

(i) There exist k1, k2 ∈ [n] such that σm(k2) = −σm(k1) and σm(ki)xki > 0 (i = 1, 2).
(ii) For each j ∈ [m], if k1 < · · · < kl are all the indices in [n] such that |xk| < δj (resp. |xk| ≤

2δj), then σj is the reduced string of τ : [l]→ {±}, τ(i) = σm(ki).



34 NICOLAU C. SALDANHA AND PEDRO ZÜHLKE

This space is weakly contractible for any choice of σj , δj because it is weakly homotopy equivalent
to the space

X(d,σ1,σ1,...,σm,σm)

described in (1.17); see (1.18) and (1.19). (Here each σj appears twice because it is involved in two
inequalities in (ii), viz., one for δj and the other for 2δj .)

(5.9) Definition. Let κ0 ∈ ( 1
2 , 1), σ1 ≺ · · · ≺ σm be sign strings, n = |σm| and δj > 0 (j ∈ [m])

satisfy δj+1 > 2δj for all j ∈ [m − 1]. Define Ed to be the subspace of M(Q) × R(Q) consisting of
all (γ, ϕ) for which there exist 0 = t0 < · · · < t2n+1 = 1 and (x1, . . . , xn) ∈ Hd such that:

(i) γ|[t2(k−1),t2k−1] (k ∈ [n+ 1]) is an arc of circle of radius ≥ 1
κ0

and amplitude < π;

(ii) γ|[t2k−1,t2k] (k ∈ [n]) is a straight line segment of length greater than 8 and

θγ
(
[t2k−1, t2k]

)
=
{
ϕσm(k) + xk

}
.

The arcs in condition (i) are allowed to be degenerate. Observe that if (γ, ϕ) ∈ Ed, then γ is
diffuse and (ϕ, δj)-quasicritical of type σj for each j ∈ [m] (for σj and δj as above). Here R(Q) is
the open interval described in (3.12).

(5.10) Lemma. The space Ed defined above is weakly contractible.

Proof. Let p : Ed → Hd×R(Q) be given by p(γ, ϕ) = (x, ϕ), where x = (x1, . . . , xn) is as in condition
(ii) of (5.9). Fix (x, ϕ) and (γ0, ϕ) ∈ p−1(x, ϕ); let t′0 = 0 < · · · < t′2n+1 = 1 be as in (5.9) for (γ0, ϕ).
Given γ = γ1 ∈ p−1(x, ϕ) and t0 < · · · < t2n+1 as above, apply (5.7) to the restrictions γ|[tν−1,tν ]

and γ|[t′ν−1,t
′
ν ] for each ν ∈ [2n + 1] to obtain a homotopy s 7→ γs joining γ0 to γ1. The validity of

(iii) and (iv) of (5.7) guarantees that (γs, ϕ) ∈ Ed for all s ∈ [0, 1]. Therefore, the fiber p−1(x, ϕ) is
either contractible or empty, for any (x, ϕ) ∈ Hd ×R(Q).

For x = (x1, . . . , xn) ∈ Hd, let

ε0(x) = min
{
|xk| : σm(k)xk > 0, k ∈ [n]

}
,

εj(x) = min
{
δj − |xk| : |xk| < δj , k ∈ [n]

}
(j ∈ [m]),

ε(x) = min {ε0(x), . . . , εm(x)} .

Then the open ball Bε(x) is convex and Bε(x) ⊂ Hd for any ε ∈ (0, ε(x)). We claim that p has a
section over Bε(x)×R(Q) ⊂ Hd×R(Q) for any x ∈ Hd and ε ∈ (0, ε(x)). In particular, p is surjective.
Together with contractibility of the fibers and (1.11), this will imply that p is a quasifibration, and
hence that Ed is weakly contractible.

Let x ∈ Hd and ε ∈ (0, ε(x)). For each y = (y1, . . . , yn) ∈ Bε(x), consider the (unique) curve
ηy : [0, 1]→ C of the form

c lc . . . lc︸ ︷︷ ︸
n

such that each arc of circle has radius 1
κ0

, Φηy (0) = (0, 1) ∈ C×S1, tηy (1) = z and θηy = ϕσm(k) +yk
over the k-th line segment, which we set to be of length 10 for all k ∈ [n]. Then (ηy, ϕ) satisfies
all of the conditions required of elements of Ed, except that ηy(1) may not agree with q ∈ C as it
should.

To correct this, choose k1, k2 ∈ [n] such that

σm(k1) = +, xk1 > 0, σm(k2) = −, xk2 < 0;

such indices exist by condition (i) in the definition of Hd. Moreover, by the choice of ε, yk1 > 0 and
yk2 < 0 for any y ∈ Bε(x). Let t : Bε(x)→ [0, 1] be a continuous function such that tηy (t(y)) = eiϕ.
Then a section (y, ϕ) 7→ (γy, ϕ) of p over Bε(x)×R(Q) can be obtained by increasing the length of
the k-th line segment to lk ≥ 10 for k = k1, k2 and grafting a straight line segment of length l0 ≥ 0
at t(y). More precisely, the origin 0 ∈ C lies in the interior of the triangle whose vertices are eiϕ,
iei(ϕ+yk1 ) and −iei(ϕ+yk2 ). Therefore, any complex number can be written as

a0e
iϕ + a1ie

i(ϕ+yk1 ) − a2ie
i(ϕ+yk2 ) for some a0, a1, a2 > 10.

Consequently the lengths l0, lk1 , lk2 can be (continuously) chosen to achieve that γy(1) = q. �

Next we establish a version of (5.10) for condensed curves, beginning with the following.
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(5.11) Lemma. Suppose that (γ, ϕ) ∈ V(c,σ) ⊂ N(Q) for some sign string σ. Then there exists a
critical curve η ∈M(Q) of type σ for which ϕ̄η = ϕ (with ϕ̄η as defined in (13)).

Proof. Let n = |σ|, J1 < · · · < Jn and Ik ⊂ Jk be as in (3.1). Deform each γ|Ik to obtain a curve
η such that for each k ∈ [n], θη(tk) = ϕσ(k) for at least one tk ∈ Ik, but θη([0, 1]) ⊂ [ϕ−, ϕ+] still
holds. �

(5.12) Definition. Let σ1 ≺ · · · ≺ σm be sign strings, n = |σm| and δj > 0 (j ∈ [m]) satisfy
δj+1 > 2δj for all j ∈ [m− 1]. Define Hc ⊂ Rn to consist of all x = (x1, . . . , xn) ∈ Rn such that:

(i) σm(k)xk < 0 for each k ∈ [n];
(ii) For each j ∈ [m], if k1 < · · · < kl are all the indices in [n] such that |xk| < δj (resp. |xk| ≤

2δj), then σj is the reduced string of τ : [l]→ {±}, τ(i) = σm(ki).

Again, Hc is weakly contractible for any choice of σj , δj by (1.15) and (1.19), since it has the
same weak homotopy type as X(σ1,σ1,...,σm,σm).

(5.13) Definition. Let σ1 ≺ · · · ≺ σm be sign strings, n = |σm| and δj > 0 (j ∈ [m]) satisfy
δj+1 > 2δj for all j ∈ [m− 1]. Let J(Q) denote the open interval consisting of all ϕ ∈ R such that
M(Q) contains critical curves η of type σm with ϕ̄η = ϕ (cf. [17], Corollary 5.7). For S a closed
subinterval of J(Q), define Ec ⊂M(Q)× S as in (5.9), replacing R(Q) by S and Hd by Hc.

(5.14) Lemma. Let S be a closed subinterval of J(Q). Then for all sufficiently small δm > 0, the
space Ec defined above is weakly contractible.

Proof. It was established in the proof of Proposition 5.3 of [17] that there exists a critical curve

η ∈ M(Q) of type σm with ϕ̄η = ϕ if and only if ϕ ∈ R(Q) and q lies in the open region to the
right of the tangent Tϕ of direction ieiϕ to a certain circle. The set of all such ϕ is the open interval
J(Q), and if S ⊂ J(Q) is a closed interval, then there exists a positive lower bound for the distance
from q to Tϕ for ϕ ∈ S.

The proof of the present lemma is analogous to that of (5.10) except for the last paragraph.
Retaining the notation used there, choose k1, k2 ∈ [n] such that σm(k1) = −, σm(k2) = + and
|yki | < δ1 (i = 1, 2) for all y ∈ Bε(x), where ε < ε(x) = min {ε1(x), . . . , εm(x)} (and ε0(x) is now
undefined). By the preceding observations, if δm > 0 is sufficiently small, then q lies to the right of
the line through ηy(1) of direction ieiϕ. By further reducing δm > 0 if necessary, it can be guaranteed
that q lies in the cone with vertex at ηy(1) and sides parallel to

i exp
(
i(ϕ+ yk1)

)
and − i exp

(
i(ϕ+ yk2)

)
,

but does not lie in the triangle with vertices

ηy(1), ηy(1) + 10i exp
(
i(ϕ+ yk1)

)
and ηy(1)− 10i exp

(
i(ϕ+ yk2)

)
for any ϕ ∈ S, y ∈ Bε(x). This implies that q can be written as

ηy(1) + a1ie
i(ϕ+yk1 ) − a2ie

(ϕ+yk2 ) for some a1, a2 > 10.

A section (y, ϕ) 7→ (γy, ϕ) for p over Bε(x)×S can thus be obtained by increasing the lengths lk1 , lk2
of the line segments of ηy to ensure that γy(1) = q. �

The proof of (5.1) is obtained by assembling the results of this section.

Proof of (5.1). It suffices to show that each of V(σ1,...,σm), V(c,σ1,...,σm) and V(d,σ1,...,σm) is weakly
contractible. By (5.4), the case of V(σ1,...,σm) can be reduced to that of V(d,σ1,...,σm). Let k ≥ 0 and

g : Sk → V, g(p) = (γp, ϕp), be a continuous map, where V = V(c,σ1,...,σm) or V = V(d,σ1,...,σm).

In the former case, let S =
{
ϕp ∈ R : p ∈ Sk

}
. By (5.11), S is a closed subinterval of J(Q). By

(5.2) and (5.3), g can be deformed within V(c,σ1,...,σm) to have image contained in Ec, with δm > 0
as small as desired. Hence g is nullhomotopic by (5.14).

In the latter case, (5.6) and (5.10) immediately imply that g is nullhomotopic. �

(5.15) Corollary. Let τ be a top sign string for M(Q) and n = |τ |. If there exist critical curves of
type −τ in M(Q), then N(Q) ≈ E× Sn−1. Otherwise N(Q) ≈ E, for E the separable Hilbert space.

Observe that nothing is being asserted yet about the topology of M(Q).
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Proof. Immediate from (4.3), (4.8) and (5.1). �

6. Homotopy equivalence of M(Q) and a sphere

(6.1) Lemma. Suppose that ±τ are both top sign strings for M(Q), where |τ | = n. If f : Sn−1 →
M(Q) and g : M(Q) → Sn−1 satisfy deg(gf) = 1, then f and g are homotopy equivalences. In
particular, M(Q) is homeomorphic to E× Sn−1 and f represents a generator of πn−1M(Q).

Proof. According to (3.13), (3.15) and (5.15), under the present hypothesis M(Q) is either weakly
contractible or a homology sphere of dimension n − 1. The fact that deg(gf) = 1 implies that the
latter must hold, and that f and g induce isomorphisms on all (co)homology groups.

When n = 2, it follows directly from (3.13) that all higher homotopy groups of M(Q) are trivial,
so that f and g are weak homotopy equivalences.

When n > 2, M(Q) and Sn−1 are simply-connected. Passing to mapping cylinders and applying
the relative version of the Hurewicz theorem, we again conclude that f and g induce isomorphisms
on all homotopy groups.

Thus M(Q) is weakly homotopy equivalent to Sn−1 ' E× Sn−1. Since a weak homotopy equiv-
alence between Hilbert manifolds is homotopic to a homeomorphism ([17], Lemma 1.7), M(Q) is
actually homeomorphic to E× Sn−1. �

Our next objective is to show that (under the hypothesis of the lemma) such f and g always
exist. In fact, they can be constructed explicitly.

Briefly, the map g defined below measures the extent to which curves in M(Q) fail to be critical
of type τ . Its definition is a slight variation of that of the map h in (3.17); cf. also Figure 11.

(6.2) Construction. Let Uτ ⊂ M(Q) consist of all curves which are (ϕ̄γ , ε)-quasicritical of type τ
for some ε ∈ (0, π4 ), where ϕ̄γ is given by (13). Then Uτ is an open subset of M(Q) containing the
set Cτ of all critical curves of type τ by (3.4). Moreover, Cτ is closed in M(Q); here the hypothesis
that τ is a top sign string for M(Q) is essential.

Given γ ∈ Uτ and intervals J1 < · · · < Jn satisfying the conditions of (3.1) for the quadruple
(γ, ϕ̄γ , ε, τ), define

αk(γ) =

{
supt∈Jk θγ(t)− π

2 if τ(k) = +;

inft∈Jk θγ(t) + π
2 if τ(k) = −;

(k ∈ [n]) and

α(γ) =
1

n

[
α1(γ) + · · ·+ αn(γ)

]
.

It follows from (3.5)(a) that the maps αk : Uτ → R are well-defined (i.e., they do not depend on the
choice of ε and the Jk) and continuous; compare (3.18). Let

Σ =
{

(x1, . . . , xn) ∈ Rn :
∑
k xk = 0

}
≈ Rn−1

and define

A : Uτ → Σ, A(γ) =
(
α1(γ)− α(γ), . . . , αn(γ)− α(γ)

)
.

(6.3) Lemma. Let γ ∈ Uτ . Then A(γ) = 0 if and only if γ ∈ Cτ .

Proof. It is clear that A(γ) = 0 if γ ∈ Cτ . Conversely, if A(γ) = 0 then α1(γ) = · · · = αn(γ). Since
there exist k, l ∈ [n] such that

sup
t∈Jk

θγ(t) = sup
t∈[0,1]

θγ(t) and inf
t∈Jl

θγ(t) = inf
t∈[0,1]

θγ(t),

the equality of αk(γ) and αl(γ) implies that ω(γ) = π, that is, γ is critical (of type τ). �

Let W ⊂M(Q) be an open set such that

Cτ ⊂W ⊂W ⊂ Uτ

and let λ : M(Q) → [0, 1] be a continuous function such that λ−1(1) = M(Q) rW and λ−1(0) is a
neighborhood of Cτ . Let r : Σ→ Sn−1 denote the map which collapses the complement of B1(0)∩Σ
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to a single point, which will be identified with the south pole −N ∈ Sn−1, with 0 mapping to the
north pole N . Finally, define

(29) g : M(Q)→ Sn−1, g(γ) =

{
r
(

(1− λ(γ))A(γ) + λ(γ) A(γ)
|A(γ)|

)
if γ ∈W;

−N if γ /∈W.

Observe that g−1(N) = Cτ . �

We shall now construct a generator [f ] for πn−1M(Q).

(6.4) Construction. Let C denote the cube
[
− π

2 ,
π
2

]n ⊂ Rn, ∂C its boundary and

S =
{

(x1, . . . , xn) ∈ C : xk1 = π
2 and xk2 = −π2 for some k1, k2 ∈ [n]

}
.

Note that S ⊂ ∂C is the complement of the union of the open stars of the opposite vertices of C
whose coordinates are given by xk = π

2 and xk = −π2 for each k ∈ [n], respectively. (These vertices

are labeled +++ and −−− in Figure 13(b).) We shall identify ∂C with Sn−1 and S with its
equator Sn−2 when convenient.

Figure 13. The subset S ≈ Sn−2 of C (in thick) for n = 2 and 3.

To simplify the explanation, let us assume first that there exists ϕ ∈ R such that it is possible
to find critical curves γ1, γ2 ∈ M(Q) of types τ and −τ such that ϕ̄γ1 = ϕ = ϕ̄γ2 . (It is not hard
to show that this is always the case if n is even, but this fact will not be used.) This implies that
it is possible to find a critical curve γ ∈ M(Q) of type σ with ϕ̄γ = ϕ for any σ with |σ| ≤ n.
Let κ0, δ ∈ (0, 1). Let T = S × [−δ, δ] be identified with a tubular neighborhood of Sn−2 ≡ S in
Sn−1 ≡ ∂C, with a point (x, s) ∈ T lying in the hemisphere Hsign(s) at distance |s| from Sn−2 and

x ∈ Sn−2 realizing this distance (here H± are the two hemispheres bounded by Sn−2).
For each (x, s) ∈ T , let η(x,s) denote the unique curve of the form

c . . . c︸ ︷︷ ︸
n+1

such that Φη(x,s)(0) = (0, 1) ∈ C× S1, tη(x,s)(1) = z and

(30) θη(x,s) = ϕ+ (1 + s)xk

at the point where the k-th circle is concatenated with the (k + 1)-th circle, for all k ∈ [n], where
each of the circles has radius 1

κ0
. Observe that for all x ∈ S, η(x,s) is critical, condensed or diffuse

according as s = 0, s < 0 or s > 0, respectively.
The curves η(x,s) do not in general satisfy η(x,s) = q, but this can be corrected as follows. Because

of the hypothesis on ϕ, if κ0 ∈ (0, 1) is sufficiently close to 1 and δ ∈ (0, 1) sufficiently close to 0,
then 〈

η(x,s) − q , eiϕ
〉
< 0 for all x ∈ S, s ∈ [−δ, δ].

For fixed x ∈ S, choose t0, t1, t2 ∈ [0, 1] such that θη(x,0)(ti) = ϕ, ϕ + π
2 and ϕ − π

2 for i = 0, 1, 2,

respectively. By grafting line segments at η(x,0)(ti) (i = 0, 1, 2), a curve γ(x,0) with γ(x,0)(1) = q as
desired is obtained. Clearly, the same procedure will work in a neighborhood of (x, 0), for the same
choices of ti. Using a partition of unity and reducing δ > 0 further if necessary, this yields a family
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γ(x,s) ∈M(Q) (x ∈ S, s ∈ [−δ, δ]). The chosen open sets, the corresponding ti and the lengths of the
segments do not change the homotopy class of f and are irrelevant for the calculation of deg(gf).

The correspondence (x, s) 7→ γ(x,s) ∈M(Q) can be extended to a map f : Sn−1 →M(Q) through
nullhomotopies of the families γ(x,δ) and γ(x,−δ) (x ∈ S) within Ud and Uc, respectively. The latter
two sets are contractible by Theorems 3.3 and 4.19 of [17]. This completes the construction of f
under the initial assumption on ϕ.

In the general case, let γ±τ ∈M(Q) be arbitrary critical curves of type ±τ , and set ϕ±τ = ϕ̄γ±τ ∈
R. Let U±τ denote the open star in S of the vertices p = π

2 (τ(1), . . . , τ(n)) and −p, respectively.

Since Uτ ∩ U−τ = ∅, we can find a continuous function S → R, x 7→ ϕx, taking values in the
closed interval with endpoints ϕ±τ , such that ϕx = ϕ±τ if x ∈ U±τ . By Proposition 5.3 in [17], if
|σ| < n, then there exist critical curves γ of type σ with ϕ̄γ = ψ for all ψ in this interval. Hence,
the preceding definition of γ(x,s) works for every x ∈ S if ϕ is replaced by ϕx in (30). �

(6.5) Lemma. Suppose that ±τ are both top sign strings for M(Q), where |τ | = n. Let g : M(Q)→
Sn−1 and f : Sn−1 →M(Q) be the maps described in Constructions 6.2 and 6.4. Then deg(gf) = ±1.

Proof. Let N denote the north pole of Sn−1 and p = π
2 (τ(1), . . . , τ(n)) ∈ S ⊂ ∂C ≡ Sn−1. Then

(gf)−1(N) = {p}, hence the result will follow if gf is a homeomorphism near p. By Brouwer’s
invariance of domain, it suffices to show that gf is injective on a neighborhood of p in ∂C. Finally,
by the definition of f |T , it actually suffices to show that gf is injective on a neighborhood of p in
S. Let U ⊂ S be an open set containing p such that λ(U) = {0} and A(U) ⊂ B1(0), where A and
λ are as in (6.2). For x, x̄ ∈ U ,

αk(γx)− αk(γx̄) = xk − x̄k (k ∈ [n]) and α(γx)− α(γx̄) =
1

n

n∑
ν=1

(xν − x̄ν).

Therefore, A(γx) = A(γx̄) if and only if (x− x̄) is a multiple of (1, 1, . . . , 1). In a small neighborhood
of p in S, this occurs if and only if x = x̄. Thus gf |S is injective near p, and deg(gf) = ±1. �

Obviously, it can be achieved that deg(gf) = +1 by composing g with a reflection if necessary.
The next result is a corollary of (6.1) and (6.5).

(6.6) Corollary. Let pr: N(Q)→M(Q) be the restriction of the canonical projection of M(Q)×R
onto M(Q). Then pr is a homotopy equivalence and M(Q) is homeomorphic to N(Q).

Proof. By (3.13), the induced map pr∗ : H∗(N(Q)) → H∗(M(Q)) is surjective. Since M(Q) and
N(Q) are either simultaneously contractible or simultaneously homotopy equivalent to a sphere, pr∗
must actually be an isomorphism. We conclude that pr is a homotopy equivalence using the same
argument as in the proof of (6.1). �

The proof of the main theorem (stated in the introduction) is now straightforward.

(6.7) Theorem. Let Q = (q, z) ∈ C × S1, z 6= −1. Then M(Q) ≈ E × S2k or E × S2k+1 (k ≥ 0)
for q in the open region intersecting the ray from 0 through 1 + z and bounded by the three circles{

C4k+4(iz − i) and C4k+2(±(i+ iz)), or

C4k+4(i− iz) and C4k+6(±(i+ iz)), respectively
(see Figure 1).

If q does not lie in the closure of any of these regions, then M(Q) ≈ E. If q lies on the boundary of
one of them, then M(Q) ≈M

(
(q − δ(1 + z), z)

)
for all sufficiently small δ > 0.

Proof. Proposition 5.3 of [17] describes precisely when M(Q) contains critical curves of any given
type. If M(Q) does not contain any critical curves (or, equivalently, if it does not admit a top sign
string), then M(Q) ≈ E or E× S0 according as Uc is empty or not, as described in Theorem 6.1 of
[17]. If it does admit a top sign string, then we conclude from (5.15) and Proposition 5.3 of [17] that
the theorem holds if M(Q) is replaced by N(Q) in the statement. But M(Q) ≈ N(Q) by (6.6). �
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