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Abstract

A near-identity nilpotent pseudogroup of order m ≥ 1 is a family
f1, . . . , fn : (−1, 1) → R of C2 functions for which: |fi − id|C1 < ε for
some small positive real number ε < 1/10m+1 and commutators of the
functions fi of order at least m equal the identity. We present a classifi-
cation of near-identity nilpotent pseudogroups: our results are similar to
those of Plante, Thurston, Farb and Franks. As an application, we classify
certain foliations of nilpotent manifolds.
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1 Introduction

A near-identity nilpotent pseudogroup of order m ≥ 1 is a family f1, . . . , fn :
(−1, 1) → R of C2 functions for which:

• |fi − id|C1 < ε for some small positive real number ε < 1/10m+1;

• commutators of the functions fi of order at least m equal the identity.

More precisely, the pseudogroup is generated by the family of functions but we
shall often make the abuse of confusing these two objects. A commutator of order
1 is of the form [fi, fj] and, for m > 1, a commutator of order m is a function
of the form [g1, g2] = g−1

1 ◦ g−1
2 ◦ g1 ◦ g2 where g1 is one of the original functions

or a commutator of order less than m and g2 is a commutator of order m − 1.
In particular, a family of functions which commute is a nilpotent pseudogroup of
order 1: we call this an abelian pseudogroup. If all commutators commute with
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each other, then we call the pseudogroup metabelian. A common fixed point for
the pseudogroup is a point x for which fi(x) = x for all i.

If the functions fi are bijections from (−1, 1) to itself, then such a nilpotent
pseudogroup is just a group of functions. Plante and Thurston prove that nilpo-
tent groups of diffeomorphisms on [−1, 1) or (−1, 1] are abelian ([8]). Farb and
Franks consider groups of diffeomorphisms of (−1, 1) and prove several results,
among them that Diff ∞((−1, 1)) contains nilpotent subgroups of arbitrary de-
gree of nilpotency but that such subgroups are all metabelian ([5]). Our work
differs from these in that we consider pseudogroups instead of groups: the main
new difficulty is that long compositions of the functions fi may not define any
function since the domain may vanish. More precisely, we prove the following
theorem.

Theorem 1 Any near-identity nilpotent pseudogroup of functions f1, . . . , fn is
metabelian. Furthermore, any near-identity pseudogroup fits into one of the three
cases below.

1. There exists at least one common fixed point and the pseudogroup is abelian.
Furthermore, for each maximal interval I1 ⊂ (−1, 1) containing no common
fixed points, there exist real constants ai and an increasing homeomorphism
φ : J → I1, J ⊆ R with fi(φ(t)) = φ(t + ai) whenever t, t + ai ∈ J . If
inf I1 > −1 (resp. sup I1 < 1) then inf J = −∞ (resp. sup J = +∞).

2. There exists no common fixed point, the pseudogroup is abelian, there exist
real constants ai and an increasing homeomorphism φ : J → (−1, 1), J ⊆ R

with |J | > |ai| and fi(φ(t)) = φ(t+ ai) whenever t, t+ ai ∈ J .

3. There exists no common fixed point, there exist integer constants ai and a
finite set {y−N , y−N+1, . . . , yN} ⊂ (−1, 1) with yi < yi+1, y−N < −1 + ε,
yN > 1 − ε, N > |ai|, such that fi(yk) = yk+ai

.

This subject was motivated by the study of actions of nilpotent Lie groups
on manifolds. In particular, we study actions of the Heisenberg group

G =











1 0 0
x 1 0
z y 1



 , x, y, z ∈ R







on manifolds of dimension 4 ([1], [2]). We do not discuss actions here but we
present an application of theorem 1 to foliations.

We consider compact orientable manifolds of the form G/H = {gH, g ∈ G},
where G is a nilpotent Lie group and H = π1(G/H) ⊂ G is a discrete cocompact
subgroup. We may assume that G/H has a smooth Riemann metric and therefore
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G/H × (−1, 1) also has a metric. The foliation F0 of G/H × (−1, 1) with leaves
of the form G/H ×{x} is called horizontal; this foliation can be defined as being
perpendicular to the vertical vector field Z0 at any point of G/H × (−1, 1). An
arbitrary transversally orientable foliation F1 of G/H × (−1, 1) of codimension
1 can be similarly described as being perpendicular to some unit vector field Z1

at any point; we define dC1(F0,F1) = dC1(Z0, Z1). Let γ : [0, 1] → G/H be a
smooth path; if dC1(F0,F1) is sufficiently small then, for x ∈ (−1 + ε, 1 − ε),
the path γ can be lifted to a unique smooth path γx : [0, 1] → G/H × (−1, 1)
with γx(0) = (γ(0), x), γx(t) = (γ(t), ∗) and γ ′x(t) tangent to F1 for all t ([3]).
This defines a function fγ : (−1 + ε, 1 − ε) → (−1, 1) taking x to the second
coordinate of γx(1): if γ is a generator of π1(G/H), fγ is called the holonomy
of F1. If γ1, γ2, . . . , γn are generators of π1(G/H) and dC1(F0,F1) is sufficiently
small then fγ1

, fγ2
, . . . , fγn

form a near-identity nilpotent pseudogroup. We call a
foliation of G/H× (−1, 1) abelian (resp. metabelian) if its pseudogroup is abelian
(resp. metabelian). Similarly, we call a leaf of a foliation abelian if γx(1) = γx(0)
whenever γ ∈ π1(G/H) is a commutator and γx(0) belongs to the leaf; thus, a
foliation is abelian if and only if all its leaves are abelian.

Let α : G → R be a group homomorphism: the 1-form dα can be lifted to
G/H and therefore to G/H × R, where it is closed but probably not exact. The
1-form dx, where x is the second coordinate, is exact in G/H × R and therefore
dα + dx is a closed 1-form in G/H × R, defining a foliation Fα. Notice that Fα

is abelian.

Theorem 2 Given a manifold of the form G/H there exists εG/H such that, if
F1 is a smooth foliation of G/H × (−1, 1) with dC1(F0,F1) < εG/H , then F1 is
metabelian and one of the three conditions hold:

1. F1 has at least one compact leaf, is abelian and, for any maximal connected
open set M of G/H× (−1, 1) containing no compact leaf, there exists a ho-
momorphism α : G→ R, an open set J ⊆ G/H×R and a homeomorphism
Φ : J →M taking Fα to F1.

2. F1 has no compact leaf, is abelian and there exists a homomorphism α :
G → R, an open set J ⊆ G/H × R and a homeomorphism Φ : J →
G/H × (−1, 1) taking Fα to F1.

3. F1 has no compact leaf and has an abelian leaf closed in G/H × (−1, 1),
arriving or accumulating both at G/H × {1} and G/H × {−1}.

Some key results, presented in section 2, are that there exist nonempty closed
setsX invariant under the pseudogroup of functions and such that the restrictions
to X of all commutators equal the identity; in particular, [fi, fj] has many fixed
points. In section 3 we define a concept of translation number τ(fi, fj) for func-
tions fi, fj in a near-identity nilpotent pseudogroup; this concept is also present
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in [5] and reduces to the usual definition of rotation number if [fi, fj] = id. As we
shall see in section 4, Denjoy’s theorem implies that if some translation number is
irrational then the invariant set X constructed in section 2 is an interval. In sec-
tion 5 we use Koppel’s lemma to prove that near-identity nilpotent pseudogroups
are metabelian and finally, in section 6, we bring together the results in order to
prove theorems 1 and 2.

We thank Carlos Gustavo Moreira for helpful conversations and the referee
for several helpful suggestions. The authors acknowledge support from CNPq,
CAPES and Faperj (Brazil). This work was done while the first author was in a
leave of absence from Universidade Federal do Pará and had a visiting position
in UFF.

2 Fixed points

We recall the usual definition of translation number for continuous increasing
functions u : R → R of degree one, i.e., with u(x + 1) = u(x) + 1, or, more
generally, for a continuous increasing function u : [0, 1] → R with u(1) = 1+u(0).
Assume 0 < u(0) < 1. Define the sequence a0 = 0,

an+1 =

{

u(an), if u(an) < 1,

u(an) − 1, otherwise.

The translation number τ(u) of u is the proportion of points of this sequence
in the interval [0, u(0)). More precisely, define p(0) = 0, p(n + 1) = p(n) + 1 if
0 ≤ an < u(0) and p(n+ 1) = p(n) otherwise: then the limit

lim
n→∞

p(n)

n

exists and is called τ(u). Denjoy’s theorem [4] states that if u is a degree one
function of class C2 with irrational translation number α = τ(u) then there exists
a homeomorphism φ : R → R, also of degree one, such that u(φ(t)) = φ(t + α)
for all t.

The condition |fi−id|C1 < ε < 1/10m+1 guarantees that fi is a diffeomorphism
from (−1, 1) to some open interval I,

(−0.99, 0.99) ⊂ (−1 + ε, 1 − ε) ⊂ I ⊂ (−1 − ε, 1 + ε) ⊂ (−1.01, 1.01)

and we take f−1
i : I ∩ (−1, 1) → R. A composition such as the commutator

[fi, fj] = f−1
i ◦ f−1

j ◦ fi ◦ fj
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is defined in the largest possible domain such that intermediate expressions are in
(−1, 1): this is clearly some interval I, (−0.96, 0.96) ⊂ I ⊆ (−1, 1). An equality
such as [fi, [fj, fk]] = id means that both functions coincide in the intersection
of their domains, in this case at least (−1 + 10ε, 1 − 10ε). A set X ⊆ (−1, 1) is
said to be invariant under the functions fi if x ∈ X implies that fi(x) and f−1

i (x)
belong to X ∪ (−∞,−1] ∪ [1,∞) for all i. Recall that X ⊆ (−1, 1) is closed in
(−1, 1) if X ∩ (−1, 1) = X.

Proposition 2.1 For any near-identity nilpotent pseudogroup of functions there
exists a nonempty set X ⊆ (−1, 1) which is closed in (−1, 1), invariant under the
functions fi and such that [fi, fj]|X = id for all i, j.

If x is a common fixed point, X = {x} is a trivial example of a closed invariant
set as described in the proposition. We shall be more interested in nontrivial
invariant sets X. Notice that if x0 and x1 are common fixed points then the
proposition may be applied to the restriction of the functions to the interval
(x0, x1): in other words, inside each maximal interval I in the complement of the
set of common fixed points, there exists a nonempty invariant set XI ⊆ I closed
in I and such that [fi, fj]|XI

= id for all i, j.

This proposition will be proved by induction, the key step being the following
lemma.

Lemma 2.2 Let f1, . . . , fn be functions of class C2, |fi − id|C1 < ε (where ε > 0,
ε < 1/100). Assume there exists a set X 6= ∅ closed in (−1, 1) and invariant
under the functions fi such that [fi, [f1, f2]]|X = id for all i. Then there exists
Y ⊆ X, Y 6= ∅, Y also closed in (−1, 1) and invariant under the functions fi

such that [f1, f2]|Y = id.

Proof of Lemma 2.2: Let Y be the set of fixed points of [f1, f2]: the set Y is
clearly closed and invariant under the functions fi; it suffices to prove that Y 6= ∅.

If X ∩ (−1/2, 1/2) = ∅, let x0 ∈ X be the element of least absolute value;
assume without loss of generality that x0 > 0. We claim that fi(x0) = x0 for all
i: indeed, fi(x0) < x0 would be another element of X of smaller absolute value
whence fi(x0) ≥ x0. Similarly, f−1

i (x0) ≥ x0 and since f ′
i ≥ 0 the claim follows.

We can now take Y = {x0} and this proves the lemma in this case; we assume
from now on X ∩ (−1/2, 1/2) 6= ∅.

Let x0 ∈ X ∩ (−1/2, 1/2) be an arbitrary point. If f1(x0) = f2(x0) = x0 we
are done. Otherwise we may assume without loss of generality that f−1

1 (x0) <
x0 ≤ f2(x0) ≤ f1(x0), x0 < f1(x0). We prove that there exists a fixed point of the
commutator [f1, f2] in the interval [f−1

1 (x0), f1(x0)]: this will prove the lemma.

Set δ = f1(x0)−x0 > 0, Ik = (f−k
1 (x0), f

k
1 (x0)). Clearly I1 ⊂ I2 ⊂ · · · ⊂ I10 ⊂

(−3/4, 3/4) and both f1(Ik) and f−1
1 (Ik) are contained in Ik+1 for k > 0, k < 10.
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Notice that δ(1− ε)|k|+1 < fk+1
1 (x0)− fk

1 (x0) < δ(1 + ε)|k|+1 for −10 ≤ k < 10; in
particular, f k

1 (x0) − x0 < k(1 + ε)kδ for k > 0, k < 10.

We claim that f2(Ik) and f−1
2 (Ik) are both contained in Ik+2 for all k > 0,

k < 9. From the mean value theorem, f2f
k
1 (x0) − f2(x0) < (1 + ε)(f k

1 (x0) − x0)
whence, adding f2(x0) ≤ f1(x0), f2f

k
1 (x0) < fk

1 (x0) + (1 + εk(1 + ε)k)δ. On the
other hand, f k+2

1 (x0) > fk
1 (x0) + 2(1 − ε)k+1δ and it follows that f2f

k
1 (x0) <

fk+2
1 (x0) provided 2(1 − ε)k+1 > 1 + εk(1 + ε)k, which indeed happens for ε <

1/100 and k ≤ 8. Similarly, f−1
2 fk

1 (x0) < fk+2
1 (x0), f2f

−k
1 (x0) > f−k−2

1 (x0) and
f−1

2 f−k
1 (x0) > f−k−2

1 (x0), proving our claim.

Let g be the commutator [f1, f2]. From the claim above it follows easily
that g(Ik) and g−1(Ik) are both contained in Ik+4 for k > 0, k < 6. For ex-
ample, f2f

k
1 (x0) < fk+2

1 (x0) implies f1f2f
k
1 (x0) < fk+3

1 (x0) and f−1
2 f1f2f

k
1 (x0) <

fk+5
1 (x0) whence, finally, [f1, f2]f

k
1 (x0) = f−1

1 f−1
2 f1f2f

k
1 (x0) < fk+4

1 (x0).

Let ψ : I10 → R be a function with positive derivative of class C2 satisfying
ψ(x0) = 0, ψ(f1(x)) = 1 + ψ(x): such a function can be contructed by taking a
diffeomorphism from [x0, f1(x0)] to [0, 1] with compatible behavior at boundary
points. Define f̃i : (−8, 8) → R and g̃ : (−6, 6) → R by f̃i = ψfiψ

−1 and
g̃ = ψgψ−1. Notice that f̃1(x) = x+1. Also, set X̃ = ψ(X∩I10): if x ∈ X̃, |x| < 6
then the points f̃i(x), f̃

−1
i (x), g̃(x) and g̃−1(x) are all in X̃. Let ǧ : R → R be a

function of degree 1 (i.e., ǧ(x+ 1) = ǧ(x) + 1 for all x) with ǧ|X̃ = g̃|X̃ . In order
to prove the existence of such a function ǧ, we consider two cases. If [0, 1] ⊆ X̃
then g̃(x + 1) = g̃(x) + 1 for all x ∈ (−5, 5) and ǧ is obtained by extending
g̃. Otherwise, let [x1, x2] ⊂ (0, 1), [x1, x2] ∩ X̃ = {x1, x2} and define ǧ to be an
arbitrary function of degree 1 coinciding with g̃ in the interval [x2 − 1, x1]. Let
c be the translation number of ǧ: we already proved that |c| < 4; we claim that
c = 0. The claim implies that the sequence 0, ǧ(0), . . . , ǧk(0), . . . converges to
a fixed point ψ(x1) of ǧ in X̃ ∩ [−1, 1] and x1 is the desired fixed point of g,
proving the lemma. In order to prove the claim, it is convenient to consider, by
contradiction, the cases c irrational and c rational, c 6= 0.

Case 1: c irrational.

By Denjoy theorem there exists a homeomorphism φ : R → R with φ(n) = n
for n ∈ Z and

f̂1(x) = φf̃1φ
−1(x) = x+ 1, ĝ(x) = φǧφ−1(x) = x+ c.

Define f̂2 : (−7, 7) → R by

f̂2(x) = φf̃2φ
−1(x).

We have f̂2f̂1ĝ = f̂1f̂2 and f̂2ĝ = ĝf̂2 on X̂ = φ(X̃) which become

f̂2(x+ 1 + c) = f̂2(x) + 1, f̂2(x+ c) = f̂2(x) + c, x ∈ X̂.
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Also, since f2(Ik) ⊂ Ik+2 we have f̂2((−k, k)) ⊂ (−k − 2, k + 2) for k ≤ 7.

Consider the set A of points (x, y) ∈ Z
2 with |x(1 + c) + yc| < 5: this set

is connected in the sense that points of A can be joined by a path with vertices
in A and edges of size 1. Let (xk, yk), k = 0, . . . , N be such a path of points
of A with (x0, y0) = (0, 0) and |xN + yNc| > 9. From |xk(1 + c) + ykc| < 5 we
have |f̂2(xk(1 + c) + ykc)| < 7 for all k ≤ N . If (xk+1, yk+1) = (±1, 0) + (xk, yk)
then f̂2(xk+1(1 + c) + yk+1c) = f̂2(xk(1 + c) + ykc) ± 1. Also, if (xk+1, yk+1) =
(0,±1) + (xk, yk) then f̂2(xk+1(1 + c) + yk+1c) = f̂2(xk(1 + c) + ykc) ± c. Thus
f̂2(xk(1 + c) + ykc) = f̂2(0) + xk + ykc for all k. In particular |xN + yNc| =
|f̂2(xN(1 + c) + yNc) − f̂2(0)| < 9, a contradiction.

Case 2: c rational, c 6= 0.

Let c = p/q, p, q ∈ Z, q > 0. Assume without loss of generality that p > 0. Let
h = f̃−p

1 ǧq: we know that h has a fixed point x1 ∈ [0, 1]. Take x2 ∈ X̃∩[x1, x1+1]:
the sequence x2, h(x2), h

2(x2), . . . is contained in the compact set X̃ ∩ [x1, x1 + 1]
and therefore any accumulation point x3 of this sequence is a fixed point of h in
X̃.

Define z0 = x3 and

zi+1 =

{

f̃−1
1 (zi), zi ≥ x3 + 1,

ǧ(zi), otherwise.

We have zp+q = z0 and in this sequence we take p times the first case and q times
the second. Set wi = f̃−1

2 (zi): we have therefore

wi+1 =

{

ǧ−1f̃−1
1 (wi), wi ≥ f−1

2 (x3 + 1),

ǧ(wi), otherwise.

Thus f̃−p
1 ǧq−p has fixed point w0 and the translation number of ǧ is p/(q − p), a

contradiction. ¥

Proof of Proposition 2.1: We proceed by induction on m. Assume our pseu-
dogroup of functions to be nilpotent of order m. Apply lemma 2.2 to the family
of commutators of order at most m− 1, X0 = (−1, 1), with the new f1 being an
arbitrary commutator of order at most m−1 and the new f2 being a commutator
or order m− 1. We thus obtain a closed invariant subset X1 of X0 where a given
commutator of order m equals the identity. Repeating this process we obtain
a closed invariant subsets X2 ⊇ X3 ⊇ · · · ⊇ Xk such that all commutators of
order m equal the identity in Xk. Now apply the induction hypothesis to obtain
X ⊆ Xk. ¥
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If in the constructions performed in the proof of the lemma we take x0 to
be a fixed point of g then f1f2(x0) = f2f1(x0) and x0 ≤ f2(x0) ≤ f1(x0) implies
f1(x0) ≤ f2f1(x0) = f1f2(x0) ≤ f 2

1 (x0) and f2(Ik) ⊆ Ik+1. Also, g(Ik) = Ik.

3 Translation number

We modify the definition of translation number to define the translation number
of f2 relative to f1, where both functions belong to a near-identity nilpotent
pseudogroup. Let x0 be a point of X, a nontrivial invariant set as discussed in
the previous section. Assume that f−1

1 (x0) < x0 ≤ f2(x0) ≤ f1(x0). Define a

sequence of points starting at a0 = x0 by an+1 = f
−k(n)
1 f2(an) where k(n) is the

only integer for which x0 ≤ f
−k(n)
1 f2(an) < f1(x0). Since f1(x0) ≤ f1f2(x0) =

f2f1(x0) ≤ f 2
1 (x0) and, by contruction, x0 ≤ an < f1(x0) we have x0 ≤ f2(x0) ≤

f2(an) < f2f1(x0) ≤ f 2
1 (x0) and therefore k(n) is 0 or 1. Also, k(n) = 1 if and

only if x0 ≤ an+1 < f2(x0). Let F x0

0 = id and F x0

n+1 = f
−k(n)
1 ◦ f2 ◦ F

x0

n : as usual,
we must show that this composition makes sense in a large domain. As in the
proof of proposition 2.1, let In = (f−n

1 (x0), f
n
1 (x0)); notice that In is well defined

at least for n ≤ 10 and that f2(In) ⊆ In+1.

Lemma 3.1 For any positive integer n, F x0

n is well defined in I8 and F x0

n (I8) ⊆
I9. Also,

f−8
1 (x0) ≤ F x0

n f−8
1 (x0) = f−8

1 F x0

n (x0) < f−7
1 (x0),

f 8
1 (x0) ≤ F x0

n f 8
1 (x1) = f 8

1F
x0

n (x1) < f 9
1 (x0).

Moreover, X is invariant under F x0

n .

Proof: We prove the inequalities in the statement by induction on n, the
case n = 1 being easy. By definition, Fn+1f

±8
1 (x0) = f

−k(n)
1 f2Fnf

±8
1 (x0): this

already shows that these two expressions make sense since by induction hy-
pothesis both Fnf

±8
1 (x0) make sense and are in I9. By the induction hypoth-

esis, Fn+1f
±8
1 (x0) = f

−k(n)
1 f2f

±8
1 Fn(x0). Since Fn(x0) ∈ X, Fn+1f

±8
1 (x0) =

f±8
1 f

−k(n)
1 f2Fn(x0) = f±8

1 Fn+1(x0). The other claims are now easy. ¥

Set p(0) = 0, p(n+ 1) = p(n) + k(n): we define the translation number to be
the limit

τ(f2, f1, x0) = lim
n→∞

p(n)

n
;

we still have to prove that this limit exists. If f−1
2 (x0) < x0 ≤ f1(x0) ≤ f2(x0) we

can make a similar construction reverting the roles of f1 and f2 and define

τ(f2, f1, x0) = 1/(τ(f1, f2, x0));
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if f−1
1 (x0) ≤ f2(x0) ≤ x0 < f1(x0) we define

τ(f2, f1, x0) = −τ(f−1
2 , f1, x0);

the other cases are similar.

Let Z be the closed set of common fixed points of all functions fi. We show
that the translation number is well defined in each connected component of the
complement of Z.

Proposition 3.2 If x0, x1 ∈ X are in the same connected component of the
complement of Z then τ(f2, f1, x0) = τ(f2, f1, x1).

Proof: Let g = [f1, f2]. We first prove that the limit exists. Assume f−1
1 (x0) <

x0 ≤ f2(x0) ≤ f1(x0) and let ψ be a conjugation between f1 and x 7→ x + 1 so
that f̃1(x) = ψf1ψ

−1(x) = x + 1, f̃2 = ψf2ψ
−1 and g̃ = ψgψ−1; ψ : I10 → R is a

function with positive derivative of class C2 and ψ(x0) = 0 as constructed in the
proof of Lemma 2.2. Notice that f̃2(x + 1) = f̃2(x) + 1 if and only if g̃(x) = x;
in particular f̃2(1) = f̃2(0) + 1. The definition of translation number applies to
the restriction to [0, 1] of f̃2; equivalently, let f̌2 be the only function of degree 1
coinciding with f̃2 in the interval [0, 1]:

f̌2(x) = f̃2(x− bxc) + bxc.

The points an constructed as above from f1 and f2 are all in the interval
[x0, f1(x0)) and ψ(an) is always in the interval [0, 1]. The construction of k(n), Fn

and p(n) only considers values of f2 in the interval [x0, f1(x0)), or, equivalently,
values of f̃2 in the interval [0, 1). It makes therefore no difference whether we
take f̃2 or f̌2 and τ(f2, f1, x0) is the usual translation number of f̌2.

Let x1 be another fixed point of g, x0 ≤ x1 ≤ f1(x0). The translation number
of f̌2 is the same if computed in the interval [0, 1] or in the interval [ψ(x1), ψ(x1)+
1]. Furthermore, the functions f̃2 and f̌2 coincide in the orbit of x1 since these
are all fixed points of g̃ and the construction of the translation number coincides
for these two functions. Thus τ(f2, f1, x0) = τ(f2, f1, x1).

Let x0 < x∗ be two fixed points of g in the same connected component of
the complement of Z. Let ε > 0 be the infimum over the compact interval
[x0, x∗] of the positive continuous function max{|f1(x)− x|, |f2(x)− x|} and take
a sequence y0 = x0, y1, . . . , yN = x∗ with 0 < yi+1 − yi < ε/4. Let xi be the
fixed point of g which is closest to yi so that x0 ≤ x1 ≤ · · · ≤ xN = x∗ are
fixed points of g. We claim that xi+1 ≤ max{f1(xi), f2(xi), f

−1
1 (xi), f

−1
2 (xi)}.

Assume without loss of gererality that the largest among these four numbers is
f1(xi): the interval ((xi + f1(xi))/2, f1(xi)) has size at least ε/2 and therefore
there is some yj in it. The point f1(xi) is a fixed point of g thus the distance
between xj and yj is no larger than that between f1(xi) and yj: it follows that
xi ≤ xi+1 ≤ xj ≤ f1(xi), as claimed. The previous paragraph can now be used to
show that τ(f2, f1, xi) = τ(f2, f1, xi+1) and we have τ(f2, f1, x0) = τ(f2, f1, xN).

¥
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4 The irrational case

We already saw that commutators in a near-identity nilpotent pseudogroup of
functions have many fixed points; we now show that in many cases all commuta-
tors equal the identity so that the original functions commute.

Proposition 4.1 Let f1, f2 be functions in a near-identity nilpotent pseudogroup
and let X be a closed invariant subset where all the fi commute. Let x0 ∈ X, x0

not a fixed point of f1. If τ(f2, f1, x0) is irrational then x0 is an interior point of
X.

Proof: Assume without loss of generality that f−1
1 (x0) < x0 ≤ f2(x0) ≤ f1(x0).

Construct f̃1, f̃2, g̃ and X̃ as usual where g = [f1, f2] so that f̃1(x) = x + 1;
notice that g̃(0) = 0. Assume by contradiction that (x1, x2) ⊆ (0, 1) is an open
interval such that [x1, x2] ∩ X̃ = {x1, x2}. We shall construct a counter-example
to Denjoy’s theorem, thus obtaining a contradiction.

Let f̌2 : R → R be an increasing function of degree 1 and class C2 with
f̌2(x) = f̃2(x) for x2 − 1 < x < x1. The function f̌2 is defined arbitrarily in the
interval (x1, x2) with the only restrictions that it must be of class C2, increasing,
satisfy f̌2(x) = f̃2(x) for x near x1 and f̌2(x) = 1 + f̃2(x − 1) for x near x2; this
is clearly possible. Now f̌2 is a function of degree 1 and class C2 and irrational
translation number and X̃ + Z is a nontrivial invariant closed set, contradicting
Denjoy’s theorem. ¥

We may bring together our conclusions as a proposition.

Proposition 4.2 Let f1, . . . , fn be a near-identity nilpotent pseudogroup of func-
tions and let x0 ∈ (−1/2, 1/2). Then one of the following three situations holds:

1. x0 is a common fixed point of the functions fi.

2. There exists real constants ai, an open interval I ⊆ (−1, 1) containing
x0, fi(x0), f

−1
i (x0), and a homemorphism φ : J → I, J ⊆ R with fi(φ(t)) =

φ(t+ ai) whenever t, t+ ai ∈ J .

3. There exist integer constants ai, a finite set {y−N , y−N+1, . . . , yN} with yi <
yi+1 and y0 ≤ x0 < y1, N > |ai| with fi(yk) = yk+ai

.

Proof: If x0 is not a common fixed point of the functions fi then we may
apply the results of the previous sections. If at least one translation number is
irrational then we apply proposition 4.1 and we are in the second case. Otherwise
the functions from S

1 to itself constructed above all have rational translation
numbers and therefore admit periodic points and we are in the third case. ¥
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5 Near-identity nilpotent pseudogroups

are metabelian

We first state Koppel’s lemma ([7]), an important result also in the works of
Plante, Thurston, Farb and Franks.

Lemma 5.1 Let f, g : R → R be increasing diffeomorphisms, f of order C2 and
g of order C1 with [f, g] = id. Assume that there exists a nondegenerate bounded
open interval I = (a, b) for which f(b) = g(b) = b, f(a) > g(a) = a and x ∈ (a, b)
implies f(x) > x. Then g(x) = x for all x ∈ I.

Let f1, f2, . . . , fn be a near-identity nilpotent pseudogroup with rational trans-
lation numbers as in item 3 of proposition 4.2: let y0, y1, a1, a2, . . . , an be as in the
proposition. We define a second near-identity nilpotent pseudogroup f̃1, . . . , f̃N

of functions satisfying f̃i(y0) = y0, f̃i(y1) = y1, N =
(

n
2

)

+ n− 1.

Assume without loss of generality that an > 0. The construction of f̃i, i < n,
is similar to that of F x0

j in section 4: define Fi,0 = id and

Fi,j+1 = f−bk/anc
n ◦ fi ◦ Fi,j where fi(Fi,j(y0)) = yk.

In this way Fi,j(y0) ≥ y0 for all i, j. We define f̃i = Fi,an
: we have f̃i(y0) = y0

and f̃i(y1) = y1. The remaining f̃i are the commutators [fj, fk], 1 ≤ j < k ≤ n.
We claim that the functions f̃i commute: this will establish our claim that the
original pseudogroup is metabelian.

Apply proposition 4.2 to the pseudogroup f̃i at some point in the interval
(y0, y1): if we have cases 1 or 2 we are done. We assume therefore that we
have case 3 in a maximal interval (a, b) ⊆ (y0, y1). Let ỹ0, ỹ1, ã1, . . . , ãN be as in
proposition 4.2. Assume without loss of generality that ãk > 0 so that f̃k(a) = a,
f̃k(b) = b and f̃k(x) > x for all x ∈ (a, b). Assuming that the functions f̃i do
not commute, let g be a commutator of highest order which is different from the
identity. By construction [f̃k, g] = id. If g is not one of the f̃i then g(ỹ0) = ỹ0

so that g has a fixed point in (a, b). Lemma 5.1 now implies g = id which is a
contradiction unless g = f̃i and the functions f̃i commute, as required.

6 Proof of theorems 1 and 2

We proved in the previous section that any near-identity pseudogroup is
metabelian.

If at least one common fixed point exists, we are in case 1. Let I1 = (a, c)
be a maximal open interval containing no common fixed points. Assume without
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loss of generality that |a| < 1 and apply proposition 2.1 to the interval (a, c)
to obtain b ∈ (a, c), a fixed point for all commutators in the pseudogroup. Let
f = fj or f = f−1

j be such that f(b) is maximal; from the results of section 3,
f(x) > x for all x ∈ (a, c). Take g to be an arbitrary commutator and apply
Koppel’s lemma (5.1) to obtain g(x) = x for all x ∈ (a, c). This implies that the
pseudogroup is abelian. For each i, let ai = τ(fi, f, b). If at least one of the ai is
irrational, the existence of the homeomorphism φ follows from Denjoy’s theorem.
Otherwise, we may write ai = pi/q, where pi and q are integers. Assume without
loss of generality that pk = 1 so that, for each i, τ(fif

−pi

k , f, b) = 0: this implies
the existence of b̃i ∈ [b, f(b)] with fif

−pi

k (b̃i) = b̃i. Koppel’s lemma now implies
that fi = f pi

k and the pseudogroup consists of integer powers of fk, implying the
existence of the homeomorphism φ. This concludes the discussion of case 1.

If no common fixed point exists, take x0 ∈ X and let f = fj or f = f−1
j be

such that f(x0) is maximal and set ai = τ(fi, f, x0). If at least one of the ai

is irrational then from section 4 the pseudogroup is abelian and from Denjoy’s
theorem there exists a homeomorphism φ as stated, concluding case 2. Otherwise
we are in case 3 of proposition 4.2, concluding theorem 1.

For theorem 2, take the holonomy pseudogroup and apply theorem 1: each
case in one theorem corresponds to the same case in the other. In cases 1 and
2, the homomorphism α : G → R takes each generator γi of π1(G/H) to ai as
constructed in theorem 1 where fi = fγi

. The homeomorphism Φ is constructed
from φ. More precisely, for (gH, x) ∈ G/H let γ : [0, 1] → G be a path with
γ(0) ∈ H and γ(1) = g. Lift γ to Fα to obtain a path γ̃ : [0, 1] → G/H × R

tangent to Fα with γ̃(1) = (gH, x): let γ̃(0) = (H, x0). Now lift γ to F1 to obtain
γ̂ : [0, 1] → G/H × (−1, 1) with γ̂(0) = (H,φ(x0)) and define Φ(gH, x) = γ̂(1).
The properties of φ imply that Φ(gH, x) is well defined, i.e., does not depend on
the choice of γ. This concludes the proof of theorem 2.
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