A Matemática e Computação para Caracterização de Fluxo de Fluidos em Meios Porosos

Rafael March

Halliburton Technology Center Brazil

Porous Media Flow and GeoEnergy Applications

CO₂ Storage: Preventing anthropogenic global warming

H₂ Storage Enabling energy transition

Oil and Gas Extraction

Ensuring we meet energy demand

Porosity and Permeability: Two Important Concepts

Our Mathematical Models need to Adjust to the Scale of Interest

~mm ~cm

~m

~km

NAVIER-STOKES EQUATIONSSTOKES-BRINKMAN EQUATIONSDARCY EQUATIONS $\nabla \cdot \boldsymbol{u} = 0$ $\nabla \cdot \boldsymbol{u} = 0$ $\nabla \cdot \boldsymbol{u} = 0$ $\frac{\partial \boldsymbol{u}}{\partial t} + \nabla \cdot \nabla \boldsymbol{u} = -\nabla p + \mu \nabla^2 \boldsymbol{u}$ $-\mu \nabla^2 \boldsymbol{u} + \boldsymbol{k}^{-1} \boldsymbol{u} + \nabla p = 0$ $\boldsymbol{u} = -\frac{\boldsymbol{k}}{\mu} \nabla p$

PERMEABILITY: INPUT FROM SMALLER SCALES

Desafios na Caracterização de Fluxo de Fluidos em Fraturas

Outcrops across the globe

http://www.pbase.com/ http://blogs.egu.eu/ http://www.dgs.udel.edu/ http://archives.aapg.org/ https://www.uky.edu

Fractures and Faults are Everywhere!

http://www.pbase.com/ http://blogs.egu.eu/ http://www.dgs.udel.edu/ http://archives.aapg.org/ https://www.uky.edu

Cap Rock Leakage - Faults

8

Cap Rock Leakage - Faults

Damage zones (fractures) associated to faults pose a serious leakage risk to underground gas storage

Multiscale Modelling is Needed

Multiscale Modelling is Needed

0

Multiscale Modelling is Needed

©2022 Halliburton. All rights reserved.

Fracture Network Permeability is Sensitive to In-Situ Stresses (Forces)

Workflow to Compute Stress-Sensitive Network Permeability

Fracture Meshing and Contact Mechanics

Fractures modelled as internal boundary conditions require proper treatment of contact mechanics in the fracture walls

Fracture Meshing and Contact Mechanics

Fractures modelled as internal boundary conditions require proper treatment of contact mechanics in the fracture walls

Crash-test www.porsche.com

introduction to Conta Contact Problems Anthony C. Fischer-Crip Introduction to Computational Introduction to Contact Contact Computational Mechanics a. Problems: T.. Contact Mec. Contact Mec. Computation. Contact Mec... Valentin L. P. L. A. Galin 2015 2012 Peter Wrigg. Anthony Fis.

Books / Contact mechanics

Fracture Meshing and Contact Mechanics

Comparison against Abaqus (Commercial Software)

Experiment 1 (Abaqus results)

Experiment 2 (Abaqus results) Displacement x [m] Displacement y [m] Contact Pressure [MPa] 50 50 50 40 40 0.015 40 0.03 30 30 30 0.01 0.02 20 20 20 0.01 0.005 10 10 10 0 0 -10 -10 -10 -0.01 -0.005 -20 -20 -20 -0.02 -30 -30 -30 -0.01 -40 -40 -40 -0.03 -0.015 -50 -50 -50 -50 0 50 50 -50 0 -50 0

©2022 Halliburton. All rights reserved.

15

50

Comparison against Abaqus (Commercial Software)

Comparison against Abaqus (Commercial Software)

Application to Realistic 3D Fracture Network

Fracture Plane Stress-Permeability Model

Results for $\sigma_{zz} = 1$ MPa

- Permeability changes with increasing stress: a bit over one order of magnitude in all three directions ($0 < \sigma_{xx}, \sigma_{yy}, \sigma_{zz} < 20$ MPa)
- Considering a reference matrix permeability of ~10⁻²⁰ m², permeability increase caused by fractures is between 1 and 2 orders of magnitude
- $k_{zz} > k_{xx} > k_{yy}$
- No significant changes with increasing σ_{zz}
- High density case shows little improvement in permeability in comparison to low density case

Results for $\sigma_{zz} = 19$ MPa

- Permeability changes with increasing stress: a bit over one order of magnitude in all three directions (0 < σ_{xx} , σ_{yy} , σ_{zz} < 20 MPa)
- Considering a reference matrix permeability of ~10⁻²⁰ m², permeability increase caused by fractures is between 1 and 2 orders of magnitude
- $k_{zz} > k_{xx} > k_{yy}$
- No significant changes with increasing σ_{zz}
- High density case shows little improvement in permeability in comparison to low density case

Física de Rocha Digital

Como a matemática e tecnologias digitais ajudam no entendimento e caracterização das rochas

Digital Rock Physics as a Tool to Characterize a Reservoir

Digital Computation of Permeability Tensors

- Permeability is an anisotropic property, and it is mathematically described by a symmetric second order tensor
- Anisotropic permeability behavior exists at all scales
- Typical upscaling workflows consider only the principal components of the permeability tensor
- Here we analyze the full-tensor behavior of small carbonate rock samples and suggest a workflow to upscale full-tensor permeability to larger samples

Digital Computation of Permeability Tensors

- Permeability is an anisotropic property, and it is mathematically described by a symmetric second order tensor
- Anisotropic permeability behavior exists at all scales
- Typical upscaling workflows consider only the principal components of the permeability tensor
- Here we analyze the full-tensor behavior of small carbonate rock samples and suggest a workflow to upscale full-tensor permeability to larger samples

Digital Computation of Permeability Tensors

- Permeability is an anisotropic property, and it is mathematically described by a symmetric second order tensor
- Anisotropic permeability behavior exists at all scales
- Typical upscaling workflows consider only the principal components of the permeability tensor
- Here we analyze the full-tensor behavior of small carbonate rock samples and suggest a workflow to upscale full-tensor permeability to larger samples

Subsamples under Analysis

Sample A

- nx = 210, ny = 210, nz = 210
- Lx = 0.25 mm, Lx = 0.25 mm, Lz = 0.25 mm
- dx = 1.2 microns, dy = 1.2 microns, dz = 1.2 microns

Sample B

- nx = 210, ny = 210, nz = 200
- Lx = 0.25 mm, Lx = 0.25 mm, Lz = 0.24 mm
- dx = 1.2 microns, dy = 1.2 microns, dz = 1.2 microns

Porous Space Sample A

Porous Space Sample B

Numerical Procedure to Determine Full-Tensor Permeabilities

- We use the SIMPLE method to solve the steady-state Stokes-Brinkman Equations
- We use the algebraic multigrid method (AMG) to solve the momentum and pressure correction linear systems
- The systems are solved in parallel using the HYPRE library

Boundary Conditions

No-flow BCs Diagonal permeability tensor

P=P_{in}

no flow

Linear Pressure BCs

Full permeability tensor **<u>BUT</u>** might not represent in-situ reservoir conditions

P=P_{out} (Pin-Pout)*(x/L) Pin-Pou Pin -Pin Δ Δ P=P_{in}

П

Periodic BCs

Full permeability tensor **BUT** might not be representative of a real rock

no flow

Upscaling to larger scales

- Typical reservoir simulators: Darcy flux between two cells are approximated by a transmissibility multiplied by a
 potential difference between the cells
- This assumes: the grid is aligned with the principal directions of the permeability tensor
- This method is typically called "Two-point flux approximation"
- The Multipoint Flux Approximation considers a larger stencil and uses more neighbor cells

<u>TPFA</u>		<u>MPFA</u>	<u>Present solver</u> Flux between two cells computed using two pressure values	Improved solver Flux between two cells computed using all neighboring cells
 Implemented in most reservoir simulators Considers only two cells for flux approximation Cannot have a full tensor as an input 	VS	 Complex to implement Considers a larger stencil for flux approximation Can have a full tensor as input 	$q_{ij} = T_{ij}(p_j - p_i)$	$q_{ij} = \Sigma_j \tau_j (p_j - p_i)$

MPFA Fundamentals

Preliminary Results

Validation in a small (5x5x5) 3D volume against manufactured analytical solution

 $\nabla \cdot \mathbf{k} \nabla p = Q(x, y, z)$

If we assume pressure is a given function, we can compute the derivatives and obtain the source:

$$p = e^{xyz} \Rightarrow Q(x, y, z) = e^{xyz}$$

$$\begin{pmatrix} k_{xx}y^2z^2 + \\ k_{yy}x^2z^2 + \\ k_{zz}x^2y^2 + \\ 2k_{xy}(z + xyz^2) + \\ 2k_{xz}(y + xy^2z) + \\ 2k_{xy}(x + x^2yz) \end{pmatrix}$$

Preliminary Results

Validation in a small (5x5x5) 3D volume against manufactured analytical solution

Case 1:
$$k_{xx} = 10^{-11} \text{ m}^2$$
, $k_{yy} = 10^{-11}$, $k_{zz} = 10^{-11}$ (isotropic, base case)
Case 2: $k_{xx} = 10^{-11} \text{ m}^2$, $k_{yy} = 10^{-13}$, $k_{zz} = 10^{-11}$ (change of k in y dir.)
Case 3: $k_{xx} = 10^{-11} \text{ m}^2$, $k_{yy} = 10^{-11}$, $k_{zz} = 10^{-12}$ (change of k in z dir)
Case 4: $k_{xx} = 10^{-11} \text{ m}^2$, $k_{yy} = 10^{-11}$, $k_{zz} = 10^{-13}$ (change of k in z dir)

