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Porous Media Flow and GeoEnergy Applications

©2022 Halliburton. All rights reserved. Figure taken from: https://doi.org/10.1016/j.ijhydene.2021.03.131

CO2 Storage: 

Preventing anthropogenic 

global warming

H2 Storage

Enabling energy transition

Oil and Gas Extraction

Ensuring we meet energy 

demand

https://doi.org/10.1016/j.ijhydene.2021.03.131


Porosity and Permeability: Two Important Concepts
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Porosity: fraction of empty volume



Our Mathematical Models need to Adjust to the Scale of Interest
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𝛻 ⋅ 𝒖 = 0

NAVIER-STOKES EQUATIONS

−μ∇2𝐮 + 𝒌−1𝐮 + ∇p = 0
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PERMEABILITY: INPUT FROM SMALLER SCALES
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Desafios na 
Caracterização de Fluxo 
de Fluidos em Fraturas
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Outcrops across the globe
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Fractures and Faults are Everywhere!
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Cap Rock Leakage - Faults
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Cap Rock Leakage - Faults
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Damage zones (fractures) associated to faults pose a serious leakage risk to underground 

gas storage



Multiscale Modelling is Needed
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Fracture Plane Scale



Multiscale Modelling is Needed
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Fracture Network Scale

Fracture Plane Scale



Multiscale Modelling is Needed
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Fracture Network Scale

Fracture Plane Scale Basin/Reservoir Scale



Fracture Network Permeability is Sensitive to In-Situ Stresses 
(Forces)
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Workflow to Compute Stress-Sensitive Network Permeability
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Mechanics

Stress-
Permeability 

Model
Fluid Flow

◼ Linear elasticity

◼ Virtual element method

◼ Fractures as discontinuities 

◼ Fluid pressure as a traction 

◼ Contact mechanics

◼ Experiments

◼ Models (e.g. Barton & 

Bandis)

◼ Fracture-Matrix 

interaction

◼ Fluid pressure 

informs mechanics

𝛁 ⋅ 𝛔 = 𝐟

𝝈 = 𝑪: 𝝐



Fracture Meshing and Contact Mechanics
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Fractures modelled as internal boundary conditions require 
proper treatment of contact mechanics in the fracture walls



Fracture Meshing and Contact Mechanics
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Fractures modelled as internal boundary conditions require 
proper treatment of contact mechanics in the fracture walls



Fracture Meshing and Contact Mechanics
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Comparison against Abaqus (Commercial Software)
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Comparison against Abaqus (Commercial Software)
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Comparison against Abaqus (Commercial Software)

©2022 Halliburton. All rights reserved. 20



Application to Realistic 3D Fracture Network
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Low density case Medium density case High density case

~1346 fractures ~2247 fractures ~3117 fractures

𝛁 ⋅ 𝐮 = 𝟎

𝒖 = −
𝒌

𝝁
𝛁𝐩

Goal: obtain k for 

the fracture network, 

given 𝚫𝐩



Fracture Plane Stress-Permeability Model
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kcore = km +
1

12

4

πd
b3

b = b0 − Δb

Δb = R ⋅ b0(1 − e−ασn
β

)

km = 10−20 m2

α = 0.005

β = 2.4

R = 0.7

b0 = 0.005 mm

d = 0.2574 m



Results for 𝜎𝑧𝑧 = 1 MPa
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▪ Permeability changes with

increasing stress: a bit over one

order of magnitude in all three

directions (0 < σxx, σyy, σzz < 20

MPa)

▪ Considering a reference matrix

permeability of ~10-20 m2,

permeability increase caused by

fractures is between 1 and 2

orders of magnitude

▪ kzz > kxx > kyy

▪ No significant changes with

increasing σzz

▪ High density case shows little

improvement in permeability in

comparison to low density case



Results for 𝜎𝑧𝑧 = 19 MPa
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▪ Permeability changes with

increasing stress: a bit over one

order of magnitude in all three

directions (0 < σxx, σyy, σzz < 20

MPa)

▪ Considering a reference matrix

permeability of ~10-20 m2,

permeability increase caused by

fractures is between 1 and 2

orders of magnitude

▪ kzz > kxx > kyy

▪ No significant changes with

increasing σzz

▪ High density case shows little

improvement in permeability in

comparison to low density case



Física de Rocha 
Digital
Como a matemática e tecnologias digitais
ajudam no entendimento e caracterização
das rochas
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Digital Rock Physics as a Tool to Characterize a Reservoir



Digital Computation of Permeability Tensors

▪ Permeability is an anisotropic property, and it is mathematically described by a symmetric
second order tensor

▪ Anisotropic permeability behavior exists at all scales

▪ Typical upscaling workflows consider only the principal components of the permeability tensor

▪ Here we analyze the full-tensor behavior of small carbonate rock samples and suggest a
workflow to upscale full-tensor permeability to larger samples

𝒖 = −
𝒌

𝜇
∇𝑝

𝒌 =

𝒌𝒙𝒙 𝑘𝑥𝑦 𝑘𝑥𝑧
𝑠𝑦𝑚. 𝒌𝒚𝒚 𝑘𝑦𝑧
𝑠𝑦𝑚. 𝑠𝑦𝑚. 𝒌𝒛𝒛

Darcy’s LawCores
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Digital Computation of Permeability Tensors

▪ Permeability is an anisotropic property, and it is mathematically described by a symmetric
second order tensor

▪ Anisotropic permeability behavior exists at all scales

▪ Typical upscaling workflows consider only the principal components of the permeability tensor

▪ Here we analyze the full-tensor behavior of small carbonate rock samples and suggest a
workflow to upscale full-tensor permeability to larger samples
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Subsamples under Analysis

Sample A Sample B

Porous Space
Sample A

Porous Space
Sample B

▪ nx = 210, ny = 210, nz = 210
▪ Lx = 0.25 mm, Lx = 0.25 mm, Lz = 0.25 mm
▪ dx = 1.2 microns, dy = 1.2 microns, dz = 1.2 

microns 

▪ nx = 210, ny = 210, nz = 200
▪ Lx = 0.25 mm, Lx = 0.25 mm, Lz = 0.24 mm
▪ dx = 1.2 microns, dy = 1.2 microns, dz = 1.2 

microns 



Numerical Procedure to Determine Full-Tensor Permeabilities

▪ We use the SIMPLE method to solve the steady-state Stokes-Brinkman Equations

▪ We use the algebraic multigrid method (AMG) to solve the momentum and pressure correction 
linear systems

▪ The systems are solved in parallel using the HYPRE library

−μ∇2𝐮 + k−1𝐮 + ∇p = 0

Stokes-Brinkman 
Model

∇ ⋅ 𝐮 = 0

SIMPLE Method

Solve Momentum Equations

Solve Pressure Correction 
Equation

Correct Pressure and Velocities

Conv.?
yesno

End

Free flow region

Sub-Resolution Porosity/Permeability



Boundary Conditions
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No-flow BCs
Diagonal permeability 

tensor

Linear Pressure BCs
Full permeability tensor 
BUT might not represent 

in-situ reservoir conditions 

Periodic BCs
Full permeability tensor BUT
might not be representative 

of a real rock



Results Sample A Sample B

𝐤 [mD] =
129 12 46 (35%)

113 12
114

𝐤 mD =
1922 111 486 (25%)

1332 59
1243

𝐤 [mD] =
52 16 22 (42%)

95 0.05
40

𝐤 mD =
763 128 (16%) 107

19 1
466

Linear
Pressure BCs

Periodic 
BCs



Upscaling to larger scales

▪ Typical reservoir simulators: Darcy flux between two cells are approximated by a transmissibility multiplied by a
potential difference between the cells

▪ This assumes: the grid is aligned with the principal directions of the permeability tensor

▪ This method is typically called “Two-point flux approximation”

▪ The Multipoint Flux Approximation considers a larger stencil and uses more neighbor cells

▪ Implemented in 
most reservoir 
simulators

▪ Considers only two 
cells for flux 
approximation

▪ Cannot have a full 
tensor as an input

vs

▪ Complex to 
implement

▪ Considers a larger 
stencil for flux 
approximation

▪ Can have a full 
tensor as input

TPFA MPFA



MPFA Fundamentals

𝐟 = 𝐓𝐮
𝐓 = 𝐂𝐀−𝟏𝐁 + 𝐅

pressure
fluxes

Transmissibility

matrix



Preliminary Results

▪ Validation in a small (5x5x5) 3D volume against manufactured analytical solution

𝛻 ⋅ 𝑘𝛻𝑝 = 𝑄(𝑥, 𝑦, 𝑧)

p = exyz ⇒ Q x, y, z = exyz ⋅

kxxy
2z2 +

kyyx
2z2 +

kzzx
2y2 +

2kxy(z + xyz2) +

2kxz(y + xy2z) +

2kxy(x + x2yz)

If we assume pressure is a given 
function, we can compute the 
derivatives and obtain the source:



Preliminary Results

▪ Validation in a small (5x5x5) 3D volume against manufactured analytical solution

Case 1: kxx = 10−11 m2, kyy = 10−11, kzz = 10−11 (isotropic, base case)

Case 2: kxx = 10−11 m2, kyy = 10−13, kzz = 10−11 (change of k in y dir.)

Case 3: kxx = 10−11 m2, kyy = 10−11, kzz = 10−12 (change of k in z dir)

Case 4: kxx = 10−11 m2, kyy = 10−11, kzz = 10−13 (change of k in z dir)



Next Step

𝐤 [mD] =

129 12 46
113 12

114
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