Passeios aleatórios, movimentos brownianos e o queijo suiço

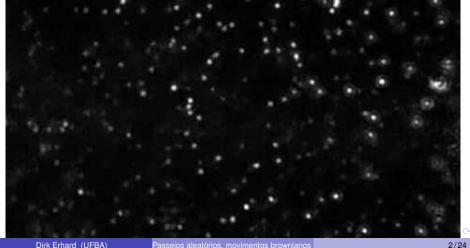
Dirk Erhard

UFBA

DESCOBERTA DO MOVIMENTO BROWNIANO

Jan Ingenhousz (1785: pó de carvão em álcool)

Robert Brown (1827: pequenos grãos de pólen suspensos em água)



Joseph Fourier

Cientista, participou na expedição de Napoleão no Egito (1798-1801), secretário do Instituto do Egito, prefeito de Isère.

Joseph Fourier

Cientista, participou na expedição de Napoleão no Egito (1798-1801), secretário do Instituto do Egito, prefeito de Isère.

Lei de Fourier: A difusão de calor se desenvolve conforme a equação de calor

$$\partial_t u = \partial_x^2 u + \partial_y^2 u + \partial_z^2 u.$$

Einstein e Smoluchowski

Independente um do outro (em 1905-1906) desenvolveram a teoria do movimento Browniano baseado no trabalho de Lord Rayleigh.

Einstein e Smoluchowski

Independente um do outro (em 1905-1906) desenvolveram a teoria do movimento Browniano baseado no trabalho de Lord Rayleigh.

Física: O movimento aleatório é causado pelas colisões com as partículas de água.

Matemática: A probabilidade de encontrar uma partícula num certo lugar pode ser descrita pela solução da equação de calor.

Einstein e Smoluchowski

Independente um do outro (em 1905-1906) desenvolveram a teoria do movimento Browniano baseado no trabalho de Lord Rayleigh.

Física: O movimento aleatório é causado pelas colisões com as partículas de água.

Matemática: A probabilidade de encontrar uma partícula num certo lugar pode ser descrita pela solução da equação de calor.

A existência de átomos foi provada usando as predições quantitativas baseadas na teoria do movimento Browniano (Perrin 1908, prêmio Nobel em 1926).

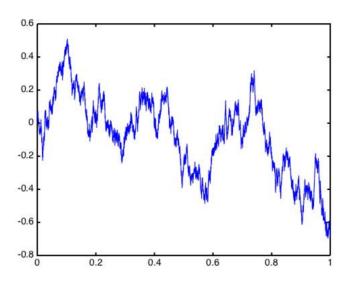
Universalidade

Wiener (anos 20) descrição completa do Movimento Browniano.

Mais tarde fez pesquisa em robotica. Um dos seus alunos foi Bose.

Donsker (1951) mostra que o Movimento Browniano é um objeto universal. Muitos processos, como por exemplo o passeio aleatório simples convergem para o Movimento Browniano.

Imagem Movimento Browniano



• Sejam $X_1, X_2, ...$ independentes com $\mathbb{P}(X_n = \pm e_i) = \frac{1}{2d}$. O passeio aleatório simples no tempo n é

$$S_n = \sum_{i=1}^n X_i.$$

• Sejam $X_1, X_2, ...$ independentes com $\mathbb{P}(X_n = \pm e_i) = \frac{1}{2d}$. O passeio aleatório simples no tempo n é

$$S_n = \sum_{i=1}^n X_i.$$

• Objeto de interesse: $R_n = \{S_1, S_2, \dots, S_n\}$ (traço do PAS)

• Sejam $X_1, X_2, ...$ independentes com $\mathbb{P}(X_n = \pm e_i) = \frac{1}{2d}$. O passeio aleatório simples no tempo n é

$$S_n = \sum_{i=1}^n X_i.$$

- Objeto de interesse: $R_n = \{S_1, S_2, \dots, S_n\}$ (traço do PAS)
- Resultado clássico: $\lim_{n\to\infty}\frac{|R_n|}{n}=\kappa_d:=\mathbb{P}_0(S_n\neq 0\ \forall\ n>0)$ (Lei dos Grandes Números)

• Sejam $X_1, X_2, ...$ independentes com $\mathbb{P}(X_n = \pm e_i) = \frac{1}{2d}$. O passeio aleatório simples no tempo n é

$$S_n = \sum_{i=1}^n X_i.$$

- Objeto de interesse: $R_n = \{S_1, S_2, \dots, S_n\}$ (traço do PAS)
- Resultado clássico: $\lim_{n\to\infty}\frac{|R_n|}{n}=\kappa_d:=\mathbb{P}_0(S_n\neq 0\ \forall\ n>0)$ (Lei dos Grandes Números)
- $\mathbb{P}_0(S_n \neq 0 \, \forall \, n > 0) > 0$ se e somente se $d \geq 3$.

Deviação do comportamento típico

Theorem (v.d. Berg, Bolthausen, Den Hollander (Ann. of Math. 2001), Phetpradap (2011))

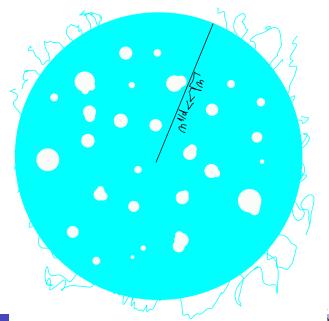
Seja d \geq 3, e 0 < b < κ_d . Então

$$\lim_{n\to\infty}\frac{1}{n^{(1-2/d)}}\log\mathbb{P}(|R_n|\leq bn)=-\frac{1}{d}I(b),\qquad \qquad (1)$$

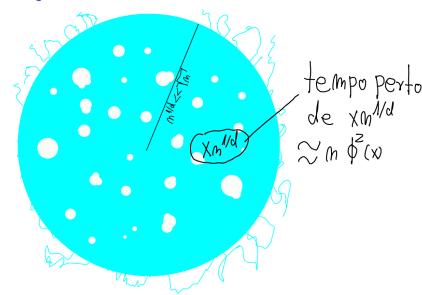
onde

$$I(b) = \inf \left\{ \frac{1}{2} \int |\nabla \phi(x)|^2 dx : \phi \text{ diferenciável }, \int \phi^2(x) dx = 1, \\ \int \left(1 - \exp\{-\kappa_d \phi^2(x)\} \right) dx \le b \right\}.$$
 (2)

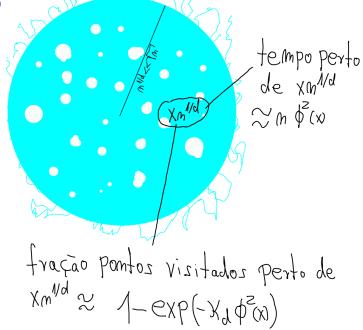
Queijo suiço



Queijo suiço



Queijo suiço

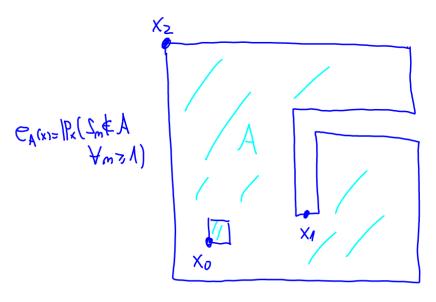


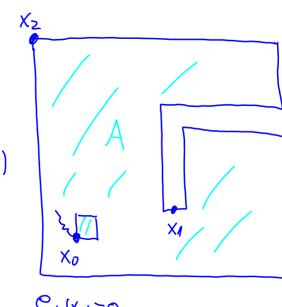
Seja *A* um subconjunto finito de \mathbb{Z}^d . Para $x \in A$:

• $e_A(x) := \mathbb{P}_x(S_n \notin A \,\forall \, n \geq 1)$ = proba de fugir

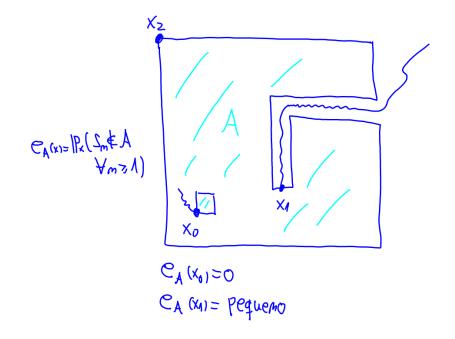
Seja A um subconjunto finito de \mathbb{Z}^d . Para $x \in A$:

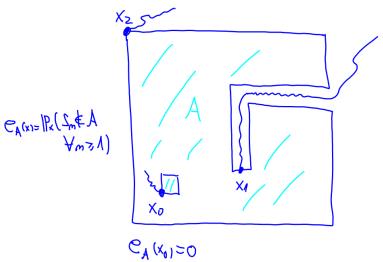
- $e_A(x) := \mathbb{P}_x(S_n \notin A \, \forall \, n \geq 1)$ = proba de fugir
- $e_A(x) > 0 \Longrightarrow x \in \partial A$





A \$ _ 2) x | = (x) A S (N € M)





CA (x0)=0 CA (x1)= Pequemo CA (x2)= grande

Seja A um subconjunto finito de \mathbb{Z}^d . Para $x \in A$:

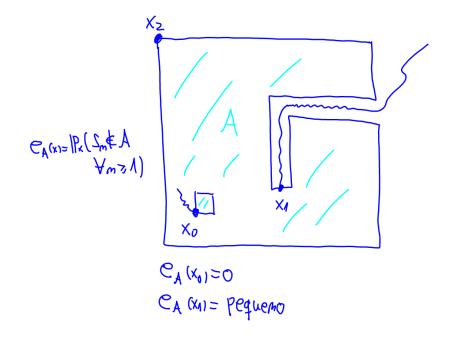
- $e_A(x) := \mathbb{P}_x(S_n \notin A \, \forall \, n \geq 1)$ = proba de fugir
- $e_A(x) > 0 \Longrightarrow x \in \partial A$
- *e*_A se chamada medida de equilibrio.

Seja A um subconjunto finito de \mathbb{Z}^d . Para $x \in A$:

- $e_A(x) := \mathbb{P}_x(S_n \notin A \, \forall \, n \geq 1)$ = proba de fugir
- $e_A(x) > 0 \Longrightarrow x \in \partial A$
- \bullet e_A se chamada medida de equilibrio.

Definimos a capacidade de A por

$$\operatorname{cap}(A) = \sum_{x \in A} e_A(x)$$



Seja A um subconjunto finito de \mathbb{Z}^d . Para $x \in A$:

- $e_A(x) := \mathbb{P}_x(S_n \notin A \forall n \ge 1)$ = proba de fugir
- $e_A(x) > 0 \Longrightarrow x \in \partial A$
- e_A se chamada medida de equilibrio.

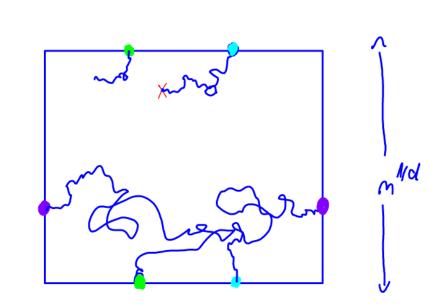
Definimos a capacidade de A por

$$\operatorname{cap}(A) = \sum_{x \in A} e_A(x)$$

Observação: cap(A) grande significa que é fácil para S visitar A mesmo quando começa muito longe de A.

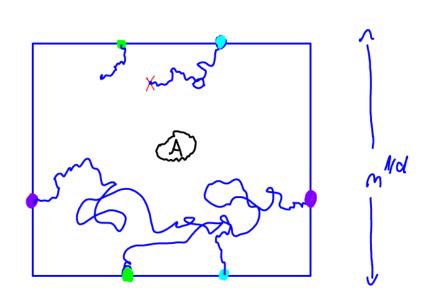
Seja agora $S=(S_n)_{n\in\mathbb{N}}$ o passeio aleatório no toro $\mathbb{T}_n^d=(\mathbb{Z}/n^{1/d}\mathbb{Z})^d$ e

$$\mathbb{P} = \frac{1}{n} \sum_{x \in \mathbb{T}_n^d} \mathbb{P}_x.$$



Seja agora $S=(S_n)_{n\in\mathbb{N}}$ o passeio aleatório no toro $\mathbb{T}_n^d=(\mathbb{Z}/n^{1/d}\mathbb{Z})^d$ e

$$\mathbb{P} = \frac{1}{n} \sum_{x \in \mathbb{T}_n^d} \mathbb{P}_x.$$



Seja agora $S=(S_n)_{n\in\mathbb{N}}$ o passeio aleatório no toro $\mathbb{T}_n^d=(\mathbb{Z}/n^{1/d}\mathbb{Z})^d$ e

$$\mathbb{P} = \frac{1}{n} \sum_{\mathbf{x} \in \mathbb{T}_n^d} \mathbb{P}_{\mathbf{x}}.$$

Theorem (Windisch, 2008)

Seja d \geq 3, então para todo u > 0 e A subconjunto finito de \mathbb{Z}^d

$$\lim_{n\to\infty}\mathbb{P}\Big(\Big\{S_1,S_2,\dots,S_{un}\Big\}\cap A=\emptyset\Big)=e^{-u\mathrm{cap}(A)}\,.$$

Seja agora $S=(S_n)_{n\in\mathbb{N}}$ o passeio aleatório no toro $\mathbb{T}_n^d=(\mathbb{Z}/n^{1/d}\mathbb{Z})^d$ e

$$\mathbb{P} = \frac{1}{n} \sum_{\mathbf{x} \in \mathbb{T}_n^d} \mathbb{P}_{\mathbf{x}}.$$

Theorem (Windisch, 2008)

Seja d \geq 3, então para todo u > 0 e A subconjunto finito de \mathbb{Z}^d

$$\lim_{n\to\infty} \mathbb{P}\Big(\Big\{S_1,S_2,\dots,S_{un}\Big\}\cap A=\emptyset\Big)=e^{-u\mathrm{cap}(A)}\,.$$

• Entrelaçamentos aleatório (EA(u)) no nível u > 0 é um subconjunto aleatório \mathcal{I}_u de \mathbb{Z}^d tal que para todo subconjunto finito A

$$\mathbb{P}(\mathcal{I}_u \cap A = \emptyset) = e^{-u \operatorname{cap}(A)}$$
.

Observações

Existem as seguintes similaridades entre o queijo suiço e EA(u):

• A escala $n^{1/d}$.

Observações

Existem as seguintes similaridades entre o queijo suiço e EA(u):

- A escala $n^{1/d}$.
- A condição

$$\int \left(1 - \exp\{-\kappa_d \phi^2(x)\}\right) \mathrm{d}x \le b$$

no problema variacional e

$$\mathbb{P}(\mathcal{I}_u \cap A \neq \emptyset) = 1 - e^{-u\operatorname{cap}(A)}$$

na definição de EA(u).

Uma conjectura

Conjectura: O queijo suiço é uma superposição de Entrelaçamentos aleatórios.

Uma conjectura

Conjectura: O queijo suiço é uma superposição de Entrelaçamentos aleatórios. Mais precisamente, seja A um subconjunto finito de \mathbb{Z}^d e $x \in \mathbb{R}^d$, então

$$\begin{split} &\lim_{n\to\infty} \mathbb{P}(R_n \cap (A + \lfloor xn^{1/d} \rfloor) = \emptyset \big| |R_n| \le bn) \\ &= \int \exp\big\{ - \operatorname{cap}(A) \phi_b^2(x - y) \big\} \frac{\phi_b(y)}{\int \phi_b(z) \mathrm{d}z} \mathrm{d}y \,. \end{split}$$

Aqui ϕ_b denota o único minimizador do problema variacional cujo máximo é em 0.

O que já sabemos

Já provamos:

 O minimizador é único (modulo translações) para quase todos os valores de b.

O que já sabemos

Já provamos:

- O minimizador é único (modulo translações) para quase todos os valores de b.
- Seja b tal que o problema variacional possui uma única solução e sejam

$$L_n = rac{1}{n} \sum_{i=1}^n \delta_{\mathcal{S}_i} \,, \qquad \mathrm{e} \qquad \mathit{m_b} = \{\phi : \phi \; \mathrm{\acute{e}} \; \mathrm{minimizador}\} \,,$$

então

$$\lim_{n\to\infty} \mathbb{P}(L_n\approx m_b\big||R_n|\leq bn)=1 \qquad \text{(tube property)}$$

Palavras finais

Big picture: O objetivo final é mostrar que os modelos do tipo $EA(\phi)$ para certaz funções ϕ são objetos universais no sentido que muitos modelos convergem para estes modelos.

MUITO OBRIGADO