PUC RIO

PROGRAMA DA DISCIPLINA/TURMA 3ZA

PERÍODO: 2025.2

MAT 2930	TÓPICOS DE EQUAÇÕES DIFERENCIAIS I
	CARGA HORÁRIA TOTAL: 45 HORAS
	N° CRÉDITOS: 3
_	PROFESSOR: Sergey Tikhomirov
TÍTULO DA DISCIPLINA:	Solving differential equations with machine learning
OBJETIVOS DA	Study basics of applying of machine learning technics for solving ordinarily
DISCIPLINA/TURMA	differential equations and partial differential equations
EMENTA DA	In the last years machine learning becomes a major tool in a lot of practical
DISCIPLINA	disciplines. In the course we consider applications of such type of techniques
	difference with the classical learning is that instead of trainining dataset we use
	differential equations. In the course we would consider 3 main techniques
	Residual Neural Networks (ResNets), Physically inspired neural networks
	(PINNS), and Gaussian-process regression. We would consider theoretical basis
	as well as positive (and negative) examples of applications.
PRÉ-REQUISITOS	Ordinarily differential equations, Probability
DA DISCIPLINA	
PROGRAMA DA	The topics includes
DISCIPLINA/TURMA	Basics of neural networks
	Basics of numerical methods for ODE
	Residual neural networks
	Solving ODE with residual neural networks
	Physically inspired neural networks
	elliptic equations
	parabolic equations
	Bayesian method
	Basics of Gaussian Fields
	Gaussian-process regression
AVALIAÇÃO DA DISCIPLINA	Critério 12
	Média = G1
DETALHAMENTO	
AVALIAÇÃO	
DA DISCIPLINA	

BIBLIOGRAFIA BÁSICA DA DISCIPLINA	Hennig, Philipp, Michael A. Osborne, and Hans P. Kersting. <i>Probabilistic</i> <i>Numerics: Computation as Machine Learning</i> . Cambridge University Press, 2022.
	Mathematical Introduction to Deep Learning: Methods, Implementations, and Theory, Arnulf Jentzen, Benno Kuckuck, Philippe von Wurstemberger, 2025
	Gaussian Processes for Machine Learning, C. E. Rasmussen & C. K. I. Williams, MIT Press, 2006
BIBLIOGRAFIA COMPLEMENTAR DA DISCIPLINA	Parallel Computing and Scientific Machine Learning (SciML): Methods and Applications, Chris Rackauckas, <u>https://book.sciml.ai/</u>
	Differential Equations for Continuous-Time Deep Learning, Lars Ruthotto, https://arxiv.org/pdf/2401.03965
BIBLIOGRAFIA DE	
PESQUISA DA DISCIPLINA	