

QUADRATIC FORMS AND QUATERNION ALGEBRAS

JEANINE VAN ORDER

Scope. This course introduces the arithmetic of quadratic forms over number fields and their completions, culminating with the Hasse-Minkowski theorem. As a parallel and motivating thread, we develop the basic theory of quaternion algebras (ramification, Hilbert symbols, local-global principles), emphasizing explicit calculations. The presentation follows the first half of Serre's *Cours d'Arithmétique* [1] and selected chapters of Vignéras' *Arithmétique des algèbres de quaternions* [2].

Prerequisites. Algebraic structures; some exposure to elementary number theory (e.g. quadratic reciprocity), local fields (p -adic numbers), and Galois theory would be desirable but not strictly necessary.

Topics/outline. We propose the following tentative outline of topics.

- Quadratic forms over \mathbf{Q} and \mathbf{Z} : diagonalization, isotropy, discriminant; equivalence, obstructions.
- Local fields and Hilbert symbols: brief p -adic primer; quadratic forms over \mathbf{Q}_p and \mathbf{R} ; the Hilbert symbol $(\cdot, \cdot)_v$ and its properties.
- Hasse-Minkowski theorem: statement and proof for quadratic forms over \mathbf{Q} ; invariants (discriminant, Hasse invariant); local-global principle and consequences.
- Genus, class, and representation problems: local conditions vs. global representation; examples and counterexamples; integral theory highlights from [1].
- Quaternion algebras: definition as central simple algebras; presentation $(a, b)_F$; reduced norm and trace; split versus division algebras (Wedderburn's theorem).
- Ramification and classification: local quaternion algebras, Hilbert symbol interpretation; finite set of ramified places; product formula and the discriminant of a quaternion algebra.
- Orders and arithmetic: maximal and Eichler orders (basic properties); units; norms; embeddings of quadratic fields.
- Connections between forms and quaternions: norm forms from quaternion algebras; isotropy and splitting; representing numbers by quadratic forms via local-global criteria.
- Examples and computations: explicit Hilbert symbol calculations at p and ∞ ; deciding isotropy for ternary/quaternary forms; classifying quaternion algebras over \mathbf{Q} by ramification; sample computations with orders.
- Additional topics: zeta functions, correspondence of Jacquet-Langlands.

Evaluation.

- Problem sets (every 2–3 weeks): 40%

- Mini-project (short exposition or computational notebook): 20%
- Final oral exam (with brief written report): 40%

REFERENCES

- [1] J.-P. Serre, *Cours d'arithmétique*, Presses Universitaires de France, Saint-Germain Paris (1970).
- [2] M.-F. Vignéras, *Arithmétique des algèbres de quaternions*, Springer Lecture Notes in Math. **800** (1980).