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Abstract. Here we consider the discrete time dynamics described by a trans-
formation T : M →M , where T is either the action of shift T = σ on the sym-

bolic space M = {1, 2, ..., d}N, or, T describes the action of a d to 1 expanding

transformation T : S1 → S1 of class C1+α ( for example x→ T (x) = d x (mod
1) ), where M = S1 is the unit circle. It is known that the infinite-dimensional

manifold N of Hölder equilibrium probabilities is an analytical manifold and

carries a natural Riemannian metric. Given a certain normalized Hölder po-
tential A denote by µA ∈ N the associated equilibrium probability. The set of

tangent vectors X (functions X : M → R) to the manifold N at the point µA
(a subspace of the Hilbert space L2(µA)) coincides with the kernel of the Ruelle
operator for the normalized potential A. The Riemannian norm |X| = |X|A
of the vector X, which is tangent to N at the point µA, is described via the

asymptotic variance, that is, satisfies

|X|2 = 〈X,X〉 = limn→∞
1
n

∫
(
∑n−1
i=0 X ◦ T

i)2 dµA.

Consider an orthonormal basis Xi, i ∈ N, for the tangent space at µA.
Given two unit tangent vectors X and Y the curvature K(X,Y ) satisfies

K(X,Y ) =
1

4
[

∞∑
i=1

(

∫
X Y Xi dµA)2 −

∞∑
i=1

∫
X2Xi dµA

∫
Y 2Xi dµA ].

When the equilibrium probabilities µA are invariant Markov probabilities

on {0, 1}N, introducing a special orthonormal basis ây , indexed by finite words

y, we shall get explicit expressions for K(âx, âz), which will be a finite sum.
These values can be positive or negative depending on A and the words x and

z. Words x and z with large length can produce extremely negative curvature

K(âx, âz). If x and z do not share a common prefix, then K(âx, âz) = 0.

1. Introduction

We denote by T : M → M a transformation acting on the metric space M ,
which is either the shift σ acting on M = {1, 2, ..., d}N, or, T is the action of a d to
1 expanding transformation T : S1 → S1, of class C1+α, where M = S1 is the unit
circle.

For a fixed α > 0 we denote by Hol the set of α-Hölder functions on M .
For a Hölder potential A : M → R we define the Ruelle operator (sometimes

called transfer operator) - which acts on Hölder functions f : M → R - by

(1) f → LAf(x) =
∑

T (y)=x

eA(y)f(y)
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It is known (see for instance [22] or [2]) that LA has a positive, simple leading
eigenvalue λA with a positive Hölder eigenfunction hA. Moreover, the dual operator
acting on measures L ∗A has a unique eigenprobability νA which is associated to the
same eigenvalue λA.

Given a Hölder potential A we say that the probability µA - defined on the Borel
sigma-algebra of M - is the equilibrium probability for A, if µA maximizes the
values

h(µ) +

∫
A dµ,

among Borel T -invariant probabilities µ and where h(µ) is the Kolmogorov-Sinai
entropy of µ.

The theory of thermodynamics formalism shows that the probability µA is unique
and is given by the expression µA = hA νA.

In some particular cases, the equilibrium probability (also called Gibbs probabil-
ity) µA is the one observed on the thermodynamical equilibrium in the Statistical
Mechanics of the one-dimensional lattice N (under an interaction described by the
potential A). As an example (where the spin in each site of the lattice N could be
+ or −) one can take M = {+,−}N, A : M → R and T is the shift.

Taking into account the above definitions, we say that a Hölder potential A is
normalized if LA 1 = 1. In this case λA = 1 and µA = νA.

Two potentials A,B in Hol will be called cohomologous to each other (up to a
constant), if there exists a continuous function g : M → R and a constant c, such
that,

(2) A = B + g − g ◦ T − c.

Note that the equilibrium probability for A, respectively B, is the same if A
and B are coboundaries to each other. In each coboundary class (an equivalence
relation) there exists a unique normalized potential A (see [22]). Therefore, the
set of equilibrium probabilities for Hölder potentials N can be indexed by Hölder
potentials A which are normalized. We will use this point of view here: A ↔ µA.

The infinite-dimensional manifold N of Hölder equilibrium probabilities µA is
an analytic manifold (see [24], [11], [22], [8]) and it was shown in [13] that it carries
a natural Riemannian structure. In order to provide a context for our main result,
let us review first some of the main properties of this infinite-dimensional manifold
and some definitions described on [13].

The set of tangent vectors X (a function X : M → R) to N at the point µA
coincides with the kernel of LA. The Riemannian norm |X| = |X|µA of the vector
X, which is tangent to N at the point µA, is described (see Theorem D in [13]) via
the asymptotic variance, that is, satisfies

(3) |X| =
√
〈X,X〉 =

√√√√ lim
n→∞

1

n

∫
(

n−1∑
j=0

X ◦ T j)2 dµA

The associated bilinear form on the tangent space at the point µA can be described
(see Theorem D in [13]) by

(4) 〈X , Y 〉 =

∫
X Y dµA.
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This bilinear form is positive semi-definite and in order to make it definite one
can consider equivalence classes (cohomologous up to a constant) as described by
Definition 5.4 in [13]. In this way, we finally get a Riemannian structure on N (as
anticipated in some paragraphs above). Elements X on the tangent space at µA
have the property

∫
X dµA = 0. The tangent space to N at µA is denoted by TAN .

Given a normalized potential A let {Xi} be an orthonormal basis of TAN , i ∈ N.
Our main result is :

Theorem 1.1. Let A be a normalized potential, and let {Xi} be an orthonormal
basis of TAN . Let X = X1, Y = X2, then the sectional curvature K(X,Y ) is given
by

(5) K(X,Y ) =
1

4
[

∞∑
i=1

(

∫
X Y Xi dµA)2 −

∞∑
i=1

∫
X2Xi dµA

∫
Y 2Xi dµA ].

The expression of K(X,Y ) applies of course to any pair of vectors in the basis
{Xi}, we can always change the enumeration of the vectors in the basis without
changing the basis. The work consists of two distinct parts: the first part, from
Sections 2 to 5, has a more geometric nature and deals with the calculation of the
Levi-Civita connection and the curvature tensor. This estimate becomes quite com-
plex because we are dealing with an infinitely dimensional Riemannian manifold.
Our goal was to express the sectional curvature for sections on the tangent space at
µA in terms of integrals of functions with respect to µA. An important tool which
will be used here is item (iv) on Theorem 5.1 in [13]: for all normalized A ∈ N ,
X ∈ TAN and ϕ a continuous function it holds:

(6)
d

dt

∫
ϕdµA+ tX

∣∣∣∣
t=0

=

∫
ϕX dµA.

In Section 4.3 we describe the expression of sectional curvature K(X,Y ) in terms
of the calculus of thermodynamics formalism.

The nature of the second part of the paper, from Sections 6 to 9, is more dynamic
and analytical. We focus on the sectional curvatures at equilibrium measures µA
which are stationary Markov probabilities on {0, 1}N. We get explicit results in this
case since we are able to exhibit a special orthonormal basis for the tangent space
{ây}, indexed by finite words y on the alphabet {0, 1} (see expression (21)). This
second part of the article is perhaps the more technical and subtle part; after some
computations we will get the explicit expression for sectional curvature K(âx, âz)
(see Theorem 7.8 and Propositions 7.10 and 7.13). These values can be positive or
negative depending on A and the words x and z. Words x and z with large length
can produce extremely negative curvature K(âx, âz) (see end of Example 7.20). If
x and z do not share a common prefix (in particular one can not be a subprefix of
the other), then K(âx, âz) = 0 (see Example 7.11).

We also show that if µA corresponds to the measure of maximal entropy on
{0, 1}N, most of the sectional curvatures K(âx, âz) are equal to −1/2 (see Propo-
sition 7.17). Proposition 7.19 shows, in this case, an example where the sectional
curvature is 1/2.

Considering the two dimensional manifold M of the Markov invariant probabil-
ities (the set of equilibrium probabilities for potentials depending on two coordi-
nates) we show that for any points in M the sectional curvature for the pair of
tangent vectors to M is always zero (see Theorem 7.15).
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One remarkable fact appearing in the proof of Theorem 1.1 is that the expression
(5) of the sectional curvature K(âx, âz) is actually a finite sum (see Theorem 7.8
and Remark 7.12).

Given a finite word y = (y1, y2, ..., yn) we denote by [y] = [y1, y2, ..., yn] the
associated cylinder set in {0, 1}N. The function ây is constant in each of the cylinder
sets [a, y1, y2, ..., yn, b], where a, b = 0, 1. The support of ây is the union of these
cylinder sets. In this way if the word y has large length, then the support of ây is
contained on very small sets.

We point out that section 8 in [13], which considers a simplified model for Markov
measures on the symbolic space {0, 1}N, there was an indication that the curvature
should be non-negative. The results in that section would correspond to consider
in our setting words x and z with very small lengths. It follows from the results
described on the present paper, as we said before, that in the general case the
sectional curvature K(âx, âz) can be negative for certain words x and z with large
length.

In [21] , [4] and [23] the authors consider a similar kind of Riemannian structure.
The bilinear form considered in [21] is the one we consider here divided by the
entropy of µA. As mentioned in section 8 in [13] in that case the curvature can be
positive and also negative in some parts.

The main motivation for the results obtained on [21] (and also [4]) is related to
the study of a particular norm on the Teichmüller space.

The results presented in [13] and here are related to the topic of Information
Geometry (see [1] for general results on the subject) and this is described in Section
5 in [17]. We point out that in the setting of Thermodynamic Formalism the
asymptotic variance is the Fisher information (see Definition 4.3 and Proposition 4.4
in [14]). Results about Kullback-Leibler divergence on Thermodynamic Formalism
appeared recently in [18].

General references for analyticity (and inverse function theorems and implicit
function theorems) in Banach spaces are [8] and [25].

A reference for general results in infinite-dimensional Riemannian manifolds is
[3].

In section 6 in [13] it is explained that the Riemannian metric considered here
is not compatible with the 2-Wasserstein Riemannian structure on the space of
probabilities.

We would like thanks to Paulo Varandas, Miguel Paternain, and Gonzalo Con-
treras for helpful conversations on questions related to the topics considered in this
paper.

We thank the referee for extremely careful reading and criticism of previous
versions of our paper.

2. Preliminaries of Riemannian geometry

Let us introduce some basic notions of Riemannian geometry. Given an infinite-
dimensional C∞ manifold (M, g) equipped with a smooth Riemannian metric g, let
T M be the tangent bundle and T1M be the set of unit norm tangent vectors of
(M, g), the unit tangent bundle. Let χ(M) be the set of C∞ vector fields of M .

In [3] several results for Riemannian metrics on infinite-dimensional manifolds
are presented. We will not use any of the results of that paper.
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The only infinite-dimensional manifold we will be interested in here is N which
is the set of Hölder equilibrium probabilities (which was initially defined in [13]).
Tangent vectors, differentiability, analyticity, etc, should be always considered in
the sense of the setting described in sections 2.3 and 5.1 in [13] (see also [6] and
[11]). We will elaborate on this later.

So in our case, M = N , and g is the L2 metric, gA(X,Y ) =
∫
X Y dµA,

For practical purposes, we shall call Energy the function E(v) = g(v, v), v ∈ TN ,
although in mechanics the energy is rather defined by 1

2g(v, v).
Given a smooth function f : N −→ R, the derivative of f with respect to a

vector field X ∈ χ(N ) will be denoted by X(f). The Lie bracket of two vector fields
X,Y ∈ χ(N ) is the vector field whose action on the set of functions f : N −→ R is
given by [X,Y ](f) = X(Y (f))− Y (X(f)).

The Levi-Civita connection of (N , g), ∇ : χ(N )×χ(N ) −→ χ(N ), with notation
∇(X,Y ) = ∇XY , is the affine operator characterized by the following properties:

(1) Compatibility with the metric g:

Xg(Y,Z) = g(∇XY, Z) + g(Y,∇XZ)

for every triple of vector fields X,Y, Z.
(2) Absence of torsion:

∇XY −∇YX = [X,Y ].

(3) For every smooth scalar function f and vector fields X,Y ∈ χ(N ) we have
• ∇fXY = f∇XY ,
• Leibniz rule: ∇X(fY ) = X(f)Y + f∇XY .

The expression of ∇XY can be obtained explicitly from the expression of the
Riemannian metric, in dual form. Namely, given two vector fields X,Y ∈ χ(N ),
and Z ∈ χ(N ) we have

g(∇XY, Z) =
1

2
(Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

− g([X,Z], Y )− g([Y,Z], X)− g([X,Y ], Z)),

2.1. Curvature tensor and sectional curvatures. We follow [9] for the defini-
tions in the subsection. To simplify the notation, from now on we shall adopt the
convention g(X,Y ) = 〈X,Y 〉. The curvature tensor

R : χ(N )× χ(N )× χ(N ) −→ χ(N )

is defined in terms of the Levi-Civita connection as follows

(7) R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z.

The sectional curvature of the plane generated by two vector fields X,Y at the
point A ∈ N , which are orthonormal at A, is given by

(8) K(X,Y ) = 〈∇Y∇XX −∇X∇YX +∇[X,Y ]X,Y 〉 = 〈R(X,Y )X,Y 〉.

Let A be a normalized Hölder potential. Let us consider a local smooth surface
S(t, s), for | t |, | s |≤ ε small, tangent to the plane {A + tX + sY } generated by
X,Y at the point A = S(0, 0). Let X̄, Ȳ be the coordinate vector fields of the
surface, and suppose that X̄A = X, ȲA = Y . In Subsection 4.2 we shall exhibit
such local surfaces.
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Lemma 2.1. The expression of the sectional curvature of the plane generated by
the two orthonormal vectors X,Y is
(9)

K(X,Y ) = −1

2
(X̄(X̄(‖ Ȳ ‖2))+Ȳ (Ȳ (‖ X̄ ‖2)))+ ‖ ∇Ȳ X̄ ‖2 +Ȳ (X̄〈X̄, Ȳ 〉)−〈∇X̄X̄,∇Ȳ Ȳ 〉.

Proof. The fact that X̄ and Ȳ commute implies that ∇X̄ Ȳ = ∇Ȳ X̄ and

〈R(X̄, Ȳ )X̄, Ȳ 〉 = 〈∇Ȳ∇X̄X̄ −∇X̄∇Ȳ X̄, Ȳ 〉.
The first term of 〈R(X̄, Ȳ )X̄, Ȳ 〉 gives

〈∇Ȳ∇X̄X̄, Ȳ 〉 = Ȳ 〈∇X̄X̄, Ȳ 〉 − 〈∇X̄X̄,∇Ȳ Ȳ 〉
= Ȳ (X̄〈X̄, Ȳ 〉 − 〈X̄,∇X̄ Ȳ 〉)− 〈∇X̄X̄,∇Ȳ Ȳ 〉
= Ȳ (X̄〈X̄, Ȳ 〉 − 〈X̄,∇Ȳ X̄〉)− 〈∇X̄X̄,∇Ȳ Ȳ 〉

= Ȳ (X̄〈X̄, Ȳ 〉 − 1

2
Ȳ (‖ X̄ ‖2))− 〈∇X̄X̄,∇Ȳ Ȳ 〉

= −1

2
Ȳ (Ȳ (‖ X̄ ‖2)) + Ȳ (X̄〈X̄, Ȳ 〉)− 〈∇X̄X̄,∇Ȳ Ȳ 〉

The second term of the formula gives

〈∇X̄∇Ȳ X̄, Ȳ 〉 = X̄〈∇Ȳ X̄, Ȳ 〉 − 〈∇Ȳ X̄,∇X̄ Ȳ 〉
= X̄〈∇X̄ Ȳ , Ȳ 〉 − 〈∇Ȳ X̄,∇Ȳ X̄〉

=
1

2
X̄(X̄(‖ Ȳ ‖2))− ‖ ∇Ȳ X̄ ‖2

Substracting the second term from the first one we obtain the lemma.
�

3. The analytic structure of the set of normalized potentials

Definition 3.1. Let (X, |.|) and (Y, |.|) Banach spaces and V an open subset of
X. Given k ∈ N, a function F : V → Y is called k-differentiable in x, if for each
j = 1, ..., k, there exists a j-linear bounded transformation

DjF (x) : X ×X × ...×X︸ ︷︷ ︸
j

→ Y,

such that,

Dj−1F (x+vj)(v1, ..., vj−1) − Dj−1F (x)(v1, ..., vj−1) = DjF (x)(v1, ..., vj)+oj(vj),

where

oj : X → Y, satisfies, lim
v→0

|oj(v)|Y
|v|X

= 0

By definition F has derivatives of all orders in V , if for any x ∈ V and any k ∈ N,
the function F is k-differentiable in x.

Definition 3.2. Let X,Y be Banach spaces and V an open subset of X. A function
F : V → X is called analytic on V , when F has derivatives of all orders in V , and
for each x ∈ V there exists an open neighborhood Vx of x in V , such that, for all
v ∈ Vx, we have that

F (x+ v) − F (x) =

∞∑
j=1

1

n!
DjF (x)vj ,

where DjF (x)vj = DjF (x)(v, ..., v) and DjF (x) is the j-th derivative of F in x.
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Above we use the notation of section 3.2 in [11].

N can be expressed locally in coordinates via analytic charts (see [13]).

3.1. Some more estimates from Thermodynamic Formalism. Given a po-
tential B ∈ Hol we consider the associated Ruelle operator LB and the correspond-
ing main eigenvalue λB and eigenfunction hB .

The function

(10) Π(B) = B + log(hB)− log(hB(T ))− log(λB)

describes the projection of the space of potentials B on Hol onto the analytic
manifold of normalized potentials N .

We identify below TAN with the affine subspace {A+X : X ∈ TAN}.
The function Π is analytic (see [13]) and therefore has first and second derivatives.

Given the potential B, then the map DBΠ : TBN −→ TΠ(B)N given by

DBΠ(X) =
∂

∂t
(Π(B + tX)t=0

should be considered as a linear map from Hol to itself (with the Hölder norm
on Hol). Moreover, the second derivative D2

BΠ should be interpreted as a bilinear
form from Hol × Hol to Hol, and is given by

D2
BΠ(X,Y ) =

∂2

∂t∂s
(Π(B + tX + sY )t=s=0.

We denote by ||A||α the α-Hölder norm of an α-Hölder function A.
When B is normalized the eigenvalue is 1 and the eigenfunction is equal to 1. We

would like to study the geometry of the projection Π restricted to the tangent space
TAN into the manifold N (namely, to get bounds for its first and second derivatives
with respect to the potential viewed as a variable) for a given normalized potential
A.

The space TAN is a linear subspace of functions and the derivative map DΠ is
analytic when restricted to it.

We denote by E0 = EA0 the set of Hölder functions g, such that,
∫
gdµA = 0,

where µA is the equilibrium probability for the normalized potential A. Note that
EA0 is contained in TA(N ).

The claims of the next Lemma are based mainly on results of [13] (see also [11],
[6]). In Proposition 10.1 in the Appendix of our article, we outline the proof of
Item (4).

Lemma 3.3. Let Λ : Hol −→ R, H : Hol −→ Hol be given, respectively, by
Λ(B) = λB , H(B) = hB. Then we have

(1) The maps Λ, H, and A −→ µA are analytic.
(2) For a normalized B we get that DB log(Λ)(ψ) =

∫
ψdµB ,

(3) D2
B log(Λ)(η, ψ) =

∫
ηψdµB , where ψ, η are at TBN .

(4) For any Höloder potential A we have

DAH(X) = hA

∫
( [ (I − LT,A|EA0 )−1 (1− hA) ]. X) dµA.

If A is normalized, we have DAH = 0,
(5) If A is a normalized potential, then for every function X ∈ TAN we have

•
∫
XdµA = 0.
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• DAΠ(X) = X.

In order to simplify the notation, from now on, unless is necessary for the un-
derstanding, we will denote (I − LT,A|EA0 )−1 by (I − LT,A)−1.

Remark 2: The proof of item (4) appears in an old version in arXiv in the year
2012 - see Proposition 4.6 in arXiv:1205.5361v1 - of the published paper [6]. The
authors of [6] authorized us to present it in the Appendix. This claim and its proof
did not appear in the final published version of [6].

Items (2) and (3) are taken from Theorem D in [13]. Item
∫
XdµA = 0 in (5)

follows from Theorem A and Corollary B in [13] the other item in (5) is trivial.
The analyticity of Λ and H of the item (1) are well-known facts (see chapter 4

in [22] or Corollary B in [13]) which was also proved in [6].
The law that takes a Hölder potential B to its normalization A is differentiable

according to section 2.2 in [13].
Note that the derivative linear operator X → DAH(X) is zero when A is nor-

malized.

Remark 3: Note that item (2) implies by item (5) that DB log(Λ)(ψ) =∫
ψdµB = 0, when B is normalized and ψ ∈ TµB (N ).
Remark 4: Item (1) above means that for a fixed Hölder function f the map

A→
∫
fdµA is differentiable on A (see theorem B in [6])

Questions related to second derivatives on Thermodynamic Formalism are con-
sidered in [19] and [23].

4. Evaluating the sectional curvatures of the Riemannian metric

The goal of the section is to calculate the sectional curvature K(X,Y ) of the
plane generated by two orthogonal vector fields tangent to A ∈ N applying the
calculus of Thermodynamics formalism. We start with a technical result that is a
consequence of formula 6. This lemma will be extensively used in the article.

4.1. Leibniz rule of differentiation.

Lemma 4.1. Let A ∈ N and let γ : (−ε, ε) −→ N be a smooth curve such that
γ(0) = A. Let X(t) = γ′(t), and let Y be a smooth vector field tangent to N defined
in an open neighborhood of A. Denote by Y (t) = Y (γ(t)). Then the derivative of∫
Y (t)dµγ(t) with respect to the parameter t is

d

dt

∫
Y (t)dµγ(t) =

∫
dY (t)

dt
dµγ(t) +

∫
Y (t)X(t)dµγ(t)

for every t ∈ (−ε, ε).

Proof. The idea of the proof is very simple and based on the fact that the function
Q : χ(N )×mT −→ R given by

Q(X,µ) =

∫
Xdµ

is a bilinear form, where χ(N ) is the set of C1 vector fields tangent to N and mT

is the set of invariant measures of the map T . So the derivative of a function of the
type Q(X(t), µ(t)) satisfies a sort of Leibniz rule. Let us check.
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Let us calculate the derivative at t = 0, for every other t ∈ (−ε, ε) the calculation
is analogous. We have

d

dt

∫
Y (t)dµγ(t) |t=0 = lim

t→0

1

t
(

∫
Y (t)dµγ(t) −

∫
Y (0)dµA)

=

∫
lim
t→0

1

t
(Y (t)− Y (0))dµγ(t)

+ lim
t→0

1

t
(

∫
Y (0)dµγ(t) −

∫
Y (0)dµA)

=

∫
dY (t)

dt
dµA + lim

t→0

1

t
(

∫
Y (0)dµA+tX(0) −

∫
Y (0)dµA)

where in the last step we use the fact that the derivative with respect to t only
depends on the vector X(0) and not on the curve through A tangent to X(0). By
equation (6) the second term in the above equality is just d

dt

∫
Y (0)dµA+tX(0) |t=0,

which equals
∫
X(0)Y (0)dµA. This finishes the proof of the lemma.

�

From now on, we shall adopt the notations ∂Y
∂t = Y ′ = Yt, the second one applies

when there is only one parameter involved in the calculations, the third one will be
used otherwise.

4.2. Auxiliary local surfaces in N . Next, given a normalized potential A and
X,Y orthonormal vector fields in the tangent space of A, we proceed to construct
a local surface S(t, s), | t |, | s |< ε small, such that S(0, 0) = A, and the tangent
space of S(t, s) at A is the plane generated by X,Y . Let us consider the plane

P (t, s) = A+ tX + sY

where t, s,∈ R, that is a subset of TAN , and let Π be the projection into N defined
in equation 10. The vector fields XP (t,s) = ∂

∂tP (t, s) = X, YP (t,s) = ∂
∂sP (t, s) = Y

are tangent to the plane P of course.
Let S(t, s) = Π(P (t, s)). By Lemma 3.3 item (5), the restriction of the map Π to

the plane P (t, s) is a local diffeomorphism onto is image, so there exists ε > 0 small
such that S(t, s) is an analytic embedding of the rectangle {| t |< ε} × {| s |< ε}.

The coordinate vector fields of S(t, s) are X̄S(t,s) = ∂
∂t (Π(P (t, s))) = DP (t,s)Π(X),

ȲS(t,s) = ∂
∂s (Π(P (t, s)) = DP (t,s)Π(Y ), so X̄, Ȳ are extensions of X,Y .

Moreover, we have the following

Lemma 4.2. The derivatives with respect to t, s of the coordinate vector fields X̄,
Ȳ at the point A (a normalized potential) are

(1) ∂
∂tX̄ = ∂

∂s Ȳ = −1

(2) ∂
∂sX̄ = ∂

∂t Ȳ = 0.

Proof. This claim will be a consequence of Lemma 3.3. Indeed, since the local sur-
face S(t, s) is contained in the manifold of normalized potentials, the eigenvalues
λS(t,s) of the Ruelle operator associated to the functions S(t, s), and the eigenfunc-
tions hS(t,s) are equal to 1 for every t, s. Thus, the differentials of the functions
Λ(B) = λB , log(Λ)(B), H(B) = hB and log(H)(B) at the point B = A are equal
to zero.
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By definition, we have

(11)
∂

∂t
(X̄S(t,0))t=0 =

∂

∂t
(DP (t,0)Π(XP (t,0)))t=0

Let I be the identity map. The expression of the projection Π (equation (10)) is

Π(B) = I(B) + log(hB)− log(hB(T ))− log(λB).

Lemma 3.3 grants that all the functions involved in the expression of Π are
differentiable, so we get at the point t = 0,

∂

∂t
(DP (t,0)Π(XP (t,0)))t=0 =

∂

∂t
(DP (t,0)I(XP (t,0)))t=0

+
∂

∂t
((DP (t,0) log(H))(XP (t,0)))t=0

− ∂

∂t
((DP (t,0) log(H ◦ T ))(XP (t,0)))t=0

− ∂

∂t
((DP (t,0) log(Λ))(XP (t,0)))t=0

(12)

The first term gives at t = 0,

∂

∂t
(DP (t,0)I(XP (t,0)))t=0 =

∂

∂t
(X)t=0 = 0

since X does not depend on t.
By Lemma 3.3 item (3), the fourth term of this equality gives at t = 0,

− ∂2

∂t2
log(Λ)A+tX = −

∫
X2dµA = −1

To evaluate the second and third terms let us first show that

Claim 1: ∂
∂t (DP (t,0)H(XP (t,0))) = 0 at t = 0.

We shall prove Claim 1 in two steps. Let β(t) = Π(P (t, 0)), that is an analytic
curve in the manifold N with β(0) = A, β′(0) = X, the same values at t = 0 for
the curve P (t, 0) = A+ tX and its first derivative.

Claim: 2 ∂
∂t (DP (t,0)H(XP (t,0))) = ∂

∂t (Dβ(t)H(β′(t))) at t = 0.

Indeed, the function F (B) = DB(H) is analytic as a map from Hol to Hol. Then
we have,

‖ F (P (t, 0))− F (β(t)) ‖ = ‖ DP (t,0)H(X)−Dβ(t)H(β(t)) ‖
≤ ‖ DP (t,0)H(X)−Dβ(t)H(X) ‖
+ ‖ Dβ(t)H(X)−Dβ(t)H(β(t)) ‖
≤ ‖ DP (t,0)H −Dβ(t)H ‖‖ X ‖
+ ‖ Dβ(t)H ‖‖ X − β′(t) ‖

Since P (t, 0) − β(t) = O(t2) because these curves are tangent at t = 0, Taylor
expansion yields that the term ‖ DP (t,0)H −Dβ(t)H ‖‖ X ‖ is of order O(t2).

Moreover, the term ‖ X−β′(t)) ‖ is of orderO(t) since the curve β(t) is tangent to
X at t = 0, and the term ‖ Dβ(t)H ‖ vanishes because β(t) is a curve of normalized
potentials ( item (4) of Lemma 3.3 ). Hence, the whole above expression is of order
O(t2) and Claim 2 holds.
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So let us proceed to evaluate ∂
∂t (Dβ(t)H(β′(t))) at t = 0. Recall that β(t) is a

curve of normalized potentials, so hβ(t) = 1 for every t. Therefore,

Dβ(t)H(β′(t)) =
∂

∂t
(H(β(t))) =

∂

∂t
1 = 0,

This yields the proof of Claim 1.
To finish the proof of the first part of item (1) in the Lemma, it remains to show

that ∂
∂t ((DP (t,0) log(H))(XP (t,0)))t=0 = 0. This result can be deduced by either

applying the chain rule to log(H) or following the same steps of the proof of Claim
1, carried out replacing H by log(H).

Replacing t by s and X by Y , and P (t, 0) = A+ tX by P (0, s) = A+ sY in the
above argument we get

∂

∂s
Ȳ = −

∫
Y 2dµA = −1.

Since X,Y are unit vector fields, we get item (1) in Lemma 4.2.

Item (2) follows the same type of reasoning. By definition we have,

∂

∂s
(X̄S(0,s))s=0 =

∂

∂s
(DP (t,s)Π(XP (t,s))t=0)s=0.

This expression, according to equation (13) is

∂

∂s
(DP (t,s)Π(XP (t,s)))t=s=0 =

∂

∂s
(DP (t,s)I(XP (t,s)))t=s=0

+
∂

∂s
((DP (t,s) log(H))(XP (t,s)))t=s=0

− ∂

∂s
((DP (t,s) log(H ◦ T ))(XP (t,s)))t=s=0

− ∂

∂s
((DP (t,s) log(Λ)(XP (t,s)))t=s=0

The first term gives at t = 0,

∂

∂s
(DP (t,0)I(XP (t,0)))t=0 =

∂

∂s
(X)t=0 = 0

since X does not depend on t, s. The fourth term is, by Lemma 3.3 item (3),

− ∂

∂s
((DP (t,s) log(Λ)(XP (t,s)))t=s=0 = −D2

A log(Λ)(Y,X) = −
∫
XY dµA = 0

To evaluate the second and third terms we proceed in the same way as in the
proof of item (1), we shall show that they vanish (this follows from the chain rule).
Similar to Claims 1 and 2 in the proof of item (1 we have

Claim 3 ∂
∂s (DP (t,s)H(XP (t,s))) = 0 at t = s = 0.

We shall prove Claim 3 in two steps. Let Ss0(t) = S(t, s0) = Π(P (t, s0)), that is
an analytic curve, for each s0, in the manifold N .

Claim: 4 ∂
∂s (DP (t,s)H(XP (t,s))) = ∂

∂s (DSs(t)H(X̄Ss(t))) at t = s = 0, recalling

that X̄ = DΠ(X).
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The proof of Claim 4 is an extension of the proof of Claim 2. We shall show that
the diference DP (t,s)H(XP (t,s))) − DSs(t)H(X̄Ss(t)) is of the order of a quadratic

term in t, s in an open neigborhood of (0, 0).
Let us start by observing that Taylor approximation of order 2 of the function

S(t, s) in terms of t, s is

S(t, s) = Π(P (t, s)) = A+ (DAΠ) ◦ (D(0,0)P )(t, s) +O(2)

= A+ tX + sY +O(2) = P (t, s) +O(2)

since DAΠ = I, where O(2) is a term of order 2 in t, s. In particular, notice that
D(0,0)S = D(0,0)P .

To estimate the difference DP (t,s)H(XP (t,s))−DSs(t)H(X̄Ss(t)) in an open neig-
borhood of (0, 0), let us first extend the vector field X as a constant vector field in
an open neighborhood B of A in the Banach space of Hölder functions. We shall
denote by X this extension, to simplify notation. We have

‖ DP (t,s)H(XP (t,s))−DSs(t)H(X̄Ss(t)) ‖ ≤ ‖ DP (t,s)H(XP (t,s))−DSs(t)H(XP (t,s)) ‖
+ ‖ DSs(t)H(XP (t,s))−DSs(t)H(X̄P (t,s)) ‖
≤ ‖ DP (t,s)H −DSs(t)H ‖‖ XP (t,s) ‖
+ ‖ DSs(t)H ‖‖ XP (t,s) − X̄P (t,s) ‖ .

Since Ss(t) is a curve of normalized potentials we have that DSs(t)H = 0, more-
over, since B → DBH is an analytic function of B, there exists a constant L > 0
such that for every t, s sufficiently small we have

‖ DP (t,s)H −DSs(t)H ‖≤ L ‖ P (t, s)− Ss(t) ‖= LO(2)

which implies Claim 4. Claim 3 follows from the fact that

‖ DP (t,s)H(XP (t,s)) ‖=‖ DP (t,s)H(XP (t,s))−DSs(t)H(X̄Ss(t)) ‖ .

As in the proof of item (1), to obtain the values of the derivative of D log(H) we
either apply the chain rule and Claim 3 or we follow step by step the proof of Claims
3 and 4 replacing H by log(H).

The Claims also hold for the functions H ◦ T and log(H) ◦ T . Indeed, since
H(A) = hA, (H ◦ T )(A) = hA◦T , and if A is a normalized potential, the function
A ◦ T is a normalized potential as well. So the calculations in the proof of the
Claims for normalized potentials apply to A ◦ T . This yields item (2).

�

4.3. The expression of K(X,Y ) in terms of the calculus of thermodynam-
ics formalism. Let us first state some notations. Let X̄t be the derivative of the
vector field X̄ with respect to the parameter t and X̄s be the derivative of the vector
field X̄ with respect to the parameter s. The same convention applies to Ȳt, Ȳs.
The notations X̄(Y ) = ∂

∂t Ȳ = Ȳt will always represent derivatives with respect to

the vector field X̄, while X̄Ȳ or X̄ × Ȳ will represent the product of the functions
X̄ and Ȳ . Through the section this double character of the vectors tangent to the
manifold N which are also functions will show up in all statements and proofs.

Theorem 4.3. Let A be a normalized potential, let X,Y ∈ TAN be a pair of
orthonormal vector fields, and let S : (−ε, ε) × (−δ, δ) −→ N be the local surface
defined in the previous subsection with S(0, 0) = A, X̄, whose coordinate vector
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fields are X̄, Ȳ , with X̄(A) = X, Ȳ (A) = Y . Then the sectional curvature K(X,Y )
at A of the plane generated by X,Y is given by the expression

K(X,Y ) =‖ ∇Ȳ X̄ ‖2 −〈∇X̄X̄,∇Ȳ Ȳ 〉

We shall subdivide the proof into several steps.

Lemma 4.4. We have that X̄s = Ȳt in the local surface S.

This is a straightforward consequence of the fact that the vector fields X̄, Ȳ
commute.

Next, let us evaluate the terms of the sectional curvature in Lemma 2.1,

K(X,Y ) = −1

2
(X̄(X̄(‖ Ȳ ‖2)) + Ȳ (Ȳ (‖ X̄ ‖2)))+ ‖ ∇Ȳ X̄ ‖2

+ Ȳ (X̄〈X̄, Ȳ 〉)− 〈∇X̄X̄,∇Ȳ Ȳ 〉.

Lemma 4.5. At every point p ∈ S(t, s) we have

(1) X̄(X̄(‖ Ȳ ‖2)) = 2
∫
Ȳ Ȳttdµp −

∫
Ȳ 2dµp +

∫
X̄2Ȳ 2dµp.

(2) Ȳ (Ȳ (‖ X̄ ‖2)) = 2
∫
X̄X̄ssdµp −

∫
X̄2dµp +

∫
X̄2Ȳ 2dµp.

In particular, if p = A we have

(1) X̄(X̄(‖ Ȳ ‖2)) = 2
∫
Ȳ ȲttdµA − 1 +

∫
X̄2Ȳ 2dµA.

(2) Ȳ (Ȳ (‖ X̄ ‖2)) = 2
∫
X̄X̄ssdµA − 1 +

∫
X̄2Ȳ 2dµA.

Proof. The expression follows from the application of the Leibniz rule to differen-
tiate ‖ Ȳ ‖2=

∫
Ȳ 2dµp (we shall omit for convenience the p in the notation of the

measure dµp ):

X̄(X̄

∫
Ȳ 2dµ) = X̄(2

∫
Ȳ Ȳtdµ+

∫
X̄Ȳ 2dµ)

= 2

∫
(Ȳt)

2dµ+ 2

∫
Ȳ Ȳttdµ+ 2

∫
Ȳ X̄Ȳtdµ

+

∫
X̄tȲ

2dµ+ 2

∫
X̄Ȳ Ȳtdµ+

∫
X̄2Ȳ 2dµ

= 2

∫
(Ȳt)

2dµ+ 2

∫
Ȳ Ȳttdµ+ 4

∫
X̄Ȳ Ȳtdµ

+

∫
X̄tȲ

2dµ+

∫
X̄2Ȳ 2dµ.

Since by Lemma 4.2 we have that X̄s = Ȳt = 0, X̄t = Ȳs = −1, we get item (1)
just by replacing this values in the integral expressions above.

Interchanging X̄ and Ȳ , t and s, in the above formulla, we get item (2). At the
point p = A we have that

∫
X̄2dµA =

∫
T̄ 2dµA = 1, so replacing these values in

the formula we finish the proof of the lemma.
�

Lemma 4.6. The expression of Ȳ (X̄〈X̄, Ȳ 〉) = Ȳ (X̄
∫
X̄Ȳ dµp) is

Ȳ (X̄

∫
X̄Ȳ dµp) =

∫
Ȳ X̄tsdµp+1−

∫
Ȳ 2dµp+

∫
X̄Ȳtsdµp−

∫
X̄2dµp+

∫
X̄2Ȳ 2dµp
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at every point p ∈ S(t, s). In particular, at p = A we have

Ȳ (X̄

∫
X̄Ȳ dµA) =

∫
Ȳ X̄tsdµA +

∫
X̄ȲtsdµA − 1 +

∫
X̄2Ȳ 2dµA

Proof. We apply the Leibniz rule,

Ȳ (X̄

∫
X̄Ȳ dµ) = Ȳ (

∫
X̄tȲ dµ+

∫
X̄Ȳtdµ+

∫
X̄2Ȳ dµ)

=

∫
X̄tsȲ dµ+

∫
X̄tȲsdµ+

∫
X̄tȲ

2dµ

+

∫
X̄sȲtdµ+

∫
X̄Ȳtsdµ+

∫
X̄ȲtȲ dµ

+

∫
ȲsX̄

2dµ+ 2

∫
Ȳ X̄X̄sdµ+

∫
X̄2Ȳ 2dµ

Since by Lemma 4.4 we have that X̄s = Ȳt we get the following formula just adding
the terms in the above formula:

Ȳ (X̄

∫
X̄Ȳ dµ) =

∫
Ȳ X̄tsdµ+

∫
X̄tȲsdµ+

∫
X̄tȲ

2dµ+

∫
(X̄s)

2dµ

+

∫
X̄Ȳtsdµ+ 3

∫
X̄X̄sȲ dµ+

∫
ȲsX̄

2dµ+

∫
X̄2Ȳ 2dµ.

By Lemma 4.2 X̄s = Ȳt = 0, X̄t = Ȳs = −1, and replacing these values in the
integral expression above we obtain the formula in the statement. Moreover, if

p = A we know that
∫
X̄2dµA =

∫ 2
dµA = 1, as well as

∫
Ȳ 2dµA =

∫
Y 2dµA = 1,

thus concluding the proof of the Lemma.
�

Corollary 4.7. The term − 1
2 (X̄(X̄(‖ Ȳ ‖2)) + Ȳ (Ȳ (‖ X̄ ‖2))) + Ȳ (X̄〈X̄, Ȳ 〉) in

the expression of K(X,Y ) at the point A vanishes.

Proof. To shorten notation, we shall omit the dependence of A in the expressions.
According to Lemma 4.4, we have that

(1)
∫
X̄X̄ssdµ =

∫
X̄Ȳtsdµ.

(2)
∫
Ȳ X̄stdµ =

∫
Ȳ Ȳttdµ.

Replacing the above equalities in the expressions of Lemmas 4.5, 4.6, and adding
the resulting formulae we get Corollary 4.7.

�

Theorem 4.3 follows at once from Corollary 4.7.

5. Cristoffel coefficients at the expression of K(X,Y )

We denote by {Xi}, i ∈ N, a complete orthonormal base of the vector space
TAN ⊂ L2(µ) (for the Gibbs probability µ associated to the normalized potential
A).

The main goal of the section is to obtain the expression for the sectional curvature
in Theorem 1.1.

Namely, let A ∈ N be a point in the manifold of normalized potentials, let
X,Y ∈ TAN be two orthonormal tangent vectors. Then the expression of the
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curvature of the plane generated by X,Y is

(13) K(X,Y ) =
1

4
[

∞∑
i=1

(

∫
X Y Xi dµ)2 −

∞∑
i=1

∫
X2Xi dµ

∫
Y 2Xi dµ ].

In Proposition 5.2 we will show that the above sum is well defined.
The proof is a direct calculation of the terms ‖ ∇Ȳ X̄ ‖2, 〈∇X̄X̄,∇Ȳ Ȳ 〉 that

appear in the expression of the curvature in Theorem 4.3. We shall subdivide the
calculation in several lemmas.

We follow the notations of the previous section. Let S(t, s) be the local surface
given in Section 4 tangent to the plane generated by the vectors X,Y , satisfying
S(0, 0) = A, let X̄, Ȳ be the local extensions of the vectors X,Y obtained by
projecting by the map Π the plane generated by X,Y at TAN into the tangent
space of N .

Let us define local extensions X̄i of the vector fields Xi in an analogous way
we defined the extensions of X,Y : let Sk be the plane generated by X1, X2, .., Xk

and let us project by Π the tangent space of Sk into TN by the differential of the
projection into N .

The terms ‖ ∇Ȳ X̄ ‖2, 〈∇X̄X̄,∇Ȳ Ȳ 〉 involve the Cristoffel symbols of the vector
fields X̄, Ȳ , at the point A we have:

∇X̄kX̄l =

∞∑
i=1

ΓiklXi

where Γikl = 〈∇X̄kX̄l, X̄i〉 is the Cristoffel coefficient. We follow [9] for the defini-
tions and basic properties of Cristoffel coefficients.

The coefficient Γkij can be calculated in terms of the coefficients of the first
fundamental form of the metric at A, the inner products gij = 〈Xi, Xj〉 by the
following formula:

Γikl =
1

2
gim(gmk,l + gml,k − gkl,m)

where gim is the coefficient of the inverse of the first fundamental form of index
im, gmk,l is the derivative with respect to X̄l of the coefficient gmk, and the above
notation is Einstein’s convention for the sum on the index m.

The expression ”inverse of the first fundamental form” requires some explana-
tion since we are dealing with an infinite-dimensional Riemannian manifold. One
natural rigorous approach is to evaluate the series

∑∞
i=1 ΓiklXi as the limit of its

partial sums
∑n
i=1 ΓiklXi, that includes the Cristoffel coefficients in the subspace of

TAN generated by {X1, X2, .., Xn}. The first fundamental form restricted to this
subspace is a n× n matrix that, under our assumptions, is the identity. Its inverse
is of course the identity. This allows us to define all the terms in the partial sum,
then we take the limit as n → ∞ to get the series. We shall prove that the series
converges absolutely, so the above procedure provides the expression of ∇X̄kX̄l as
an infinite series.

In particular, since the basis {X1, X2, .., Xn, ..} is orthonormal, the indices in the
sum of the expression of ∇X̄kX̄l according to Einstein’s convention just reduce to

ii,kk, ll, depending on the case, and gkl = gkl = δkl. So at the point A we get the
formula

Γikl =
1

2
(gik,l + gil,k − gkl,i).



16 ARTUR O. LOPES AND RAFAEL O. RUGGIERO

Lemma 5.1. The term gik,l at A, for any permutation of the indices, is

gik,l =

∫
XiXkXldµ.

Then,

∇X̄kX̄l =
1

2

∞∑
i=1

(

∫
XiXkXldµA)Xi.

Proof. We have that gik,l = X̄l〈X̄i, X̄k〉 = X̄l

∫
X̄iX̄kdµ. By the Leibniz rule we

have

X̄l

∫
X̄iX̄kdµ =

∫
∂

∂X̄l
(X̄i)X̄kdµ+

∫
X̄i

∂

∂X̄l
(X̄k)dµ+

∫
X̄iX̄kX̄ldµ

where ∂
∂X̄l

(X̄i) is the derivative of the vector field X̄i in the direction of X̄l.

Notice that Lemma 4.2 extends to the submanifolds Sk for every k ∈ N. So we
have

(1) ∂
∂X̄l

(X̄i) = 0 if l 6= i,

(2) ∂
∂X̄l

(X̄i) = −1 if l = i.

In both cases, since
∫
X̄idµ = 0 for every i, we get gik,l =

∫
XiXkXldµ as

claimed.
The expression for ∇X̄kX̄l is straigthtforward from this formula.

�

Corollary 5.2. Let us assume that X = X1 and Y = X2 are the first two vectors
of the orthonormal base {Xi}. For the normalized potential A = S(0, 0) we get the
following expressions

∇X̄1
X̄1 =

1

2

∞∑
i=1

(

∫
X2

1XidµA)Xi

∇X̄2
X̄2 =

1

2

∞∑
i=1

(

∫
X2

2XidµA)Xi

∇X̄1
X̄2 =

1

2

∞∑
i=1

(

∫
X1X2XidµA)Xi.

Moreover, for any pair X,Y ∈ TAN the sums
∞∑
i=1

(

∫
X Y Xi dµ)2 and

∞∑
i=1

∫
X2Xi dµ

∫
Y 2Xi dµ

are both finite.

Proof. We consider an extension of the family Xr, r ∈ N, to all L2(µ) and we get
a complete orthonormal base of the vector space L2(µ), given by Xr, Ys, r, s ∈ N.
The first three expressions in the statement are straightforward from Lemma 5.1.

Given two elements X,Y ∈ TAN consider f = X Y =
∑
r a

f
rXr +

∑
s b
f
sYs ∈

L2(µ), then,

(

∫
X Y Xi dµ)2 = |afi |

2.

It follows that
∑∞
i=1(

∫
X Y Xi dµ)2 =

∑∞
i=1 |a

f
i |2 ≤‖ f ‖2 is finite.
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Denote g = X2 =
∑
r a

g
rXr +

∑
s b
g
sYs and h = Y 2 =

∑
r a

h
rXr +

∑
s b
h
sYs.

Therefore, ∫
g h dµ =

∞∑
i=1

agi a
h
i +

∞∑
j=1

bgj b
h
j .

Form this follows that
∑∞
i=1 a

g
i a
h
i converges. Note that

∫
X2Xi dµ = agi and∫

Y 2Xi dµ = ahi . Then,

∞∑
i=1

∫
X2Xi dµ

∫
Y 2Xi dµ =

∞∑
i=1

agi a
h
i

converges.
�

Theorem 1.1 follows from direct calculation aplying Corollary 5.2 to the expres-
sion of K(X,Y ).

6. A worked example in the Markov case: an orthonormal basis for
the kernel of the Ruelle operator

In this section, we will exhibit an orthonormal basis for the kernel of the Ruelle
operator in the case of Markov stationary probabilities on Ω = {0, 1}N.

Given a finite word x = (x1, x2, ..., xk) ∈ {0, 1}k, k ∈ N, we denote by [x] the
associated cylinder set in Ω = {0, 1}N.

Consider an invariant Markov probability µ obtained from a row stochastic
matrix (Pi,j)i,j=0,1 and an initial left invariant vector of probability π = (π0, π1) ∈
R2.

Given r ∈ (0, 1) and s ∈ (0, 1) we denote

(14) P =

(
P0,0 P0,1

P1,0 P1,1

)
=

(
r 1− r

1− s s

)
.

In this way (r, s) ∈ (0, 1)× (0, 1) parametrize all row stochastic matrices.
The explicit expression is

(15) µ[x1, x2, .., xn] = πx1
Px1,x2

Px2,x3
... Pxn−1,xn .

Definition 6.1. Denote by J : {0, 1}N → R the Jacobian associated to P . This
function J is such that is constant equal

Ji,j =
πi Pi,j
πj

on the cylinder [i, j], i, j = 0, 1.

According to our previous notation µA = µlog J (which in this section will be
called just µ).

Definition 6.2. The Ruelle operator for log J acts on continuous functions ϕ and
is given by: for each ϕ : Ω→ R, we get that

(16) Llog J(ϕ)(x1, x2, x3...) =
π0 P0,x1

πx1

ϕ(0, x1, x2, ...) +
π1 P1,x1

πx1

ϕ(1, x1, x2, ...).
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It is known that L∗log J(µ) = µ. (see [22])

We also consider the action of Llog J on L2(µ) and we are interested in the kernel
of this operator when acting on Holder functions.

Given a finite word x = (x1, x2, ..., xn), depending of the context [x] will either
denote the word or the corresponding cylinder set in {0, 1}N. The empty word is
also considered a finite word.

We start by recalling that the family of Holder functions

e[x] =
1√
µ([x])

√
Pxn,1
Pxn,0

1[x0] −
1√
µ([x])

√
Pxn,0
Pxn,1

1[x1],(17)

where x = (x1, x2, ..., xn) is a finite word on the symbols {0, 1}, is an orthonormal
(Haar) basis for L2(µ) (see [15] for a general expression and [10] for the specific
expression we are using here). In order to be more precise, we should also add
e0

[∅] = 1√
µ([0])

1[0] and e1
[∅] = 1√

µ([1])
1[1] for the (Haar) basis claim.

Definition 6.3. Given a finite word x = (x1, x2, ..., xn), we denote

(18) ax =

√
πx1√

π0

√
P0,x1

e[0,x1,x2,..,xn] −
√
πx1√

π1

√
P1,x1

e[1,x1,x2,..,xn],

The main result of the section is the following:

Theorem 6.4. The family ax, indexed byall words x = (x1, x2, ..., xn), is an or-
thogonal set on the kernel of the Ruelle operator Llog J .

First note that as the family e[x], where x is a finite word, is orthonormal, then,
ax, where x is a finite word with size bigger or equal to 1, is an orthogonal family.

Indeed, it follows from the fact that the family e[x] defined by (17) is orthogonal,
and the bilinearity of the inner product, that

〈ax, az〉 =

〈
√
πx1√

π0P0,x1

e[0,x] −
√
πx1√

π1P1,x1

e[1,x],

√
πz1√

π0P0,z1

e[0,z] −
√
πz1√

π1P1,z1

e[1,z]〉 = 0,

for all x = (x1, x2, .., xn) 6= z = (z1, z2, ..., zk).

We shall subdivide the proof of Theorem 6.4 into several steps. First of all, we
have that:

Proposition 6.5. Given x = [x1, x2, .., xn] with a size larger or equal to 1,

(19) Llog J (e[x1,x2,..,xn]) =

√
πx1√
πx2

√
Px1,x2e[x2,x3,..,xn].

From this follows that all elements in the orthogonal family

(20) ax =

√
πx1√

π0

√
P0,x1

e[0,x1,x2,..,xn] −
√
πx1√

π1

√
P1,x1

e[1,x1,x2,..,xn],

indexed by words x = (x1, x2, ..., xn), are in the kernel of the Ruelle operator Llog J .
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Proof. We consider finite words x with size larger or equal to 1.
Indeed, given the word x = (x1, x2, .., xn), let L = Llog J (e[x1,x2,..,xn]), then we

get

L =
πx1

πx2

Px1,x2
[

1√
µ([x])

√
Pxn,1
Pxn,0

1[x2,..,xn,0]

− 1√
µ([x])

√
Pxn,0
Pxn,1

1[x2,..,xn,1] ]

=
πx1

πx2

√
Px1,x2

[

√
Px1,x2√
µ([x])

√
Pxn,1
Pxn,0

1[x2,..,xn,0]

−
√
Px1,x2√
µ([x])

√
Pxn,0
Pxn,1

1[x2,..,xn,1] ]

This is equal to

πx1

πx2

√
πx2√
πx2

√
Px1,x2

√
Px1,x2√

πx1
Px1,x2

Px2,x3
... Pxn−1,xn

√
Pxn,1
Pxn,0

1[x2,..,xn,0]

−πx1

πx2

√
πx2√
πx2

√
Px1,x2

√
Px1,x2√

πx1 Px1,x2 Px2,x3 ... Pxn−1,xn

√
Pxn,0
Pxn,1

1[x2,..,xn,1]

which is equivalent to

πx1

πx2

√
πx2√
πx1

√
Px1,x2

1√
πx2

Px2,x3
... Pxn−1,xn

√
Pxn,1
Pxn,0

1[x2,..,xn,0]

−πx1

πx2

√
πx2√
πx1

√
Px1,x2

1√
πx2

Px2,x3
... Pxn−1,xn

√
Pxn,0
Pxn,1

1[x2,..,xn,1]

that yields

L =

√
πx1√
πx2

√
Px1,x2

1√
µ[x2, x3, ..., xn]

[

√
Pxn,1
Pxn,0

1[x2,..,xn,0] −

√
Pxn,0
Pxn,1

1[x2,..,xn,1]]

=

√
πx1√
πx2

√
Px1,x2

ex2,x3,..,xn .

Then,

Llog J(

√
πx2

√
πx1

√
Px1,x2

e[x1,x2,..,xn])

=
1√

µ[x2, x3, ..., xn]
[

√
Pxn,1
Pxn,0

1[x2,..,xn,0] −

√
Pxn,0
Pxn,1

1[x2,..,xn,1]] = e[x2,x3,..,xn]

and therefore,

Llog J(

√
πx2√

π0

√
P0,x2

e[0,x2,..,xn]) = Llog J(

√
πx2√

π1

√
P1,x2

e[1,x2,..,xn]).
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For each finite word (x1, x2, .., xn) denote

ax =

√
πx1√

π0

√
P0,x1

e[0,x1,x2,..,xn] −
√
πx1√

π1

√
P1,x1

e[1,x1,x2,..,xn]

=

√
πx1√

π0

√
P0,x1

1√
µ([0x])

[

√
Pxn,1
Pxn,0

1[0x0] −

√
Pxn,0
Pxn,1

1[0x1]]

(21) −
√
πx1√

π1

√
P1,x1

1√
µ([1x])

[

√
Pxn,1
Pxn,0

1[1x0] −

√
Pxn,0
Pxn,1

1[1x1]].

From the above reasoning, it follows that the family ax is in the kernel of the
Ruelle operator. �

For words, x of size greater or equal to 1 the function ax is constant in cylinder
sets of size equal to the length of x plus 2.

As an example, we get that

a0 =

√
π0

√
π0

√
P0,0

1√
µ([00])

[

√
P0,1

P0,0
1[000] −

√
P0,0

P0,1
1[001]]

(22) −
√
π0

√
π1

√
P1,0

1√
µ([10])

[

√
P0,1

P0,0
1[100] −

√
P0,0

P0,1
1[101]]

is constant on cylinders of size 3.
Note that if x and z are different words, then, 1x, 0x, 0z and 1z are four different

words.

Note that

e2
[x] =

1

µ([x])

Pxn,1
Pxn,0

1[x0] +
1

µ([x])

Pxn,0
Pxn,1

1[x1].(23)

Therefore,

a2
x = ax ax =

πx1

π0P0,x1

e2
[0,x1,x2,..,xn] +

πx1

π1P1,x1

e2
[1,x1,x2,..,xn]

= [
πx1

π0P0,x1

1

µ([0x])

Pxn,1
Pxn,0

1[0x0] +
πx1

π0P0,x1

1

µ([0x])

Pxn,0
Pxn,1

1[0x1] ]

(24) +[
πx1

π1P1,x1

1

µ([1x])

Pxn,1
Pxn,0

1[1x0] +
πx1

π1P1,x1

1

µ([1x])

Pxn,0
Pxn,1

1[1x1] ].

From the above it follows that

(25) |ax| =
√

πx1

π0P0,x1

+
πx1

π1P1,x1

.

Using the notation in the variables r, s for the matrix P , when x1 = 0 we get

(26) |ax| =
√

πx1

π0P0,x1

+
πx1

π1P1,x1

= (
√
r (1− r))−1

and when x1 = 1 we get

(27) |ax| =
√

πx1

π0P0,x1

+
πx1

π1P1,x1

= (
√
s (1− s))−1.
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Note also that the terms |ax| are uniformly bounded away from zero (the mini-
mum value is 2). They depend just on the first letter of the word [x].

Definition 6.6. We denote by

(28) âx =
1

|ax|
ax,

the normalization of ax.

Definition 6.7. We denote by F̃ the orthonormal set of normalized functions âx,
where x = (x1, x2, ..., xk) is a finite word with size equal or larger than 1.

We will have to add two more functions in order to get a basis (a completely
orthogonal set in the Hilbert space) for the kernel of the Ruelle operator Llog J .

We claim that the orthogonal pair (constant in cylinders of size 2)

V1 = π1P1,01[00] − π0P0,01[10]

(29) V2 = π0P0,11[11] − π1P1,11[01]

is in the kernel of the Ruelle operator (see Proposition 6.10). The functions V1 and
V2 are orthogonal to all ax ∈ F and they depend on the first two coordinates x1, x2

of x.
The vectors V̂1 = 1

|V1| and V̂2 = 1
|V2| are normalized and orthogonal to all âx.

This claim will be proved in Proposition 6.10.

One can show that

(30) |V1| =
√
π2

1P
2
1,0π0P0,0 + π2

0P
2
0,0 π1P1,0 =

√
(1− r)r(s− 1)3

(−2 + r + s)3

and

(31) |V2| =
√
π2

0P
2
0,1π1P1,1 + π2

1P
2
1,1 π0P0,1 =

√
(1− s)s(r − 1)3

(−2 + r + s)3
.

Definition 6.8. As a matter of notation we denote â0
[∅] = V̂1 and â1

[∅] = V̂2.

These two functions are constant in cylinders of size 2

Definition 6.9. We add â0
[∅] and â1

[∅] to the family F̃ in order to get the family F .

Now the elements in F range in all possible words of size larger or equal to
zero. A generic element in F is denoted by âx, and by this we mean that âx can
eventually represent â0

[∅] or â1
[∅].

Proposition 6.10. The orthogonal pair

V1 = π1P1,01[00] − π0P0,01[10]

(32) V2 = π0P0,11[11] − π1P1,11[01]

is such that, each one of them is orthogonal to the other elements âx, where x ranges
in all finite words with size bigger or equal to 1. V1 and V2 are on the kernel of the
Ruelle operator Llog J .
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Proof. Note first that 1[00] is orthogonal to all ax, where x = (x1, x2, ..., xn) is a
word with size equal or greater then 1. This claim follows from (21). Indeed, if
x1 = 0, we get that

〈1[00],

√
Pxn,1
Pxn,0

1[0x0] −

√
Pxn,0
Pxn,1

1[0x1]〉 =

√
Pxn,1 π0 P0,x1

Px1,x2
...Pxn−1,xn

√
Pxn,0 −√

Pxn,0 π0 P0,x1
Px1,x2

...Pxn−1,xn

√
Pxn,1 = 0.

If x1 = 1 the claim follows at once.
Using the same reasoning one can show that 1[01], 1[10], 1[11] are orthogonal to all

ax, where length of x is bigger than zero. It follows that linear combinations of this
functions are also orthogonal to all ax. It follows that V1 and V2 are orthogonal to
all ax, where the length of x is bigger than zero.

We will show that V1 is in the kernel of the Ruelle operator (for V2 the proof is
similar). Given y = (y1, y2, ..., yn, ..) ∈ Ω, suppose first that y1 = 0, then, we get

Llog J(V1) = Llog J(π1P1,01[00] − π0P0,01[10])(y) =

π1P1,0(J0,y11[00](0, y1, y2, ...) + J1,y11[00](1, y1, y2, ...))−

π0P0,0(J0,y11[10](0, y1, y2, ...) + J1,y11[10](1, y1, y2, ...)) =

π1P1,0J0,0 − π0P0,0J1,0 = π1P1,0
π0P0,0

π0
− π0P0,0

π1P1,0

π0
= 0.

In the case y1 = 1, we get

Llog J(V1) = π1P1,0(J0,y11[00](0, y1, y2, ...) + J1,y11[00](1, y1, y2, ...))−

π0P0,0(J0,y11[10](0, y1, y2, ...) + J1,y11[10](1, y1, y2, ...)) = 0.

�

Proposition 6.11. The family of elements âx ∈ F is anorthonormal basis for the
kernel of the Ruelle operator Llog J .

Proof. From Proposition 6.5 we know that given x = [x1, x2, .., xn]

(33) Llog J (e[x1,x2,..,xn]) =

√
πx1√
πx2

√
Px1,x2

e[x2,x3,..,xn].

Suppose ϕ is in the kernel of the Ruelle operator. We will show that ϕ can be
expressed as an infinite linear combination of the normalized functions âx ∈ F .

We can express ϕ as

ϕ =
∑

words y

cye[y].

When applying Llog J on ϕ we separate the infinite sum in subsums of the form

c0,α2,..,αne[0,α2,..,αn] + c1,α2,..,αne[1,α2,..,αn].
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Assuming that ϕ is on the Kernel of Llog J , we get from (33) that

0 = Llog J(
∑
n

∑
α2,..,αn

[ c0,α2,..,αne[0,α2,..,αn] + c1,α2,..,αne[1,α2,..,αn] ] )

=
∑
n

∑
α2,..,αn

[

√
π0√
πα2

√
P0,α2 c0,α2,..,αne[α2,..,αn] +

√
π1√
πα2

√
P1,α2c1,α2,..,αne[α2,..,αn] ]

=
∑
n

∑
α2,..,αn

[

√
π0√
πα2

√
P0,α2

c0,α2,..,αn +

√
π1√
πα2

√
P1,α2

c1,α2,..,αn ] e[α2,..,αn] .

Then, for fixed n and (α2, α3, .., αn)
√
π0√
πα2

√
P0,α2

c0,α2,..,αn = −
√
π1√
πα2

√
P1,α2

c1,α2,..,αn ,

which means

c0,α2,..,αn = −
√
π1√
πα2

√
P1,α2

√
πα2√
π0

1√
P0,α2

c1,α2,..,αn .

Then, the sum

c0,α2,..,αne[0,α2,..,αn] + c1,α2,..,αne[1,α2,..,αn]

is equal to

− c1,α2,..,αn [

√
π1√
πα2

√
P1,α2

√
πα2√
π0

1√
P0,α2

e[0,α2,..,αn] − e[1,α2,..,αn]].

Multiplying the above expression by
√
πα2√
π1

1√
P1,α2

we get

√
πα2√
π1

1√
P1,α2

[ c0,α2,..,αne[0,α2,..,αn] + c1,α2,..,αne[1,α2,..,αn]]

which is equal to

− c1,α2,..,αn [

√
πα2√
π0

1√
P0,α2

e[0,α2,..,αn] −
√
πα2√
π1

1√
P1,α2

e[1,α2,..,αn]]

= − c1,α2,..,αn a[a2,..,an].

Then, ( c0,α2,..,αne[0,α2,..,αn] + c1,α2,..,αne[1,α2,..,αn] ) is a multiple of the function
â[α2,..,αn]. Since the above reasoning was done for a generic choice of (α2, α3, .., αn),
we conclude that for each n the sum

∑
words y of lengthn cye[y] can be expressed as

a linear combination of elements âx, using words of length n− 1, n > 1.
From this follows that each element in the kernel of Llog J can be expressed as

an infinite linear combination of the functions âx.
�

Theorem 6.4 follows from the combination of Propositions 6.5 and 6.11

The above shows that the set F is a complete orthonormal set for the kernel of
the Ruelle operator acting on L2(µ).

Remark 6.12. A function of the form w = r11[0] + r2 1[1] is in the kernel of Llog J

only in the case where P01 = (1− r) = s = P11. In this case

(34) w = (1− r)1[0] − (1− s) 1[1]

is such that Llog J(w) = 0.
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We do not have to take into account in our reasoning this function because

w =
1

r
V1 +

1

r − 1
V2.

7. A worked example in the Markov case: preliminary calculations
of the terms in K(X,Y )

In this section, we shall devote ourselves to the calculation of the sectional cur-
vatures in the case of Markov stationary probabilities on Ω = {0, 1}N.

We denote by M ⊂ G, the set of Markov invariant probabilities. We will consider
this section the sectional curvature for points in M for general orthogonal pairs of
tangent vectors to G.

We can also consider M as a two-dimensional manifold carrying the Riemannian
structure induced by G. From this point of view, there exists just one orthonormal
pair to be considered. One of our main results (see Theorem 7.15) claims that for
the two dimensional manifold M, for any point in M , the sectional curvature for
the pair of tangent vectors to M is always zero.

We will consider in our reasoning the empty word as a regular word. â0
∅ and â1

∅
are two elements in F associated to the empty word.

Definition 7.1. We say that z is a subprefix of x, if x and z satisfy

[x] = [x1, x2, ...xk, xk+1, ..., xn] ⊂ [z] = [x1, x2, ..., xk],

where n ≥ k.

Note that, even when z is not a subprefix of x and x is not a subprefix of z,
they can share some common subprefix. Note also that if x and z do not share a
common prefix, then z is not a subprefix of x and x is not a subprefix of z.

If [x] = [z], then, x is a subprefix of z.

Definition 7.2. We say that z is a strict subprefix of x, if x and z satisfy

[x] = [x1, x2, ...xk, xk+1, ..., xn] ⊂ [z] = [x1, x2, ..., xk],

where n > k.

Two different words with the same length can not be subprefix of each other. If
the length of z is strictly larger than the length of x, then, z can not be a subprefix
of x.

Definition 7.3. Given the finite words x, z we denote by D[x, z] the set of all finite
words y such that are subprefix of x and z.

If for example x = (0, 0, 0) and z = (0, 0, 0, 1), then

D[x, z] = {â0
∅, (0), (0, 0), (0, 0, 0)}.

In the case x = (0, 1, 0, 0, 1) and z = (0, 1, 1) we get that D[x, z] = {â0
∅(0), (0, 1), }.

Another example: D[a0,0, â
0
∅] = {â0

∅} and D[a0,0, â
1
∅] = ∅.

Note that in the case z = (z1, z2, .., zk) is a subprefix of x = (x1, x2, .., xn), n > k,
then, z1 = x1. Then, it follows from (25) that |ax| = |az|.

Proposition 7.4. Assume that x is not a subprefix of z and z is not a subprefix
of x. Then,

ax az = 0.
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Proof. Note that az is a linear combination of 1[0z0], 1[0z1], 1[1z0] and 1[1z1]. As ax
is a linear combination of 1[0x0], 1[0x1], 1[1x0] and 1[1x1] the result follows.

�

Note that the hypothesis of the last proposition is equivalent to saying that the
cylinders [x] and [z] are disjoint.

Proposition 7.5. Given a word x assume that x is not a subprefix of y and y is
not a subprefix of x. Then,

â2
x ây = 0.

Proof. Note that from (24) we get

ax ax = [
πx1

π0P0,x1

1

µ([0x])

Pxn,1
Pxn,0

1[0x0] +
πx1

π0P0,x1

1

µ([0x])

Pxn,0
Pxn,1

1[0x1] ]

+[
πx1

π1P1,x1

1

µ([1x])

Pxn,1
Pxn,0

1[1x0] +
πx1

π1P1,x1

1

µ([1x])

Pxn,0
Pxn,1

1[1x1] ].

As ây is a linear combination of 1[0y0], 1[0y1], 1[1y0] and 1[1y1] the result follows.
�

Note that if x and y have the same length, but they are different, then
∫
â2
x ây dµ =

0.

From Proposition 7.4 it follows:

Corollary 7.6. Assume that x is not a subprefix of z and z is not a subprefix of x.
Then, we get that the products (part of the first sum contribution in (38)) satisfy

(35)

∫
âx âz âydµ = 0,

for all word y.

Remeber that F (defined in last section) is the set of all functions of the form

(36) âx =
1√

πx1
π0P0,x1

+
πx1

π1P1,x1

ax,

where x = (x1, x2, ..., xk) is a general finite word, plus the functions â0
[∅] and â1

[∅].

The main result of last section claims that:

Theorem 7.7. The family of functions F determine an orthonormal basis for the
Kernel of the Ruelle operator

We want to estimate for X = âx, Y = âz ∈ F and the orthogonal basis Xi =
ây ∈ F the explicit expression of the curvature which was described in Theorem
1.1

(37) K(X,Y ) =
1

4
[

∞∑
i=1

(

∫
X Y Xi dµ)2 −

∞∑
i=1

∫
X2Xi dµ

∫
Y 2Xi dµ ].

We will not present the explicit expression of the sectional curvature K(X,Y )
for any pair of vectors X,Y in the kernel, but just for the case where the functions
X,Y are part of the family âx ∈ F .
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An important issue is: 0 = 〈â2
z, ây〉 =

∫
â2
zây dµ, when length of y is strictly

larger than the length of z (see Sections 8 and 9).

Our main result in this section concerns the Markov case:

Theorem 7.8. For a fixed pair âx, âz ∈ F (with z different from x) the value

(38) K(âz, âx) =
1

4
[
∑

word y

(

∫
âx âz ây dµ)2 −

∑
word y

∫
â2
zây dµ

∫
â2
xây dµ ].

In the case the lenght of x is strictly larger than the length of z we get that (38)
can be expressed in a more simplified form as:

(39)
1

4
[(

∫
â2
x âz dµ)2 −

∑
y∈D[x,z]

∫
â2
xây dµ

∫
â2
zây dµ].

The sum (38) is finite. The value
∫
â2
xâzdµ is zero if z is not a subprefix of x.

If z is a strict subprefix of x and y is a strict sub prefix of z, then the term

(40) −
∫
â2
xây dµ

∫
â2
zây dµ

is non positive. Moreover, by (69) we get
∫
a2
z ax dµ = 0.

The proof of this result will take several sections and subsections. Proposition
7.13 will will summarize several explicit computations justifying (38) and (40).

We will also provide an explicit expression for the curvature (39) in terms of the
words x, z and the probability µ (which is indexed by (r, s) of expression (14)). This
will follow from explicit expressions for (

∫
ax az ay dµ)2,

∫
a2
zay dµ and

∫
a2
xay dµ,

for all finite words x, z, y, that will be presented the Propositions 7.10 and 7.13
(which will be proved in sections 8 and 9).

It will also follow that when x and z do not share a common subprefix y, then
the curvature K(âz, âx) is equal to 0 (see Proposition 7.11).

There are examples (for instance, the case x = (0, 1, 0) and z = (0, 1, 0, 0)) where
the curvature K(âz, âx) is positive for some values of the parameters (r, s) and
negative for others (see Example 7.20). We can show from the explicit expressions
we obtain that for fixed values of the parameters (r, s) the curvature K(âz, âx) can
be very negative if both words x, z have large lengths and share common prefix with
large length (see Remark 7.18). In Example 7.21 we show that K(â(0), â(0,0)) =
−0.205714..., when r = 0.1, s = 0.3. In Proposition 7.19 we show the curvature
K(â0

[∅], â0) can be positive for some pairs r, s ∈ (0, 1). It follows from the expressions

of Proposition 7.13 that all sectional curvatures K(âz, âx) are equal to −1/2, when
r = 1/2 = s, the size of z is bigger than 1 and z is a strict subprefix of x. See also
Proposition 7.19, when r = 1/2 = s, for the computation of K(â0

[∅], â0) = 1/2.

Remark 7.9. Expression (67) in Subsection 8.3 shows that in the case the length
of x is larger than the length of z, then (

∫
â2
z âx dµ)2 = 0.

Proposition 7.10. Assume that the length of x is larger than the length of z. The
first sum on expression (38) is given by

(41)
∑

word y

(

∫
âx âz ây dµ)2 = (

∫
â2
x âz dµ)2 + (

∫
â2
z âx dµ)2 = (

∫
â2
x âz dµ)2.
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For a proof of this claim see expression (72) in section 9. This term in the sum
(38) is the part that contributes to the curvature to be more positive. The second
term in the sum (38) will contribute to the curvature becoming more negative (see
proposition 7.13).

Note that (41) does not depend on y. Note also that from expression (15) one
can get explicitly the values (41) as a function of (r, s).

In Proposition 7.4 we show that if x is not a subprefix of z and z is not a
subprefix of x, we get that

∫
â2
x âz dµ = 0. In this case the contribution of (41) for

the curvature will be null.

Proposition 7.11. When z and x do not share common prefix the curvature

K(âz, âx) = 0.

Proof. When z and x do not share a common prefix, it follows that x is not a
subprefix of z and z is not a subprefix of x.

We will show that in this case K(âz, âx) = 0. Indeed, from Proposition 7.4 we
get that (

∫
â2
x âz dµ)2 +(

∫
â2
z âx dµ)2 = 0. Fix the words z, x and consider a variable

word y. In order to estimate the second sum in expression (39) we have to consider
all different possible words y such that are subprefix of x and z. But there is no
such kind of y.

Therefore, K(âz, âx) = 0.
See also Proposition 7.19, when r = 1/2 = s, for the computation of other

sectional curvatures. �

Remark 7.12. It follows from Remark 7.9 that
∑

word y

∫
â2
zây dµ

∫
â2
xây dµ is

a sum of a finite numbers of terms. This is so because in the estimation of∫
â2
zây dµ

∫
â2
xây dµ we do not have to take into account words y with length strictly

larger than the minimum of the lengths of x and z. It also follows from Proposition
7.11 that if x is not a subprefix of y and y is not a subprefix of x, we get that∫
a2
x ay dµ = 0.
Note that the above makes clear that in expression (38), the second sum has

nonzero terms only when y ∈ D[x, z]. This justifies the simplified expression (39).

With all this in mind, in order to have explicit expressions, the next proposition
deals just with the words y with lengths smaller than the length of a given word x.

Proposition 7.13. Assume that the length of x is larger or equal to the length of
y. Then we have:

a)
∫
â2
x âydµ = 0, if y is not a subprefix of x. This also includes the case where

x 6= y and length of x is equal to the length of y.

b.0) Assume that [x] = [x1, x2, ...xk, xk+1, ..., xn] ⊂ [y] = [x1, x2, ..., xk], where
n > k, and xk+1 = 0. Note that from (25) we get that |ax| = |ay|. Then,∫

â2
xâydµ =

1

|ay|3

√
Pxk,1√
Pxk,0

{( πx1

π0P0,x1

)3/2 1√
µ([0y])

− (
πx1

π1P1,x1

)3/2 1√
µ([1y])

} =
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(42)
1

|ax|3
√
Pxk,1{(

πx1

π0P0,x1

)3/2 1√
µ([0y0])

− (
πx1

π1P1,x1

)3/2 1√
µ([1y0])

}.

b.1) Assume, that [x] = [x1, x2, ...xk, xk+1, ..., xn] ⊂ [y] = [x1, x2, ..., xk], where
n > k, and xk+1 = 1. Then,

∫
â2
xâydµ =

1

|ay|3
√
Pxk,0{−(

πx1

π0P0,x1

)3/2 1√
µ([0y1])

+ (
πx1

π1P1,x1

)3/2 1√
µ([1y1])

} =

(43)
1

|ax|3
√
Pxk,0{−(

πx1

π0P0,x1

)3/2 1√
µ([0y1])

+ (
πx1

π1P1,x1

)3/2 1√
µ([1y1])

}

b.2) Assume, [x] = [x1, x2, ...xn] = [y].
Then, ∫

â2
xâydµ =

∫
â3
ydµ =

(44)

1

|ax|3
{( πx1

π0P0,x1

)3/2[
P

3/2
xn,1√

µ([0y0])
−

P
3/2
xn,0√

µ([0y1])
]−(

πx1

π1P1,x1

)3/2[
P

3/2
xn,1√

µ([1y0])
−

P
3/2
xn,0√

µ([1y1])
]}.

b3) If x1 = 0, then

(45)

∫
â2
xâ

0
[∅]dµ =

1

|ax|2 |V1|
(
π1 P1,0

P0,0
+
π2

0 P0,0

π1P1,0
) =

(s− 1)(1− 2r + 2r2)√
(1−r)r(s−1)3

(−2+r+s)3 (−2 + r + s)
> 0,

and ∫
â2
xâ

1
[∅]dµ = 0.

When r = 1/2 = s we get that for any word x (with size bigger or equal to 1),
such that, x1 = 0

(46)

∫
â2
xâ

0
[∅]dµ =

√
2.

For the proof of this proposition see sections 8.1 and 8.2.

Remark 7.14.

• We point out that (42) and (43) do not depend on xk+2, ..., xn−1, xn.
• If y ∈ D[x, z] − {z}, then, the product

∫
â2
xâydµ

∫
â2
zâydµ is non negative

for any choice of (p, q) (the product will not depend on x and z). This
follows from the expressions in b.0) and b.1). This shows (40).
• The term

∫
â2
xâzdµ

∫
â2
zâzdµ may be sometimes negative.
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We previously denoted by M the two dimensional manifold of Markov invariant
probabilities (the set of equilibrium probabilities for potentials depending on two
coordinates and parametrized by r, s)

Given the Markov invariant probability µ associated to the parameters r, s, the
set of vectors which are tangent to M at this point is the set of functions that
depend on two coordinates (x1, x2). The ones that are on the kernel of Llog J are
â0

[∅] and â1
[∅].

Theorem 7.15. Given the two-dimensional manifold of Markov invariant proba-
bilities M, for any point in M the sectional curvature for the pair of tangent vectors
to M is always zero.

Proof. Remember that V1 = π1P1,01[00] − π0P0,01[10] and V2 = π0P0,11[11] −
π1P1,11[01] determine an orthogonal basis for the tangent space to M at µ.

We claim that the curvature K(â0
∅, â

1
∅) = 0.

Indeed, take Xi = ây, for some finite word z = (x1, x2, ..., xk). If we assume that
x1 = 1, then,

V 2
1 ay = [π2

1P
2
1,0 (

πx1

π0P0,x1

1

µ([0z])

Pxk,1
Pxk,0

)1/21[0z0] 1[00]

− π2
1P

2
1,0 (

πx1

π0P0,x1

1

µ([0z])

Pxk,0
Pxk,1

)1/21[0z1] 1[00]]

− [π2
0P

2
0,0 (

πx1

π1P1,x1

1

µ([1z])

Pxk,1
Pxk,0

)1/2 1[1z0]1[10]

− π2
0P

2
0,0 (

πx1

π1P1,x1

1

µ([1z])

Pxk,0
Pxk,1

)1/2 1[1z1]1[00] ] = 0.

From the above it follows that:∫
V̂ 2

1 ây dµ

∫
V̂ 2

2 ây dµ = 0.

If we assume that x1 = 0, then, in a similar way
∫
âz V

2
2 dµ = 0, and therefore,∫

âz V̂
2
1 dµ

∫
âz V̂

2
2 dµ = 0.

Note that V1V2 = 0.
Then, we get that for any word y we have that

∫
V̂1 V̂2 ây dµ = 0. In the same

way
∫
V̂ 2

1 V̂2 dµ = 0 and
∫
V̂ 2

2 V̂1 dµ = 0. Therefore,

(47)
1

4
[(

∫
(â0
∅)

2 â1
∅ dµ)2 −

∑
y

(

∫
(â0
∅)

2ây dµ ) (

∫
(â1
∅)

2ây dµ) = 0.

�

Remark 7.16. : Recall that the expression of the Gauss sectional curvature
KM (X,Y ) of an isometric immersion (M, gM ), submanifold of the Riemannian
manifold (N, g), at the plane generated by two orthogonal vector fields X,Y tan-
gent to M , is given by

KM (X,Y ) = K(X,Y ) + 〈∇⊥XX,∇⊥Y Y 〉− ‖ ∇⊥XY ‖2
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according to Gauss formula (see for instance [9]). Here, the operator ∇⊥XY is the
component of the covariant derivative ∇XY of the Riemannian manifold (N, g)
that is normal to (M, gM ).

Notice that the sectional curvature

K(X,Y ) =‖ ∇Ȳ X̄ ‖2 −〈∇X̄X̄,∇Ȳ Ȳ 〉
includes all the terms of the normal component of the covariant derivative of X,Y .
By Theorem 7.15, all the components of the covariant derivative of a certain pair
of orthogonal vector fields tangent to the surface of Markov probabilities vanish. In
particular, all the terms of the normal covariant derivative of X,Y vanish. There-
fore, Theorem 7.15 yields that the Gaussian curvature of the surface of Markov
probabilities vanishes, its intrinsic curvature as an isometric immersion of the man-
ifold of normalized potentials is zero. This is a remarkable fact, which implies for
instance that the surface would be totally geodesic in the manifold of normalized
potentials provided that geodesics exist. We won’t consider the problem of the
existence of geodesics in this article, we shall study this problem in further papers.

Proposition 7.17. When r = 0.5 and s = 0.5, we get that

(48) K(ây, âx) = −1/2,

for words x, y with size bigger or equal to 1

Proof. It follows from the above proposition that due to symmetry, when r = 0.5
and s = 0.5, we get

∫
â2
xâydµ

∫
â2
zâydµ = 0, for words with size bigger or equal to

1. Moreover,
∫
â2
x wdµ = 0, for any ax. In this case, if x1 = 0 and x is a subprefix

of y, we get that for words with size bigger or equal to 1 (see (46)),

(49) K(ây, âx) = −1/4

∫
â2
xâ

0
[∅]dµ

∫
â2
yâ

0
[∅]dµ = −1/2.

�

Remark 7.18. From the explicit expressions we obtain (for fixed values of the
parameters (r, s)) the curvature K(âz, âx) can be very negative if both words x, z
have large lengths and have common prefix y with large length. Indeed, for fixed
âz, âx, as

∫
â2
xâydµ

∫
â2
zâydµ is non negative for any common word y, in the calculus

of the curvature K(âz, âx), we get a sum of several expressions
∫
â2
xâydµ

∫
â2
zâydµ.

Note that
∫
â2
xâydµ

∫
â2
zâydµ does depend on y (but not on x and z). Note also

that for fixed x the expression (42) can be very large if the length of y is very large
(and, so µ([ayb]), a, b = 0, 1, is very small).

Proposition 7.19. The curvature K(â0
[∅], â0) = 1/2, when r = 1/2 = s.

Proof. Note that (39) can be expressed as

K(â0
[∅], â0) =

1

4
[ (

∫
â2

0 â
0
[∅] dµ)2 −

∫
â2

0 â
0
[∅] dµ

∫
(â0

[∅])
2 â0

[∅] dµ)].

For any r, s, it is known from (45) that

(50)

∫
â2

0â
0
[∅]dµ =

1

|a0|2 |V1|
(
π1 P1,0

P0,0
+
π2

0 P0,0

π1P1,0
) > 0.

Note that
V 2

1 V1 =
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(π2
1P

2
1,01[00] + π2

0P
2
0,01[10])× (π1P1,01[00] − π0P0,01[10]) =

π3
1P

3
1,01[00] − π3

0P
3
0,01[10].

Then, ∫
V 2

1 V1 = π3
1P

3
1,0µ([00]) − π3

0P
3
0,0µ([10]),

which is equal to 1
2

6 1
2

2 − 1
2

6 1
2

2
= 0, in the case r = 1/2 = s.

Therefore,

K(â0
[∅], â0) =

1

4
(

∫
â2

0 â
0
[∅] dµ)2 =

1

4

√
2

2
= 1/2 > 0.

�

In other examples, we used the software Mathematica for getting explicit com-
putations.

Example 7.20. Consider the case where z = (0, 1, 0) and x = (0, 1, 0, 0).∫
â2
xâydµ

∫
â2
zâydµ = 0, unless ây is such that

y ∈ D[(0, 1, 0), (0, 1, 0, 0)] = {(0), (0, 1), (0, 1, 0)},

or ây ∈ {â0
[∅], â

1
[∅]}.

Using Mathematica and the formulas of Proposition 7.13, we made computations
when r = 0.1 and s = 0.3. In this case π0 = 0.4375 and π1 = 0.5625 and from (28)
we get |a(0,1,0)| = |a(0,1,0,0)| = 3.33.. and |V1| = 0.086... Finally, 1

|ax|2|az| = 1
|az|3 =

1
|ax|2|ay| = 1

|az|2|ay| = 0.027...

We will show that K(â(0,1,0), â(0,1,0,0)) = 35.9142....
We get the following values:

using (44)

∫
â2
zâzdµ =

1

|az|3

∫
a2

(0,1,0)a(0,1,0)dµ = 107, 51...,

using (42)

∫
â2
xâzdµ =

1

|ax|2|az|

∫
a2

(0,1,0,0)a(0,1,0)dµ = 120.949...,

(

∫
â2
xâzdµ)2 = (

∫
â2

(0,1,0,0)â(0,1,0)dµ)2 = (16.93...)2 = 14628.7...,

using (42)

∫
â2

(0,1,0,0)â(0,1)dµ = 38.2473...,

using (42)

∫
â2

(0,1,0)â(0,1)dµ = 38.2473...

using (43)

∫
â2

(0,1,0,0)â(0)dµ = −1.34387...

using (43)

∫
â2

(0,1,0)â(0)dµ = −1.34387...,

and finally, using (45)∫
â2

(0,1,0)â
0
[∅]dµ =

∫
â2

(0,1,0,0)â
0
[∅]dµ =

1

|a(0,1,0)|2 |V1|

∫
a2

(0,1,0)V1dµ = 4.13241...
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Using (45) and (30) (note that x1 = 0), we get that the expression (39) can be
written in this case as

K(â(0,1,0), â(0,1,0,0)) =
1

4
(

∫
â2

(0,1,0,0) â(0,1,0) dµ)2

− 1

4
[

∫
â2

(0,1,0,0)â(0,1,0) dµ

∫
â2

(0,1,0)â(0,1,0) dµ]

− 1

4
[

∫
â2

(0,1,0,0)â(0,1) dµ

∫
â2

(0,1,0)â(0,1) dµ]

− 1

4
[

∫
â2

(0,1,0,0)â(0) dµ

∫
â2

(0,1,0)â(0) dµ]

− 1

4

∫
â2

(0,1,0,0)â
0
[∅]dµ

∫
â2

(0,1,0)â
0
[∅]dµ = 35.9142...

Taking r = 0.8, s = 0.5 we get K(â(0,1,0), â(0,1,0,0)) = −3.17713... When r =
1/2 = s we get K(â(0,1,0), â(0,1,0,0)) = −1/2.

♦

Example 7.21. Consider the case where z = (0) and x = (0, 0). Then, D[(0), (0, 0)] =
{â0, â

0
[∅]}. Therefore,

K(â(0), â(0,0)) =
1

4
(

∫
â2

(0,0) â(0) dµ)2

− 1

4
[

∫
â2

(0,0)â(0) dµ

∫
â2

(0)â(0) dµ]

− 1

4

∫
â2

(0,0)â
0
[∅]dµ

∫
â2

(0)â
0
[∅]dµ.

In this case, using Mathematica, one can show that K(â(0), â(0,0)) ≤ 0, for all
values r, s ∈ (0, 1). For r = 0.1, s = 0.3, we will show that K(â(0), â(0,0)) =
−0.205714...

When, r = 0.1, s = 0.3, we get

|a0| = 3.333...,

|V1| = 0.086...,∫
â2

(0,0) â(0) dµ =
1

|a(0)|3∫
â2

(0) â(0) dµ =
1

|a(0)|3∫
â2

(0,0)â
0
[∅]dµ =

1

|a(0)|2 |V1|

∫
a2

(0)V1dµ =
1

|a(0)|2 |V1|
3.96.

Finally, when r = 0.1, s = 0.3 we get K(â(0), â(0,0)) = −0.205714...
♦
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8. Computations for the integral
∫
X2Y

Our purpose in this section is to evaluate the integral

(51)
∑

word y

∫
â2
x ây dµ

∫
â2
z ây dµ,

for any given pair of words x, z. This corresponds to the second term in the sum
given by expression (38).

We assume that x is different from z.
From proposition 7.5 if x is not a subprefix of y and y is not a subprefix of x,

and x 6= y, then:
â2
x ây = 0.

In the same way, if z is not a subprefix of y and y is not a subprefix of z, and
z 6= y, then:

â2
z ây = 0.

If y has the same length as x but y 6= x, then â2
z ây = 0.

In this way, several words y do not contribute to the above sum.

8.1. The value of 〈â2
x, ây〉 when length of x is larger or equal than the

length of y. We want to compute 〈â2
x, ây〉 =

∫
â2
x âydµ in the case where the

length of x is larger or equal to the length of z.
Our computation is in fact for 〈a2

x, ay〉 and after that, of course, to get 〈â2
x, ây〉

it will be necessary to divide by |ax|2 |ay|.
We assume that [x] = [x1, x2, ...xk, xk+1, ..., xn] ⊂ [y] = [x1, x2, ..., xk], where

n ≥ k (otherwise we get zero).
Note that these assumptions include the integral

∫
â3
xdµ, that is, the case x = y

(see III) below).
I) Case n > k - We will assume first that xk+1 = 0 in the word [x].
Given the words z = (v1, ..., vt) and v = (v1, v2, ..., vt, vt+1, ..., vm), assume

vt+1 = 0, then, from (17) and (23)

e2
[v]e[z] = [

1

µ([v])

Pvm,1
Pvm,0

1[v1,...,vt,0,vt+2,...,vm,0] +
1

µ([v])

Pvm,0
Pvm,1

1[v1,...,vt,0,vt+2,...,vm,1]]

×[
1√
µ([z])

√
Pvt,1
Pvt,0

1[v1,...,vt,0] −
1√
µ([z])

√
Pvt,0
Pvt,1

1[v1,...,vt,1]]

= (
1

µ([v])

Pvm,1
Pvm,0

)(
1√
µ([z])

√
Pvt,1
Pvt,0

) 1[v1,...,0,vt+2,...,vm,0]

+(
1

µ([v])

Pvm,0
Pvm,1

) (
1√
µ([z])

√
Pvt,1
Pvt,0

) 1[v1,...,0,vt+2,...,vm,1].(52)

Note that in the above reasoning when going from the second to the third line
the term multiplying 1[v1,...,vt,1] disappear because we assume that vt+1 = 0.

We are going to apply the above when z = [0y], z = [1y], v = [0x], v = [1x],m = n
and t+ 1 = k.

Then, from (20), (24), (55) and using the fact that

e2
[0,x1,x2,...,xk,0,xk+2,...,xn] e[1,x1,x2,..,xk] = 0,

e2
[1,x1,x2,...,xk,0,xk+2,...,xn] e[0,x1,x2,..,xk] = 0,
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we get

a2
x ay = [

πx1

π0P0,x1

e2
[0,x1,x2,..,xk,0,xk+2,...,xn] +

πx1

π1P1,x1

e2
[1,x1,x2,...,xk,0,xk+2,...,xn]]

×[

√
πx1√

π0

√
P0,x1

e[0,x1,x2,..,xk] −
√
πx1√

π1

√
P1,x1

e[1,x1,x2,..,xk]]

= (
πx1

π0P0,x1

)3/2[(
1

µ([0x])

Pxn,1
Pxn,0

)(
1√

µ([0y])

√
Pxk,1
Pxk,0

)1[0x0]

+(
1

µ([0x])

Pxn,0
Pxn,1

)(
1√

µ([0y])

√
Pxk,1
Pxk,0

) 1[0x1] ]

−(
πx1

π1P1,x1

)3/2[ (
1

µ([1x])

Pxn,1
Pxn,0

)(
1√

µ([1y])

√
Pxk,1
Pxk,0

) 1[1x0]

+(
1

µ([1x])

Pxn,0
Pxn,1

) (
1√

µ([1y])

√
Pxk,1
Pxk,0

)1[1x1] ].

Finally, as the matrix P is row stochastic∫
a2
xaydµ = (

πx1

π0P0,x1

)3/2[(
Pxn,1√
µ([0y])

√
Pxk,1
Pxk,0

) + (
Pxn,0√
µ([0y])

√
Pxk,1
Pxk,0

) ]

−(
πx1

π1P1,x1

)3/2[ (
Pxn,1√
µ([1y])

√
Pxk,1
Pxk,0

) + (
Pxn,0√
µ([1y])

√
Pxk,1
Pxk,0

) ]

= (Pxn,1 + Pxn,0)
√
Pxk,1{ (

πx1

π0P0,x1

)3/2[
1√

µ([0y0])
]

−(
πx1

π1P1,x1

)3/2[
1√

µ([1y0])
] } =

(53)
√
Pxk,1{ (

πx1

π0P0,x1

)3/2 1√
µ([0y0])

− (
πx1

π1P1,x1

)3/2 1√
µ([1y0])

}.

II) Case n > k - If we assume xk+1 = 1 in the word [x], then we get in a similar
way as before ∫

a2
xaydµ =

(54)
√
Pxk,0{−(

πx1

π0P0,x1

)3/2 1√
µ([0y1])

+ (
πx1

π1P1,x1

)3/2 1√
µ([1y1])

}

Indeed, given the words z = (v1, ..., vt) and v = (v1, v2, ..., vt, vt+1, ..., vm), as-
sume vt+1 = 1, then, from (17) and (23)

e2
[v]e[z] = [

1

µ([v])

Pvm,1
Pvm,0

1[v1,...,vt,1,vt+2,...,vm,0] +
1

µ([v])

Pvm,0
Pvm,1

1[v1,...,vt,1,vt+2,...,vm,1]]

×[
1√
µ([z])

√
Pvt,1
Pvt,0

1[v1,...,vt,0] −
1√
µ([z])

√
Pvt,0
Pvt,1

1[v1,...,vt,1]]

= − [(
1

µ([v])

Pvm,1
Pvm,0

)(
1√
µ([z])

√
Pvt,0
Pvt,1

) 1[v1,...,1,vt+2,...,vm,0] ]
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+(
1

µ([v])

Pvm,0
Pvm,1

) (
1√
µ([z])

√
Pvt,0
Pvt,1

) 1[v1,...,1,vt+2,...,vm,1].(55)

We are going to apply the above when z = [0y], z = [1y], v = [0x], v = [1x],m = n
and t = k + 1.

Then, from (20), (24), (55) and using the fact that

e2
[1,x1,x2,...,xk,1,xk+2,...,xn] e[0,x1,x2,..,xk] = 0,

e2
[0,x1,x2,...,xk,1,xk+2,...,xn] e[1,x1,x2,..,xk] = 0,

we get

a2
x ay = [

πx1

π0P0,x1

e2
[0,x1,x2,..,xk,1,xk+2,...,xn] +

πx1

π1P1,x1

e2
[1,x1,x2,...,xk,1,xk+2,...,xn]]

×[

√
πx1√

π0

√
P0,x1

e[0,x1,x2,..,xk] −
√
πx1√

π1

√
P1,x1

e[1,x1,x2,..,xk]]

= − (
πx1

π0P0,x1

)3/2[ (
1

µ([0x])

Pxn,1
Pxn,0

)(
1√

µ([0y])

√
Pxk,0
Pxk,1

)1[0x0]

+(
1

µ([0x])

Pxn,0
Pxn,1

)(
1√

µ([0y])

√
Pxk,0
Pxk,1

) 1[0x1] ]

+(
πx1

π1P1,x1

)3/2[ (
1

µ([1x])

Pxn,1
Pxn,0

)(
1√

µ([1y])

√
Pxk,0
Pxk,1

) 1[1x0]

+(
1

µ([1x])

Pxn,0
Pxn,1

) (
1√

µ([1y])

√
Pxk,0
Pxk,1

)1[1x1] ].

Finally, as the matrix P is row stochastic∫
a2
xaydµ = − (

πx1

π0P0,x1

)3/2[(
Pxn,1√
µ([0y])

√
Pxk,0
Pxk,1

) + (
Pxn,0√
µ([0y])

√
Pxk,0
Pxk,1

) ]

+(
πx1

π1P1,x1

)3/2[ (
Pxn,1√
µ([1y])

√
Pxk,0
Pxk,1

) + (
Pxn,0√
µ([1y])

√
Pxk,0
Pxk,1

) ] =

√
Pxk,0{−(

πx1

π0P0,x1

)3/2[
Pxn,1 + Pxn,0√

µ([0y1])
] + (

πx1

π1P1,x1

)3/2[
Pxn,1 + Pxn,0√

µ([1y1])
]} =

(56)
√
Pxk,0{−(

πx1

π0P0,x1

)3/2 1√
µ([0y1])

+ (
πx1

π1P1,x1

)3/2 1√
µ([1y1])

}

III) Case n = k - We assume [x] = [x1, x2, ...xn] = [y], otherwise
∫
â2
xâydµ = 0.

Then, one can show that

(57)

∫
a2
xaydµ =

∫
a3
xdµ =

(
πx1

π0P0,x1

)3/2[
P

3/2
xn,1√

µ([0x0])
−

P
3/2
xn,0√

µ([0x1])
] − (

πx1

π1P1,x1

)3/2[
P

3/2
xn,1√

µ([1x0])
−

P
3/2
xn,0√

µ([1x1])
].

Indeed, note first that from (23), v = [v1, v2, ..., vm]

e2
[v]e[v] = [

1

µ([v])

Pvm,1
Pvm,0

1[v1,...,vm,0] +
1

µ([v])

Pvm,0
Pvm,1

1[v1,...,vm,1]]
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×[
1√
µ([v])

√
Pvm,1
Pvm,0

1[v1,...,vm,0] −
1√
µ([v])

√
Pvm,0
Pvm,1

1[v1,...,vm,1]]

= (
1

µ([v])

Pvm,1
Pvm,0

)(
1√
µ([v])

√
Pvm,1
Pvm,0

) 1[v1,...,vm,0]

−(
1

µ([v])

Pvm,0
Pvm,1

) (
1√
µ([v])

√
Pvm,0
Pvm,1

) 1[v1,...,vm,1].(58)

Then, from (20), (24), (55)

a2
xax = [

πx1

π0P0,x1

e2
[0,x1,x2,...,xn] +

πx1

π1P1,x1

e2
[1,x1,x2,...,xn]]

×[

√
πx1√

π0

√
P0,x1

e[0,x1,x2,..,xn] −
√
πx1√

π1

√
P1,x1

e[1,x1,x2,..,xn]]

= (
πx1

π0P0,x1

)3/2[(
1

µ([0x])

Pxn,1
Pxn,0

)(
1√

µ([0x])

√
Pxn,1
Pxn,0

)1[0x0]

−(
1

µ([0x])

Pxn,0
Pxn,1

)(
1√

µ([0x])

√
Pxn,0
Pxn,1

) 1[0x1] ]

−(
πx1

π1P1,x1

)3/2[ (
1

µ([1x])

Pxn,1
Pxn,0

)(
1√

µ([1x])

√
Pxn,1
Pxn,0

) 1[1x0]

−(
1

µ([1x])

Pxn,0
Pxn,1

) (
1√

µ([1x])

√
Pxn,0
Pxn,1

)1[1x1] ].

Therefore,∫
a2
xaxdµ = (

πx1

π0P0,x1

)3/2[(
Pxn,1√
µ([0x])

√
Pxn,1
Pxn,0

)− (
Pxn,0√
µ([0x])

√
Pxn,0
Pxn,1

) ]

−(
πx1

π1P1,x1

)3/2[ (
Pxn,1√
µ([1x])

√
Pxn,1
Pxn,0

) − (
Pxn,0√
µ([1x)

√
Pxn,0
Pxn,1

) ] =

(
πx1

π0P0,x1

)3/2[
P

3/2
xn,1√

µ([0x0])
−

P
3/2
xn,0√

µ([0x1])
]−(

πx1

π1P1,x1

)3/2[ (
P

3/2
xn,1√

µ([1x0])
)− (

P
3/2
xn,0√

µ([1x1])
] =

(59)

(
πx1

π0P0,x1

)3/2[
P

3/2
xn,1√

µ([0x0])
−

P
3/2
xn,0√

µ([0x1])
] − (

πx1

π1P1,x1

)3/2[
P

3/2
xn,1√

µ([1x0])
−

P
3/2
xn,0√

µ([1x1])
].

The above reasoning shows III).

Given the word [x] = [x1, x2, ...xk, xk+1, ..., xn] we get n words y, such that, the
cylinder [x] ⊂ [y] = [x1, x2, ..., xk], where n ≥ k.

Given x and z, with length larger than y, then
∫
â2
x âydµ

∫
â2
z âydµ will be

nonzero only for the subprefixes y which are common to both x and z (see Propo-
sition 7.5). If there are no common subprefixes for x and z, then the contribution∫
â2
x âydµ

∫
â2
z âydµ, for words y of length strictly smaller than the length of x and

z, in the sum (39) is null.
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8.2. The values of 〈â2
x, â

0
[∅]〉 and 〈â2

x, â
1
[∅]〉 when x is a finite word. Denote

[x] = [x1, x2, ..., xn]. We assume that n ≥ 2.
In fact, we will compute 〈a2

x, V1〉 and 〈a2
x, V2〉. In order to compute 〈â2

x, â
0
[∅]〉 and

〈â2
x, â

1
[∅]〉 it will be necessary to normalize.

I) Case 〈a2
x, V1〉

We will consider first the case x1 = 0.
Denote y = (y1, y2, .., yk). If we assume y1 = 0, y2 = 0, then, from (23)

e2
[y] V1 = [

1

µ([y])

Pyk,1
Pyk,0

1[y1,y2,...,yk,0] +
1

µ([y])

Pyk,0
Pyk,1

1[y1,y2,...,yk,1]]

×[π1P1,0 1[0,0] − π0P0,0 1[1,0]] =

1

µ([y])

Pyk,1
Pyk,0

π1 P1,0 1[y1,y2,...,yk,0] +
1

µ([y])

Pyk,0
Pyk,1

π1 P1,0 1[y1,y2,...,yk,1].(60)

If we assume y1 = 1, y2 = 0, then, from (23)

e2
[y] V1 = [

1

µ([y])

Pyk,1
Pyk,0

1[y1,y2,...,yk,0] +
1

µ([y])

Pyk,0
Pyk,1

1[y1,y2,...,yk,1]]

×[π1P1,0 1[0,0] − π0P0,0 1[1,0]] =

− [
1

µ([y])

Pyk,1
Pyk,0

π0 P0,0 1[y1,y2,...,yk,0] +
1

µ([y])

Pyk,0
Pyk,1

π0 P0,0 1[y1,y2,...,yk,1]].(61)

As we assume that x1 = 0, then, from (20), (24), (55) we get

a2
xV1 = [

πx1

π0P0,x1

e2
[0,x1,x2,..,xk,0,xk+2,...,xn] +

πx1

π1P1,x1

e2
[1,x1,x2,...,xk,0,xk+2,...,xn]]

×[π1P1,0 1[0,0] − π0P0,0 1[1,0]] =

=
πx1

π0P0,x1

[
1

µ([0x])

Pxn,1
Pxn,0

π1 P1,0 1[0,x1,x2,...,xn,0]+
1

µ([0x])

Pxn,0
Pxn,1

π1 P1,0 1[0,x1,x2,...,xn,1]]+

πx1

π1P1,x1

[
1

µ([1x])

Pxn,1
Pxn,0

π0 P0,0 1[1,x1,x2,...,xn,0]+
1

µ([1x])

Pxn,0
Pxn,1

π0 P0,0 1[1,x1,x2,...,xn,1]] .

Therefore, ∫
a2
xV1dµ =

πx1

π0P0,x1

[
1

µ([0x])

Pxn,1
Pxn,0

π1 P1,0 µ[0, x, 0] +
1

µ([0x])

Pxn,0
Pxn,1

π1 P1,0 µ[0, x, 1] ] +

πx1

π1P1,x1

[
1

µ([1x])

Pxn,1
Pxn,0

π0 P0,0 µ[1, x, 0] +
1

µ([1x])

Pxn,0
Pxn,1

π0 P0,0 µ[1, x, 1]] =

πx1

π0P0,x1

[Pxn,1 π1 P1,0 + Pxn,0 π1 P1,0 ] +
πx1

π1P1,x1

[Pxn,1 π0 P0,0 + Pxn,0 π0 P0,0 ] =

πx1

π0P0,x1

π1 P1,0 +
πx1

π1P1,x1

π0 P0,0.

As we assumed that x1 = 0 we get

(62)

∫
â2
xâ

0
[∅]dµ =

1

|ax|2 |V1|
(
π1 P1,0

P0,0
+
π2

0 P0,0

π1P1,0
) .

II) 〈a2
x, V2〉

Now we will compute
∫
a2
xV2dµ.
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Denote y = (y1, y2, .., yk). If we assume y1 = 0, y2 = 0, then, from (23)

e2
[y] V2 = [

1

µ([y])

Pyk,1
Pyk,0

1[y1,y2,...,yk,0] +
1

µ([y])

Pyk,0
Pyk,1

1[y1,y2,...,yk,1]]

×[π0P0,1 1[1,1] − π1P1,1 1[0,1]] = 0.

If we assume y1 = 1, y2 = 0, then, from (23)

e2
[y] V2 = [

1

µ([y])

Pyk,1
Pyk,0

1[y1,y2,...,yk,0] +
1

µ([y])

Pyk,0
Pyk,1

1[y1,y2,...,yk,1]]

×[π0P0,1 1[1,1] − π1P1,1 1[0,1]] = 0.

As we assumed that x1 = 0, then, from (20), (24), (55) we get

a2
xV2 = [

πx1

π0P0,x1

e2
[0,x1,x2,...,xn] +

πx1

π1P1,x1

e2
[1,x1,x2,...,xn]]

×[π0P0,1 1[1,1] − π1P1,1 1[0,1]] = 0.

Therefore, if x1 = 0 we get

(63)

∫
â2
xâ

1
[∅] dµ = 0.

The case x1 = 1 is left for the reader.

8.3. The value of 〈â2
z, ây〉 when length of y is strictly larger than the length

of z. Now we want to estimate 〈â2
z, ây〉 =

∫
â2
z âydµ in the case that the length of

y is strictly larger than the length of z. We will show that
∫
â2
z âydµ = 0.

We assume that [y] = [x1, x2, ...xk, xk+1, ..., xn] ⊂ [z] = [x1, x2, ..., xk], where
n > k (otherwise we get that

∫
â2
z âydµ is zero from Proposition 7.5).

In fact, we will show that
∫
a2
z aydµ = 0.

I) If we assume xk+1 = 0 in the word [y], then, from (23)

e2
zey = [

1

µ([z])

Pxk,1
Pxk,0

1[x1,...,xk,0] +
1

µ([z])

Pxk,0
Pxk,1

1[x1,...,xk,1]]

×[
1√
µ([y])

√
Pxn,1
Pxn,0

1[x1,...,xk,0,xk+2,...,xn,0]−
1√
µ([y])

√
Pxn,0
Pxn,1

1[x1,...,xk,0,xk+2,...,xn,1]]

= (
1

µ([z])

Pxk,1
Pxk,0

)(
1√
µ([y])

√
Pxn,1
Pxn,0

) 1[x1,...,xk,0,xk+2,...,xn,0]

−(
1

µ([z])

Pxk,1
Pxk,0

)(
1√
µ([y])

√
Pxn,0
Pxn,1

) 1[x1,...,xk,0,xk+2,...,xn,1].(64)

Note that above, from the second to the third line, we use the fact that

1[x1,...,xk,1]1[x1,...,xk,0,xk+2,...,xn,0] = 0

and

1[x1,...,xk,1]1[x1,...,xk,0,xk+2,...,xn,1] = 0.

Then, from (20), (64) and (24)

a2
zay = [

πx1

π0P0,x1

e2
[0,x1,x2,..,xk] +

πx1

π1P1,x1

e2
[1,x1,x2,..,xk]]
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×[

√
πx1√

π0P0,x1

e[0,x1,x2,..,xk,0,xk+2,...,xn] −
√
πx1√

π1P1,x1

e[1,x1,x2,...,xk,0,xk+2,...,xn]]

= (
πx1

π0P0,x1

)3/2[(
1

µ([0z])

Pxk,1
Pxk,0

)(
1√

µ([0y])

√
Pxn,1
Pxn,0

)1[0y0]

−(
1

µ([0z]

Pxk,1
Pxk,0

)(
1√

µ([0y])

√
Pxn,0
Pxn,1

) 1[0y1] ]

−(
πx1

π1P1,x1

)3/2[ (
1

µ([1z])

Pxk,1
Pxk,0

)(
1√

µ([1y])

√
Pxn,1
Pxn,0

) 1[1y0]

−(
1

µ([1z])

Pxk,1
Pxk,0

) (
1√

µ([1y])

√
Pxn,0
Pxn,1

)1[1y1] ].

Finally, ∫
a2
zaydµ

= (
πx1

π0P0,x1

)3/2[
Pxk,1
µ([0z0])

√
µ([0y0])

√
Pxn,1 −

Pxk,1
µ([0z0]

√
µ([0y1])

√
Pxn,0 ]

+(
πx1

π1P1,x1

)3/2 [− Pxk,1
µ([1z0])

√
µ([1y0])

√
Pxn,1 +

Pxk,1
µ([1z0])

√
µ([1y1])

√
Pxn,0 ]

= Pxk,1
√
µ([y]) { (

πx1

π0P0,x1

)3/2[

√
Pxn,1P0,x1

Pxn,0

µ([0z0])
−
√
Pxn,0P0,x1

Pxn,1

µ([0z0]
]

(65) +Pxk,1(
πx1

π1P1,x1

)3/2 [−
√
Pxn,1P1,x1Pxn,0

µ([1z0])
+

√
Pxn,0P1,x1Pxn,1

µ([1z0])
] } = 0.

II) If we assume xk+1 = 1 in the word [y], then, from (23)

e2
zey = [

1

µ([z])

Pxk,1
Pxk,0

1[x1,...,xk,0] +
1

µ([z])

Pxk,0
Pxk,1

1[x1,...,xk,1]]

×[
1√
µ([y])

√
Pxn,1
Pxn,0

1[x1,...,xk,1,xk+2,...,xn,0]−
1√
µ([y])

√
Pxn,0
Pxn,1

1[x1,...,xk,1,xk+2,...,xn,1]]

= (
1

µ([z])

Pxk,0
Pxk,1

)(
1√
µ([y])

√
Pxn,1
Pxn,0

) 1[x1,...,xk,1,xk+2,...,xn,0]

−(
1

µ([z])

Pxk,0
Pxk,1

)(
1√
µ([y])

√
Pxn,0
Pxn,1

) 1[x1,...,xk,1,xk+2,...,xn,1](66)

Then, from (20), (66) and (24)

a2
zay = [

πx1

π0P0,x1

e2
[0,x1,x2,..,xk] +

πx1

π1P1,x1

e2
[1,x1,x2,..,xk]]

×[

√
πx1√

π0P0,x1

e[0,x1,x2,..,xk,0,xk+2,...,xn] −
√
πx1√

π1P1,x1

e[1,x1,x2,...,xk,0,xk+2,...,xn]]

= (
πx1

π0P0,x1

)3/2[(
1

µ([0z])

Pxk,0
Pxk,1

)(
1√

µ([0y])

√
Pxn,1
Pxn,0

)1[0y0]
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−(
1

µ([0z]

Pxk,0
Pxk,1

)(
1√

µ([0y])

√
Pxn,0
Pxn,1

) 1[0y1] ]

−(
πx1

π1P1,x1

)3/2[ (
1

µ([1z])

Pxk,0
Pxk,1

)(
1√

µ([1y])

√
Pxn,1
Pxn,0

) 1[1y0]

−(
1

µ([1z])

Pxk,0
Pxk,1

) (
1√

µ([1y])

√
Pxn,0
Pxn,1

)1[1y1] ].

Finally, ∫
a2
zaydµ

= (
πx1

π0P0,x1

)3/2[
Pxk,0
µ([0z1])

√
µ([0y0])

√
Pxn,1 −

Pxk,0
µ([0z1]

√
µ([0y1])

√
Pxn,0 ]

+(
πx1

π1P1,x1

)3/2 [− Pxk,1
µ([1z0])

√
µ([1y0])

√
Pxn,1 +

Pxk,1
µ([1z0])

√
µ([1y1])

√
Pxn,0 ]

= Pxk,0
√
µ([y]) { (

πx1

π0P0,x1

)3/2[

√
Pxn,1P0,x1Pxn,0

µ([0z1])
−
√
Pxn,0P0,x1Pxn,1

µ([0z1]
]

(67) +Pxk,1(
πx1

π1P1,x1

)3/2 [−
√
Pxn,1P1,x1

Pxn,0

µ([1z1])
+

√
Pxn,0P1,x1

Pxn,1

µ([1z1])
] } = 0.

9. Computations for the integral
∫
XY Z

Our purpose on this section is: given x and z we want to compute for all y

(68)
∑

word y

(

∫
âx âz ây dµ)2,

which corresponds to the first term in the sum given by expression (38).
Remember that from Corollary 7.13 if x is not a subprefix of z and z is not a

subprefix of x, we get that for any y∫
âx âz âydµ = 0.

Without loss of generality, we assume that z is a subprefix of x (see Proposition
7.4). The only possible nonzero value for (68) is

∫
â2
x âz dµ. This justify the first

term in the sum (39).
We assume first that:
[y] = [x1, x2, ...xk, xk+1, ..., xn, xn+1, ..., xj ] ⊂ [x] = [x1, x2, ...xk, xk+1, ..., xn] ⊂

[z] = [x1, x2, ..., xk], where j > n ≥ k.

We will show in all cases that
∫
ax ay az dµ = 0. This includes the case

(69)

∫
a2
z ax dµ = 0.

I) First we assume that xk+1 = 0 = xn+1.
Then,

ax ay az =

[

√
πx1√

π0

√
P0,x1

e[0,x1,x2,..,xk] −
√
πx1√

π1

√
P1,x1

e[1,x1,x2,..,xk]]
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×[

√
πx1√

π0

√
P0,x1

e[0,x1,x2,..,xj ] −
√
πx1√

π1

√
P1,x1

e[1,x1,x2,..,xj ]]

×[

√
πx1√

π0

√
P0,x1

e[0,x1,x2,..,xn] −
√
πx1√

π1

√
P1,x1

e[1,x1,x2,..,xn]]

= (
πx1

π0P0,x1

)3/2 1√
µ([0x])µ([0z])µ([0y])

[

√
Pxn,1Pxk,1Pxj ,1

Pxn,0Pxk,0Pxj ,0
1[0y0]

−

√
Pxn,1Pxk,1Pxj ,0

Pxn,0Pxk,0Pxj ,1
1[0y1] ]

− (
πx1

π1P1,x1

)3/2 1√
µ([1x])µ([1z])µ([1y])

[

√
Pxn,1Pxk,1Pxj ,1

Pxn,0Pxk,0Pxj ,0
1[1y0]

−

√
Pxn,1Pxk,1Pxj ,0

Pxn,0Pxk,0Pxj ,1
1[1y1] ].

Note that for all j

(70)

√
Pxj ,1

Pxj ,0
µ([0y0]) =

√
Pxj ,1 Pxj ,0 µ([0y]) =

√
Pxj ,0

Pxj ,1
µ([0y1]).

and

(71)

√
Pxj ,1

Pxj ,0
µ([1y0]) =

√
Pxj ,1 Pxj ,0 µ([1y]) =

√
Pxj ,0

Pxj ,1
µ([1y1])

Finally, from (70) and (71) ∫
ax ay az dµ =

(
πx1

π0P0,x1

)3/2 1√
µ([0x])µ([0z])µ([0y])

[

√
Pxn,1Pxk,1Pxj ,1

Pxn,0Pxk,0Pxj ,0
µ([0y0])

−

√
Pxn,1Pxk,1Pxj ,0

Pxn,0Pxk,0Pxj ,1
µ([0y1]) ]

− (
πx1

π1P1,x1

)3/2 1√
µ([1x])µ([1z])µ([1y])

[

√
Pxn,1Pxk,1Pxj ,1

Pxn,0Pxk,0Pxj ,0
µ([1y0])

−

√
Pxn,1Pxk,1Pxj ,0

Pxn,0Pxk,0Pxj ,1
µ([1y1]) ] =

(
πx1

π0P0,x1

)3/2 1√
µ([0x])µ([0z])µ([0y])

[

√
Pxn,1Pxk,1
Pxn,0Pxk,0

√
Pxj ,1

Pxj ,0
µ([0y0])

−

√
Pxn,1Pxk,1
Pxn,0Pxk,0

√
Pxj ,0

Pxj ,1
µ([0y1]) ]

− (
πx1

π1P1,x1

)3/2 1√
µ([1x])µ([1z])µ([1y])

[

√
Pxn,1Pxk,1
Pxn,0Pxk,0

√
Pxj ,1

Pxj ,0
µ([1y0])
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−

√
Pxn,1Pxk,1
Pxn,0Pxk,0

√
Pxj ,0

Pxj ,1
µ([1y1]) ] = 0− 0 = 0.

II) Now we assume that xk+1 = 1 = xn+1. In a similar way as before∫
ax ay az dµ

= (
πx1

π0P0,x1

)3/2 1√
µ([0x])µ([0z])µ([0y])

[

√
Pxn,0Pxk,0Pxj ,1

Pxn,1Pxk,1Pxj ,0
µ([0y0])

−

√
Pxn,0Pxk,0Pxj ,0

Pxn,1Pxk,1Pxj ,1
µ([0y1]) ]

− (
πx1

π1P1,x1

)3/2 1√
µ([1x])µ([1z])µ([1y])

[

√
Pxn,0Pxk,0Pxj ,1

Pxn,1Pxk,1Pxj ,0
µ([1y0])

−

√
Pxn,0Pxk,0Pxj ,0

Pxn,1Pxk,1Pxj ,1
µ([1y1]) ]

= (
πx1

π0P0,x1

)3/2

√
µ([0y0])Pxj ,1√
µ([0x])µ([0z])

[

√
Pxn,0Pxk,0
Pxn,1Pxk,1

−

√
Pxn,0Pxk,0
Pxn,1Pxk,1

]

− (
πx1

π1P1,x1

)3/2

√
µ([1y0])Pxj ,1√
µ([1x])µ([1z])

[

√
Pxn,0Pxk,0
Pxn,1Pxk,1

−

√
Pxn,0Pxk,0
Pxn,1Pxk,1

] = 0− 0 = 0.

II) Now if we assume that xk+1 = 0 and xn+1 = 1 or that xk+1 = 1 and xn+1 = 0,
we get that in a similar way that∫

âx ây âz dµ = 0.

After all these computations, for fixed âx and âz, we want to compute K(âz, âx).
In this direction we have to consider (68) which is the first sum in expression (38)

We wonder for which y we have that (
∫
âx âz ây dµ)2 6= 0. We assumed without

loss of generality that z is a subprefix of x. In this case, the length of x is strictly
larger than the length of z.

Considering first the case where the length of y is larger than z and x, it follows
from the above that ∑

word ywith lenght larger than x and z

(

∫
âx âz ây dµ)2 = 0.

Now we consider the case where the length of y is strictly smaller than the length
of z and x.

For the case where the length of y is strictly smaller than z and x we need to
assume that y is a subprefix of z (otherwise âyâz = 0 and we get (

∫
âx âz ây dµ)2 =

0). If y is a strict subprefix of z and z is a strict subprefix of s we get from the
above that (

∫
âx âz ây dµ)2 = 0.

Finally, we assume that the length of y is strictly smaller than x and strictly
larger than z. In this case we have to assume that x is a subprefix of y and y is a
subprefix of z (otherwise by Proposition 7.4 we have

∫
âx âz ây dµ

2 = 0). It follows
from the above that also in this case (

∫
âx âz ây dµ)2 = 0.
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Therefore, in the estimation of expression (68) it follows from our reasoning that
all elements in this sum are zero up to expressions (

∫
â2
x âz dµ)2 and (

∫
â2
z âx dµ)2,

that is, the cases where y = x or y = z. From Proposition 7.5 we have to assume
that x is a subprefix of z or vice versa. The explicit expressions for these two cases
were analyzed in sections 8.1 and 8.3.

If the length of x is larger than the length of z, then, from (67) we get (
∫
â2
z âx dµ)2 =

0.
The final conclusion is that

(72)
∑

word y

(

∫
âx âz ây dµ)2 = (

∫
â2
x âz dµ)2 + (

∫
â2
z âx dµ)2 = (

∫
â2
x âz dµ)2.

10. Appendix

We recall that LT,A = LA denotes the Ruelle operator for the α-Holder potential
A : M → R, λA its main eigenvalue, νA its eigenprobability and hA the associated
normalized eigenfunction for A. Remember that we say that the potential A is
normalized if LA(1) = 1. If A is normalized the equilibrium probability µA = νA.

Remember that EA0 denotes the set of Hölder functions g, such that,
∫
gdµA = 0.

For a non normalized potential A the operator L̃A = λ−1
A LA denotes the renor-

malized Ruelle operator. Note that L̃(hA) = hA. Moreover, if A0 is normalized,

then L̃A0 = LA0 . Note that I−L̃A is not invertible, but is invertible when restricted
to EA0 .

The next result corresponds “exactly” to Proposition 4.6 page 14 in [7]. For
completeness, we will outline the proof for the reader. We follow line by line the
proof in [7] of this claim. This explicit expression does not appear in [6].

Proposition 10.1. The map A 7→ H(A) = hA ∈ C0(M,R), where A is Holder, is
differentiable. Furthermore, given a potential A0, X ∈ Hol:

DA0H(X) = hA0

∫
( [ (I − LA0 |EA0

0
)−1 (1− hA0) ]. X) dµA0 .

Moreover, when A0 is normalized we get DA0
H = 0.

Proof. Let A0 ∈ Hol be fixed. It is known from Proposition 3.4 in [7] (or Proposition
3.8 in [6]) that λ−nA LnA(1) converges uniformly to hA, with respect to A, in some
sufficiently small neighborhood W of A0.

Consider the family of functionals Fn : W → Hol given by Fn(A) = λ−nA LnA(1).
We claim that the derivatives of Fn are uniformly convergent. Indeed, taking into
account Proposition 4.4 in [7] (or Proposition 4.1 of [6]) for the derivative of the
spectral radius λA, one can write

DAFn ·X = λ−nA DALnA(1) ·X − nλ−(n+1)
A LnA1 ·DAλA ·X

=

[
n∑
i=1

L̃iA(L̃n−iA (1) ·X)− nL̃nA(1) ·
∫
hA ·X dνA

]
.(73)

The above expression is precisely expression (4.2) in [7].
We will show that the latter expression is uniformly convergent (with respect to

A and {X ∈ Hol : ‖X‖α ≤ 1}) to the series hA ·
∑+∞
i=0

∫
(L̃iA(1) ·X − hA ·X) dνA.
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Note first that,

hA ·
n−1∑
i=0

∫
(L̃iA(1) ·X − hA ·X) dνA = hA ·

∫ n−1∑
i=0

L̃iA(1− hA) ·X dνA.

This expression uniformly converges (by the spectral gap property of Theorem 3.7

in [6]) to hA ·
∫ [

(I − L̃A |E0
)−1(1− hA)

]
·X dνA, as n tends to infinite. Note also

that, using (73)

DFn(A) ·X − hA ·
n−1∑
i=0

∫
[L̃iA(1) ·X − hA ·X] dνA

=

n∑
i=1

L̃iA
[
L̃n−iA (1)X − L̃n−iA (1)

∫
hAX dνA − hA

∫
(L̃n−iA (1)X − hAX) dνA

]
,

which is a sum of the form
∑n
i=1 L̃iA(ξn,i), where

ξn,i = L̃n−iA (1)X − L̃n−iA (1)

∫
hAX dνA − hA

∫
(L̃n−iA (1)X − hAX) dνA.

Note that

(74)

∫
ξn,idνA = −

∫
L̃n−iA (1)dνA

∫
hAXdνA +

∫
hAXdνA.

Moreover, as L̃∗A(νA) = νA, it follows that
∫
L̃n−iA (1)dνA = 1.

Then, from (74) we get that
∫
ξn,idνA = 0.

Theorem 3.7 in [6] claims that there exists C > 0 and τ ∈ (0, 1), such that,

||L̃nA(ϕ)− hA
∫
ϕdνA||α ≤ C τn ||ϕ||α,

for all n ≥ 1 and all α-Holder function ϕ, where hA is the unique fix point for L̃A,
such that

∫
hAdνA = 1.

Then, from this theorem we get that there exists C > 0 and 0 < τ < 1, such
that,

‖DFn(A) ·X − hA ·
n−1∑
i=0

∫
[L̃iA(1) ·X − hA ·X] dνA‖0

≤
n∑
i=1

Cτ i‖L̃n−iA (1)X − L̃n−iA (1)

∫
hAX dνA − hA

∫
(L̃n−iA (1)X − hAX) dνA‖0

≤
n∑
i=1

Cτ i‖L̃n−iA (X ◦ fn−i)− hA ·
∫
L̃n−iA (X ◦ fn−i) dνA‖

+

n∑
i=1

Cτ i‖L̃n−iA (1) ·
∫
hA ·X dνA − hA ·

∫
hA ·X dνA‖0

≤
n∑
i=1

C2τn · ‖X‖0 · (1 + ‖hA‖0)2,

which is convergent to zero.
In the last inequality we used the facts that

∫
hAdνA = 1, |

∫
hA · X dνA| ≤

‖X‖0
∫
hAdνA and the norm of L̃n−iA (1) − hA decreases like τn−i. The last claim

follows from Theorem 3.7 in [6] when ϕ = 1.
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As in all of the above estimates, the convergence is uniform with respect to A
and the α-Holder function X, where ‖X‖α ≤ 1, we get the proof of our claim.

Now we can finish the proof of the proposition by estimating

DFn(A) ·X →
∫ [

(I − L̃A |
EA0

)−1(1− hA)
]
·X dνA · hA,

uniformly with respect to A and the Holder function X, where ‖X‖α = 1. Finally,
we get

DA0H(X) = hA0 ·
∫ [

(I − LA0 |
E
A0
0

)−1(1− hA0)
]
·X dµA0 .

�
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