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WITH GEODESIC CURVATURE IN A PRESCRIBED INTERVAL

NICOLAU C. SALDANHA AND PEDRO ZÜHLKE

Abstract. Let C
κ2
κ1 denote the set of all closed curves of class Cr on the sphere S2 whose geodesic

curvatures are restricted to lie in (κ1, κ2), furnished with the Cr topology (for some r ≥ 2 and

possibly infinite κ1 < κ2). In 1970, J. Little proved that the space C+∞
0 of closed curves having

positive geodesic curvature has three connected components. Let ρi = arccotκi (i = 1, 2). We

show that C
κ2
κ1 has n connected components C1, . . . ,Cn, where

n =

⌊
π

ρ1 − ρ2

⌋
+ 1

and Cj contains circles traversed j times (1 ≤ j ≤ n). The component Cn−1 also contains circles

traversed (n−1) + 2k times, and Cn also contains circles traversed n+ 2k times, for any k ∈ N. In

addition, each of C1, . . . ,Cn−2 is homotopy equivalent to SO3 (n ≥ 3). A simple characterization

of the components in terms of the properties of a curve and a proof that C
κ2
κ1 is homeomorphic to

C
κ̄2
κ̄1

whenever ρ1 − ρ2 = ρ̄1 − ρ̄2 (ρ̄i = arccot κ̄i) are also presented.
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0. Introduction

History of the problem. Consider the set W of all Cr regular closed curves in the plane R2 (i.e.,

Cr immersions S1 → R2), furnished with the Cr topology (r ≥ 1). The Whitney-Graustein theorem

([22], thm. 1) states that two such curves are homotopic through regular closed curves if and only

if they have the same rotation number (where the latter is the number of full turns of the tangent

vector to the curve).† Thus, the space W has an infinite number of connected components Wn, one

for each rotation number n ∈ Z. A typical element of Wn (n 6= 0) is a circle traversed |n| times,

with the direction depending on the sign of n; W0 contains a figure eight curve.

For curves on the unit sphere S2 ⊂ R3, there is no natural notion of rotation number. Indeed,

the corresponding space I of Cr immersions S1 → S2 (i.e., regular closed curves on S2) has only

two connected components I+ and I−; this is an immediate consequence of a much more general

result of S. Smale ([21], thm. A). The component I− contains all circles traversed an odd number of

times, and the component I+ contains all circles traversed an even number of times. Actually, the

2010 Mathematics Subject Classification. Primary: 53C42. Secondary: 57N20.
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Hirsch-Smale theorem implies that I± ' SO3 × ΩS3, where ΩS3 denotes the set of all continuous

closed curves on S3, with the compact-open topology; the properties of the latter space are well

understood (see [1], §16).†

In 1970, J. A. Little formulated and solved the following problem: Let C denote the set of all C2

closed curves on S2 which have nonvanishing geodesic curvature, with the C2 topology; what are the

connected components of C? Although his motivation to investigate C appears to have been purely

geometric, this space arises naturally in the study of a certain class of linear ordinary differential

equations (see [18] for a discussion of this class and further references). In another notation, C is the

space Free(S1,S2) of free closed spherical curves. A map f : M → N is called (second-order) free if

the second-order osculating space is nondegenerate; for M = S1 and N = S2, this is equivalent to

saying that the curve f has nonzero geodesic curvature (cf. [5], [7]).

Little was able to show (see [11], thm. 1) that C has six connected components, C±1, C±2 and

C±3, where the sign indicates the sign of the geodesic curvature of a curve in the corresponding

component. A homeomorphism between Ci and C−i is obtained by reversing the orientation of the

curves in Ci.

Figure 1. The curves depicted above provide representatives of the components

C1, C2 and C3, respectively. All three are contained in the upper hemisphere of S2;

the dashed line represents the equator seen from above.

The topology of the space C has been investigated by quite a few other people since Little. We

mention here only B. Khesin, B. Shapiro and M. Shapiro, who studied C and similar spaces in the

1990’s (cf. [8], [9], [19] and [20]). They showed that C±1 are homotopy equivalent to SO3, and also

determined the number of connected components of the spaces analogous to C in Rn, Sn and RPn,

for arbitrary n.

The first pieces of information about the homotopy and cohomology groups πk(C) and Hk(C) for

k ≥ 1 were obtained a decade later by the first author in [14] and [15]. Finally, in the recent work

[16], a description of the homotopy type of C and other closely related spaces of curves on S2 is

presented. It is proved in particular that

C±2 ' SO3 ×
(
ΩS3 ∨ S2 ∨ S6 ∨ S10 ∨ . . .

)
and

C±3 ' SO3 ×
(
ΩS3 ∨ S4 ∨ S8 ∨ S12 ∨ . . .

)
.

The reason for the appearance of an SO3 factor in all of these results is that (unlike in [16]) we

have not chosen a basepoint for the unit tangent bundle UTS2 ≈ SO3; a careful discussion of this

is given in §1.

Brief overview of this work. The main purpose of this work is to generalize Little’s theorem to

other spaces of closed curves on S2. Let −∞ ≤ κ1 < κ2 ≤ +∞ be given and let Cκ2
κ1

be the set of

all Cr closed curves on S2 whose geodesic curvatures are restricted to lie in the interval (κ1, κ2),

furnished with the Cr topology (for some r ≥ 2); in this notation, the spaces C and I discussed

above become C0
−∞ t C+∞

0 and C+∞
−∞, respectively.

We present a direct characterization of the connected components of Cκ2
κ1

in terms of the pair

κ1 < κ2 and of the properties of curves in Cκ2
κ1

. This yields a simple procedure to decide whether

two given curves in Cκ2
κ1

lie in the same component (that is, whether they are homotopic through

†The notation X ' Y (resp. X ≈ Y ) means that X is homotopy equivalent (resp. homeomorphic) to Y .
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closed curves whose geodesic curvatures are restricted to (κ1, κ2)). Another consequence is that the

number of components of Cκ2
κ1

is always finite, and given by a simple formula involving κ1 and κ2.

More precisely, let ρi = arccot(κi), i = 1, 2, where we adopt the convention that arccot takes

values in [0, π], with arccot(+∞) = 0 and arccot(−∞) = π. Also, let bxc denote the greatest integer

smaller than or equal to x. Then Cκ2
κ1

has n connected components C1, . . . ,Cn, where

(1) n =

⌊
π

ρ1 − ρ2

⌋
+ 1

and Cj contains circles traversed j times (1 ≤ j ≤ n). The component Cn−1 also contains circles

traversed (n− 1) + 2k times, and Cn contains circles traversed n+ 2k times, for k ∈ N. Moreover,

each of C1, . . . ,Cn−2 is homotopy equivalent to SO3 (n ≥ 3).

This result could be considered a first step towards the determination of the homotopy type of

Cκ2
κ1

in terms of κ1 and κ2. In this context, it is natural to ask whether the inclusion Cκ2
κ1
↪→ C+∞

−∞ = I

is a homotopy equivalence; as we have already mentioned, the topology of the latter space is well

understood. It is shown in §10 of [23] that the answer is negative when ρ1 − ρ2 ≤ 2π
3 (note that

ρ1 − ρ2 ∈ (0, π]), and we expect it to be negative except when Cκ2
κ1

= C+∞
−∞ (i.e., when ρ1 − ρ2 = π).

Actually, we conjecture that Cκ2
κ1

and Cκ̄2
κ̄1

have different homotopy types if and only if ρ1 − ρ2 6=
ρ̄1− ρ̄2, but here it will only be proved that Cκ2

κ1
is homeomorphic to Cκ̄2

κ̄1
if ρ1− ρ2 = ρ̄1− ρ̄2 (where

ρi = arccotκi and ρ̄i = arccot κ̄i). More precisely, the conjecture is that the homotopy type of the

“large” components Cn−1 and Cn of Cκ2
κ1

(with n as in (1)) is that of a space of the form

SO3 ×
(
ΩS3 ∨ S2n1 ∨ S2n2 ∨ S2n3 ∨ . . .

)
,

n1 ≤ n2 ≤ n3 ≤ · · · being positive integers which can be obtained in terms of κ1 and κ2 by formulas

similar to (1).

Outline of the sections. It turns out that it is more convenient, but not essential, to work with

curves which need not be C2. The curves that we consider possess continuously varying unit tangent

vectors at all points, but their geodesic curvatures are defined only almost everywhere. This class of

curves is described in §1, where we also relate the resulting spaces Lκ2
κ1

to the more familiar spaces

Cκ2
κ1

of Cr curves: The inclusion Cκ2
κ1
↪→ Lκ2

κ1
is a homotopy equivalence and has dense image. In this

section we take the first steps toward the main theorem by proving that the topology of Lκ2
κ1

depends

only on ρ1 − ρ2. A corollary of this result is that any space Lκ2
κ1

is homeomorphic to a space of type

L+∞
κ0

; the latter class is usually more convenient to work with. Some variations of our definition are

also investigated. In particular, in this section we consider spaces of non-closed curves.

The main tools in the paper are introduced in §2. Given a curve γ, we assign to γ certain maps

Bγ and Cγ , called the regular and caustic bands spanned by γ, respectively. These are “fat” versions

of the curve, and each of them carries in geometric form important information on the curve. We

separate our curves into two main classes: If the image of the caustic band of a curve is contained in

a hemisphere, the curve is called condensed; if this image contains two antipodal points, the curve

is diffuse. This distinction is essential throughout the work.

In §3, the grafting construction is introduced. Informally, grafting a curve consists in cutting it

at well chosen points, moving the resulting arcs and inserting new arcs in the gaps that arise. If

the curve is diffuse, then we can use grafting to deform it into a circle traversed a certain number

of times, which is the canonical curve in our spaces. We reach the same conclusion for condensed

curves in L+∞
κ0

in §4, where a notion of rotation number for curves of this type is also introduced.

For κ0 < 0 the proof involves a generalization of the regular band of a curve, and for κ0 ≥ 0 the tools

are Möbius transformations and a version of the Whitney-Graustein theorem. Actually, it will be

seen that the set of condensed curves in L+∞
κ0

having a fixed rotation number is homotopy equivalent

to SO3, for any κ0.

Although there exist curves which are neither condensed nor diffuse, any such curve is homotopic

to a curve of one of these two types. The results used to establish this are contained in §5. There

a more abstract version of rotation number for non-diffuse curves is introduced and a bound on the

total curvature of a non-diffuse curve in L+∞
κ0

which depends only on κ0 and its rotation number is
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obtained. This is used to deduce that, by grafting the curve indefinitely, we must obtain either a

condensed or a diffuse curve.

In §6 we decide when it is possible to deform a circle traversed k times into a circle traversed k+2

times in L+∞
κ0

. It is seen that this is possible if and only if k ≥ n− 1 =
⌊
π
ρ0

⌋
(where ρ0 = arccotκ0),

and an explicit homotopy when this is the case is presented. It is also shown that the set of condensed

curves in L+∞
κ0

with fixed rotation number k < n−1 is a connected component of this space (n ≥ 3).

The proofs of the main theorems are given in §7, after most of the work has been done. A direct

characterization of the components of Lκ2
κ1

in terms of the properties of a curve is presented at the

end of this section. An immediate corollary is a straightforward procedure to check whether two

given curves lie in the same component of this space.

Finally, we collect in an appendix some basic results on convexity in Sn (none of which is new)

that are used throughout the work.

Acknowledgements. The content of this paper is essentially contained in the Ph.D. thesis [23] of

the second author, who was advised by the first. Both authors gratefully acknowledge the financial

support of cnpq, capes and faperj, particularly during the second author’s graduate studies. We

thank the members of the Ph.D. committee for several interesting suggestions. Very special thanks

go to Boris Shapiro for helpful conversations with the first author during his visit to Stockholm

University, which inspired the main problem considered in this work.

1. Spaces of Curves of Bounded Geodesic Curvature

Basic definitions and notation. Let M denote either the euclidean space Rn+1 or the unit sphere

Sn ⊂ Rn+1, for some n ≥ 1. By a curve γ in M we mean a continuous map γ : [a, b] → M . A

curve will be called regular when it has a continuous and nonvanishing derivative; in other words, a

regular curve is a C1 immersion of [a, b] into M . For simplicity, the interval where γ is defined will

usually be [0, 1].

Let γ : [0, 1]→ S2 be a regular curve and let | | denote the usual Euclidean norm. The arc-length

parameter s of γ is defined by

s(t) =

∫ t

0

|γ̇(t)| dt,

and L =
∫ 1

0
|γ̇(t)| dt is called the length of γ. Derivatives with respect to t and s will be systematically

denoted by a ˙ and a ′, respectively; this convention extends to higher-order derivatives as well.

Up to homotopy, we can always assume that a family of curves is parametrized proportionally to

arc-length.

(1.1) Lemma. Let A be a topological space and let a 7→ γa be a continuous map from A to the set

of all Cr regular curves γ : [0, 1] → M (r ≥ 1) with the Cr topology. Then there exists a homotopy

γua : [0, 1]→M , u ∈ [0, 1], such that for any a ∈ A:

(i) γ0
a = γa and γ1

a is parametrized so that |γ̇1
a(t)| is independent of t.

(ii) γua is an orientation-preserving reparametrization of γa, for all u ∈ [0, 1].

Proof. Let sa(t) =
∫ t

0
|γ̇a(τ)| dτ be the arc-length parameter of γa, La its length and τa : [0, La] →

[0, 1] the inverse function of sa. Define γua : [0, 1]→M by:

γua (t) = γa
(
(1− u)t+ uτa(Lat)

)
(u, t ∈ [0, 1], a ∈ A).

Then γua is the desired homotopy. �

The unit tangent vector to γ at γ(t) will always be denoted by t(t). Set M = S2 for the rest of

this section, and define the unit normal vector n to γ by

n(t) = γ(t)× t(t),

where × denotes the vector product in R3.
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Assume now that γ has a second derivative. By definition, the geodesic curvature κ(s) of γ at

γ(s) is given by

(1) κ(s) = 〈t′(s),n(s)〉 .
Note that the geodesic curvature is not altered by an orientation-preserving reparametrization of

the curve, but its sign is changed if we use an orientation-reversing reparametrization. Since the

sectional curvatures of the sphere are all equal to 1, the normal curvature of γ is 1 at each point. In

particular, its Euclidean curvature K,

K(s) =
√

1 + κ(s)2,

never vanishes.

Closely related to the geodesic curvature of a curve γ : [0, 1]→ S2 is the radius of curvature of γ

at γ(t), which we define as the unique number ρ(t) ∈ (0, π) satisfying

cot ρ(t) = κ(t).

Note that the sign of κ(t) is equal to the sign of π
2 − ρ(t).

Example. A parallel circle of colatitude α, for 0 < α < π, has geodesic curvature ± cotα (the sign

depends on the orientation), and radius of curvature α or π − α at each point. (Recall that the

colatitude of a point measures its distance from the north pole along S2.) The radius of curvature

ρ(t) of an arbitrary curve γ gives the size of the radius of the osculating circle to γ at γ(t), measured

along S2 and taking the orientation of γ into account.

Figure 2. A parallel circle of colatitude α has radius of curvature α or π − α,

depending on its orientation. We adopt the convention that the center (on S2) of

a circle lies to its left, hence in the first figure the center is taken to be the north

pole, and in the second, the south pole.

If we consider γ as a curve in R3, then its “usual” radius of curvature R is defined by R(t) =
1

K(t) = sin ρ(t). We will rarely mention R or K again, preferring instead to work with ρ and κ,

which are their natural intrinsic analogues in the sphere.

Spaces of curves. Given p ∈ S2 and v ∈ TpS2 of norm 1, there exists a unique Q ∈ SO3 having

p ∈ R3 as first column and v ∈ R3 as second column. We obtain thus a diffeomorphism between

SO3 and the unit tangent bundle UTS2 of S2.

(1.2) Definition. For a regular curve γ : [0, 1] → S2, its frame Φγ : [0, 1] → SO3 is the map given

by

Φγ(t) =

 | | |
γ(t) t(t) n(t)

| | |

 .†

In other words, Φγ is the curve in UTS2 associated with γ, under the identification of UTS2 with

SO3. We emphasize that it is not necessary that γ have a second derivative for Φγ to be defined.

†In previous works of the first author, this is denoted by Fγ and called the Frenet frame of γ. We will not use

this terminology to avoid any confusion with the usual Frenet frame of γ when it is considered as a curve in R3.



6 NICOLAU C. SALDANHA AND PEDRO ZÜHLKE

Now let −∞ ≤ κ1 < κ2 ≤ +∞ and Q ∈ SO3. We would like to study the space Lκ2
κ1

(Q) of all

regular curves γ : [0, 1]→ S2 satisfying:

(i) Φγ(0) = I and Φγ(1) = Q;

(ii) κ1 < κ(t) < κ2 for each t ∈ [0, 1].

Here I is the 3×3 identity matrix and κ is the geodesic curvature of γ. Condition (i) says that γ

starts at e1 in the direction e2 and ends at Qe1 in the direction Qe2.

This definition is incomplete because we have not described the topology of Lκ2
κ1

(Q). The most

natural choice would be to require that the curves in this space be of class C2, and to give it the C2

topology. The foremost reason why we will not follow this course is that we would like to be able to

perform some constructions which yield curves that are not C2. We shall adopt a more complicated

definition in order to avoid using convolutions or other tools all the time to smoothen a curve.

(1.3) Definition. A function f : [a, b]→ R is said to be of class H1 if it is an indefinite integral of

some g ∈ L2[a, b]. We extend this definition to maps F : [a, b]→ Rn by saying that F is of class H1

if and only if each of its component functions is of class H1.

Since L2[a, b] ⊂ L1[a, b], an H1 function is absolutely continuous (and differentiable almost ev-

erywhere).

We shall now present an explicit description of a topology on Lκ2
κ1

(Q) which turns it into a Hilbert

manifold. The definition is unfortunately not very natural. However, we shall prove the following

two results relating this space to more familiar concepts: First, for any r ∈ N, r ≥ 2, the subset of

Lκ2
κ1

(Q) consisting of Cr curves will be shown to be dense in Lκ2
κ1

(Q). Second, we will see that the

space of Cr regular curves satisfying conditions (i) and (ii) above, with the Cr topology, is homotopy

equivalent to Lκ2
κ1

(Q).†

Consider first a smooth regular curve γ : [0, 1]→ S2. From the definition of Φγ we deduce that

(2) Φ̇γ(t) = Φγ(t)Λ(t), where Λ(t) =

 0 − |γ̇(t)| 0

|γ̇(t)| 0 − |γ̇(t)|κ(t)

0 |γ̇(t)| κ(t) 0

 ∈ so3

is called the logarithmic derivative of Φγ and κ is the geodesic curvature of γ.

Conversely, given Q0 ∈ SO3 and a smooth map Λ: [0, 1]→ so3 of the form

(3) Λ(t) =

 0 −v(t) 0

v(t) 0 −w(t)

0 w(t) 0

 ,

let Φ: [0, 1]→ SO3 be the unique solution to the initial value problem

(4) Φ̇(t) = Φ(t)Λ(t), Φ(0) = Q0.

Define γ : [0, 1] → S2 to be the smooth curve given by γ(t) = Φ(t)e1. Then γ is regular if and only

if v(t) 6= 0 for all t ∈ [0, 1], and it satisfies Φγ = Φ if and only if v(t) > 0 for all t. (If v(t) < 0 for all

t then γ is regular, but Φγ is obtained from Φ by changing the sign of the entries in the second and

third columns.)

Equation (4) still has a unique solution if we only require that v, w ∈ L2[0, 1] (cf. [3], p. 67). With

this in mind, let E = L2[0, 1]× L2[0, 1] and let h : (0,+∞)→ R be the smooth diffeomorphism

(5) h(t) = t− t−1.

For each pair κ1 < κ2 ∈ R, let hκ1, κ2 : (κ1, κ2)→ R be the smooth diffeomorphism

hκ1, κ2(t) = (κ1 − t)−1 + (κ2 − t)−1

†The definitions given here are straightforward adaptations of the ones in [17], where they are used to study spaces

of locally convex curves in Sn (which correspond to the spaces L+∞
0 (Q) when n = 2).



ON THE COMPONENTS OF SPACES OF CURVES ON THE 2-SPHERE 7

and, similarly, set

h−∞,+∞ : R→ R h−∞,+∞(t) = t

h−∞,κ2
: (−∞, κ2)→ R h−∞,κ2

(t) = t+ (κ2 − t)−1

hκ1,+∞ : (κ1,+∞)→ R hκ1,+∞(t) = t+ (κ1 − t)−1.

(1.4) Definition. Let κ1, κ2 satisfy −∞ ≤ κ1 < κ2 ≤ +∞. A curve γ : [0, 1] → S2 will be called

(κ1, κ2)-admissible if there exist Q0 ∈ SO3 and a pair (v̂, ŵ) ∈ E such that γ(t) = Φ(t)e1 for all

t ∈ [0, 1], where Φ is the unique solution to equation (4), with v, w given by

(6) v(t) = h−1(v̂(t)), w(t) = v(t)h−1
κ1, κ2

(ŵ(t)).

When it is not important to keep track of the bounds κ1, κ2, we shall say more simply that γ is

admissible.

In vague but more suggestive language, an admissible curve γ is essentially anH1 frame Φ: [0, 1]→
SO3 such that γ = Φe1 : [0, 1]→ S2 has geodesic curvature in the interval (κ1, κ2). The unit tangent

(resp. normal) vector t(t) = Φ(t)e2 (resp. n(t) = Φ(t)e3) of γ is thus defined everywhere on [0, 1],

and it is absolutely continuous as a function of t. The curve γ itself is, like Φ, of class H1. However,

the coordinates of its velocity vector γ̇(t) = v(t)Φ(t)e2 lie in L2[0, 1], so the latter is only defined

almost everywhere. The geodesic curvature of γ, which is also defined a.e., is given by

κ(t) =
1

v(t)

〈
ṫ(t),n(t)

〉
= h−1

κ1, κ2
(ŵ(t)) ∈ (κ1, κ2)

(cf. (2), (3) and (6)). Note also that if we parametrize γ by (a multiple of) its arc-length parameter

instead, then it becomes a C1 curve, for then γ′ = t is absolutely continuous.

Remark. The reason for the choice of the specific diffeomorphism h : (0,+∞) → R in (5) (instead

of, say, h(t) = log t) is that we need h−1(t) to diverge linearly to ±∞ as t → 0,+∞ in order to

guarantee that v = h−1 ◦ v̂ ∈ L2[0, 1] whenever v̂ ∈ L2[0, 1]. The reason for the choice of the other

diffeomorphisms is analogous.

(1.5) Definition. Let −∞ ≤ κ1 < κ2 ≤ +∞, Q0 ∈ SO3. Define Lκ2
κ1

(Q0, ·) to be the set of all

(κ1, κ2)-admissible curves γ such that

Φγ(0) = Q0,

where Φγ is the frame of γ. This set is identified with E via the correspondence γ ↔ (v̂, ŵ), and

this defines a (trivial) Hilbert manifold structure on Lκ2
κ1

(Q0, ·).

In particular, this space is contractible by definition. We are now ready to define the spaces

Lκ2
κ1

(Q), which constitute the main object of study of this work.

(1.6) Definition. Let −∞ ≤ κ1 < κ2 ≤ +∞, Q ∈ SO3. We define Lκ2
κ1

(Q) to be the subspace of

Lκ2
κ1

(I, ·) consisting of all curves γ in the latter space satisfying

(i) Φγ(0) = I and Φγ(1) = Q.

Here Φγ is the frame of γ and I is the 3×3 identity matrix.†

Because SO3 has dimension 3, the condition Φγ(1) = Q implies that Lκ2
κ1

(Q) is a closed subman-

ifold of codimension 3 in E ≡ Lκ2
κ1

(I, ·). (Here we are using the fact that the map which sends the

pair (v̂, ŵ) ∈ E to Φ(1) is a submersion; a proof of this when κ1 = 0 and κ2 = +∞ can be found in

§3 of [16], and the proof of the general case is analogous.) The space Lκ2
κ1

(Q) consists of closed curves

only when Q = I. Also, when κ1 = −∞ and κ2 = +∞ simultaneously, no restrictions are placed

on the geodesic curvature. The resulting space (for arbitrary Q ∈ SO3) is known to be homotopy

equivalent to ΩS3 t ΩS3; see the discussion after (1.13).

†The letter ‘L’ in L
κ2
κ1 (Q) is a reference to John A. Little, who determined the connected components of L+∞

0 (I)

in [11].
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Note that we have natural inclusions Lκ2
κ1

(Q) ↪→ Lκ̄2
κ̄1

(Q) whenever κ̄1 ≤ κ1 < κ2 ≤ κ̄2. More

explicitly, this map is given by:

γ ≡ (v̂, ŵ) 7→
(
v̂, hκ̄1,κ̄2

◦ h−1
κ1,κ2

(ŵ)
)
;

it is easy to check that the actual curve associated with the pair of functions in Lκ̄2
κ̄1

(Q) on the right

side (via (3), (4) and (6)) is the original curve γ, so that the use of the term “inclusion” is justified.

In fact, this map is an embedding, so that Lκ2
κ1

(Q) can be considered a subspace of Lκ̄2
κ̄1

(Q) when

κ̄1 ≤ κ1 < κ2 ≤ κ̄2.

The next lemma contains all results on Hilbert manifolds that we shall use.

(1.7) Lemma. Let M be a Hilbert manifold. Then:

(a) M is locally path-connected. In particular, its connected components and path components

coincide.

(b) If M is weakly contractible then it is contractible.

(c) Let E and F be separable Banach spaces. Suppose i : F→ E is a bounded, injective linear map

with dense image and M ⊂ E is a smooth closed submanifold of finite codimension. Then

N = i−1(M) is a smooth closed submanifold of F and i : (F, N) → (E,M) is a homotopy

equivalence of pairs.

Proof. Part (a) is obvious and part (b) is a special case of thm. 15 in [13]. Part (c) is a consequence

of the implicit function theorem (for Banach spaces). Finally, part (d) is thm. 2 in [2]. �

(1.8) Lemma. Let r ∈ {2, 3, . . . ,∞}. Then the subset of all γ : [0, 1] → S2 of class Cr is dense in

Lκ2
κ1

(Q).

Proof. This follows from the fact that the set of smooth functions f : [0, 1]→ R is dense in L2[0, 1].

�

(1.9) Definition. Let −∞ ≤ κ1 < κ2 ≤ +∞, Q ∈ SO3 and r ∈ N, r ≥ 2. Define Cκ2
κ1

(Q) to be the

set, furnished with the Cr topology, of all Cr regular curves γ : [0, 1]→ S2 such that:

(i) Φγ(0) = I and Φγ(1) = Q;

(ii) κ1 < κ(t) < κ2 for each t ∈ [0, 1].

The value of r is not important, as all of these spaces are homotopy equivalent. Because of this,

after the next lemma, when we speak of Cκ2
κ1

(Q), we will implicitly assume that r = 2.

(1.10) Lemma. Let r ∈ N (r ≥ 2), Q ∈ SO3 and −∞ ≤ κ1 < κ2 ≤ +∞. Then the set inclusion

i : Cκ2
κ1

(Q) ↪→ Lκ2
κ1

(Q) is a homotopy equivalence.

Proof. In this proof we will highlight the differentiability class by denoting Cκ2
κ1

(Q) by Cκ2
κ1

(Q)r. Let

E = L2[0, 1] × L2[0, 1], let F = Cr−1[0, 1] × Cr−2[0, 1] (where Ck[0, 1] denotes the set of all Ck

functions [0, 1] → R, with the Ck norm) and let i : F → E be set inclusion. Setting M = Lκ2
κ1

(Q),

we conclude from (1.7(c)) that i : N = i−1(M) ↪→ M is a homotopy equivalence. We claim that

N ≈ Cκ2
κ1

(Q)r, where the homeomorphism is obtained by associating a pair (v̂, ŵ) ∈ N to the curve

γ obtained by solving (4) (with Λ defined by (3) and (6) and Q0 = I), and vice-versa.

Suppose first that γ ∈ Cκ2
κ1

(Q)r. Then |γ̇| (resp. κ) is a function [0, 1] → R of class Cr−1

(resp. Cr−2). Hence, so are v̂ = h ◦ |γ̇| and ŵ = hκ2
κ1
◦ κ, since h and hκ2

κ1
are smooth. Conversely, if

(v̂, ŵ) ∈ N , then v = h−1(v̂) is of class Cr−1 and w = (hκ2
κ1

)−1 ◦ ŵ of class Cr−2, and the frame Φ

of the curve γ corresponding to that pair satisfies

Φ̇ = ΦΛ, Λ =

 0 − |γ̇| 0

|γ̇| 0 − |γ̇|κ
0 |γ̇|κ 0

 =

0 −v 0

v 0 −w
0 w 0

 .

Since the entries of Λ are of class (at least) Cr−2, the entries of Φ are functions of class Cr−1.

Moreover, γ = Φe1, hence

γ̇ = Φ̇e1 = ΦΛe1 = vΦe2,

and the velocity vector of γ is seen to be of class Cr−1. It follows that γ is a curve of class Cr.

Finally, it is easy to check that the correspondence (v̂, ŵ)↔ γ is continuous in both directions. �
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Lifted frames. The (two-sheeted) universal covering space of SO3 is S3. Let us briefly recall the

definition of the covering map π : S3 → SO3.† We start by identifying R4 with the algebra H

of quaternions, and S3 with the subgroup of unit quaternions. Given z ∈ S3, v ∈ R4, define a

transformation Tz : R4 → R4 by Tz(v) = zvz−1 = zvz. One checks easily that Tz preserves the sum,

multiplication and conjugation operations. It follows that, for any v, w ∈ R4,

4 〈Tz(v), Tz(w)〉 = |Tz(v) + Tz(w)|2 − |Tz(v)− Tz(w)|2

= |v + w|2 − |v − w|2 = 4 〈v, w〉 ,

where 〈 , 〉 denotes the usual inner product in R4. Thus Tz is an orthogonal linear transformation of

R4. Moreover, Tz(1) = 1 (where 1 is the unit of H), hence the three-dimensional vector subspace

{0} ×R3 ⊂ R4 consisting of the purely imaginary quaternions is invariant under Tz. The element

π(z) ∈ SO3 is the restriction of Tz to this subspace, where (a, b, c) ∈ R3 is identified with the

quaternion ai + bj + ck.

In what follows we adopt the convention that S3 (resp. SO3) is furnished with the Riemannian

metric inherited from R4 (resp. R9).

(1.11) Lemma. Let 〈 , 〉 denote the metric in S3 and 〈〈〈 , 〉〉〉 the metric in SO3. Then π∗〈〈〈 , 〉〉〉 = 8 〈 , 〉,
where π∗〈〈〈 , 〉〉〉 denotes the pull-back of 〈〈〈 , 〉〉〉 by π.

Proof. The proof is a straightforward calculation. The details may be found in [23], (2.11). �

(1.12) Definition. Let Φγ : [0, 1] → SO3 be the frame of an admissible curve γ and let z ∈ S3

satisfy π(z) = Φγ(0). We define the lifted frame Φ̃zγ : [0, 1]→ S3 to be the lift of Φγ to S3, starting

at z. When Φγ(0) = I we adopt the convention that z = 1, and we denote the lifted frame simply

by Φ̃γ .

Here is a simple but important application of this concept.

(1.13) Lemma. Let γ0, γ1 ∈ Lκ2
κ1

(Q), for some Q ∈ SO3, and suppose that γ0, γ1 lie in the same

connected component of this space. Then Φ̃γ0(1) = Φ̃γ1(1).

Proof. Since Lκ2
κ1

(Q) is a Hilbert manifold, its path and connected components coincide. Therefore,

to say that γ0, γ1 lie in the same connected component of Lκ2
κ1

(Q) is the same as to say that there

exists a continuous family of curves γs ∈ Lκ2
κ1

(Q) joining γ0 and γ1, s ∈ [0, 1]. The family Φγs
yields a homotopy between the paths Φγ0 and Φγ1 in SO3. (Recall that each of the frames Φγs is

(absolutely) continuous.) By the homotopy lifting property of covering spaces, the paths Φ̃γ0 and

Φ̃γ1 are also homotopic in S3 (fixing the endpoints). �

The role of the initial and final frames. We will now study how the topology of Lκ2
κ1

(Q) changes

if we consider variations of condition (i) in (1.6); by the end of the section it should be clear that our

original definition is sufficiently general. A summary of all the definitions considered here is given

in table form on p. 13.

For fixed z ∈ S3, let ΩzS
3 denote the set of all continuous paths ω : [0, 1]→ S3 such that ω(0) = 1

and ω(1) = z, furnished with the compact-open topology. It can be shown (see [1], p. 198) that

ΩzS
3 ' ΩS3 for any z ∈ S3, where ΩS3 is the space of paths in S3 which start and end at 1 ∈ S3.‡

The topology of this space is well understood; we refer the reader to [1], §16, for more information.

Now let κ1 < κ2, z ∈ S3 be arbitrary and Q = π(z). Define

(7) F : Lκ2
κ1

(Q)→ ΩzS
3 ∪ Ω−zS

3 ' ΩS3 t ΩS3 by F (γ) = Φ̃γ .

In the special case κ1 = −∞, κ2 = +∞, it follows from the Hirsch-Smale theorem (see [21], thm. C)

that this map is a homotopy equivalence. In the general case this is false, however. For instance,

ΩS3 t ΩS3 has two connected components, while Little has proved ([11], thm. 1) that L+∞
0 (I) has

three connected components. We take this opportunity to recall the precise statement of Little’s

theorem and to introduce a new class of spaces.

†See [4] for more details and further information on quaternions and rotations.
‡The notation X ' Y (resp. X ≈ Y ) means that X is homotopy equivalent (resp. homeomorphic) to Y .
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(1.14) Definition. Let −∞ ≤ κ1 < κ2 ≤ +∞. Define Lκ2
κ1

to be the space of all (κ1, κ2)-admissible

curves γ : [0, 1]→ S2 such that

Φγ(0) = Φγ(1).

Note that the only difference between Lκ2
κ1

(I) and Lκ2
κ1

is that curves in the latter space may have

arbitrary initial and final frames, as long as they coincide. An argument analogous to the one given

for the spaces Lκ2
κ1

(Q) shows that Lκ2
κ1

is also a Hilbert manifold. In fact, we have the following

relationship between the two classes.

(1.15) Proposition. The space Lκ2
κ1

is homeomorphic to SO3 × Lκ2
κ1

(I).

Proof. For Q ∈ SO3 and γ ∈ Lκ2
κ1

(I), let Qγ be the curve defined by (Qγ)(t) = Q(γ(t)). Because

Q is an isometry, the geodesic curvatures of Qγ at (Qγ)(t) and of γ at γ(t) coincide. Define

F : SO3 × Lκ2
κ1

(I) → Lκ2
κ1

by F (Q, γ) = Qγ; clearly, F is continuous. Since it has the continuous

inverse η 7→ (Φη(0),Φη(0)−1η), F is a homeomorphism. �

Let us temporarily denote by L the space L0
−∞ tL+∞

0 studied by Little. We have L0
−∞ ≈ L+∞

0 ,

since the map which takes a curve in L to the same curve with reversed orientation is a (self-inverse)

homeomorphism mapping L0
−∞ onto L+∞

0 . What is proved in [11] is that L has six connected

components.† Using prop. (1.15) and the fact that SO3 is connected, we see that Little’s theorem is

equivalent to the assertion that L+∞
0 (I) has three connected components, as was claimed immediately

above (1.14).

A natural generalization of the spaces Lκ2
κ1

(Q) is obtained by modifying condition (i) of (1.6) as

follows.

(1.16) Definition. Let −∞ ≤ κ1 < κ2 ≤ +∞ and Q0, Q1 ∈ SO3. Define Lκ2
κ1

(Q0, Q1) to be the

space of all (κ1, κ2)-admissible curves γ : [0, 1]→ S2 such that

(i′) Φγ(0) = Q0 and Φγ(1) = Q1.

Thus, the only difference between condition (i) on p. 7 and condition (i′) is that the latter allows

arbitrary initial frames.

(1.17) Proposition. Let P, Q0, Q1 ∈ SO3. Then Lκ2
κ1

(Q0, Q1) ≈ Lκ2
κ1

(PQ0, PQ1). In particular,

Lκ2
κ1

(Q0, Q1) ≈ Lκ2
κ1

(Q), where Q = Q−1
0 Q1.

Proof. The proof is similar to that of (1.15). The map γ 7→ Pγ takes Lκ2
κ1

(Q0, Q1) into Lκ2
κ1

(PQ0, PQ1)

and is continuous. The map γ 7→ P−1γ, which is likewise continuous, is its inverse. �

Of course, we could also consider the spaces Lκ2
κ1

(·, Q), consisting of all (κ1, κ2)-admissible curves

γ having final frame Φγ(1) = Q ∈ SO3 (but arbitrary initial frame). Like Lκ2
κ1

(Q, ·), this space is

contractible. To see this, one can go through the definition to check that it is indeed diffeomor-

phic to E, or, alternatively, one can observe that the map γ 7→ γ̄, γ̄(t) = γ(1 − t), establishes a

homeomorphism

Lκ2
κ1

(·, Q) ≈ Lκ2
κ1

(QR, ·),
where

R =

1 0 0

0 −1 0

0 0 −1

 .

Finally, we could study the space Lκ2
κ1

(·, ·) of all (κ1, κ2)-admissible curves, with no conditions placed

on the frames. The argument given in the proof of (1.15) shows that

Lκ2
κ1

(·, ·) ≈ SO3 × Lκ2
κ1

(I, ·).

Hence, Lκ2
κ1

(·, ·) is homeomorphic to SO3 ×E, and has the homotopy type of SO3.

Thus, the topology of the spaces Lκ2
κ1

(Q, ·), Lκ2
κ1

(·, Q) and Lκ2
κ1

(·, ·) is uninteresting. We will have

nothing else to say about these spaces.

†Little works with C2 curves, but, as we have seen, this is not important.
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The role of the bounds on the curvature. Having analyzed the significance of condition (i)

on p. 6, let us examine next condition (ii). Notice that we have allowed the bounds κ1, κ2 on the

curvature to be infinite. The definition of radius of curvature is extended accordingly by setting

arccot(+∞) = 0 and arccot(−∞) = π. We can then rephrase (ii) as:

(ii) ρ(t) ∈ (ρ2, ρ1) for each t ∈ [0, 1].

Here ρ is the radius of curvature of γ and ρi = arccotκi ∈ [0, π], i = 1, 2. The main result of this

section relates the topology of Lκ2
κ1

(Q) to the size ρ1 − ρ2 of the interval (ρ2, ρ1). Its proof relies on

the following construction.

Given −π < θ < π and an admissible curve γ : [0, 1] → S2, define the translation γθ : [0, 1] → S2

of γ by θ to be the curve given by

(8) γθ(t) = cos θ γ(t) + sin θ n(t) (t ∈ [0, 1]).

Example. Let 0 < α < π
2 and let C be the circle of colatitude α. Depending on the orientation, the

translation of C by θ, 0 ≤ θ ≤ α, is either the circle of colatitude α + θ or the circle of colatitude

α − θ. In particular, taking θ = α and a suitable orientation of C, the translation degenerates to a

single point (the north pole).

This example shows that some care must be taken in the choice of θ for the resulting curve to be

admissible.

(1.18) Lemma. Let γ : [0, 1]→ S2 be an admissible curve and ρ its radius of curvature. Suppose

(9) ρ2 < ρ(t) < ρ1 for a.e. t ∈ [0, 1] and ρ1 − π ≤ θ ≤ ρ2.

Then γθ is an admissible curve and its frame is given by:

(10) Φγθ = ΦγRθ , where Rθ =

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 .

Proof. Let Ψ = ΦγRθ. Since Φγ satisfies the differential equation (2), Ψ satisfies

Ψ̇ = Ψ(R−1
θ ΛRθ).

A direct calculation shows that

(11) R−1
θ ΛRθ =

 0 −
(

cos θv − sin θw
)

0

cos θv − sin θw 0 −
(

cos θw + sin θv
)

0 cos θw + sin θv 0

 ,

where v = v(t) = |γ̇(t)| and w = w(t) = v(t)κ(t). Also, Ψe1 = γθ by construction. To show that γθ
is admissible, it is thus only necessary to show that

cos θv(t)− sin θw(t) = v(t)
(

cos θ − sin θ cot ρ(t)
)

=
v(t)

sin ρ(t)
sin(ρ(t)− θ) > 0

for almost every t ∈ [0, 1], and this is true by our choice of θ and the fact that v > 0. �

Thus, for θ satisfying (9), we obtain from (10) that the unit tangent vector tθ and unit normal

vector nθ to the translation γθ of γ are given by:

(12) tθ(t) = t(t) and nθ(t) = − sin θ γ(t) + cos θ n(t)

for almost every t ∈ [0, 1].

(1.19) Corollary. Let γ : [0, 1] → S2 be an admissible curve and let θ satisfy (9). Then the radius

of curvature ρ̄ of γθ is given by ρ̄ = ρ− θ.

Proof. We already calculated the logarithmic derivative Λγθ of γθ in (11). The geodesic curvature κ̄

of γθ is given by the quotient of the (3,2)-entry by the (2,1)-entry of this matrix (cf. (2)):

κ̄ =
cos θw + sin θv

cos θv − sin θw
=
v sin θ

v sin θ

cot θ wv + 1

cot θ − w
v

=
cot θ cot ρ+ 1

cot θ − cot ρ
= cot(ρ− θ),

where v, w are the (2,1)- and (3,2)-entries of Λγ , respectively. Therefore, ρ̄ = ρ− θ. �
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Remark. A different proof of (1.19) may be found in [23]. There we verify the formula for a circle,

and then use the fact that the osculating circle to the translation γθ at γθ(t) is the translation of

the osculating circle to γ at γ(t).

(1.20) Lemma. Let γ : [0, 1]→ S2 be an admissible curve and suppose that (9) holds. Then (γθ)ϕ =

γθ+ϕ for any ϕ ∈ (−π, π). In particular, (γθ)−θ = γ.

Proof. Note that (γθ)ϕ is defined because γθ is admissible, as we have just seen. Using (8) and (12)

we obtain that

(γθ)ϕ = cosϕ
(

cos θ γ + sin θ n
)

+ sinϕ
(
− sin θ γ + cos θ n

)
= γθ+ϕ. �

(1.21) Theorem A. Let Q ∈ SO3, κ1 < κ2, κ̄1 < κ̄2, ρi = arccotκi, ρ̄i = arccot κ̄i. Suppose that

ρ1 − ρ2 = ρ̄1 − ρ̄2. Then Lκ2
κ1

(Q) ≈ Lκ̄2
κ̄1

(R−θQRθ), where θ = ρ2 − ρ̄2 and

Rθ =

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 .

We recall that the bounds κi, κ̄i may take on infinite values, and we adopt the conventions that

arccot(+∞) = 0 and arccot(−∞) = π.

Proof. Let γ ∈ Lκ2
κ1

(Q) and let ρ be its radius of curvature. We have:

ρ2 < ρ(t) < ρ1 for a.e. t ∈ [0, 1].

Set θ = ρ2−ρ̄2. Then (9) is satisfied, so γθ is and admissible curve. By (1.19), the radius of curvature

ρ̄ of γθ is given by ρ̄ = ρ− θ. Thus,

ρ̄2 < ρ̄(t) < ρ̄1 for a.e. t ∈ [0, 1].

Together with (1.18), this says that F : γ 7→ γθ maps Lκ2
κ1

(Q) into Lκ̄2
κ̄1

(Rθ, QRθ). Similarly, transla-

tion by −θ is a map G : Lκ̄2
κ̄1

(Rθ, QRθ)→ Lκ2
κ1

(Q). By (1.20), the maps F and G are inverse to each

other, hence

Lκ2
κ1

(Q) ≈ Lκ̄2
κ̄1

(Rθ, QRθ).

Finally, because R−1
θ = R−θ, (1.17) guarantees that

Lκ̄2
κ̄1

(Rθ, QRθ) ≈ Lκ̄2
κ̄1

(R−θQRθ). �

(1.22) Remark. TakingQ = I we obtain from (1.21) that Lκ2
κ1

(I) ≈ Lκ̄2
κ̄1

(I) (κi, κ̄i as in the hypothesis

of the theorem). It will also be important to us that under the homeomorphisms of (1.21) and the

following corollaries, the image of any circle traversed k times is another circle traversed k times.

Indeed, the homeomorphism is obtained by translating (in the sense of (8)) all the curves in a space

by a fixed distance.

(1.23) Corollary. Let Q ∈ SO3 and κ1 < κ2. Then Lκ2
κ1

(Q) ≈ L+κ0
−κ0

(P ) for suitable κ0 > 0,

P ∈ SO3. Moreover, if Q = I then P = I also.

Proof. Let ρi = arccotκi, i = 1, 2, and set

ρ̄1 =
π

2
+
ρ1 − ρ2

2
, ρ̄2 =

π

2
− ρ1 − ρ2

2
and κ0 = cot(ρ̄2).

The interval (ρ̄2, ρ̄1) has the same size as (ρ2, ρ1) by construction. Since cot(ρ̄1) = −κ0, (1.21) yields

that Lκ2
κ1

(Q) ≈ L+κ0
−κ0

(R−θQRθ), where θ = ρ1+ρ2−π
2 . �

(1.24) Corollary. Let Q ∈ SO3 and κ1 < κ2. Then Lκ2
κ1

(Q) ≈ L+∞
κ0

(P ) for suitable κ0 ∈ [−∞,+∞)

and P ∈ SO3. Moreover, if Q = I then P = I also.

Proof. Let ρi = arccotκi, i = 1, 2. Then the interval (ρ2, ρ1) has the same size as the interval

(0, ρ1 − ρ2). Hence, by (1.21), Lκ2
κ1

(Q) ≈ L+∞
κ0

(R−θQRθ), where

κ0 = cot(ρ1 − ρ2) =
1 + κ1κ2

κ2 − κ1
and θ = ρ2. �
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Corollaries (1.23) and (1.24) both express the fact that, for fixed Q ∈ SO3, the topology of

the spaces Lκ2
κ1

(Q) depends essentially on one parameter, not two. The spaces of type L+κ0
−κ0

(Q)

and L+∞
κ0

(Q) have been singled out merely because they are more convenient to work with. For

spaces of closed curves we have the following result relating the two classes, which is another simple

consequence of (1.23).

(1.25) Corollary. Let κ0 ∈ [−∞,+∞), κ1 ∈ (0,+∞] and ρi = arccot(κi), i = 0, 1. If ρ0 = π − 2ρ1

then L+κ1
−κ1

(I) ≈ L+∞
κ0

(I). �

For convenience, we list in table 1 all the spaces considered thus far, together with some of the

results that we have proved about their topology. As we have already remarked, the spaces Lκ2
κ1

(·, Q),

Lκ2
κ1

(Q, ·) and Lκ2
κ1

(·, ·) will not be mentioned again.

Space Definition Condition on Frames Topology

Lκ2
κ1

(Q) p. 7, (1.6) Φ(0) = I, Φ(1) = Q depends on ρ1 − ρ2, Q

Lκ2
κ1

p. 10, (1.14) Φ(0) = Φ(1) arbitrary ≈ SO3 × Lκ2
κ1

(I)

Lκ2
κ1

(Q0, Q1) p. 10, (1.16) Φ(0) = Q0, Φ(1) = Q1 ≈ Lκ2
κ1

(Q−1
0 Q1)

Lκ2
κ1

(Q, ·) p. 7, (1.5) Φ(0) = Q, Φ(1) arbitrary contractible

Lκ2
κ1

(·, Q) p. 10 Φ(0) arbitrary, Φ(1) = Q contractible

Lκ2
κ1

(·, ·) p. 10 none ' SO3

Table 1. Spaces of spherical curves of bounded geodesic curvature. Here Q ∈ SO3,

−∞ ≤ κ1 < κ2 ≤ +∞ and ρi = arccot(κi). The notation X ≈ Y (resp. X ' Y )

means that X is homeomorphic (resp. homotopy equivalent) to Y .

2. The Connected Components of Lκ2
κ1

The following theorem is the main result of this work. It presents a description of the components

of Lκ2
κ1

in terms of κ1 and κ2.

(2.1) Theorem B. Let −∞ ≤ κ1 < κ2 ≤ +∞, ρi = arccotκi (i = 1, 2) and bxc denote the greatest

integer smaller than or equal to x. Then Lκ2
κ1

has exactly n connected components L1, . . . ,Ln, where

(1) n =

⌊
π

ρ1 − ρ2

⌋
+ 1

and Lj contains circles traversed j times (1 ≤ j ≤ n). The component Ln−1 also contains circles

traversed (n− 1) + 2k times, and Ln contains circles traversed n+ 2k times, for k ∈ N. Moreover,

each of L1, . . . ,Ln−2 is homotopy equivalent to SO3 (n ≥ 3).

Figure 3. The number of connected components of Lκ2
κ1

, as ρ1 − ρ2 varies in (0, π]

(where ρi = arccotκi). When ρ1 − ρ2 = π
n , Lκ2

κ1
has n+ 1 components.

If we replace Lκ2
κ1

with Lκ2
κ1

(I) in the statement then the conclusion is the same, except that

the first n − 2 components, L1(I), . . . ,Ln−2(I) (where Lj(I) contains circles traversed j times),
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are now contractible. This is what will actually be proved; the theorem follows from this and the

homeomorphism Lκ2
κ1
≈ SO3×Lκ2

κ1
(I), which was established in (1.15). We could also have replaced

Lκ2
κ1

by the space Cκ2
κ1

of all Cr closed curves (r ≥ 2) whose geodesic curvatures lie in the interval

(κ1, κ2), with the Cr topology, since this space is homotopy equivalent to the former, by (1.10).

We emphasize that the component Lj contains every parametrized circle in Lκ2
κ1

traversed j

times (notation as in (2.1)); similarly, Ln−1 (resp. Ln) contains all circles traversed (n − 1) + 2k

(resp. n+2k) whose geodesic curvature lie in (κ1, κ2), for any k ∈ N. A more direct characterization

in terms of the properties of a curve (condensed or diffuse) is given in (7.5).

Examples. Let us first discuss some concrete cases of the theorem.

(a) We have already mentioned (on p. 9) that L+∞
−∞ = I ' SO3× (ΩS3 tΩS3) has two connected

components I+ and I−, which are characterized by: γ ∈ I+ if and only if Φ̃γ(1) = Φ̃γ(0) and γ ∈ I−
if and only if Φ̃γ(1) = −Φ̃γ(0). This is consistent with (2.1).

(b) Suppose κ0 < 0. Setting ρ2 = 0 and ρ1 = arccotκ0 in (2.1), we find that L+∞
κ0

also has

two connected components. Since L+∞
κ0

can be considered a subspace of L+∞
−∞, these components

have the same characterization in terms of Φ̃: two curves γ, η ∈ L+∞
κ0

are homotopic if and only if

Φ̃γ(1) = ±Φ̃γ(0) and Φ̃η(1) = ±Φ̃η(0), with the same choice of sign for both curves.

(c) In contrast, L+∞
κ0

has at least three connected components when κ0 ≥ 0. It has exactly three

components in case

0 ≤ κ0 <
1√
3
.

The case κ0 = 0 is Little’s theorem ([11], thm. 1). If

1√
3
≤ κ0 < 1

it has four connected components and so forth.

To sum up, as we impose starker restrictions on the geodesic curvatures, a homotopy which existed

“before” may now be impossible to carry out. For instance, in any space L+∞
κ0

with κ0 < 0, it is

possible to deform a circle traversed once into a circle traversed three times. However, in L+∞
0 this

is not possible anymore, which gives rise to a new component.

The first part of theorem (2.1) is an immediate consequence of the following results.

(2.2) Theorem C. Let −∞ ≤ κ1 < κ2 ≤ +∞. Every curve in Lκ2
κ1

(I) (resp. Lκ2
κ1

) lies in the same

component as a circle traversed k times, for some k ∈ N (depending on the curve).

(2.3) Theorem D. Let −∞ ≤ κ1 < κ2 ≤ +∞ and let σj ∈ Lκ2
κ1

(I) (resp. Lκ2
κ1

) denote any circle

traversed j ≥ 1 times. Then σk, σk+2 lie in the same component of Lκ2
κ1

(I) (resp. Lκ2
κ1

) if and only if

k ≥
⌊

π

ρ1 − ρ2

⌋
(ρi = arccotκi, i = 1, 2).

The following very simple result will be used implicitly in the sequel; it implies in particular that

it does not matter which circle σk we choose in (2.2) and (2.3).

(2.4) Lemma. Let σ, σ̃ ∈ Lκ2
κ1

(I) (resp. Lκ2
κ1

) be parametrized circles traversed the same number of

times. Then σ and σ̃ lie in the same connected component of Lκ2
κ1

(I) (resp. Lκ2
κ1

).

Proof. The proof is easy, and will be omitted. See [23], lemma (4.4) for the details. �

Next we introduce the main concepts and tools used in the proofs of the theorems listed above.

From now on we shall work almost exclusively with spaces of type L+∞
κ0

and L+∞
κ0

(I); we are allowed

to do so by (1.24).

The bands spanned by a curve. Let γ : [0, 1]→ S2 be a C2 regular curve. For t ∈ [0, 1], let χ(t)

(or χγ(t)) be the center, on S2, of the osculating circle to γ at γ(t). (There are two possibilities for

the center on S2 of a circle. To distinguish them we use the orientation of the circle, as in fig. 2. The

radius of curvature ρ(t) is the distance from γ(t) to the center χ(t), measured along S2.) The point
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χ(t) will be called the center of curvature of γ at γ(t), and the correspondence t 7→ χ(t) defines a

new curve χ : [0, 1]→ S2, the caustic of γ. In symbols,

(2) χ(t) = cos ρ(t)γ(t) + sin ρ(t)n(t).

Here, as always, ρ = arccotκ is the radius of curvature and n the unit normal to γ. Note that the

caustic of a circle degenerates to a single point, its center. This is explained by the following result.

(2.5) Lemma. Let r ≥ 2, γ : [0, 1]→ S2 be a Cr regular curve and χ its caustic. Then χ is a curve

of class Cr−2. When χ is differentiable, χ̇(t) = 0 if and only if κ̇(t) = 0, where κ is the geodesic

curvature of γ.

Proof. Again, the proof will be left to the reader. See [23], (4.5) for the details. �

(2.6) Definitions. Let κ0 ∈ R, ρ0 = arccotκ0 and γ ∈ L+∞
κ0

. Define the regular band Bγ and the

caustic band Cγ to be the maps

Bγ : [0, 1]× [ρ0 − π, 0]→ S2 and Cγ : [0, 1]× [0, ρ0]→ S2

given by the same formula:

(3) (t, θ) 7→ cos θ γ(t) + sin θ n(t).

The image of Cγ will be denoted by C, and the geodesic circle orthogonal to γ at γ(t) will be denoted

by Γt. As a set,

Γt =
{

cos θ γ(t) + sin θ n(t) : θ ∈ [−π, π)
}
.

Figure 4.

For fixed t, the images of ±Bγ(t, ·) and ±Cγ(t, ·) divide the circle Γt in four parts. Note also that

χγ(t) = Cγ(t, ρ(t)).

(2.7) Lemma. Let γ ∈ L+∞
κ0

and let Bγ : [0, 1]× [ρ0 − π, 0]→ S2 be the regular band spanned by γ.

Then:

(a) The derivative of Bγ is an isomorphism at every point.

(b)
∂Bγ
∂θ (t, θ) has norm 1 and is orthogonal to

∂Bγ
∂t (t, θ). Moreover,

det
(
Bγ ,

∂Bγ
∂t

,
∂Bγ
∂θ

)
> 0.

(c) Cγ fails to be an immersion precisely at the points (t, ρ(t)) whose images form the caustic χ.

Proof. We have:

(4)
∂Bγ
∂θ

(t, θ) = − sin θ γ(t) + cos θ n(t).
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and

∂Bγ
∂t

(t, θ) = |γ̇(t)|
(

cos θ − κ(t) sin θ
)
t(t)(5)

=
|γ̇(t)|

sin ρ(t)
sin(ρ(t)− θ)t(t),(6)

where ρ(t) = arccotκ(t) is the radius of curvature of γ at γ(t). The inequality κ0 < κ < +∞
translates into 0 < ρ < ρ0, hence the factor multiplying t(t) in (6) is positive for θ satisfying

ρ0− π ≤ θ ≤ 0, and this implies (a) and (b). Part (c) also follows directly from (6), because Cγ and

Bγ are defined by the same formula. �

Thus, Bγ is an immersion (and a submersion) at every point of its domain. It is merely a way of

collecting the regular translations of γ (as defined on p. 11) in a single map.

If we fix t and let θ vary in (0, ρ0), the section Cγ(t, θ) of Γt describes the set of “valid” centers of

curvature for γ at γ(t), in the sense that the circle centered at Cγ(t, θ) passing through γ(t), with the

same orientation, has geodesic curvature greater than κ0. This interpretation is important because

it motivates many of the constructions that we consider ahead.

Condensed and diffuse curves.

(2.8) Definition. Let κ0 ∈ R and γ ∈ L+∞
κ0

. We shall say that γ is condensed if the image C of Cγ
is contained in a closed hemisphere, and diffuse if C contains antipodal points (i.e., if C ∩−C 6= ∅).

Examples. A circle in L+∞
κ0

is always condensed for κ0 ≥ 0, but when κ0 < 0 it may or may not be

condensed, depending on its radius. If a curve contains antipodal points then it must be diffuse, since

Cγ(t, 0) = γ(t). By the same reason, a condensed curve is itself contained in a closed hemisphere.

There exist curves which are condensed and diffuse at the same time; an example is a geodesic

circle in L+∞
κ0

, with κ0 < 0. There also exist curves which are neither condensed nor diffuse. To see

this, let S1 be identified with the equator of S2 and let ζ ∈ S1 be a primitive third root of unity.

Choose small neighborhoods Ui of ζi (i = 0, 1, 2) and V of the north pole in S2. Then the set G

consisting of all geodesic segments joining points of U1 ∪ U2 ∪ U3 to points of V does not contain

antipodal points, nor is it contained in a closed hemisphere, by (A.3). By taking ρ0 = arccotκ0 to

be very small, we can construct a curve γ ∈ L+∞
κ0

for which C = Im(Cγ) ⊂ G, but ζi ∈ C for each

i, so that γ is neither condensed nor diffuse.

To sum up, a curve may be condensed, diffuse, neither of the two, or both simultaneously, but

this ambiguity is not as important as it seems.

There exists a two-way correspondence between the unit sphere S2 and the set consisting of its

closed (or open) hemispheres; namely, with h ∈ S2 we can associate

H =
{
p ∈ S2 : 〈h, p〉 ≥ 0

}
.

Let γ : [0, 1]→ Sn be a (continuous) curve contained in the interior of H. As a consequence of the

compactness of [0, 1], if h̃ ∈ Sn is sufficiently close to h, then γ is also contained in the hemisphere H̃

corresponding to h̃. It is desirable to be able to select, in a natural way, a distinguished hemisphere

among those which contain γ.

(2.9) Lemma. Let κ0 ∈ R and H ⊂ L+∞
κ0

be the subspace consisting of all γ whose image is

contained in some closed hemisphere (depending on γ). Then the map h : H→ S2, which associates

to γ the barycenter hγ on S2 of the set of closed hemispheres that contain γ, is continuous. �

More explicitly, the barycenter hγ is obtained as follows: For fixed γ, consider the set

Sγ =
{
h ∈ S2 : 〈γ(t), h〉 ≥ 0 for each t ∈ [0, 1]

}
.

It can be proved that the centroid of Sγ in R3 is not the origin. The barycenter hγ is taken to be

the image on S2 of this centroid under gnomic (central) projection. We refer the reader to §3 of [23]

for the proof of this lemma and also of the following one.
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(2.10) Lemma. Let κ0 ∈ R and let O ⊂ L+∞
κ0

denote the subspace consisting of all condensed curves.

Define a map h : O→ S2 by γ 7→ hγ , where hγ is the image under gnomic (central) projection of the

centroid, in R3, of the set of closed hemispheres which contain Im(Cγ). Then h : O→ S2, γ 7→ hγ ,

is continuous. �

3. Grafting

(3.1) Definition. Let γ : [a, b]→ S2 be an admissible curve. The total curvature tot(γ) of γ is given

by

tot(γ) =

∫ b

a

K(t) |γ̇(t)| dt,

where

(1) K =
√

1 + κ2 = csc ρ

is the Euclidean curvature of γ. We say that γ : [0, T ]→ S2, u 7→ γ(u), is a parametrization of γ by

curvature if ∣∣Φ′γ(u)
∣∣ =
√

2 or, equivalently,
∣∣Φ̃′γ(u)

∣∣ =
1

2
for a.e. u ∈ [0, T ].

The equivalence of the two equalities comes from (1.11). The next result justifies our terminology.

(3.2) Lemma. Let γ : [0, T ]→ S2 be an admissible curve. Then:

(a) γ is parametrized by curvature if and only if

tot
(
γ|[0,u]

)
= u for every u ∈ [0, T ].

(b) If γ is parametrized by curvature then its logarithmic derivatives Λ = Φ−1
γ Φ′γ and Λ̃ = Φ̃−1

γ Φ̃′

are given by:

Λ(u) =

 0 − sin ρ(u) 0

sin ρ(u) 0 − cos ρ(u)

0 cos ρ(u) 0

 , Λ̃(u) =
1

2

(
cos ρ(u)i + sin ρ(u)k

)
.

Here, as always, ρ is the radius of curvature of γ. In the expression for Λ̃ above and in the sequel

we are identifying S3 with the unit quaternions and the Lie algebra s̃o3 = T1S3 (the tangent space

to S3 at 1) with the vector space of all imaginary quaternions. Also, it follows from (a) that if

γ : [0, T ]→ S2 is parametrized by curvature then T = tot(γ).

Proof. Let us denote differentiation with respect to u by ′. Using (1), we deduce that

(2) Λ(u) = |γ′(u)|

0 −1 0

1 0 −κ(u)

0 κ(u) 0

 = K(u) |γ′(u)|

 0 − sin ρ(u) 0

sin ρ(u) 0 − cos ρ(u)

0 cos ρ(u) 0

 ,

hence |Φ′(u)| = |Λ(u)| =
√

2K(u) |γ′(u)|. Therefore, γ is parametrized by curvature if and only if

K(u) |γ′(u)| = 1 for a.e. u ∈ [0, T ].

Integrating we deduce that this is equivalent to

tot(γ|[0,u]) = u for every u ∈ [0, T ],

which proves (a). The expression for Λ̃ is obtained from (2), using that under the isomorphism

s̃o3 → so3 induced by the projection S3 → SO3, i
2 , j

2 and k
2 correspond respectively to0 0 0

0 0 −1

0 1 0

 ,

 0 0 1

0 0 0

−1 0 0

 , and

0 −1 0

1 0 0

0 0 0

 . �

We now introduce the essential notion of grafting.

(3.3) Definition. Let γi : [0, Ti]→ S2 (i = 0, 1) be admissible curves parametrized by curvature.
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(a) A grafting function is a function φ : [0, s0]→ [0, s1] of the form

(3) φ(t) = t+
∑

x<t, x∈X+

δ+(x) +
∑

x≤t, x∈X−

δ−(x),

where X+ ⊂ [0, s0) and X− ⊂ [0, s0] are countable sets and δ± : X± → (0,+∞) are arbitrary

functions.

(b) We say that γ1 is obtained from γ0 by grafting, denoted γ0 4 γ1, if there exists a grafting

function φ : [0, T0]→ [0, T1] such that Λγ0 = Λγ1 ◦ φ.

(c) Let J be an interval (not necessarily closed). A chain of grafts consists of a homotopy s 7→ γs,

s ∈ J , and a family of grafting functions φs0,s1 : [0, s0]→ [0, s1], s0 < s1 ∈ J , such that:

(i) Λγs0 = Λγs1 ◦ φs0,s1 whenever s0 < s1;

(ii) φs0,s2 = φs1,s2 ◦ φs0,s1 whenever s0 < s1 < s2.

Here every curve is admissible and parametrized by curvature.

(3.4) Remarks.

(a) A function φ : [0, s0] → [0, s1], s0 ≤ s1, is a grafting function if and only if it is increasing

and there exists a countable set X ⊂ [0, s0] such that φ(t) = t+ c whenever t belongs to one of the

intervals which form (0, s0) rX, where c ≥ 0 is a constant depending on the interval.

(b) Observe that in eq. (3), x < t in the first sum, while x ≤ t in the second sum. We do not

require X+ and X− to be disjoint, and they may be finite (or even empty).

(c) If φ : [0, s0] → [0, s1] is a grafting function then it is monotone increasing and has derivative

equal to 1 a.e.. Moreover, φ(t+ h)− φ(t) ≥ h for any t and h ≥ 0; in particular, s0 ≤ s1.

(d) As the name suggests, γ0 4 γ1 if γ1 is obtained by inserting a countable number of pieces of

curves (e.g., arcs of circles) at chosen points of γ0 (see fig. 7). This can be used, for instance, to

increase the total curvature of a curve. The difficulty is that it is usually not clear how we can graft

pieces of curves onto a closed curve so that the resulting curve is still closed and the restrictions on

the geodesic curvature are not violated.

(e) Two curves γ0, γ1 ∈ Lκ2
κ1

(Q) agree if and only if Λγ0 = Λγ1 a.e. on [0, 1]. Indeed, γi = Φγie1,

where Φγi is the unique solution to an initial value problem as in eq. (4) of §1. Of course, if the curves

are parametrized by curvature instead, then the latter condition should be replaced by T0 = T1 and

Λγ0 = Λγ1 a.e. on [0, T0] = [0, T1].

For a grafting function φ : [0, s0]→ [0, s1] and t ∈ [0, s0], define:

ω+(t) = lim
h→0+

φ(t+ h)− φ(t), ω−(t) = lim
h→0+

φ(t)− φ(t− h).

We also adopt the convention that ω+(s0) = 0, while ω−(0) = φ(0). Note that the limits above exist

because φ is increasing.

(3.5) Lemma. Let φ : [0, s0]→ [0, s1] be a grafting function, and let X± and δ± be as in definition

(3.3(a)).

(a) t ∈ X± if and only if ω±(t) > 0. In this case, δ±(t) = ω±(t).

(b) X± and δ± are uniquely determined by φ.

(c) If φ0 : [0, s0] → [0, s1] and φ1 : [0, s1] → [0, s2] are grafting functions then so is φ = φ1 ◦ φ0.

Moreover,

X±0 ⊂ X± and δ±0 ≤ δ±.
(Here δ±0 correspond to φ0, δ± correspond to φ, and so forth.)

Proof. The proof will be split into parts.

(a) Firstly, ω+(s0) = 0 by convention and s0 /∈ X+ because X+ ⊂ [0, s0). Secondly, ω−(0) =

φ(0) by convention, and (3) tells us that 0 ∈ X− if and only if φ(0) 6= 0, in which case

δ−(0) = φ(0). This proves the assertion for t = 0 (resp. t = s0) and X− (resp. X+).

Since ∑
x∈X+

δ+(x) +
∑
x∈X−

δ−(x) ≤ s1 − s0,
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given ε > 0 there exist finite subsets F± ⊂ X± such that∑
x∈X+rF+

δ+(x) +
∑

x∈X−rF−

δ−(x) < ε.

Suppose t /∈ X+, t < s0. Then there exists η, 0 < η < ε, such that [t, t + η] ∩ F+ = ∅ and

[t, t+ η] ∩ F− is either empty or {x}. In any case,

ω+(t) ≤ φ(t+ η)− φ(t) < η + ε < 2ε,

which proves that ω+(t) = 0.

Conversely, suppose that t ∈ X+. Then clearly ω+(t) ≥ δ+(t). Moreover, an argument

entirely similar to the one above shows that ω+(t) ≤ δ+(t) + 2ε for any ε > 0, hence

ω+(t) = δ+(t) > 0. The results for X− (and t > 0) follow by symmetry.

(b) Since ω± are determined by φ, the same must be true of X± and δ±, by part (a). The

converse is an obvious consequence of the definition of grafting function in (3).

(c) Let φ1,φ0 be as in the statement and set Xi = X−i ∪X
+
i , i = 0, 1, and X = X0 ∪ φ−1

0 (X1).

Then X is countable since both X0 and X1 are countable and φ0 is injective. Moreover, if

(a, b) ⊂ (0, s0) rX then

φ1(φ0(t)) = φ1(t+ c0) = t+ c0 + c1 (t ∈ (a, b))

for some constants c0, c1 ≥ 0. In addition, φ1 ◦ φ0 is increasing, as φ1 and φ0 are both

increasing. Thus, φ1 ◦ φ0 is a grafting function by (3.4(e)).

For the second assertion, let x ∈ X+
0 and h > 0 be arbitrary. Then

φ1(φ0(x+ h))− φ1(φ0(x)) ≥ φ0(x+ h)− φ0(x) ≥ ω+
0 (x),

hence ω+(x) ≥ ω+
0 (x) > 0. Similarly, if x ∈ X−0 then ω−(x) ≥ ω−0 (x) > 0. Therefore, it

follows from part (a) that X±0 ⊂ X± and δ±0 ≤ δ±. �

(3.6) Lemma. The grafting relation 4 is a partial order over Lκ2
κ1

(Q).

Proof. Suppose γ0, γ1 are as in (3.3), with γ0 4 γ1 and γ1 4 γ0. Let φ0 : [0, T0] → [0, T1] and

φ1 : [0, T1] → [0, T0] be the corresponding grafting functions. By (3.4(d)), the existence of such

functions implies that T0 = T1, which, in turn, implies that φ0(t) = t = φ1(t) for all t. Hence

Λγ0 = Λγ1 ◦ φ0 = Λγ1 , and it follows that γ0 = γ1. This proves that 4 is antisymmetric.

Now suppose γ0 4 γ1, γ1 4 γ2 and let φi : [0, Ti] → [0, Ti+1] be the corresponding grafting

functions, i = 0, 1. By (3.5(c)), φ = φ1 ◦ φ0 is also a grafting function. Furthermore,

Λγ0 = Λγ1 ◦ φ0 = (Λγ2 ◦ φ1) ◦ φ0 = Λγ2 ◦ φ

by hypothesis, so γ0 4 γ2, proving that 4 is transitive.

Finally, it is clear that 4 is reflexive. �

(3.7) Lemma. Let Γ = (γs)s∈[a,b), γs ∈ Lκ2
κ1

(Q), be a chain of grafts. Then there exists a unique

extension of Γ to a chain of grafts on [a, b].

Proof. For s0 < s1 ∈ [a, b], let φs0,s1 : [0, s0] → [0, s1] be the grafting function corresponding to

γs0 4 γs1 and similarly for X±s0,s1 , δ±s0,s1 , ω±s0,s1 .

Suppose s0 < s1 < s2. By hypothesis, φs0,s2 = φs1,s2 ◦ φs0,s1 . Therefore, by (3.5(c)),

(4) X±s0,s1 ⊂ X
±
s0,s2 and δ±s0,s1 ≤ δ

±
s0,s2 (s0 < s1 < s2).

Fix s0 ∈ [a, b) and set

X±s0,b =
⋃

s0<s<b

X±s0,s and δ±s0,b = sup
s0<s<b

{
δ±s0,s

}
.

Since
(
X±s0,s

)
is an increasing family of countable sets, X±s0,b must also be countable. Define

φs0,b : [0, s0]→ [0, b] by

φs0,b(t) = t+
∑

x<t, x∈X+
s0,b

δ+
s0,b

(x) +
∑

x≤t, x∈X−
s0,b

δ−s0,b(x).
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Then φs0,b is a grafting function for any s0 by construction, and for s0 < s1 we have

φs0,b = lim
s→b−

φs0,s = lim
s→b−

φs1,s ◦ φs0,s1 = φs1,b ◦ φs0,s1 .

Before defining the curve γb, we construct its logarithmic derivative Λ. For each s < b, let

Es = φs,b
(
[0, s]

)
, E =

⋃
s<b

Es.

Then µ(Es) = s for all s, hence [0, b] r E has measure zero, which implies that E is measurable

and µ(E) = b. (Here µ denotes Lebesgue measure.) For u ∈ E, u = φs,b(t) for some t ∈ [0, s] and

s ∈ [a, b), set

(5) Λ(u) = Λ(φs,b(t)) = Λs(t) (u ∈ E),

where Λs denotes the logarithmic derivative of γs. Observe that Λ is well-defined, for if φs0,b(t0) =

u = φs1,b(t1), with s0 < s1, then

φs1,b(t1) = φs0,b(t0) = φs1,b ◦ φs0,s1(t0),

hence t1 = φs0,s1(t0) (because φs0,s1 is increasing) and thus

Λs1(t1) = Λs1(φs0,s1(t0)) = Λs0(t0).

Moreover, by (3.2),

Λ(u) =

 0 − sin ρ(u) 0

sin ρ(u) 0 − cos ρ(u)

0 cos ρ(u) 0


where ρ(u) = ρs0(t) if u = φs0,b(t). The measurability of ρ follows from that of each ρs. Thus, the

entries of Λ belong to L2[0, b] and the initial value problem Φ̇ = ΦΛ, Φ(0) = I, has a unique solution

Φ: [0, b]→ SO3. Naturally, we define γb(t) = Φ(t)e1.

Let Xs,b = X+
s,b∪X

−
s,b and suppose that (α, β) is one of the intervals which form (0, s)rXs,b. Then

φs,b(α, β) ⊂ Es ⊂ [0, b] is an interval of measure β−α; we have Λ(t) = Λs(t−c) for t ∈ φs,b(α, β) and

a constant c ≥ 0, so that the restriction of γb to this interval is just γs|[α, β] composed with a rotation

of S2. In particular, we deduce that the geodesic curvature κ of γb satisfies κ1 < κ < κ2 a.e. on

φs(α, β). Since lims→b µ(Es) = b, this argument shows that κ1 < κ < κ2 a.e. on [0, b]. We claim

also that Φ(b) = Q. To see this, let Λ̄s : [0, b]→ so3 be the extension of Λs by zero to all of [0, b]. If

Φ̄s is the solution to the initial value problem ˙̄Φs = Φ̄sΛ̄s, Φ̄s(0) = I, we have Φs(b) = Φs(s) = Q.

Since Λ̄s converges to Λ in the L2-norm, it follows from continuous dependence on the parameters

of a differential equation that

|Φ(b)−Q| = lim
s→b
|Φ(b)− Φs(b)| = 0.

The curve γb satisfies γs 4 γb for any s ≤ b by construction. Conversely, if this condition is

satisfied then (5) must hold, showing that γb is the unique curve with this property. This completes

the proof. �

Adding loops. This subsection presents adaptations of a few concepts and results contained in §5
of [16]. Let κ0 ∈ R, ρ0 = arccotκ0 and Q ∈ SO3 be fixed throughout the discussion.

For arbitrary ρ1 ∈ (0, ρ0), define σρ1 to be the unique circle in L+∞
κ0

(I) of radius of curvature ρ1:

σρ1(t) = cos ρ1(cos ρ1, 0, sin ρ1) + sin ρ1

(
sin ρ1 cos(2πt), sin(2πt),− cos ρ1 cos(2πt)

)
,

and let σρ1n ∈ L+∞
κ0

(I) be σρ1 traversed n times; in symbols, σρ1n (t) = σρ1(nt), t ∈ [0, 1]. As we have

seen in (2.4), if ρ1, ρ2 < ρ0 then σρ1 and σρ2 are homotopic within L+∞
κ0

(I).
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Now let γ ∈ L+∞
κ0

(Q), n ∈ N, ε > 0 be small and t0 ∈ (0, 1). Let γ[t0#n] be the curve obtained

by inserting (a suitable rotation of) σρ1n at γ(t0), as depicted in fig. 5. More explicitly,

γ[t0#n](t) =



γ(t) if 0 ≤ t ≤ t0 − 2ε

γ(2t− t0 + 2ε) if t0 − 2ε ≤ t ≤ t0 − ε
Φγ(t0)σρ1n

(
t−t0+ε

2ε

)
if t0 − ε ≤ t ≤ t0 + ε

γ(2t− t0 − 2ε) if t0 + ε ≤ t ≤ t0 + 2ε

γ(t) if t0 + 2ε ≤ t ≤ 1

Figure 5. A curve γ ∈ L+∞
κ0

(Q) and the curve γ[t0#n] obtained from γ by adding

loops at γ(t0).

The precise values of ε and ρ1 are not important, in the sense that different values of both

parameters yield curves that are homotopic. For t0 6= t1 ∈ (0, 1) and n0, n1 ∈ N, the curve(
γ[t0#n0]

)[t1#n1]
will be denoted by γ[t0#n0;t1#n1].

We shall now explain how to spread loops along a curve, as in fig. 6; to do this, a special

parametrization is necessary. Given γ ∈ L+∞
−∞(Q), let Λγ = (Φγ)−1Φ̇γ : [0, 1] → so3 denote its

logarithmic derivative. Since the entries of Λγ are L2 functions and [0, 1] is bounded,

(6) M =

∫ 1

0

|Λγ(t)| dt < +∞.

Define a function τ : [0, 1]→ [0, 1] by

τ(t) =
1

M

∫ t

0

|Λγ(u)| du.

Then τ is a monotone increasing function, hence it admits an inverse. If we reparametrize γ by

τ 7→ γ(t(τ)), τ ∈ [0, 1], then its logarithmic derivative with respect to τ satisfies

|Λγ(τ)| = |Φ̇γ(t(τ))| ṫ(τ) = |Λγ(t(τ))| M

|Λγ(t(τ))|
= M.†

Therefore, using (1.1), we may assume at the outset that all curves γ ∈ L+∞
−∞(Q) are parametrized

so that |Φ̇γ | = |Λγ | is constant (and finite). With this assumption in force, let n ∈ N, ρ1 ∈ (0, π)

and define a map Fn : L+∞
−∞(Q)→ L+∞

−∞(Q) by:

(7) Fn(γ)(t) = Φγ(t)σρ1n (t) (γ ∈ L+∞
−∞(Q), t ∈ [0, 1]).

Figure 6. A curve γ ∈ L+∞
κ0

(Q) and a “phone wire” approximation Fn(γ).

Using that Φ̇γ = ΦγΛγ (where ˙ denotes differentiation with respect to t), we find that

(8) Ḟn(γ) = Φγ
(
Λγσ

ρ1
n + σ̇ρ1n

)
,

and this allows us to conclude that ΦFn(γ)(0) = Φγ(0) and ΦFn(γ)(1) = Φγ(1) for any admissible

curve γ, so that Fn does indeed map L+∞
−∞(Q) to itself. Moreover, Fn(γ) is never homotopic to

†The parameter τ is a multiple of the curvature parameter considered in (3.1).
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Fm(γ) when m 6≡ n (mod 2). This is because the two curves have different final lifted frames:

Φ̃Fn(γ)(1) = (−1)n−mΦ̃Fm(γ)(1) in S3.

(3.8) Lemma. Let κ0 = cot ρ0 ∈ R, Q ∈ SO3, ρ1 ∈ (0, ρ0), K be compact and f : K → L+∞
−∞(Q) be

continuous. Then the image of Fn ◦ f is contained in L+∞
κ0

(Q) for all sufficiently large n.

Proof. In order to simplify the notation, we will prove the lemma when K consists of a single point.

The proof still works in the more general case because all that we need is a uniform bound on |Λf(a)|
for a ∈ K. Denoting σρ11 simply by σ, we may rewrite (8) as:

(9) Ḟn(γ)(t) = nΦγ(t)
(
σ̇(nt) +O( 1

n )
)

(t ∈ [0, 1]),

where O( 1
n ) denotes a term such that n

∣∣O( 1
n )
∣∣ is uniformly bounded over [0, 1] as n ranges over all

of N. (In this case, n
∣∣O( 1

n )
∣∣ = |Λγ(t)| = M for all t ∈ [0, 1], with M as in (6).) Therefore,

(10) Fn(γ)(t)× Ḟn(γ)(t)

|Ḟn(γ)(t)|
= Φγ(t)

(
σ(nt)× σ̇(nt)

|σ̇(nt)|

)
+O( 1

n ).

Let ΦFn(γ) (resp. Φσ) denote the frame of Fn(γ) (resp. σ) and ΛFn(γ) (resp. Λσ) its logarithmic

derivative. It follows from (7), (9) and (10) that

ΦFn(γ)(t) = Φγ(t)Φσ(nt) +O( 1
n ).

Differentiating both sides of this equality, we obtain that

Φ̇Fn(γ)(t) = Φ̇γ(t)Φσ(nt) + nΦγ(t)Φ̇σ(nt) +O(1) = n
(
Φγ(t)Φ̇σ(nt) +O( 1

n )
)
.

Multiplying on the left by the inverse of ΦFn(γ), we finally conclude that

(11) ΛFn(γ)(t) = n
(
Λσ(nt) +O( 1

n )
)
.

Recall that, by the definition of logarithmic derivative (eq. (2), §1),

(12) ΛFn(γ) =

 0 −|Ḟn(γ)| 0

|Ḟn(γ)| 0 −|Ḟn(γ)|κFn(γ)

0 |Ḟn(γ)|κFn(γ) 0

 and Λσ =

 0 − |σ̇| 0

|σ̇| 0 − |σ̇|κ1

0 |σ̇|κ1 0

 ,

where κFn(γ) (resp. κ1 = cot ρ1) denotes the geodesic curvature of Fn(γ) (resp. σ). Comparing the

(3,2)-entries of (11) and (12), and using (9), we deduce that

n
(
|σ̇(nt)|+O( 1

n )
)
κFn(γ)(t) = n

(
|σ̇(nt)|κ1 +O( 1

n )
)
.

Therefore limn→+∞ κFn(γ) = κ1 > κ0 uniformly over [0, 1], as required. �

(3.9) Lemma. Let γ ∈ L+∞
κ0

(Q), t0 ∈ (0, 1). Then γ[t0#n] ' Fn(γ) within L+∞
κ0

(Q) for all suffi-

ciently large n ∈ N.

Proof. Informally, the homotopy is obtained by pushing the loops in Fn(γ) towards γ(t0). If n is

large enough, then we can guarantee that the curvature remains greater than κ0 throughout the

deformation; the proof is similar to that of (3.8), so we will omit it. See lemma 5.4 in [16] for the

details when κ0 = 0. �

The next result states that after we add enough loops to a curve, it becomes so flexible that any

condition on the curvature may be safely forgotten. This is yet another instance of the “phone wire”

construction already present in [7], [5] and [10]; we refer the reader to [12] for a thorough discussion

of this kind of construction in terms of the h-principle.

(3.10) Lemma. Let γ0, γ1 ∈ L+∞
κ0

(Q) be two curves in the same component of I(Q) = L+∞
−∞(Q).

Then Fn(γ0) and Fn(γ1) lie in the same component of L+∞
κ0

(Q) for all sufficiently large n ∈ N.

Proof. Let γ0, γ1 be two curves in the same component of L+∞
−∞(Q). Taking K = [0, 1] and h : K →

L+∞
−∞(Q) to be a path joining γ0 and γ1, we conclude from (3.8) that g = Fn ◦h is a path in L+∞

κ0
(Q)

joining both curves if n is sufficiently large. �
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Thus, if we can find a way to deform γi into F2n(γi) for large n, i = 0, 1, then the question of

deciding whether γ0 and γ1 are homotopic reduces to the easy verification of whether their final

lifted frames Φ̃γ0(1) and Φ̃γ1(1) agree. One way to deform γ into F2n(γ) is to graft arbitrarily long

arcs of circles onto it; this is possible if γ diffuse (see fig. 7 below).

Grafting non-condensed curves.

(3.11) Proposition. Let κ0 ∈ R and suppose that γ ∈ L+∞
κ0

is diffuse. Then γ is homotopic to a

circle traversed a number of times.

Proof. Let γ : [0, T ] → S2 be parametrized by curvature and let Λ̃ : [0, T ] → s̃o3 be its (lifted)

logarithmic derivative. Since γ is diffuse, we can find 0 < t1 < t2 < T and ρ1, ρ2 ∈ [0, ρ0] such that

Cγ(t1, ρ1) = −Cγ(t2, ρ2). By deforming γ in a neighborhood of γ(t2) if necessary, we can actually

assume that ρ1, ρ2 ∈ (0, ρ0). Set zi = Φ̃(ti),

χi = Cγ(ti, ρi) = cos ρi γ(ti) + sin ρin(ti) and λi = cos ρi i + sin ρik (i = 1, 2).

Identifying S2 with the unit imaginary quaternions, we have

(13) ziλiz
−1
i = χi (i = 1, 2).

We will define a family of curves s 7→ γs, s ≥ 0, as follows: First, let Λ̃s : [0, T + 2s]→ s̃o3 be given

by:

Λ̃s(t) =



Λ̃(t) if 0 ≤ t ≤ t1
1
2λ1 if t1 ≤ t ≤ t1 + s

Λ̃(t− s) if t1 + s ≤ t ≤ t2 + s
1
2λ2 if t2 + s ≤ t ≤ t2 + 2s

Λ̃(t− 2s) if t2 + 2s ≤ t ≤ T + 2s

Next, let Λs ∈ so3 correspond to Λ̃s ∈ s̃o3 and define Φs to be the unique solution to the initial

value problem Φs(0) = I, Φ̇s = ΦsΛs. Finally, set γs = Φse1. Geometrically, when s = 2πk, γs
is obtained from γ by grafting a circle of radius ρ1 traversed k times at γ(t1) and another circle of

radius ρ2 traversed k times at γ(t2) (see fig. 7). We claim that γs ∈ L+∞
κ0

(I) for all s ≥ 0.

Indeed, we have

Φ̃s(t) =



Φ̃(t) if 0 ≤ t ≤ t0
z1 exp

(
λ1

2 (t− t1)
)

if t1 ≤ t ≤ t1 + s

exp
(
χ1

2 s
)
Φ̃(t− s) if t1 + s ≤ t ≤ t2 + s

exp
(
χ1

2 s
)
z2 exp

(
λ1

2 (t− t2 − s)
)

if t2 + s ≤ t ≤ t2 + 2s

exp
(
χ1

2 s
)

exp
(
χ2

2 s
)
Φ̃(t− 2s) if t2 + 2s ≤ t ≤ T + 2s

where we have used (13) to write(
z1 exp

(
sλ1

2

))(
z−1

1 Φ̃(t− s)
)

= exp
(
sχ1

2

)
Φ̃(t− s),

which yields the expression for Φ̃(t) when t ∈ [t1, t1 +s], and similarly for the interval [t2 +2s, T+2s].

In particular, we deduce that the final lifted frame is:

Φ̃s(T + 2s) = exp
(
sχ1

2

)
exp

(
sχ2

2

)
Φ̃(T ) = Φ̃(T ),

as χ2 = −χ1 by hypothesis. This proves that each γs has the correct final frame. The curvature κs

of γs clearly satisfies κs > κ0 almost everywhere in [0, t1]∪ [t1 + s, t2 + s]∪ [t2 + 2s, T + 2s], because,

by construction, the restriction of γs to each of these intervals is the composition of a rotation of

S2 with an arc of γ. Moreover, the restriction of γs to the interval [t1, t1 + s] is an arc of circle of

radius of curvature ρ1 < ρ0; similarly, the restriction of γs to [t2 + s, t2 + 2s] is an arc of circle of

radius of curvature ρ2 < ρ0. Therefore κs > κ0 almost everywhere on [0, T + 2s], and we conclude

that γs ∈ L+∞
κ0

(I).

We have thus proved that γ is homotopic to γ[t0#n;t1#n] for all n ∈ N when γ is diffuse. The

proposition now follows from (3.9) and (3.10) combined. �
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Figure 7. Grafting arcs of circles onto a diffuse curve, as described in (3.11).

The next result says that we can still graft small arcs of circle onto γ even when it is not diffuse,

as long as it is also not condensed.

(3.12) Proposition. Suppose that γ ∈ L+∞
κ0

(I) is non-condensed. Then there exist ε > 0 and a

chain of grafts (γs) such that γ0 = γ, γs ∈ L+∞
κ0

(I) and tot(γs) = tot(γ) + s for all s ∈ [0, ε).

Proof. (In this proof the identification of S2 with the set of unit imaginary quaternions used in

(3.11) is still in force.) Let γ : [0, T ] → S2 be parametrized by curvature and let Λ̃ : [0, T ] → s̃o3

be its (lifted) logarithmic derivative. Since γ is not condensed, 0 lies in the interior of the convex

closure of the image C of Cγ by (A.3). Hence, by (A.5), we can find a 3-dimensional simplex with

vertices in C containing 0 in its interior. In symbols, we can find 0 < t1 < t2 < t3 < t4 < T and

s1, s2, s3, s4 > 0, s1 + s2 + s3 + s4 = 1, such that

(14) 0 = s1χ1 + s2χ2 + s3χ3 + s4χ4,

where χi = Cγ(ti, ρi), for some ρi ∈ (0, ρ0), and the χi are in general position. Furthermore, these

numbers si are the only ones which have these properties (for this choice of the χi). Define a function

G : R4 → S3 by

G(σ1, σ2, σ3, σ4) = exp
(σ1χ1

2

)
exp

(σ2χ2

2

)
exp

(σ3χ3

2

)
exp

(σ4χ4

2

)
.

Then G(0, 0, 0, 0) = 1 and

DG(0,0,0,0)(a, b, c, d) =
1

2

(
aχ1 + bχ2 + cχ3 + dχ4

)
.

Since the χi are in general position by hypothesis, we can invoke the implicit function theorem to

find some δ > 0 and, without loss of generality, functions σ̄2, σ̄3, σ̄4 : (−δ, δ)→ R of σ1 such that

G
(
σ1, σ̄2(σ1), σ̄3(σ1), σ̄4(σ1)

)
= 1 (σ1 ∈ (−δ, δ)).

Differentiating the previous equality with respect to σ1 at 0 and comparing (14) we deduce that

σ̄′i(0) =
si

2s1
> 0 (i = 2, 3, 4).

Let s(σ1) = σ1 + σ̄2(σ1) + σ̄3(σ1) + σ̄4(σ1). Then s′(σ1) > 0, hence we can write σ1, σ2, σ3 and

σ4 as a function of s in a neighborhood of 0. The conclusion is thus that there exist ε > 0 and

non-negative functions σ1, σ2, σ3, σ4 of s such that σ1(s) + σ2(s) + σ3(s) + σ4(s) = s and

exp
(σ1χ1

2

)
exp

(σ2χ2

2

)
exp

(σ3χ3

2

)
exp

(σ4χ4

2

)
= 1 for all s ∈ [0,+ε).

We will now use these functions to obtain γs, s ∈ [0,+ε).
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Define Λ̃s : [0, T + s]→ ˜so3 by:

Λ̃s(t) =



Λ̃(t) if 0 ≤ t ≤ t1
1
2λ1 if t1 ≤ t ≤ t1 + σ1

Λ̃(t− σ1) if t1 + σ1 ≤ t ≤ t2 + σ1

1
2λ2 if t2 + σ1 ≤ t ≤ t2 + σ1 + σ2

Λ̃(t− σ1 − σ2) if t2 + σ1 + σ2 ≤ t ≤ t3 + σ1 + σ2

1
2λ3 if t3 + σ1 + σ2 ≤ t ≤ t3 + σ1 + σ2 + σ3

Λ̃(t− σ1 − σ2 − σ3) if t3 + σ1 + σ2 + σ3 ≤ t ≤ t4 + σ1 + σ2 + σ3

1
2λ4 if t4 + σ1 + σ2 + σ3 ≤ t ≤ t4 + s

Λ̃(t− s) if t4 + s ≤ t ≤ T + s

where σi = σi(s) (i = 1, 2, 3, 4) are the functions obtained above. Let Φ̃s : [0, T + s] → S3 be the

solution to the initial value problem Φ̃′ = Φ̃Λ̃, Φ̃(0) = 1 and let Φ: [0, T+s]→ SO3 be its projection.

Then using the relation χi = ziλiz
−1
i one finds by a verification entirely similar to the one in the

proof of (3.11) that

Φ̃s(T + s) = exp
(σ1χ1

2

)
exp

(σ2χ2

2

)
exp

(σ3χ3

2

)
exp

(σ4χ4

2

)
˜Φ(T ) = Φ̃(T ).

Hence, each γs = Φse1 has the correct final frame. In addition, over each of the subintervals of

[0, T + s] listed above, γs is either the composition of a rotation of S2 with an arc of γ, or an arc of

circle of radius ρi ∈ (0, ρ0) (i = 1, 2, 3, 4). We conclude from this that the geodesic curvature κs of

γs satisfies κs > κ0 almost everywhere on [0, T + s], that is, γs ∈ L+∞
κ0

(I) as we wished. Finally,

tot(γs) = T + s = tot(γ) + s

because γs is parametrized by curvature (see (3.2)), and (γs) is a chain of grafts by construction. �

4. Condensed Curves

Rotation number of a condensed curve. The rotation number N(η) of a regular closed plane

curve η : [0, 1]→ R2 is simply the degree of its unit tangent vector t : S1 → S1 (we may consider γ

and t to be defined on S1 since γ is closed). Suppose now that η : [0, L] → R2 is parametrized by

arc-length, and write

(1) t(s) = exp(iθ(s)),

for some angle-function θ : [0, L]→ R. Then the curvature κ of η is given by

(2) κ(s) = θ′(s);

furthermore, the rotation number N(η) of η is given by 2πN(η) = θ(L) − θ(0). These facts are

explained in any textbook on differential geometry. The Whitney-Graustein theorem ([22], thm. 1)

states that two regular closed plane curves are homotopic through regular closed curves if and only

if they have the same rotation number.

Now suppose γ ∈ L+∞
κ0

has image contained in some closed hemisphere. Let hγ be the barycenter,

on S2, of the set of closed hemispheres which contain Im(γ) (cf. (2.9)), and let pr : S2 → R2 denote

stereographic projection from −hγ . Define the rotation number ν(γ) of γ by ν(γ) = −N(η), where

η = pr ◦γ. Recall that a curve γ ∈ L+∞
κ0

is called condensed if the image C of its caustic band

Cγ : [0, 1] × [0, ρ0] → S2 is contained in some closed hemisphere. Because Cγ(t, 0) = γ(t), any

condensed curve is contained in a closed hemisphere, hence we may speak of its rotation number.

Remark. We orient the plane on which the sphere is projected by pr as follows: A basis {v1, v2}
of this plane is positively oriented if and only if {v1, v2,−hγ} is a positively oriented basis of R3.

This corresponds to looking at the plane from −hγ (as is usual with the stereographic projection).

The sign in ν(γ) = −N(pr ◦γ) is introduced to guarantee that a condensed circle traversed ν times

(ν ≥ 1) has rotation number ν. In fact, the rotation number is always positive.

(4.1) Lemma. Let κ0 ∈ R and let γ ∈ L+∞
κ0

be a condensed curve. Then ν(γ) ≥ 1.
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Proof. Let γ ∈ L+∞
κ0

be condensed, with

Im(Cγ) ⊂ H =
{
p ∈ S2 : 〈p, h〉 ≥ 0

}
and let γ̂(t) = Bγ(t, ρ0 − π) be the other boundary curve of Bγ . If γ̂(t0) ∈ IntH for some t0 ∈ [0, 1]

then, by convexity, H must also contain the geodesic segment

Bγ({t0} × [π − ρ0, 0])

joining γ(t0) to γ̂(t0). Further, Cγ({t0} × [0, ρ0]) ⊂ H by hypothesis, hence H contains a geodesic

of length π, and at least one of its enpoints (viz., γ̂(t0)) lies in IntH. This contradicts the fact that

H has diameter π. We conclude that Im(γ̂) ⊂ −H. (See fig. 8.)

We lose no generality in assuming that h = e3 and that γ is C1 (the latter may be achieved

by reparametrizing γ by arc-length). Let σ : R → S2 be the standard parametrization of ∂H,

σ(τ) = (cos(2πτ), sin(2πτ), 0). Because γ(t) ∈ H, while γ̂(t) ∈ −H for each t ∈ [0, 1], there

exists θ(t) ∈ [0, ρ0] such that Bγ(t, θ(t)) ∈ ∂H, that is, Bγ(t, θ(t)) = σ(τ(t)). This θ is unique

because Bγ(t, ·) intersects ∂H transversally for all t (otherwise γ̇(t) would be orthogonal to ∂H, and

Im(γ) 6⊂ H). In addition, both θ and τ are C1 functions by the implicit function theorem. We claim

that τ ′ > 0 over [0, 1].

For ϕ ∈ [0, ρ0], let tϕ (resp. nϕ) denote the unit tangent (resp. normal) vector to γϕ. Then

nθ(t)(t) is the unit tangent vector to the curve u 7→ Bγ(t, u) at u = θ(t). Since Bγ(t, 0) = γ(t) ∈ H
and Bγ(t, ρ0 − π) = γ̂(t) ∈ −H, with at least one of them lying off ∂H, we have

〈
nθ(t)(t), e3

〉
> 0

for any t ∈ [0, 1]. From

tθ(t)(t) = nθ(t)(t)× γθ(t)(t) = nθ(t)(t)× σ(τ(t)) and
σ̇(τ(t))

|σ̇(τ(t))|
= e3 × σ(τ(t)),

we deduce that 〈
tθ(t)(t), σ̇(τ(t))

〉
= |σ̇(τ(t))|

〈
nθ(t)(t), e3

〉
> 0

(where σ̇(τ(t)) denotes the derivative of σ with respect to τ , at τ(t)). Moreover, tϕ = t0 for any

ϕ ∈ [0, ρ0 − π] (as seen in eq. (12) in §1). Hence,

〈tϕ(t), σ̇(τ(t))〉 > 0 for each ϕ ∈ [0, ρ0 − π], t ∈ [0, 1].

This implies that τ ′(t) > 0, as claimed.

Let pr denote stereographic projection from −h = −e3 and let F : [0, 1] × [0, 1] → S2 be given

by F (s, t) = Bγ
(
t, sθ(t)

)
. Then F is a regular homotopy between γ and the geodesic circle σ

traversed a certain number ν ≥ 1 of times, in the direction indicated in fig. 8 and determined by

the parametrization we have chosen. Therefore pr ◦γ and pr ◦σ are regularly homotopic as well, and

ν(γ) = −N(pr ◦γ) = −N(pr ◦σ) = ν as we wished to show. �

Figure 8.

Remark. It is natural to ask why this notion of rotation number is not extended to a larger class of

curves. If γ is any admissible curve then by parametrizing it by arc-length (so that it becomes C1)

and applying Sard’s theorem, we deduce that there exists some point p ∈ S2 not in the image of

γ. We could use stereographic projection from p to define the rotation number of γ. The trouble

is that it is not clear how p can be chosen so that the resulting number is continuous (i.e., locally
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constant) on L+∞
κ0

: A different choice of p yields a different rotation number (although its parity

remains the same). In fact, the class of spherical curves for which a meaningful notion of rotation

number exists must be restricted, since it is always possible to deform a circle traversed ν times into

a circle traversed ν + 2 times in L+∞
κ0

if ν is sufficiently large.

Condensed curves in L+∞
κ0

for κ0 ≥ 0.

(4.2) Proposition. Let A be a connected compact space, κ0 ≥ 0 and f : A → L+∞
κ0

(I) be such that

f(a) is condensed for all a ∈ A. Then there exists ν ≥ 1 such that f is homotopic in L+∞
κ0

(I) to the

constant map a 7→ σν , σν a circle traversed ν times.

The idea of the proof is to use Möbius transformations to make the curves ηa = f(a) so small that

they become approximately plane curves. The hypothesis that the curves are condensed guarantees

that the geodesic curvature does not decrease during the deformation. A slight variation of the

Whitney-Graustein theorem is then used to deform the curves to a circle traversed ν times, where ν

is the common rotation number of the curves.

We will also need the following technical result, which is a corollary of the proof of (4.2).

(4.3) Corollary. Let κ0 ≥ 0 and γ ∈ L+∞
κ0

be a condensed curve. Then there exists a homotopy

s 7→ γs ∈ L+∞
κ0

(s ∈ [0, 1]) such that γ1 = γ, γ0 is a parametrized circle and Im(Cγs) is contained in

an open hemisphere for each s ∈ [0, 1).

We start by defining spaces of closed curves in R2 which are analogous to the spaces Lκ2
κ1

of curves

on S2.† Let −∞ ≤ κ1 < κ2 ≤ +∞. A (κ1, κ2)-admissible plane curve is an element (c, z, v̂, ŵ) of

R2 × S1 × L2[0, 1] × L2[0, 1]. With such a 4-tuple we associate the unique curve γ : [0, 1] → R2

satisfying

γ(t) = c+

∫ t

0

v(τ)t(τ)dτ, t(0) = z, t′(t) = w(t)it(t) (t ∈ [0, 1]),

where v and w are given by eq. (6) on p. 7 and i = (0, 1) is the imaginary unit. The space of all

(κ1, κ2)-admissible plane curves is thus given the structure of a Hilbert manifold, and we define Wκ2
κ1

to be its subspace consisting of all closed curves.

Although γ̇ is defined only almost everywhere for a curve γ ∈ Wκ2
κ1

, its unit tangent vector t is

defined over all of [0, 1], and if we parametrize γ by a multiple of arc-length instead, then γ̇ is defined

and nonzero everywhere. More importantly, since t is (absolutely) continuous, we may speak of the

rotation number of γ and (2) still holds a.e..

(4.4) Lemma. Let A be compact and connected, κ0 ≥ 0 and A → W+∞
κ0

, a 7→ ηa, be a continuous

map. Then there exists a homotopy [0, 1]×A→W+∞
κ0

, (s, a) 7→ ηsa, such that η0
a = ηa and

η1
a(t) = σN (t+ ta) for all a ∈ A, t ∈ [0, 1],

where σN (t) = R0 exp(2πiNt) is a circle traversed N > 0 times. In addition, if the image of ηa is

contained in some ball B(0;R) for all a ∈ A, then we can arrange that ηsa have the same property

for all s ∈ [0, 1] and a ∈ A.

Thus, given a family of curves in W+∞
κ0

indexed by a compact connected set, we may deform all

of them to the same parametrized circle σN , except for the starting point of the parametrization.

Proof. Since A is connected, all the curves ηa have the same rotation number N . Moreover, N > 0

because of (2) and the fact that κ0 ≥ 0.

For η ∈W+∞
κ0

, let zη = tη(0), where tη is the unit tangent vector to η. The homotopy g : [0, 1]×
A→W+∞

κ0
by translations,

g(s, a)(t) = ηa(t)− s
(
izηa + ηa(0)

)
(s, t ∈ [0, 1], a ∈ A),

preserves the curvature and, for any a ∈ A, g(1, a) has the property that it starts at some z ∈ S1

in the direction iz. Thus, we may assume without loss of generality that the original curves ηa have

this property.

†These spaces of plane curves will only be considered in this section.
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Let ρ0 = 1
κ0

, L(ηa) denote the length of ηa, L0 = mina∈A {L(ηa)} and let R1 > 0 satisfy

(3) R1 < min
{ L0

2πN
, ρ0

}
.†

Define f : [0, 1]×A→W+∞
κ0

to be the homotopy given by

f(s, a)(t) = ηa(0) +
(

(1− s) + s
2πNR1

L(ηa)

)(
ηa(t)− ηa(0)

)
(s, t ∈ [0, 1], a ∈ A).

Then f(1, a) has length L = 2πNR1 for all a ∈ A. In addition, the curvature of f(s, a) is bounded

from below by κ0 for all s ∈ [0, 1], a ∈ A and almost every t ∈ [0, 1], as an easy calculation using (3)

shows.

The conclusion is that we lose no generality in assuming that the curves ηa all have the same

length L = 2πNR1. Further, by (1.1), we can assume that they are all parametrized by a multiple

of arc-length. This implies that η̇a takes values on the circle LS1 of radius L. Using angle-functions

θa with θa(0) = 0 and θa(1) = 2πN , we can write:

η̇a(t) = Lza exp
(
iθa(t)

)
(t ∈ [0, 1]),

where za = tηa(0). Let θ(t) = 2πNt, t ∈ [0, 1], and define

θsa(t) = (1− s)θa(t) + sθ(t), τ̄sa(t) = Lza exp(iθsa(t)) (s, t ∈ [0, 1], a ∈ A).

Then θsa(0) = 0 and θsa(1) = 2πN for all s ∈ [0, 1], a ∈ A. The idea is that τ̄sa should be the tangent

vector to a curve; the problem is that this curve need not be closed. We can fix this by defining

instead

τsa(t) = τ̄sa(t)−
∫ 1

0

τ̄sa(v) dv, ηsa(t) = −iza +

∫ t

0

τsa(v) dv.

The conditions
∫ 1

0
τsa(t) dt = 0 and τsa(0) = τsa(1) then guarantee that ηsa is a closed curve. Because

θsa(1) = 2πN and N > 0, τ̄sa must traverse all of LS1, so that
∫ 1

0
τ̄sa(v) dv lies in the interior of the

disk bounded by this circle for any s ∈ [0, 1], a ∈ A. Consequently, τsa(t) never vanishes. Moreover,

η0
a = ηa and η1

a(t) = −izηa exp(2πNit) for all a ∈ A.

Finally, ηsa has positive curvature for all s ∈ [0, 1] and a ∈ A. Although it is easier to see this

using a geometrical argument, the following computation suffices: The curvature κsa of ηsa is given

by

κsa(t) =
det
(
τsa(t), τ̇sa(t)

)
|τsa(t)|3

=
L2θ̇sa(t)

|τsa(t)|3
[
1− det

(∫ 1

0

exp(iθsa(v)) dv, i exp(iθsa(t))
)]
.

Because θsa = (1−s)θa+sθ is monotone increasing (recall that θ′a = κa > κ0 ≥ 0 a.e. by hypothesis),

the map t 7→ exp(iθsa(t)) runs over all of S1 for any s and a. As a consequence, the integral above

has norm strictly less than 1, hence so does the determinant. In fact, since A is compact, we can

find a constant C > 0, independent of a and s, such that

κsa > Cκ0.

For λ > 0 and an admissible plane curve γ, the curve λγ has curvature given by κ
λ , where κ is the

curvature of γ. Again using compactness of A, we may find a smooth function λ : [0, 1] → (0, 1]

such that λ(0) = 1 and λ(s) is as small as necessary for s ∈ (0, 1] to guarantee that κsa > κ0 for all

s ∈ [0, 1] and a ∈ A if we replace ηsa with λ(s)ηsa. In addition, we can choose λ so that the image of

λ(s)ηsa is contained in the ball BR(0) if this is the case for each ηa. This establishes the lemma with

R0 = λ(1). �

The next result states that the geodesic curvature of a curve γ : [0, 1]→ S2 and the curvature of

the plane curve obtained by projecting γ orthogonally on TpS
2 are roughly the same, as long as the

curve is contained in a small neighborhood of p.

†If κ0 = 0 then we adopt the convention that ρ0 = +∞.
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(4.5) Lemma. Let κ0 < κ1 < κ2 and p ∈ S2 be given. Identifying TpS
2 with R2, with p corre-

sponding to the origin, let P : S2 → R2 be the orthogonal projection. Then there exists ε > 0 such

that:

(a) If γ ∈ L+∞
κ2

satisfies d(γ(t), p) < ε for all t ∈ [0, 1], then η = P ◦ γ ∈W+∞
κ1

.

(b) If η ∈W+∞
κ1

satisfies |η(t)| < ε for all t ∈ [0, 1], then γ = P−1 ◦ η ∈ L+∞
κ0

.

In part (a), d denotes the distance function on S2 and the transformation P−1 in part (b) is to

be understood as the inverse of P when restricted to the hemisphere
{
q ∈ S2 : 〈q, p〉 > 0

}
.

Proof. The proof is straightforward and will be omitted. See [23], (6.4). �

(4.6) Lemma. Let h ∈ S2, H =
{
q ∈ S2 : 〈q, h〉 ≥ 0

}
, let pr: S2 → R2 denote stereographic

projection from −h. Let κ0 > 0 and γ ∈ L+∞
κ0

be such that Im(Cγ) ⊂ H. Define Tr : S2 → S2 to be

the Möbius transformation (dilatation) given by

Tr(p) = pr−1
(
r pr(p)

)
(r ∈ (0, 1], p ∈ S2).

Then, given κ1 > κ0, there exists r0 > 0, depending only on κ0 and κ1, such that the geodesic

curvature κr of Tr(γ) satisfies κr > κ1 a.e. for any r ∈ (0, r0).

Proof. Suppose that γ ∈ L+∞
κ0

is parametrized by its arc-length and let σ be a parametrization, also

by arc-length, of an arc of the osculating circle to γ at γ(s0), i.e., let σ satisfy:

σ(s0) = γ(s0), σ′(s0) = γ′(s0), σ′′(s0) = γ′′(s0).

(It makes sense to speak of γ′′ (as an L2 map) because γ′ = t is H1 by hypothesis.) Then Tr ◦σ has

contact of order 3 with Tr ◦γ at s0, hence their geodesic curvatures at the corresponding point agree.

Therefore, it suffices to prove the result for a circle Σ whose center χ lies in IntH. Let ρi = arccotκi,

i = 0, 1, and ρ be the radius of curvature of Σ, ρ < ρ0 <
π
2 . If d denotes the distance function on

S2, then Σ ⊂ Bd
(
h; π2 + ρ0

)
(where the latter denotes the set of q ∈ S2 such that d(h, q) < π

2 + ρ0).

Choose r0 such that

Tr
(
Bd
(
h; π2 + ρ0

))
⊂ Bd

(
h; ρ1

)
for all r ∈ (0, r0);

such an r0 exists because Bd
(
h; π2 + ρ0

)
is a distance π

2 − ρ0 > 0 away from −h. Then Tr(Σ) is a

circle, for a Möbius transformation such as Tr maps circles to circles, and its diameter is at most

2ρ1. Thus, its geodesic curvature must be greater than κ1. Moreover, it is clear that the choice of

r0 does not depend on h or on Σ, only on ρ0 and ρ1. �

Proof of (4.2). Let γa denote f(a) and let ha be the barycenter of the set of closed hemispheres

which contain Im(Cγa); by (2.10), the map h : A→ S2 so defined is continuous.

Let pra denote stereographic projection S2 → R2 from −ha, so that ha is projected to the origin,

and define a family T sa : S2 → S2 of Möbius transformations by:

T sa (q) = pr−1
a (spra(q)) (q ∈ S2, s ∈ (0, 1], a ∈ A).

Set γsa = T saγa.

Assume first that κ0 > 0. From (4.6) it follows that we can choose δ > 0 so small that the

geodesic curvature of γδa is greater than κ0 + 2 a.e. for any a ∈ A. Now choose ε > 0 as in (4.5), with

κ1 = κ0 +1, κ2 = κ0 +2. By reducing δ if necessary, we can guarantee that the curves γδa have image

contained in Bd(ha; ε), for each a. Let ηa be the orthogonal projection of γδa onto ThaS
2. We are

then in the setting of (4.4). The conclusion is that we can deform all ηa to a single circle σν , modulo

the starting point of the parametrization, in such a way that the curves have image contained in

B(0; ε) and curvature greater than κ0 + 1 throughout the deformation. By (4.5) again, when we

project this homotopy back to S2, the geodesic curvature of the curves is always greater than κ0.

To sum up, we have described a homotopy H : [0, 1]×A→ S2 such that H(0, a) = γa and H(1, a)

is a circle traversed ν times for all a ∈ A; further, the geodesic curvature κsa of H(s, a) satisfies

κsa(t) > κ0 for each s ∈ [0, 1] and almost every t ∈ [0, 1]. These curves H(a, s) do not satisfy

Φ(0) = I = Φ(1), but we can correct this by setting

H̄(s, a) = ΦH(a,s)(0)−1H(a, s)
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and using H̄ instead; this has no effect on the geodesic curvature and finishes the proof that f is

null-homotopic, since H̄(1, a) is the same parametrized circle for all a.

We shall now indicate how to modify the proof when κ0 = 0. With the notation as above, let

d0 = sup
{
d
(
Cγ0.5

a
(t, θ), ha

)
: t ∈ [0, 1], θ ∈ [0, ρ0], a ∈ A

}
.

Then d0 <
π
2 for all a ∈ A because A is compact and Im(Cγsa) is contained in the open hemisphere{

q ∈ S2 : 〈q, ha〉 > 0
}

for all a ∈ A, s ∈ (0, 1) (see the first part of the proof of (4.3) below). Choose

d1 with d0 < d1 <
π
2 . If Σ is an osculating circle to some γ0.5

a , we can assert that its center lies in

Bd
(
ha; d1

)
, hence Σ ⊂ Bd

(
ha; d1 + π

2

)
. This uniform estimate allows us to repeat the reasoning in

the proof of (4.6) to find δ > 0 such that the geodesic curvature of γδa is greater than κ0 + 2 a.e. for

any a ∈ A. The rest of the proof is the same as when κ0 > 0. �

We now provide a proof of (4.3). This result will be used to show that a notion of rotation number

for non-diffuse curves, which will be introduced in the next section, coincides with the one presented

at the beginning of this section.

Proof of (4.3). Let hγ be the barycenter on S2 of the set of closed hemispheres which contain Im(Cγ)

and, as in the proof of (4.2), define γs = T s ◦ γ, where

(4) T s(q) = pr−1(spr(q)) (q ∈ S2, s ∈ (0, 1])

and pr denotes stereographic projection from −hγ . Let H =
{
p ∈ S2 : 〈p, hγ〉 > 0

}
. We claim that

Im(Cγs) ⊂ H for all s ∈ (0, 1). This follows from the following two assertions:

(i) If Im(Cγs) ⊂ H̄, then there exists ε > 0 such that Im(Cγσ ) ⊂ H for all σ ∈ (s− ε, s);
(ii) If Im(Cγs) 6⊂ H, then there exists ε > 0 such that Im(Cγσ ) 6⊂ H̄ for all σ ∈ (s, s+ ε).

For any s, the boundary of Im(Cγs) is contained in the union of the images of γs = Cγs(·, 0) and

γ̌s = Cγs(·, ρ0). Moreover, γ has positive geodesic curvature by hypothesis, and a straightforward

calculation shows that γ̌ also does (the details may be found in (6.6)).

If Im(Cγs) ⊂ H then (i) is obviously true, since H is an open hemisphere; similarly, (ii) clearly

holds if Im(Cγs) 6⊂ H̄. Suppose then that Im(Cγs) ⊂ H̄, but Im(Cγs) 6⊂ H for some s > 0. This

means that there exists t0 ∈ [0, 1] such that either γs or γ̌s is tangent to ∂H at γs(t0) or γ̌s(t0),

respectively. In the first case, nγs(t0) = hγ , and in the second nγs(t0) = −hγ . In either case,

Cγs
(
{t0} × [0, ρ0]

)
is an arc of the geodesic through γs(t0) and hγ . Such geodesics through hγ

are mapped to lines through the origin by pr, hence (4) implies that there exists ε > 0 such that

Cγ(t, σ) ⊂ H for any t ∈ (t0 − ε, t0 + ε) and σ ∈ (s− ε, s) and Cγ(t0, σ) 6⊂ H̄ for any σ ∈ (s, s+ ε).

Furthermore, since the geodesic curvatures of γ, γ̌ are positive and ∂H is a geodesic, the set of

t0 ∈ [0, 1] where γ, γ̌ are tangent to ∂H must be finite. This implies (i) and (ii).

Now let S =
{
s ∈ (0, 1) : Im(Cγs) 6⊂ H

}
. Assume that S 6= ∅ and let s0 = supS. Applying (i) to

γ1 = γ we conclude that there exists ε > 0 with S ∩ (1− ε, 1) = ∅. Hence, s0 < 1 and Im(Cγs0 ) 6⊂ H
by construction. An application of (ii) yields a contradiction. Thus, S = ∅.

Let ρ0 = arccotκ0 and r = π
2 − ρ0. Choosing δ > 0 so that Im(γδ) ⊂ Bd(hγ ; r), and proceeding

as in the proof of (4.2), we can extend s 7→ γs (s ∈ [δ, 1]) to all of [0, 1] so that γ0 is a parametrized

circle and Im(γs) ⊂ Bd(hγ ; r) for all s ∈ [0, δ] (where d denotes the distance function on S2). The

inequality d(η(t), Cη(t, θ)) = θ < ρ0, which holds for any η ∈ L+∞
κ0

, implies that

d(hγ , Cγs(t, θ)) <
π

2
for any t ∈ [0, 1], θ ∈ [0, ρ0] and s ∈ [0, δ].

Hence Im(Cγs) ⊂ H for all s ∈ [0, δ]. The same inclusion for s ∈ [δ, 1) was established above, so the

proof is complete. �

(4.7) Corollary. Let κ0 ≥ 0 and 1 ≤ ν ∈ N.

(a) The subset O (resp. Oν) of L+∞
κ0

(I) consisting of all condensed curves (resp. all condensed

curves having rotation number ν) is the closure of an open set.

(b) If γ ∈ Oν and U ⊂ L+∞
κ0

(I) is any open set containing γ, then γ is homotopic to a smooth

curve within Oν ∩ U.
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Proof. Let S ⊂ O be the subset consisting of all curves γ ∈ L+∞
κ0

(I) such that Im(Cγ) is contained

in an open hemisphere. Then S is open, because if the compact set C = Im(Cγ) is such that

〈c, h〉 > 0 for some h ∈ S2 and all c ∈ C, then the same inequality holds for all c ∈ Im(Cη) whenever

η ∈ L+∞
κ0

(I) is sufficiently close to γ. Similarly, O is closed. For if γ /∈ O, then, by (A.3) and (A.5),

we can find a 3-dimensional simplex with vertices in Im(Cγ) containing 0 ∈ R3 in its interior. If

η ∈ L+∞
κ0

(I) is sufficiently close to γ then we can also find a simplex ∆η with vertices in Im(Cη)

such that 0 ∈ Int ∆η. It follows that S̄ ⊂ O.

Let γ ∈ O. Define a family T s : S2 → S2 of Möbius transformations by (4), where pr : S2 → R2

denotes stereographic projection from −hγ , and hγ is the barycenter of the set of closed hemispheres

which contain C = Im(Cγ) (cf. (2.10)). Then γs = T s ◦ γ ∈ S for all s ∈ (0, 1) by (4.3), establishing

the reverse inequality S̄ ⊃ O. The proof of the assertion about Oν is analogous and will be omitted.

To prove (b), let ε > 0 be such that γs = T s ◦γ ∈ U for all s ∈ [1−ε, 1]. Choose a path-connected

neighborhood V ⊂ S∩U of γ1−ε, and, for s ∈ [0, 1− ε], let γs be a path in V joining a smooth curve

γ0 to γ1−ε. As each γs is condensed (s ∈ [0, 1]), ν(γs) is defined for all s; since it can only take on

integral values, it must be independent of s. Thus, s 7→ γs (s ∈ [0, 1]) is the desired path. �

Condensed curves in L+∞
κ0

for κ0 < 0. The purpose of this subsection is to prove the following

analogue to (4.2).

(4.8) Proposition. Let K be a connected compact space, κ0 < 0 and f : K → L+∞
κ0

(I) be such that

f(p) is condensed for all p ∈ K. Then there exists ν ≥ 1 such that f is homotopic in L+∞
κ0

(I) to the

constant map p 7→ σν , σν a circle traversed ν times.

Let 1 ≤ ν ∈ N and let S2
ν denote the ν-sheeted connected covering of S2r{±point}, where we may

assume that the point is the north pole N . We will identify S1 × (−π2 ,
π
2 ) with S2 r {±N} through

the homeomorphism h given by h(z, φ) = (cosφz, sinφ). This, in turn, yields an identification of

S2
ν with S1

ν × (−π2 ,
π
2 ), where S1

ν is the ν-sheeted connected covering space of S1. We will prefer to

work with the space S1
ν × (−π2 ,

π
2 ) instead of S2

ν , but its Riemannian metric is the one induced on

the latter space by S2 through the covering map.

(4.9) Definition.† Let 0 < R < π
2 . An acceptable band A : [0, 1]× [0, 1] → S1

ν × (−π2 ,
π
2 ) ≡ S2

ν is a

map given by

(5) A(t, u) =
(

exp(2πνit) , (1− u)θ−(t) + uθ+(t)
)

(t, u ∈ [0, 1])

and satisfying the following conditions:

(i) θ± : [0, 1]→ (−π2 ,
π
2 ) are continuous, 0 ≤ θ+ ≤ R and −R ≤ θ− ≤ 0.

(ii) Let ∂A+ (resp. ∂A−) denote the image of [0, 1] × {1} (resp. [0, 1] × {0}) under A. Then

d(p, ∂A−) ≥ R and d(q, ∂A+) ≥ R for every p ∈ ∂A+ and every q ∈ ∂A−.‡

The interior Å of A is simply the interior of the image of A. The set of all acceptable bands (for

fixed R) will be denoted by A and furnished with the C0 (uniform) topology. Finally, we denote by

G the subspace of A consisting of all acceptable bands A such that d(p, ∂A−) = R = d(q, ∂A+) for

any p ∈ ∂A+ and q ∈ ∂A−. Such a band will be called good and R its width.

The motivation for this definition comes from the following lemma.

(4.10) Lemma. Let κ0 = cot ρ0 < 0 and γ ∈ L+∞
κ0

be a condensed curve having rotation number ν.

Then the image of the lift of the regular band Bγ : [0, 1]× [ρ0 − π, 0]→ S2 of γ to S2
ν is the image of

a good band of width π − ρ0.

Recall that the rotation number ν of γ must be positive by (4.1).

Proof. By hypothesis, the image of the caustic band Cγ is contained in a hemisphere, say,

H =
{
p ∈ S2 : 〈p,N〉 ≥ 0

}
.

†These notions will only be used in this subsection.
‡Here and in what follows, d denotes the distance function on S2

ν (or on S2).
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Let γ̂ be the other boundary curve of Bγ , γ̂(t) = Bγ(t, ρ0 − π). Then γ̂(t) = −Cγ(t, ρ0) ∈ −H for

all t ∈ [0, 1]. Since d(γ(t), γ̂(t)) = π − ρ0 < π
2 , Im(γ) ⊂ H and Im(γ̂) ⊂ −H, the image of the

regular band is actually contained in S1× [ρ0−π, π− ρ0] (where we are identifying S2 r {±N} with

S1 × (−π2 ,
π
2 )).

Let B̃γ : [0, 1] × [ρ0 − π, 0] → S2
ν be the lift of Bγ to S2

ν ≡ S1
ν × (−π2 ,

π
2 ). For each z ∈ S1

ν ,

let the meridian µz be the geodesic parametrized by µz(t) = (z, t), t ∈ (−π2 ,
π
2 ). By what we

have just proved and the fact that γ has rotation number ν, we may define continuous functions

θ± : S1
ν → (−π2 ,

π
2 ) by the relations

µz(θ+(z)) ∈ B̃γ([0, 1]× {0}) and µz(θ−(z)) ∈ B̃γ([0, 1]× {ρ0 − π}).

Then the map A : [0, 1]× [0, 1]→ S1
ν × (−π2 ,

π
2 ) ≡ S2

ν given by

A(t, u) =
(

exp(2πνit) , (1− u)θ−(t) + uθ+(t)
)

(t, u ∈ [0, 1])

defines an acceptable band whose image coincides with that of B̃γ . Furthermore, the equality

d(γ(t), γ̂(t)) = π − ρ0 implies that d(p, ∂A±) ≤ π − ρ0 for any p ∈ ∂A∓. We claim that A is a good

band of width π−ρ0. To see this, suppose η : [0, 1]→ S2
ν is a piecewise C1 curve joining ∂A− to ∂A+

and write η(u) = B̃γ(t(u), θ(u)). Then the length is minimized when θ is monotone and ṫ(u) = 0

for all u ∈ [0, 1], hence the minimal length is π − ρ0; for the proof see the similar argument in [23],

(10.5). �

(4.11) Lemma. The space A is contractible.

Proof. Let A ∈ A be given by (5) and let s ∈ [0, 1]. Define a family of acceptable bands As by

As(t, u) =
(

exp(2πνit) , (1− u)θs−(t) + uθs+(t)
)
,

where

θs+(t) = (1− s)θ+(t) + sR and θs−(t) = (1− s)θ−(t)− sR

Then the map A× [0, 1]→ A given by (A, s) 7→ As is a contraction of A. �

(4.12) Lemma. The subspace G is a retract of A.

Proof. Let A ∈ A be given by (5). Define A1 = Im(A), θ1
± = θ± and

A2 =
{
p ∈ A1 : d(p, ∂A1

−) ≤ R+ 1
2

}
.

We will call a geodesic µz in S2
ν ≡ S1

ν×(−π2 ,
π
2 ) of the form {z}×(−π2 ,

π
2 ) a meridian, and parametrize

it by µz(t) = (z, t). We begin by establishing the following facts:

(a) Each meridian µz intersects ∂A2 at exactly two points µz(θ
2
−(z)) and µz(θ

2
+(z)), with θ2

+ ≥ 0

and θ2
− ≤ 0. We define ∂A2

± as the set of all µz(θ
2
±(z)) for z ∈ S1

ν .

(b) ∂A2
− = ∂A1

−.

(c) p ∈ ∂A2
+ if and only if one of the following holds:

p ∈ ∂A1
+ and d(p, ∂A1

−) ≤ R+ 1
2 , or

p ∈ Å1 and d(p, ∂A1
−) = R+ 1

2 .

(d) The boundary ∂A2 of A2 is the disjoint union of ∂A2
+ and ∂A2

−. Moreover,

R ≤ d(p, ∂A2
−) ≤ R+

1

2
and R ≤ d(q, ∂A2

+) ≤ d(q, ∂A1
+)

for any p ∈ ∂A2
+ and q ∈ ∂A2

−.

(e) A2 is the (image of) an acceptable band, and the functions in (4.9(i)) corresponding to A2

are θ2
±. Moreover,

(6) 0 ≤ θ2
+ ≤ min{R+ 1

2 , θ
1
+} and −R ≤ θ2

− = θ1
− ≤ 0.
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The inclusion ∂A1
− ⊂ S1

ν × [−R, 0] implies, firstly, that

(7) A2 ∩
(
S1
ν × [−R, 0]) = A1 ∩

(
S1
ν × [−R, 0]),

as every point of A1 ∩
(
S1
ν × [−R, 0]) lies at a distance less than or equal to R from ∂A1

−. Secondly,

it implies that

t 7→ d(µz(t), ∂A
1
−)

is a monotone decreasing function of t when t ≥ 0.

It follows from (7) and the properties of A1 that, for any z ∈ S1
ν , there exists a unique θ2

−(z) ∈
[−R, 0] such that µz(θ

2
−(z)) ∈ ∂A2, unless µz(0) ∈ ∂A1

+. In the latter case, d(µz(0), ∂A1
−) = R,

θ2
−(z) = −R and θ2

+(z) = 0. If µz(0) /∈ ∂A1
+, let θ2

+(z) > 0 be the smallest t ∈ (0, R] such that either

µz(t) ∈ ∂A1
+ or d(µz(t), ∂A

1
−) = R + 1

2 . Suppose µz(θ
2
+(z)) ∈ ∂A1

+. Then µz(θ
2
+(z)) ∈ A2 (because

it lies a distance ≤ R+ 1
2 from ∂A1

−), while µz(t) /∈ A1 ⊃ A2 for t > θ2
+(z). Thus, µz(θ

2
+(z)) ∈ ∂A2.

If d(µz(θ
2
+(z)), ∂A1

−) = R+ 1
2 , then again µz(θ

2
+(z)) ∈ A2 while µz(t) /∈ A2 for t > θ2

+(z), since, for

such t, d(µz(t), ∂A
1
−) > R + 1

2 by the second consequence. Moreover, in both cases µz(t) does not

intersect ∂A2 again for t > 0. This proves (a), (b), (c) and also establishes (6).

Since

∂A2 =
⋃
z∈S1

ν

µz ∩ ∂A2,

(a) implies the first assertion of (d). In turn, (b) and (c) together immediately imply that

R ≤ d(p, ∂A2
−) = d(p, ∂A1

−) ≤ R+
1

2

for any p ∈ ∂A2
+. That d(q, ∂A2

+) ≤ d(q, ∂A1
+) for any q ∈ ∂A2

− follows from the fact that ∂A2
+ lies

below ∂A1
+, in the sense that any geodesic joining ∂A1

− to ∂A1
+ must first intersect a point of ∂A2

+.

Indeed, θ2
+(z) ≤ θ1

+(z) for any z ∈ S1
ν , as we have already seen in (6). Thus, (d) holds.

By construction,

A2 =
{
p ∈ S2

ν ≡ S1
ν × (−π2 ,

π
2 ) : p = (z, θ) for some θ ∈ [θ2

−(z), θ2
+(z)]

}
.

Hence, A2 is the image of the acceptable band given by

(t, u) 7→
(

exp(2πνit) , (1− u)θ2
−(t) + uθ2

+(t)
)

(t, u ∈ [0, 1]).

Using induction and the corresponding versions of items (a)–(e) (whose proofs are the same in

the general case), define

An+1 =
{
p ∈ An : d(p, ∂An(−1)n) ≤ R+ 2−n

}
(n ∈ N).

Finally, let B =
⋂+∞
n=1A

n. We claim that B is the image of a good band.

Given N ∈ N and m,n > N , we have∣∣θn±(z)− θm± (z)
∣∣ ≤ 2−N+1 for any z ∈ S1

ν

by construction. Therefore, θn+↘θ+ and θn−↗θ− for some functions θ± : S1
ν → [−R,R], which are

continuous as the uniform limit of continuous functions. Moreover, B is the image of the map

(t, u) 7→
(

exp(2πνit) , (1− u)θ−(t) + uθ+(t)
)

(t, u ∈ [0, 1]),

again by construction. We claim that d(x, ∂B±) = R for any x ∈ ∂B∓. Suppose for a contradiction

that d(p, ∂B−) < R for some p ∈ ∂B+, and let pq be a geodesic of length d(p, ∂B−), with q ∈ ∂B−.

Choose neighborhoods U 3 p and V 3 q such that d(x, y) < R for any x ∈ U , y ∈ V . Since

p, q ∈ ∂B±, by choosing a sufficiently large n ∈ N, we may find x ∈ ∂An+ ∩U and y ∈ ∂An− ∩V with

d(x, y) < R, a contradiction. Similarly, if d(p, ∂B−) = R + ε for some ε > 0, choose neighborhoods

U 3 p and V 3 q such that d(x, y) ≥ R + ε
2 for any x ∈ U and V 3 q. Let N ∈ N be so large that

2−N < ε
2 . Since p, q ∈ ∂B±, we may find some n > 2N and x ∈ ∂An+ ∩ U , y ∈ ∂An− ∩ V . Then

d(x, y) ≥ R + ε
2 > R + 2−N , again a contradiction. The assumption that d(q, ∂B+) 6= R for some

q ∈ ∂B− also yields a contradiction. We conclude that B is a good band of width R.

If r : A → G is the map which associates to an acceptable band A the good band B obtained

by the process described above, then r(A) = A whenever A ∈ G. In addition, we see by induction

that the map A 7→ An is continuous on A for every n ∈ N. Given ε > 0, we can arrange that
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‖An −Am‖C0 < ε for any A ∈ A by choosing m, n ≥ N and a sufficiently large N ∈ N. Hence,

r : A→ G is a retraction. �

(4.13) Corollary. The space G is contractible.

Proof. This is an immediate consequence of (4.11) and (4.12). �

(4.14) Definition. Let B be a good band of width R. A track of B is a curve on S2
ν of length R

joining a point of ∂B+ to a point of ∂B−.

In other words, a track is a length-minimizing geodesic joining ∂B+ to ∂B−; in particular, it is

a smooth curve. Also, if Γ1, Γ2 are tracks through p ∈ ∂B+ and q ∈ ∂B− then Γ1 = Γ2, since two

geodesics on S2 intersect at a pair of antipodal points, and p and q do not map to the same point

nor to a pair of antipodal points on S2 under the covering map.

(4.15) Lemma. Let B be a good band. Then two tracks of B cannot intersect at a point lying in B̊.

Proof. Suppose for the sake of obtaining a contradiction that two tracks p1q1 and p2q2, with pi ∈ ∂B+

and qi ∈ ∂B−, intersect at a point x ∈ B̊ (see fig. 9). Then one of the following must occur (here ab

denotes the segment of the corresponding geodesic and also its length):

Figure 9.

(i) xq1 = xq2;

(ii) xq1 > xq2;

(iii) xq1 < xq2.

If (i) holds, let p̄1, q̄2 be points on p1x and xq2, respectively, which lie in a normal neighborhood

of x. Then, by the triangle inequality,

R = p1q1 = p1x+ xq2 > p1p̄1 + p̄1q̄2 + q̄2q2.

This contradicts the fact that B is a good band of width R.

If (ii) holds then R = p1q1 > p1x + xq2. Again, this contradicts the fact that p1q1 is a path of

minimal length joining p1 to ∂B−. Similarly, if (iii) holds then R = p2q2 > p2x+ xq1, contradicting

the fact that p2q2 is a path of minimal length joining p2 to ∂B−. �

Remark. Note that this result may be false for an acceptable band. In the proof, we have implicitly

used the fact that if pq is a path of minimal length joining p ∈ ∂B+ to ∂B− then pq is also a path

of minimal length joining q to ∂B+, and this is not necessarily true for an acceptable band.

(4.16) Lemma. Every point in the interior of a good band B lies in a unique track of B.

Proof. Let R be the width of B and let T ⊂ Im(B) consist of all points which lie on some track of

B. It is clear from the definitions that ∂B± ⊂ T . We claim that a ∈ T if and only if

(8) d(a, ∂B+) + d(a, ∂B−) = R

The existence of a track through a implies that d(a, ∂B+) + d(a, ∂B−) ≤ R. If the inequality were

strict, then there would exist a path of length less than R joining ∂B+ to ∂B−, which is impossible.

Conversely, suppose (8) holds, and let p ∈ ∂B+, q ∈ ∂B− be the points of ∂B+ (resp. ∂B−) which

are closest to a. Then the concatenation of the geodesics pa and aq is a path of length R joining

∂B+ to ∂B−, i.e., a track. Hence, a ∈ T .
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Figure 10.

The characterization of T that we have established implies that the latter is a closed set. Now

suppose that x /∈ T , let V be the component of B̊rT containing x (see fig. 10, where V is depicted as a

gray open ball). Since T is closed, any point in ∂V lies in T . Choose points a1, a2 ∈ ∂V r(∂B+∪∂B−)

such that the (unique) tracks piqi through ai do not coincide, where pi ∈ ∂B+ and qi ∈ ∂B−
(i = 1, 2). Such points ai exist because otherwise V = B̊, which is absurd since any point on a track

lies in T . Because the tracks are distinct, at least one of p1 6= p2 or q1 6= q2 must hold. Assume

without loss of generality that q1 6= q2, and let q ∈ ∂B− be such that it is possible to join q to x in

Im(B) without crossing p1q1 nor p2q2. Let Γ be a track through q. Then Γ joins q to ∂B+, but it

does not intersect p1q1 nor p2q2 by (4.15). It follows that Γ must contain points of V , a contradiction

which shows that T = Im(B). In other words, every point of Im(B) lies in a track of B; uniqueness

has already been established in (4.15). �

(4.17) Lemma. Let B be a good band of width R and let 0 < r < R. Then the set γr consisting

of all those points in B̊ at distance r from ∂B+ is (the image of) a closed admissible curve whose

radius of curvature ρ satisfies r ≤ ρ ≤ π −R+ r almost everywhere.

Proof. For p ∈ B̊, let Γp : [0, R] → S2
ν denote the unique track through p, parametrized by arc-

length, with Γp(0) ∈ ∂B− and Γp(R) ∈ ∂B+. Define vector fields n and t on B̊ by letting n(p)

be the unit tangent vector to Γp at p and t(p) = n(p) × p. We claim that the restriction of n

(and consequently that of t) to any compact subset K of B̊ satisfies a Lipschitz condition. Let

d0 < min{d(K, ∂B+) , d(K, ∂B−)}, let a0, a1 ∈ K, with a1 close to a0, and consider the (spherical)

triangle having Γa0 , Γa1 , a0a1 as sides and a0, a1, a2 as vertices (see fig. 11). The point a2 must lie

outside of B̊ by (4.15). Let p0 be the point where the geodesic segment a0a2 intersects ∂B±. Then

a0a2 ≥ a0p0 ≥ d0.

Hence, by the law of sines (for spherical triangles) applied to 4a0a1a2,

sin a2

sin(a0a1)
=

sin a1

sin(a0a2)
≤ 1

sin d0
,

Using parallel transport we may compare

∠(n(a0),n(a1))

a0a1
with

^a2

a0a1
≈ sin a2

sin(a0a1)

to obtain a Lipschitz condition satisfied by the former, but we omit the computations.

Now given p ∈ B̊ at distance r from ∂B+, 0 < r < R, let γr be the integral curve through p of

the vector field t. Then γr is parametrized by arc-length and its frame is given by

Φγr (t) =

 | | |
γr(t) t(γr(t)) n(γr(t))

| | |


by construction. If d(t) = d(γr(t), ∂B+) then ḋ ≡ 0, since t(γr(t)) is orthogonal to the track through

γr(t) for every t. Hence d is constant, equal to r, and γr is a closed curve. Moreover, since t and n

satisfy a Lipschitz condition when restricted to the image of γr, we see that the entries of Φγr are
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Figure 11.

absolutely continuous with bounded derivative. In particular, these derivatives belong to L2. We

conclude that γr is admissible.

For r − R < θ < r, the curve γr−θ is the translation of γr by θ (as defined on p. 11, eq. (8)) by

construction. Since γr−θ is also regular, we deduce from (6) in (2.7) that the radius of curvature ρ

of γr satisfies

0 < ρ(t)− θ < π

for all t at which ρ is defined and all θ in (r −R, r). Therefore, r ≤ ρ ≤ π −R+ r a.e.. �

(4.18) Corollary. Let B be a good band of width R. Then the central curve γR
2

is an admissible

curve whose radius of curvature is restricted to
[
R
2 , π −

R
2

]
. �

Before finally presenting a proof of (4.8), we extend the definition of the regular band of a curve

to any space Lκ2
κ1

.

(4.19) Definition. Let γ ∈ Lκ2
κ1

. The (regular) band Bγ spanned by γ is the map:

Bγ : [0, 1]× [ρ1 − π, ρ2]→ S2, Bγ(t, θ) = cos θ γ(t) + sin θ n(t).

The statement and proof of (2.7) still hold, except for obvious modifications.

Proof of (4.8). By (1.10), we may replace L+∞
κ0

(I) with C+∞
κ0

(I), that is, we may assume that the

curves γp = f(p) are of class C2. Let ρ0 = arccotκ0,

(9) ρ1 =
π − ρ0

2
, κ1 = cot ρ1

and let ηp be the translation of γp by ρ1 (compare (1.25)). Then the radius of curvature ρηp of ηp
satisfies ρ1 < ρηp < π − ρ1 for all p ∈ K. Since ρηp is continuous and K is compact, there exists

ρ̄1 ∈ (ρ1,
π
2 ) such that

ρ̄1 < ρηp < π − ρ̄1 for all p ∈ K.

In particular, the regular band of ηp may be extended from [0, 1]× [−ρ1, ρ1] to [0, 1]× [−ρ̄1, ρ̄1], for

any p. Consider the space G of good bands of width R = 2ρ̄1 and the corresponding space A ⊃ G of

acceptable bands.

Recall that K is connected by hypothesis, hence p 7→ ν(γp) is constant; let ν be the common

rotation number of all the γp. Let B0
p ∈ G be the regular band, of width 2ρ̄1, of ηp (whose image

is the same as that of the regular band of γp), and let B1
p ∈ G be the regular band of a geodesic

σ of rotation number ν, the latter being the central curve of the band. The combination of (4.10),

(4.13) and (4.18) yields a homotopy (s, p) 7→ ηsp from the map p 7→ η0
p = ηp to the constant map

p 7→ η1
p = σ, where ηsp is the central curve of a good band Bsp ∈ G, s ∈ [0, 1], p ∈ K. Moreover, (4.18)

guarantees that the radius of curvature ρηsp of ηsp satisfies ρ̄1 ≤ ρηsp ≤ π − ρ̄1 for each s ∈ [0, 1] and

p ∈ K. Consequently,

ρ1 < ρηsp < π − ρ1 for each s ∈ [0, 1], p ∈ K,

and it follows that (s, p) 7→ ηsp is a homotopy in C+κ1
−κ1

from the map p 7→ ηp to a constant map. If

we let γsp be the translation of ηsp by −ρ1, then γ0
p is the original curve γp = f(p) for each p, and

(s, p) 7→ γsp is a homotopy in C+∞
κ0

from f to the constant map p 7→ σ̄, where σ̄ (the translation of σ

by −ρ1) is a circle traversed ν times.
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We have proved that f : K → C+∞
κ0

(I) is null-homotopic in C+∞
κ0

. The latter space may be replaced

by C+∞
κ0

(I) without altering the conclusion by the usual trick of substituting γsp by Φγsp(0)−1γsp
(s ∈ [0, 1], p ∈ K). �

(4.20) Theorem E. Let κ0 ∈ R, ν ≥ 1 and let Oν ⊂ L+∞
κ0

(I) be the subspace consisting of all

condensed curves having rotation number ν. Then Oν is (weakly) contractible.

Proof. This was established in (4.2) for κ0 ≥ 0 and in (4.8) for κ0 < 0. �

Remark. For κ0 = −∞ the only condensed curves in L+∞
κ0

are geodesic circles (and so Oν has only

one element). In any case, the topology of L+∞
−∞ is well understood, and this is the main reason why

we always assume that κ0 ∈ R.

5. Non-diffuse Curves

In this section we define a notion of rotation number for any non-diffuse curve in L+∞
κ0

and prove

a bound on the total curvature of such a curve which depends only on its rotation number and κ0

(prop. (5.8)).

(5.1) Lemma. Suppose X is a connected, locally connected topological space and C 6= ∅ is a closed

connected subspace. Let
⊔
α∈J Bα be the decomposition of X rC into connected components. Then:

(a) ∂Bα ⊂ C for all α ∈ J .

(b) For any J0 ⊂ J , the union C ∪
⋃
β∈J0 Bβ is also connected.

Proof. The proof is not difficult, and will be omitted. See [23], (7.1) for the details. �

We will also need the following well-known results.†

(5.2) Theorem. Let A ⊂ S2 be a connected open set.

(a) A is simply-connected if and only if S2 rA is connected.

(b) If A is simply-connected and S2 rA 6= ∅, then A is homeomorphic to an open disk.

(c) Let S± ⊂ S2 be disjoint and homeomorphic to S1. Then the closure of the region bounded by

S− and S+ is homeomorphic to S1 × [−1, 1]. �

(5.3) Lemma. Let U± ⊂ S2 be homeomorphic to open disks, U− ∪ U+ = S2. Then

U− ∩ U+ ≈ S1 × (−1, 1).

Proof. We first make two claims:

(a) Suppose C ≈ S1 × [−1, 1] and h : ∂C− → S1 × {−1} is a homeomorphism, where ∂C− is

one of the boundary circles of C. Then h may be extended to a homeomorphism H : C →
S1 × [−1, 1].

(b) Let M be a tower of cylinders, in the sense that:

(i) Mi ≈ S1 × [−1, 1] for each i ∈ Z;

(ii) M =
⋃
i∈ZMi and M has the weak topology determined by the Mi;

(iii) Mi ∩Mj = ∅ for j 6= i ± 1 and Mi ∩Mi+1 = S+
i = S−i+1, where S±i are the boundary

circles of Mi.

Then M ≈ S1 × (−1, 1).

Claim (a) is obviously true if C = S1 × [−1, 1]: Just set H(z, t) = (h(z), t). In the general case

let F : C → S1 × [−1, 1] be a homeomorphism. Note that ∂C is well-defined as the inverse image

of S1 × {±1} (p ∈ ∂C if and only if U r {p} is contractible whenever U is a sufficiently small

neighborhood of p). Hence ∂C consists of two topological circles, ∂C± = F−1
(
S1×{±1}

)
. Let f =

F |∂C− and let g = h◦f−1 : S1 → S1. As we have just seen, we can extend g to a self-homeomorphism

G of S1 × [−1, 1]. Now define H : C → S1 × [−1, 1] by H = G ◦ F . Then H|∂C− = g ◦ f = h, as

desired.

†Part (b) of (5.2) is an immediate corollary of the Riemann mapping theorem and part (c) is the 2-dimensional

case of the annulus theorem.
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To prove claim (b), let H0 : M0 → S1× [− 1
2 ,

1
2 ] be any homeomorphism. By applying (a) to M±1

and h±1 = H0|S±
0

, we can extend H0 to a homeomorphism

H1 : M0 ∪M±1 → S1 ×
[
− 2

3 ,
2
3

]
,

and, inductively, to a homeomorphism

Hk :
⋃
|i|≤k

Mi → S1 ×
[
− 1 +

1

k + 2
, 1− 1

k + 2

]
(k ∈ N).

Finally, let H : M → S1 × (−1, 1) be defined by H(p) = Hi(p) if p ∈ Mi. Then H is bijective,

continuous and proper, so it is the desired homeomorphism.

Returning to the statement of the lemma, note first that ∂U± ⊂ U∓. Indeed, if p ∈ ∂U−∩(S2rU+)

then p /∈ U− ∪ U+ = S2, hence no such p exists. Let h± : B(0; 1) → U± be homeomorphisms, and

define f± : [0, 1)→ R by

f±(r) = sup
{
d
(
p, ∂U±

)
: p ∈ h±(rS1)

}
,

where d denotes the distance on S2. We claim that limr→1 f±(r) = 0. Observe first that f± is

strictly decreasing, for if q ∈ h±(r0S
1), r0 < r, then any geodesic joining q to ∂U± intersects h(rS1).

Hence the limit exists; if it were positive, then U± would be at a positive distance from ∂U±, which

is absurd.

Now choose n ∈ N such that

f±(t) <
1

2
min

{
d
(
∂U−,S

2 r U+

)
, d
(
∂U+,S

2 r U−
)}

for any t > 1− 1
n . Set

Si = h+

((
1− 1

n+ i

)
S1
)

for i > 0 and Si = h−

((
1− 1

n− i

)
S1
)

for i < 0.

Finally, let M0 be the region of U− ∩ U+ bounded by S1 and S−1 and, for i > 0 (resp. < 0), let Mi

the region bounded by Si and Si+1 (resp. Si−1). Using (5.2(c)) we see that U− ∩ U+ =
⋃
Mi is a

tower of cylinders as in claim (b), and we conclude that U− ∩ U+ ≈ S1 × (−1, 1). �

We now return to spaces of curves.

(5.4) Definitions. For fixed κ0 ∈ R and γ ∈ L+∞
κ0

, let C denote the image of Cγ and D = −C.

Assuming γ non-diffuse (meaning that C ∩D = ∅), let Ĉ (resp. D̂) be the connected component of

S2 rD containing C (resp. the component of S2 r C containing D) and let B = Ĉ ∩ D̂.

Figure 12. A sketch of the sets defined in (5.4) for a non-diffuse curve γ ∈ L+∞
κ0

.

The lightly shaded region is C and the darkly shaded region is D = −C; both are

closed. The dotted region represents B, which is homeomorphic to S1 × (−1, 1) by

(5.5(c)).

(5.5) Lemma. Let the notation be as in (5.4).

(a) C and D are at a positive distance from each other.
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(b) B ⊂ S2r(C∪D) is open and consists of all p ∈ S2 such that: there exists a path η : [−1, 1]→
S2 with

η(−1) ∈ D, η(1) ∈ C, η(0) = p and η(−1, 1) ⊂ S2 r (C ∪D).

(c) The set B is homeomorphic to S1 × (−1, 1).

Proof. The proof of each item will be given separately.

(a) This is clear, since C and D are compact sets which, by hypothesis, do not intersect.

(b) Being components of open sets, Ĉ and D̂ are open, hence so is B.

Suppose p ∈ B. Since p ∈ Ĉ, there exists η+ : [0, 1]→ S2 such that

η+(0) = p, η+(1) ∈ C and η+[0, 1] ⊂ S2 rD.

We can actually arrange that η+[0, 1) ⊂ S2 r (C ∪ D) by restricting the domain of η+ to

[0, t0], where t0 = inf
{
t ∈ [0, 1] : η+(t) ∈ C

}
and reparametrizing; note that t0 > 0 because

B is open and disjoint from C. Similarly, there exists η− : [−1, 0]→ S2 such that

η−(−1) ∈ D, η−(0) = p and η−(−1, 0] ⊂ S2 r (C ∪D).

Thus, η = η− ∗ η+ satisfies all the requirements stated in (b).

Conversely, suppose that such a path η exists. Then p ∈ Ĉ, for there is a path η+ = η|[0,1]

joining p to a point of C while staying outside of D at all times. Similarly, p ∈ D̂, whence

p ∈ B.

(c) The set Ĉ is open and connected by definition. Its complement is also connected by (5.1(b)),

as it consists of D and the components of S2 rD distinct from Ĉ. From (5.2(a)) it follows

that Ĉ is simply-connected. Further, Ĉ ∩D = ∅, hence the complement of Ĉ is non-empty

and (5.2(b)) tells us that Ĉ is homeomorphic to an open disk. By symmetry, the same is

true of D̂.

We claim that Ĉ ∪ D̂ = S2. To see this suppose p /∈ C, and let A be the component of

S2 r C containing p. If A ∩D 6= ∅ then A = D̂ by definition. Otherwise A ∩D = ∅, hence

there exists a path in S2 rD joining p to ∂A. By (5.1(a)), ∂A ⊂ C, consequently A ⊂ Ĉ.

In either case, p ∈ Ĉ ∪ D̂.

We are thus in the setting of (5.3), and the conclusion is that

B = Ĉ ∩ D̂ ≈ S1 × (−1, 1). �

In what follows let ∂Bγ be the restriction of Bγ to [0, 1]× {0, ρ0 − π}, let

B̂ = Im(Bγ) r Im(∂Bγ),

and let

B̄γ : S1 × [ρ0 − π, 0]→ S2

be the unique map satisfying B̄γ ◦ (pr× id) = Bγ , pr(t) = exp(2πit).

(5.6) Lemma. Let κ0 ∈ R and suppose that γ ∈ L+∞
κ0

is non-diffuse. Then:

(a) For any t ∈ [0, 1], Bγ
(
{t} × (ρ0 − π, 0)

)
intersects B.

(b) B ⊂ B̂.

(c) B̄−1
γ (q) is a finite set for any q ∈ S2 and B̄γ : B̄−1

γ (B̂)→ B̂ is a covering map.

Proof. We split the proof into parts.

(a) Note first that Bγ(t, 0) ∈ C and Bγ(t, ρ0 − π) ∈ D for any t ∈ [0, 1] by definition. Let

θ1 = inf
{
θ ∈ [ρ0 − π, 0] : Bγ(t, θ) ∈ C

}
,

θ0 = sup
{
θ ∈ [ρ0 − π, θ1] : Bγ(t, θ) ∈ D

}
.

Then θ0 < θ1 by (5.5(a)). Let η = Bγ |{t}×[θ0,θ1]. Then

η(θ0) ∈ D, η(θ1) ∈ C and η(θ0, θ1) ⊂ S2 r (C ∪D)
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by construction. Therefore, any point η(θ) for θ ∈ (θ0, θ1) satisfies the characterization of B

given in (5.5(b)), and we conclude that

Bγ
(
{t} × (θ0, θ1)

)
⊂ B.

(b) Let B0 = B ∩ Im(Bγ). By part (a), B0 6= ∅. Since Im(∂Bγ) ⊂ C ∪D, while B ∩ (C ∪D) = ∅
by definition, B ∩ Im(∂Bγ) = ∅. Hence,

B0 = B ∩ B̄γ
(
S1 × (ρ0 − π, 0)

)
,

which is an open set because B̄γ is an immersion, by (2.7(a)). Since Im(Bγ) is compact, B0

is also closed in B. But B is connected by (5.5(c)), consequently B0 = B and B ⊂ B̂.

(c) Let q ∈ S2 be arbitrary. The set B̄−1
γ (q) is discrete because B̄γ is an immersion, and

it is compact as a closed subset of S2. Hence, it must be finite. Now suppose q ∈ B̂.

Let B̄−1
γ (q) = {pi}ni=1 and choose disjoint open sets Ui 3 pi restricted to which B̄γ is a

diffeomorphism. Let U =
⋃n
i=1 Ui and

W = B̄γ(U1) ∩ · · · ∩ B̄γ(Un) r B̄γ
(
S1 × [ρ0 − π, 0] r U

)
.

Then W is a distinguished neighborhood of q, in the sense that B̄−1
γ (W ) =

⊔n
i=1 Vi and

B̄γ : Vi →W is a diffeomorphism for each i, where

Vi = B̄−1
γ (W ) ∩ Ui. �

Parts (b) and (c) of (5.6) allow us to introduce a useful notion which essentially counts how many

times a non-diffuse curve winds around S2.

(5.7) Definition. Let κ0 ∈ R and suppose that γ ∈ L+∞
κ0

is non-diffuse. We define the rotation

number ν(γ) of γ to be the number of sheets of the covering map B̄γ : B̄−1
γ (B)→ B.

Remark. Suppose now that γ ∈ L+∞
κ0

is not only non-diffuse but also condensed (meaning that C is

contained in a closed hemisphere). In this case, a “more natural” notion of the rotation number of

γ is available, as described on p. 25. Let us temporarily denote by ν̄(γ) the latter rotation number.

We claim that ν̄(γ) = ν(γ) for any condensed and non-diffuse curve γ. It is easy to check that this

holds whenever γ is a circle traversed a number of times. If γs (s ∈ [0, 1]) is a continuous family

of curves of this type then ν(γs) = ν(γ0) and ν̄(γs) = ν̄(γ0) for any s, since ν and ν̄ can only take

on integral values and every element in their definitions depends continuously on s. Moreover, it

follows from (4.3) and (4.8) that any condensed and non-diffuse curve is homotopic through curves

of this type to a circle traversed a number of times.

(5.8) Proposition. Let κ0 ∈ R and suppose that γ ∈ L+∞
κ0

is non-diffuse. Then there exists a

constant K depending only on κ0 such that

tot(γ) ≤ Kν(γ).

Proof. It is easy to check that being non-diffuse is an open condition. Using (1.8), we deduce that

the closure of the subset of all C2 non-diffuse curves in L+∞
κ0

contains the set of all (admissible)

non-diffuse curves. Therefore, we lose no generality in restricting our attention to C2 curves.

Let b ∈ B be arbitrary; we have B = −B, hence −b ∈ B also. Let γ̂ be the other boundary curve

of Bγ :

γ̂(t) = Bγ(t, ρ0 − π) = − cos ρ0 γ(t)− sin ρ0 n(t) (t ∈ [0, 1]).

Then

(1) γ̂′(t) =
(
κ(t) sin ρ0 − cos ρ0

)
γ′(t) =

sin(ρ0 − ρ(t))

sin ρ(t)
γ′(t) (t ∈ [0, 1]).†

(Here, as always, κ = cot ρ is the geodesic curvature of γ.) In particular, the unit tangent vector t̂

to γ̂ satisfies t̂ = t. By (1.19), the geodesic curvature κ̂ of γ̂ is given by

(2) κ̂(t) = cot(ρ(t)− (ρ0 − π)) = cot(ρ(t)− ρ0) (t ∈ [0, 1]).

†In this proof, derivatives with respect to t are denoted using a ′ to simplify the notation.
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Define h, ĥ : [0, 1]→ (−1, 1) by

(3) h(t) = 〈γ(t), b〉 and ĥ(t) = 〈γ̂(t), b〉 .

These functions measure the “height” of γ and γ̂ with respect to ±b. We cannot have |h(t)| = 1 nor

|ĥ(t)| = 1 because the images of γ and γ̂ are contained in C and D respectively, which are disjoint

from B (by definition (5.4)). Also,

h′(t) = |γ′(t)| 〈b, t(t)〉 , ĥ′(t) =
sin(ρ0 − ρ(t))

sin ρ(t)
h′(t).(4)

Let Γt be the great circle whose center on S2 is t(t),

Γt =
{

cos θ γ(t) + sin θ n(t) : θ ∈ [−π, π)
}
.

We have γ(t), γ̂(t) ∈ Γt by definition. Moreover, the following conditions are equivalent:

(i) b ∈ Γt.

(ii) h′(t) = 0.

(iii) ĥ′(t) = 0.

(iv) The segment Bγ
(
{t} × (ρ0 − π, 0)

)
contains either b or −b.

The equivalence of the first three conditions follows from (4). The equivalence (i)↔(iv) follows from

the facts that b /∈ C ∩ D and that Γt is the union of the segments ±Bγ
(
{t} × (ρ0 − π, 0)

)
and

±Cγ
(
{t} × [0, ρ0]

)
(see fig. 4, p. 15). The equivalence of the last three conditions tells us that h

and ĥ have exactly 2ν(γ) critical points, for each of B−1
γ (b) and B−1

γ (−b) has cardinality ν(γ), by

definition (5.7).

Suppose that τ is a critical point of h and ĥ. Because b ∈ Γτ r (C ∪D), we can write

(5) b = cos θ γ(τ) + sin θ n(τ), for some θ ∈ (ρ0 − π, 0) ∪ (ρ0, π).

A straightforward calculation shows that:

h′′(τ) = 〈γ′′(τ), b〉 =
|γ′(τ)|2

sin ρ(τ)
sin(θ − ρ(τ)).

Using (5) and 0 < ρ(τ) < ρ0 we obtain that either

−π < θ − ρ(τ) < 0 or 0 < θ − ρ(τ) < π.

In any case, we deduce that h′′(τ) 6= 0. The proof that τ is a nondegenerate critical point of ĥ is

analogous: one obtains by another calculation that

ĥ′′(τ) =
|γ′(τ)|2

sin2(ρ(τ))
sin(ρ0 − ρ(τ)) sin(θ − ρ(τ)),

and it follows from the above inequalities that ĥ′′(τ) 6= 0. In particular, two neighboring critical

points τ0 < τ1 of h (and ĥ) cannot be both maxima or both minima for h (and ĥ). We will prove

the proposition by obtaining an upper bound for tot
(
γ|[τ0,τ1]

)
.

We first claim that Bγ |[τ0,τ1]×[ρ0−π,0] is injective. Suppose for concreteness that h′ < 0 throughout

(τ0, τ1) and that b = Bγ(τ0, θ0), −b = Bγ(τ1, θ1), where θ0, θ1 ∈ (ρ0 − π, 0). Let α = α1 ∗ α2 ∗ α3 be

the concatenation of the curves αi : [0, 1]→ S2 given by

α1(t) =Bγ
(
τ0 , (1− t)θ0

)
, α2(t) = γ

(
(1− t)τ0 + tτ1

)
,

α3(t) =Bγ
(
τ1 , tθ1

)
,

as sketched in fig. 13. Similarly, let α̂ be the concatenation of the curves α̂i : [0, 1]→ S2,

α̂1(t) =Bγ
(
τ0 , (1− t)θ0 + t(ρ0 − π)

)
, α̂2(t) = γ̂

(
(1− t)τ0 + tτ1

)
,

α̂3(t) =Bγ
(
τ1 , (1− t)(ρ0 − π) + tθ1

)
.

Define six functions hi, ĥi : [0, 1]→ [−1, 1] by the formulas

hi(t) = 〈αi(t), b〉 and ĥi(t) = 〈α̂i(t), b〉 (i = 1, 2, 3).
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Figure 13. An illustration of the boundary of the rectangle R = Bγ |[τ0,τ1]×[ρ0−π,0]

considered in the proof of (5.8).

Note that h2 is essentially the restriction of h to [τ0, τ1] and similarly for ĥ2 (see (3)). Moreover, all

of these functions are monotone decreasing. For i = 2 this is immediate from (4) and the hypothesis

that h′ < 0 on (τ0, τ1). For i = 1, 3 this follows from the fact that αi, α̂i are geodesic arcs through

±b, and our choice of orientations for these curves.

Because the map Bγ |[τ0,τ1]×[ρ0−π,0] is an immersion, if Bγ is not injective then either α and α̂

intersect each other, or one of them has a self-intersection. We can discard the possibility that either

curve has a self-intersection from the fact that all functions hi, ĥi are monotone decreasing. Further,

since B ≈ S1 × (−1, 1), we can find a Jordan curve β : [0, 1]→ B through ±b winding once around

the S1 factor. If α and α̂ intersect (at some point other than α(0) = α̂(0) or α(1) = α̂(1)), then this

must be an intersection of γ and γ̂. This is impossible because β, which has image in B, separates

C and D, which contain the images of γ and γ̂, respectively.

Thus, R = Bγ |[τ0,τ1]×[ρ0−π,0] is diffeomorphic to a rectangle, and its boundary consists of γ̂|[τ0,τ1],

γ|[τ0,τ1] (the latter with reversed orientation) and the two geodesic arcs Bγ
(
{τ0} × [ρ0 − π, 0]

)
and

Bγ
(
{τ1}× [ρ0−π, 0]

)
. Recall from (2.7) that

∂Bγ
∂t is always orthogonal to

∂Bγ
∂θ . Using Gauss-Bonnet

we deduce that(π
2

+
π

2
+
π

2
+
π

2

)
+

∫ τ1

τ0

κ̂(t) |γ̂′(t)| dt−
∫ τ1

τ0

κ(t) |γ′(t)| dt+ Area(R) = 2π.

Using (1), (2) and the fact that Area(R) < Area(S2) = 4π we obtain:

(6)

∫ τ1

τ0

(
cot ρ(t) +

sin(ρ0 − ρ(t))

sin ρ(t)
cot(ρ0 − ρ(t))

)
|γ′(t)| dt < 4π.

Let us see how this yields an upper bound for tot
(
γ|[τ0,τ1]

)
. From cos(x)+cos(y) = 2 cos

(
x+y

2

)
cos
(
x−y

2

)
and

∣∣ρ(t)− ρ0
2

∣∣ < ρ0
2 we deduce that

sin ρ(t)
(

cot ρ(t) +
sin(ρ0 − ρ(t))

sin ρ(t)
cot(ρ0 − ρ(t))

)
= cos ρ(t) + cos(ρ0 − ρ(t)) = 2 cos

(ρ0

2

)
cos
(
ρ(t)− ρ0

2

)
≥ 2 cos2

(ρ0

2

)
.

The Euclidean curvature K of γ thus satisfies

K(t) =
√

1 + κ(t)2 =
√

1 + cot ρ(t)2 = csc ρ(t)(7)

≤ 1

2 cos2
(
ρ0
2

)( cot ρ(t) +
sin(ρ0 − ρ(t))

sin ρ(t)
cot(ρ0 − ρ(t))

)
.

Combining (6) and (7) we obtain:

tot
(
γ|[τ0,τ1]

)
=

∫ τ1

τ0

K(t) |γ′(t)| dt < 2π

cos2
(
ρ0
2

) .



ON THE COMPONENTS OF SPACES OF CURVES ON THE 2-SPHERE 43

Extending γ to all of R by declaring it to be 1-periodic and choosing consecutive critical points

τ0 < τ1 < · · · < τ2ν(γ)−1 < τ2ν(γ), so that τ2ν(γ) = τ0 + 1, we finally conclude from the previous

estimate (with [τi−1, τi] in place of [τ0, τ1]) that

tot(γ) =

2ν(γ)∑
i=1

tot
(
γ|[τi−1,τi]

)
<

4π

cos2
(
ρ0
2

) ν(γ). �

6. Homotopies of Circles

Let k ≥ 1 be an integer. The bending of the k-equator is an explicit homotopy (to be defined

below) from a great circle traversed k times to a great circle traversed k+ 2 times. It is an “optimal”

homotopy of this type, in the following sense: It is possible to deform a circle traversed k times

into a circle traversed k + 2 times in L+κ1
−κ1

(I) if and only if we may carry out the bending of the

k-equator in this space (meaning that the absolute value of the geodesic curvature is bounded by κ1

throughout the bending).

Figure 14.

Let N = (0, 0, 1) ∈ S2 be the north pole, let

η(t) =
(

cos(2kπt), sin(2kπt), 0
)

(t ∈ [0, 1])

be a parametrization of the equator traversed k ≥ 1 times (k ∈ N) and let

Pi = η
( i

2k + 2

)
, Qi = η

( i+ 1
2

2k + 2

)
(i = 0, 1, . . . , 2k + 1),

as illustrated in fig. 14(a) for k = 1. Define Qi(α) (see fig. 14(b)) to be the unique point in the

geodesic through N and Qi such that

^Qi
(Pi + Pi+1

2

)
Qi(α) = α (−π ≤ α ≤ π, i = 0, 1, . . . , 2k + 1).

Let Ai(α) ⊂ S2 be the arc of circle through PiQi(α)Pi+1, with orientation determined by this

ordering of the three points, and define

σα,i :
[
0,

1

2k + 2

]
→ S2 (0 ≤ α ≤ π, i = 0, . . . , 2k + 1)

to be a parametrization of Ai((−1)iα) by a multiple of arc-length, as illustrated in fig. 15 below for

k = 1. Note that Ai(0) is just k
2k+2 of the equator, while Ai(π) is the “complement” of Ai(0), which

is k+2
2k+2 of the equator.

Let σα : [0, 1] → S2 be the concatenation of all the σα,i, for i increasing from 0 to 2k + 1 (as in

fig. 15). Then σ0 is the equator traversed k times, while σπ is the equator traversed k + 2 times, in

the opposite direction. The curve σα is closed and regular for all α ∈ [0, π]. However, its geodesic

curvature is a step function, taking the value (−1)iκ(α) for t ∈ ( i
2k+2 ,

i+1
2k+2 ), where κ(α) depends

only on α. At the points t = i
2k+2 the curvature is not defined, except for α = 0, π, when the

curvature vanishes identically.
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We are only interested in the maximum value of κ(α) for 0 ≤ α ≤ π, which can be easily

determined. For any α, the center of the circle C of which Ai(α) is an arc is contained in the plane

Π1 through 0, Qi and N , since this plane is the locus of points equidistant from Pi and Pi+1 (Π1

is the plane of figures 14(b) and 14(c)). By definition, C is contained in the plane Π2 through Pi,

Qi(α) and Pi+1. Thus, the center of C lies in the line Π1 ∩ Π2 = PQk(α), and the segment of

this line bounded by S2 is a diameter of C. Clearly, this diameter is shortest when α = π
2 (see

fig. 14(c)). The corresponding spherical radius is ρ = kπ
2k+2 , hence the maximum value attained by

κ(α) for 0 ≤ α ≤ π is

κ(π2 ) = cot
( kπ

2k + 2

)
= tan

( π

2k + 2

)
,

and the minimum value is −κ(π2 ).

(6.1) Definition. Let σα be as in the discussion above (0 ≤ α ≤ π) and assume that

(1) κ1 > tan
( π

2k + 2

)
.

The bending of the k-equator is the family of curves ηs ∈ L+κ1
−κ1

(I) given by:

ηs(t) =
(
Φσsπ (0)

)−1
σsπ(t) (s, t ∈ [0, 1]).

Figure 15. An illustration of the bending of the 1-equator. The curve σα is the

concatenation of σα,0, . . . , σα,3.

Note that η0 is the equator of S2 traversed k times and η1 is the equator traversed k + 2 times,

in the same direction. The following result is an immediate consequence of the discussion above.

(6.2) Proposition. Let κ0 = cot ρ0 ∈ R and let σk, σk+2 ∈ L+∞
κ0

(I) be circles traversed k and k+ 2

times, respectively. Then σk lies in the same component of L+∞
κ0

(I) as σk+2 if

(2) k ≥
⌊
π

ρ0

⌋
.

Proof. Let ρ1 = π−ρ0
2 , so that κ1 = cot ρ1 satisfies (1). Let γs (s ∈ [0, 1]) be the image of the

bending ηs of the k-equator under the homeomorphism L+κ1
−κ1

(I) ≈ L+∞
κ0

(I) of (1.25). Then γ0 is

some circle traversed k times, while γ1 is a circle traversed k + 2 times. Using (2.4) we deduce that

σk ' γ0 ' γ1 ' σk+2, hence σk and σk+2 lie in the same component of L+∞
κ0

(I). �

(6.3) Corollary. Let ρi = arccot(κi), i = 1, 2, and suppose that ρ1 − ρ2 >
π
2 . Let σk0 , σk1 ∈ Lκ2

κ1
(I)

(resp. Lκ2
κ1

) be two parametrized circles traversed k0 and k1 times, respectively. Then σk0 and σk1 lie

in the same connected component if and only if k0 ≡ k1 (mod 2).

Proof. By (1.15), it suffices to prove the result for Lκ2
κ1

(I). It follows from (1.13) that if σk0 and σk1
lie in the same component of Lκ2

κ1
(I), then k0 ≡ k1 (mod 2). Under the homeomorphism Lκ2

κ1
(I) ≈

L+∞
κ0

(I) of (1.24), the condition ρ1 − ρ2 > π
2 translates into ρ0 > π

2 , hence the converse is a

consequence of (2.4) and (6.2). �
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Homotopies of condensed curves. The previous corollary settles the question of when two circles

in L+∞
κ0

(I) lie in the same component of this space for κ0 < 0. Because of this, we will assume for the

rest of the section that κ0 ≥ 0; the following proposition implies the converse to (6.2), and together

with it, settles the same question in this case.

(6.4) Proposition. Let κ0 = cot ρ0 ≥ 0 and let

n =

⌊
π

ρ0

⌋
+ 1.

Suppose that s 7→ γs ∈ L+∞
κ0

(I) is a homotopy, with γ0 condensed and ν(γ0) ≤ n − 2 (s ∈ [0, 1]).

Then γs is condensed and ν(γs) = ν(γ0) for all s ∈ [0, 1].

In particular, taking γ0 to be a circle σk traversed k times for k ≤ n−2, we conclude that it is not

possible to deform σk into a circle traversed k + 2 times in L+∞
κ0

. The proof of (6.4) will be broken

into several parts. We start with the definition of an equatorial curve, which is just a borderline

case of a condensed curve.

(6.5) Definition. Let κ0 ≥ 0. We shall say that a curve γ ∈ L+∞
κ0

is equatorial if the image C of

its caustic band is contained in a closed hemisphere, but not in any open hemisphere. Let

Hγ =
{
p ∈ S2 : 〈p, hγ〉 ≥ 0

}
be a closed hemisphere containing γ, and let

Eγ =
{
p ∈ S2 : 〈p, hγ〉 = 0

}
denote the corresponding equator. Also, let γ̌ : [0, 1]→ S2 be the curve given by

γ̌(t) = Cγ(t, ρ0).

(6.6) Lemma. Let κ0 ≥ 0, let γ ∈ L+∞
κ0

be an equatorial curve of class C2. Then:

(a) The hemisphere Hγ and the equator Eγ defined above are uniquely determined by γ.

(b) The geodesic curvature κ̌ of γ̌ is given by:

κ̌ = cot(ρ0 − ρ) > 0.

Proof. Suppose that C = Im(Cγ) is contained in distinct closed hemispheres H1 and H2. Then it is

contained in the closed lune H1 ∩H2. The boundary of C is contained in the union of the images of

γ, γ̌, and these curves have a unit tangent vector at all points, so they cannot pass through either of

the points in E1 ∩E2 (where Ei is the equator corresponding to Hi). It follows that C is contained

in an open hemisphere, a contradiction which establishes (a).

For part (b) we calculate:†

γ̌′(t) = |γ′(t)|
(

cos ρ0 − κ(t) sin ρ0

)
t(t)(3)

γ̌′′(t) = |γ′(t)|2
(

cos ρ0 − κ(t) sin ρ0

)(
− γ(t) + κ(t)n(t)

)
+ λ(t)t(t),(4)

where κ, t and n denote the geodesic curvature of and unit and normal vectors to γ, respectively,

and the value of λ(t) is irrelevant to us. Hence,

κ̌ =
〈γ̌ , γ̌′ × γ̌′′〉
|γ̌′|3

=
κ cos ρ0 + sin ρ0

|cos ρ0 − κ sin ρ0|
=

cos(ρ0 − ρ)

|sin(ρ− ρ0)|
= cot(ρ0 − ρ). �

(6.7) Lemma. Let κ0 ≥ 0 and γ ∈ L+∞
κ0

be an equatorial curve of class C2. Take N ∈ Eγ and

define h, ȟ : [0, 1]→ R by

(5) h(t) = 〈γ(t), N〉 , ȟ(t) = 〈γ̌(t), N〉 .

(a) The following conditions are equivalent:

(i) ±N ∈ Γτ for some τ ∈ [0, 1].

(ii) τ ∈ [0, 1] is a critical point of h.

(iii) τ ∈ [0, 1] is a critical point of ȟ.

†For the rest of the section we denote derivatives with respect to t by a ′ to unclutter the notation.
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(b) If τ is a common critical point of h, ȟ, then h′′(τ)ȟ′′(τ) < 0.

(c) If τ < τ̄ are neighboring critical points then h′′(τ)h′′(τ̄) < 0 and ȟ′′(τ)ȟ′′(τ̄) < 0.

Recall that Γt is the great circle

Γt =
{

cos θ γ(t) + sin θ n(t) : θ ∈ [−π, π)
}
.

Part (b) implies in particular that all critical points of h, ȟ are nondegenerate.

Proof. A straightforward calculation using (3) shows that:

(6) h′(t) = |γ′(t)| 〈N, t(t)〉 , ȟ′(t) =
sin(ρ(t)− ρ0)

sin ρ(t)
h′(t) (t ∈ [0, 1]).

The equivalence of the conditions in (a) is immediate from this and the definition of Γt.

From ±N ∈ Eγ and C = Im(Cγ) ⊂ Hγ , it follows that ±N /∈ C
(
[0, 1] × (0, ρ0)

)
. Thus, if τ is a

critical point of h, ȟ, i.e., if N ∈ Γτ then we can write

(7) N = cos θ γ(τ) + sin θ n(τ) for some θ ∈ [ρ0 − π, 0] ∪ [ρ0, π].

Another calculation, with the help of (4), yields:

h′′(τ) =
|γ′(τ)|2

sin ρ(τ)
sin
(
θ − ρ(τ)

)
, ȟ′′(τ) =

|γ′(τ)|2

sin2 ρ(τ)
sin
(
θ − ρ(τ)

)
sin
(
ρ(τ)− ρ0

)
Taking the possible values for θ in (7) and 0 < ρ(τ) < ρ0 into account, we deduce that

h′′(τ)ȟ′′(τ) =
|γ′(τ)|4

sin3 ρ(τ)
sin2

(
θ − ρ(τ)

)
sin
(
ρ(τ)− ρ0

)
< 0,

since all terms here are positive except for sin
(
ρ(τ)− ρ0

)
. This proves (b).

For part (c), suppose that τ < τ̄ are neighboring critical points, but h′′(τ)h′′(τ̄) > 0. This means

that h′ vanishes at τ, τ̄ and takes opposite signs on the intervals (τ, τ + ε) and (τ̄ − ε, τ̄) for small

ε > 0. Hence, it must vanish somewhere in (τ, τ̄), a contradiction. The proof for ȟ is the same. �

Let κ0 ≥ 0, γ ∈ L+∞
κ0

be an equatorial curve and pr: S2 → R2 denote the stereographic projection

from −hγ , where Hγ =
{
p ∈ S2 : 〈p, hγ〉 ≥ 0

}
. As for any condensed curve, we may define a (non-

unique) continuous angle function θ by the formula:

exp(iθ(t)) = tη(t), η(t) = pr ◦γ(t) (t ∈ [0, 1]);

here tη is the unit tangent vector, taking values in S1, of the plane curve η. The function θ is strictly

decreasing since κ0 ≥ 0, and

2πν(γ) = θ(0)− θ(1).

Figure 16. Three possibilities for an equatorial curve γ. The circle represents Eγ
and its interior represents Hγ , seen from above.

(6.8) Lemma. Let κ0 ≥ 0, γ ∈ L+∞
κ0

be an equatorial curve of class C2 and

n =

⌊
π

ρ0

⌋
+ 1.

Then ν(γ) ≥ n− 1.
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Proof. Let C = Im(Cγ), H = Hγ be the closed hemisphere containing γ and E = Eγ be the

corresponding equator, oriented so that H lies to its left. It follows from the combination of (A.2),

(A.5) and (A.3) that either we can find two antipodal points in C ∩E or we can choose t1 < t2 < t3
and θi ∈ {0, ρ0} such that 0 is a convex combination of the points Cγ(ti, θi) ∈ C ∩ E. There are

three possibilities, as depicted in fig. 16; the only difference between the first two is the order of the

points in the orientation of E.

In cases (i) and (ii), choose N in E so that

〈Cγ(t2, θ2), N〉 = −〈Cγ(t1, θ1), N〉 > 0.

Let h and ȟ be as in (5) and define latitude functions λ, λ̌ by

λ(t) = arcsin(h(t)), λ̌(t) = arcsin(ȟ(t)) (t ∈ [0, 1]).

Let τ1 < · · · < τk1 be all the common critical points of these functions in the interval [t1, t2), and let

mj = min{λ(τj), λ̌(τj)}, Mj = max{λ(τj), λ̌(τj)}.

From (6.7(a)), we deduce that

(8) Mj −mj = ρ0 for all j = 1, . . . , k1,

while from (6.7(b)) and (6.7(c)), we deduce that the τj are alternatingly maxima and minima of λ

(resp. minima and maxima of λ̌) as j goes from 1 to k1, whence

(9) Mj > mj+1 for all j = 1, . . . , k1 − 1.

Let

λ2 = max
{
λ(t2), λ̌(t2)

}
and λ1 = min{λ(t1), λ̌(t1)} = −λ2.

Then λ2−λ1 is just the angle between Cγ(t1, ·)∩E and Cγ(t2, ·)∩E measured along E, as depicted

in fig. 16(i). For the rest of the proof we consider each case separately.

In case (i),

(10) m1 ≤ λ1 and λ2 ≤Mk1 .

Combining (8), (9) and (10), we find that

(11) k1ρ0 =

k1∑
j=1

(Mj −mj) >

k1−1∑
j=1

(mj+1 −mj) +Mk1 −mk1 = Mk1 −m1 ≥ λ2 − λ1.

Let there be k2 (resp. k3) critical points of h, ȟ in the interval [t2, t3) (resp. [t3, t1 + 1)), where for

the latter we are considering γ as a 1-periodic curve. Then an analogous result to (11) holds for k2

and k3, and summing all three inequalities we conclude that

k1 + k2 + k3 >
2π

ρ0
≥ 2(n− 1).

In case (i), the number of half-turns of the tangent vector to the image of γ under stereographic

projection through −hγ in [0, 1] is given by k1 + k2 + k3 − 2. Hence,

ν(γ) =
k1 + k2 + k3 − 2

2
> n− 2,

as claimed.

In case (ii), a direct calculation using basic trigonometry shows that

m1 < arcsin(cos ρ0 sinλ1) = − arcsin(cos ρ0 sinλ2) and Mk1 > arcsin(cos ρ0 sinλ2).

Combining this with (8) and (9), we obtain that

k1ρ0 =

k1∑
j=1

(Mj −mj) >

k1−1∑
j=1

(mj+1 −mj) +Mk1 −mk1 = Mk1 −m1 > 2 arcsin(cos ρ0 sinλ2),
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and similarly for k2 and k3, where the latter denote the number of critical points of h, ȟ in the

intervals [t2, t3) and [t3, t1 + 1), respectively. More precisely, we have:

(12) k1 + k2 + k3 >
2

ρ0

[
arcsin(cos ρ0 sinλ2) + arcsin(cos ρ0 sinλ4) + arcsin(cos ρ0 sinλ6)

]
,

where λ4 = max
{
λ(t3), λ̌(t3)

}
, λ6 = max

{
λ(t1), λ̌(t1)

}
and these latitudes are measured with

respect to the chosen points ±N corresponding to each of the intervals [t2, t3] and [t3, t3 +1]. In case

(ii), the number of half-turns of the tangent vector to the image of γ under stereographic projection

through −hγ in [0, 1] is given by k1 +k2 +k3− 2. Hence, it follows from (12) and lemma (6.9) below

that

ν(γ) =
k1 + k2 + k3 + 2

2
>
( π
ρ0
− 2
)

+ 1 ≥ n− 2,

as we wished to prove.

Finally, in case (iii), we may choose ±N ∈ E ∩ C, that is, we may find t1 < t2 and θi ∈ {0, ρ0}
such that

N = Cγ(t2, θ2) = −Cγ(t1, θ1).

In this case λ2 − λ1 = π and

ν(γ) =
k1 + k2 − 2

2
,

where k1 (resp. k2) is the number of critical points of h, ȟ in [t1, t2] (resp. [t2, t1 + 1]). Note that t1,

t2 are critical points of h which are counted twice in the sum k1 + k2 (under the identification of t1
with t1 + 1); this is the reason why we need to subtract 2 from k1 + k2 to calculate the number of

half-turns of the tangent vector. Using (9) one more time, we deduce that

k1ρ0 =

k1∑
j=1

(Mj −mj) >

k1−1∑
j=1

(mj+1 −mj) +Mk1 −mk1 = Mk1 −m1 = λ2 − λ1 = π;

similarly, k2ρ0 > π. Therefore,

ν(γ) =
k1 + k2 − 2

2
>

π

ρ0
− 1 ≥ n− 2. �

Here is the technical lemma that was invoked in the proof of (6.8).

(6.9) Lemma. Let λ2 + λ4 + λ6 = π, 0 ≤ λi ≤ π
2 and 0 < ρ0 ≤ π

2 . Then

arcsin(cos ρ0 sinλ2) + arcsin(cos ρ0 sinλ4) + arcsin(cos ρ0 sinλ6) ≥ π − 2ρ0

Proof. Let f : [0, π]→ R be the function given by f(t) = arcsin(cos ρ0 sin t). Then

f ′′(t) = − sin2 ρ0 cos ρ0 sin t(
1− cos2 ρ0 sin2 t

) 3
2

,

so that f ′′(t) ≤ 0 for all t ∈ (0, π) and f is a concave function. Consequently,

(13) f(s1a+s2b+s3c) ≥ s1f(a)+s2f(b)+s3f(c) for any a, b, c ∈ [0, π], si ∈ [0, 1], s1 + s2 + s3 = 1.

Define g : T → R by g(x, y, z) = f(x) + f(y) + f(z), where

T =
{

(x, y, z) ∈ R3 : x+ y + z = π, x, y, z ∈
[
0, π2

]}
.

In other words, T is the triangle with vertices A = (0, π2 ,
π
2 ), B = (π2 , 0,

π
2 ) and C = (π2 ,

π
2 , 0). It

follows from (13) (applied three times) that

(14) g(s1u+s2v+s3w) ≥ s1g(u)+s2g(v)+s3g(w) for any u, v, w ∈ T, si ∈ [0, 1], s1 + s2 + s3 = 1.

Moreover, a direct verification shows that

g(A) = g(B) = g(C) = 2 arcsin(cos ρ0) = π − 2ρ0.

If p ∈ T then we can write

p = s1A+ s2B + s3C for some s1, s2, s3 ∈ [0, 1] with s1 + s2 + s3 = 1.
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Therefore, (14) guarantees that

g(p) ≥ s1g(A) + s2g(B) + s3g(C) = π − 2ρ0. �

Proof of (6.4). If γs is condensed for all s ∈ [0, 1], then s 7→ ν(γs) is defined and constant, since it

can only take on integral values. Thus, if the assertion is false, there must exist s ∈ [0, 1], say s = 1,

such that γs is not condensed. By (4.2), γ0 is homotopic to a circle traversed ν(γ0) times. Moreover,

the set of non-condensed curves is open. Together with (1.10), this shows that there exist C2 curves

γ−1, γ2 such that:

(i) There exist a path joining γ−1 to γ0 and a path joining γ1 to γ2 in L+∞
κ0

(I);

(ii) γ−1 is condensed and has rotation number ν(γ0);

(iii) γ2 is not condensed.

Consider the map f : S0 → L+∞
κ0

(I) given by f(−1) = γ−1, f(1) = γ2. The existence of the homotopy

γs (s ∈ [0, 1]) tells us that f is nullhomotopic in L+∞
κ0

(I). By (1.10), f must be nullhomotopic in

C+∞
κ0

(I). In other words, we may assume at the outset that each γs is of class C2 (s ∈ [0, 1]).

With this assumption in force, let s0 be the infimum of all s ∈ [0, 1] such that γs is not condensed,

and let γ = γs0 . Then γ must be condensed by (A.3), and it must be equatorial by our choice of

s0. In addition, ν(γs) must be constant (s ∈ [0, s0]), since it can only take on integral values. This

contradicts (6.8). �

7. Statement and Proof of the Main Theorems

We will now collect some of the results from the previous sections in order to prove the theorems

stated in §2. We repeat their statements here for convenience.

(7.1) Theorem C. Let −∞ ≤ κ1 < κ2 ≤ +∞. Every curve in Lκ2
κ1

(I) (resp. Lκ2
κ1

) lies in the same

component as a circle traversed k times, for some k ∈ N (depending on the curve).

Proof. By the homeomorphism Lκ2
κ1
≈ SO3 ×Lκ2

κ1
(I) of (1.15), it does not matter whether we prove

the theorem for Lκ2
κ1

or for Lκ2
κ1

(I). Further, by (1.24), it suffices to consider spaces of type L+∞
κ0

, for

κ0 ∈ R. If γ ∈ L+∞
κ0

is diffuse, then it is homotopic to a circle by (3.11). If it is condensed, then the

same conclusion holds by (4.20).

Assume then that γ is neither homotopic to a condensed nor to a diffuse curve. Since γ itself

is non-condensed by hypothesis, (3.12) guarantees that we may find ε > 0 and a chain of grafts

(γs) with γ0 = γ and γs ∈ L+∞
κ0

for all s ∈ [0, ε). Let (γs), s ∈ J , be a maximal chain of grafts

starting at γ = γ0, where J is an interval of type [0, σ) or [0, σ]. That such a chain exists follows

by a straightforward argument involving Zorn’s lemma, since the grafting relation is an equivalence

relation, as proved in (3.6).† By hypothesis, no curve γs is diffuse, hence ν(γs) is well-defined and

independent of s, and (5.8) yields that σ < +∞. If the interval is of the first type, then we obtain

a contradiction from (3.7), and if the interval is closed, then we can apply (3.12) to γσ to extend

the chain, again contradicting the choice of J . We conclude that γ must be homotopic either to a

condensed or to a diffuse curve. In any case, γ is homotopic in L+∞
κ0

to a circle traversed a number

of times, as claimed. �

(7.2) Theorem D. Let −∞ ≤ κ1 < κ2 ≤ +∞ and let σk ∈ Lκ2
κ1

(I) (resp. Lκ2
κ1

) denote any circle

traversed k ≥ 1 times. Then σk, σk+2 lie in the same component of Lκ2
κ1

(I) (resp. Lκ2
κ1

) if and only if

k ≥
⌊

π

ρ1 − ρ2

⌋
(ρi = arccotκi, i = 1, 2).

Proof. This follows from the combination of (2.4), (6.2) and (6.4), if we use the homeomorphisms in

(1.15) and (1.24). �

(7.3) Proposition. Let κ0 = cot ρ0 ≥ 0,

n =

⌊
π

ρ0

⌋
+ 1.

†By reasoning more carefully it would be possible to avoid using Zorn’s lemma.
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Then the set Oν of all condensed curves γ ∈ L+∞
κ0

(I) having rotation number ν, with 1 ≤ ν ≤ n− 2,

is a contractible connected component of L+∞
κ0

(I).

Proof. Proposition (4.2) guarantees that Oν is weakly contractible and, in particular, connected.

Proposition (6.4) then implies that Oν must be a connected component of L+∞
κ0

(I). Using (1.7(a))

we deduce that Oν is an open subset of this space. Hence Oν is also a Hilbert manifold, and it must

be contractible by (1.7(b)). �

Remark. Note that if κ0 < 0 (that is, if ρ0 >
π
2 ), then it is a consequence of (7.1) and (7.2) that

L+∞
κ0

(I) has only n = 2 components, and the conclusion of (7.3) does not make sense in this case (no

curve γ satisfies ν(γ) ≤ 0). Moreover, these two components are far from being contractible: Even

for κ0 = −∞, the (co)homology groups of I = L+∞
−∞(I) ' ΩS3 t ΩS3 are non-trivial in infinitely

many dimensions.

(7.4) Theorem B. Let −∞ ≤ κ1 < κ2 ≤ +∞, ρi = arccotκi (i = 1, 2) and bxc denote the greatest

integer smaller than or equal to x. Then Lκ2
κ1

has exactly n connected components L1, . . . ,Ln, where

n =

⌊
π

ρ1 − ρ2

⌋
+ 1

and Lj contains circles traversed j times (1 ≤ j ≤ n). The component Ln−1 also contains circles

traversed (n− 1) + 2k times, and Ln contains circles traversed n+ 2k times, for k ∈ N. Moreover,

each of L1, . . . ,Ln−2 is homotopy equivalent to SO3 (n ≥ 3).

Proof. All of the assertions of the theorem but the last one follow from (7.1), (7.2) and the homeo-

morphism Lκ2
κ1
≈ SO3 × Lκ2

κ1
(I) of (1.15).

Assume that n ≥ 3 and let σk ∈ Lκ2
κ1

(I) be a circle traversed k ≤ n− 2 times. In the notation of

(7.3), the connected component Lk(I) of Lκ2
κ1

(I) containing σk is mapped to the component Ok under

the homeomorphism Lκ2
κ1

(I) ≈ L+∞
κ0

(I) of (1.24), because σk is mapped to another circle traversed

k times (cf. (1.22)). Therefore, Lk(I) is contractible by (7.3). The last assertion of the theorem is

deduced from this and the homeomorphism Lκ2
κ1
≈ SO3 × Lκ2

κ1
(I). �

Theorem (7.4) characterizes the connected components of Lκ2
κ1

in terms of the circles that they

contain. This characterization is not very useful for actually deciding whether two curves in this

space lie in the same component. However, a more direct characterization in terms of the properties

of a curve is also available.

(7.5) Theorem F. Let κ0 ∈ R and let L1, . . . ,Ln be the connected components of L+∞
κ0

, as described

in (7.4). Then γ ∈ L+∞
κ0

lies in:

(i) Lj (1 ≤ j ≤ n− 2) if and only if it is condensed and has rotation number j.

(ii) Ln−1 if and only if Φ̃γ(1) = (−1)n−1Φ̃γ(0) and either it is non-condensed or condensed with

rotation number ν(γ) ≥ n− 1.

(iii) Ln if and only if Φ̃γ(1) = (−1)nΦ̃γ(0) and either it is non-condensed or condensed with

rotation number ν(γ) ≥ n− 1.

Proof. This follows from (7.4) and (7.3). �

Recall that Φ̃ : [0, 1]→ S3 is the lift of the frame Φγ : [0, 1]→ SO3 of γ to S3 (cf. (1.12)). When

−∞ ≤ κ0 < 0 (resp. ρ1 − ρ2 >
π
2 ) we have n = 2, and this characterization of the two components

L1, L2 of L+∞
κ0

(resp. Lκ2
κ1

) may be simplified to: γ lies in Li if and only if Φ̃γ(1) = (−1)iΦ̃γ(0).

(7.6) Lemma. Let −∞ ≤ κ1 < κ2 ≤ +∞, ρi = arccotκi and γi ∈ Lκ2
κ1

(i = 1, 2). Then γ1 lies in

the same component of Lκ2
κ1

as γ2 if and only if the corresponding translations γ̄i of γi by ρ2,

γ̄i(t) = cos ρ2 γi(t) + sin ρ2 ni(t) (t ∈ [0, 1], i = 1, 2),

lie in the same connected component of L+∞
κ0

, where κ0 = cot(ρ1 − ρ2). �

(Here ni denotes the unit normal vector to γi.)
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Proof. The proof is immediate, since translation by ρ2 is a homeomorphism from Lκ2
κ1

onto L+∞
κ0

, as

was seen in (1.21). �

Combining (7.5) and (7.6) we obtain a simple procedure to check whether two curves γ1, γ2 ∈ Lκ2
κ1

lie in the same component of Lκ2
κ1

, provided only that we have parametrizations of γ1 and γ2.

The statement and proof of thms. A and E may be found on p. 12 and p. 37, respectively.

Theorems A–F are the main results of the paper. Replacing L by C (cf. (1.9)) in their statements

we obtain versions of these results for spaces of Cr curves, with the Cr topology (for any r ≥ 2).

These follow from the corresponding theorems for the spaces of type L and (1.10).

Appendix A. Basic Results on Convexity

In this section we collect some results on convexity, none of which is new, that are used throughout

the work. Let C ⊂ Rn+1. We say that C is convex if it contains the line segment [p, q] joining p

to q whenever p, q ∈ C. The convex hull X̂ of a subset X ⊂ Rn+1 is the intersection of all convex

subsets of Rn+1 which contain X. It may be characterized as the set of all points q of the form

(1) q =

m∑
k=1

skpk, where

m∑
k=1

sk = 1, sk > 0 and pk ∈ X for each k.

(A.1) Lemma. If X ⊂ Rn is compact, then X̂ is compact. In particular, if X ⊂ Sn is closed, then

X̂ is compact. �

(A.2) Lemma. Let X ⊂ Sn and consider the conditions:

(i) 0 does not belong to the closure of X̂.

(ii) There exists an open hemisphere containing X.

(iii) 0 does not belong to X̂.

(iv) X does not contain any pair of antipodal points.

Then (i)→ (ii)→ (iii)→ (iv), but none of the implications is reversible. If X is closed then (ii) and

(iii) are equivalent.

Proof.

(i) → (ii) This is a special case of the Hahn-Banach theorem, since {0} is a compact convex set and

the closure of X̂ is a closed convex set.

(ii) 6→ (i) For X ⊂ Sn the open upper hemisphere, we have

X̂ =
{

(x1, . . . , xn+1) ∈ Dn+1 : xn+1 > 0
}
.

Hence the closure of X̂ contains the origin, even though X is (contained in) an open hemi-

sphere.

(ii) → (iii) Let H =
{
p ∈ Sn : 〈p, h〉 > 0

}
be an open hemisphere containing X and U =

{
p ∈

Rn+1 : 〈p, h〉 > 0
}

. Then U is convex, X ⊂ U and 0 /∈ U . Thus, 0 /∈ X̂.

(iii) 6→ (ii) Let X be the image of [0, π) under t 7→ exp(it).

(iii) → (iv) If p and −p both belong to X, then 0 ∈ [−p, p] ⊂ X̂.

(iv) 6→ (iii) Let X =
{

1, ζ, ζ2
}
⊂ S1, where ζ = exp( 2

3πi) is a primitive third root of unity. Then X does

not contain antipodal points, but 0 = 1
3

(
1 + ζ + ζ2

)
.

The last assertion is the combination of (i)→ (ii) and (ii)→ (iii), together with (A.1). �

We refer the reader to the corresponding appendix to [23] for proofs of the results below and to

[6] for further results of this type.

(A.3) Lemma. Let X ⊂ Sn. Then 0 belongs to the interior of X̂ if and only if X is not contained

in any closed hemisphere of Sn. �

(A.4) Lemma. A convex set C ⊂ Rn has empty interior if and only if it is contained in a hyper-

plane. �

(A.5) Lemma. Let X ⊂ Rn be any set. If p ∈ X̂, then there exists a k-dimensional simplex which

has vertices in X and contains p, for some k ≤ n. �
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Another way to formulate the previous result is the following: If X ⊂ Rn and p ∈ X̂, then it is

possible to write p as a convex combination of k+1 points in X which are in general position, where

k is at most equal to n.
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