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Abstract. We give an explicit family of polynomial maps called center un-
stable Hénon-like maps and prove that they exhibits blenders for some param-

etervalues. Using this family, we also prove the occurrence of blenders near

certain non-transverse heterodimensional cycles under high regularity assump-
tions. The proof involves a renormalization scheme along heteroclinic orbits.

We also investigate the connection between the blender and the original het-

erodimensional cycle.

1. Introduction

This paper has two main goals. The first one is to exhibit an explicit family
of quadratic polynomial maps in dimension three (center unstable Hénon-like fam-
ilies) with blenders. The second one is to prove the occurrence of blenders near
certain non-transverse heterodimensional cycles and the connections between them
under high regularity assumptions. The two previous results are related as follows:
associated to the non-transverse heterodimensional cycles there are renormalization
schemes converging to center unstable Hénon-like families.

We now briefly discuss the three main topics of this paper: blenders, non-
transverse heterodimensional cycles, and renormalization. In what follows we as-
sume that the dimension of the ambient space is three.

Blenders and Hénon-like families. Blenders (see Definition 2.1) only appear
in dimension greater than or equal to 3 and are just a special type of hyperbolic
sets Λ of diffeomorphisms f which are maximal invariant in a neighborhood ∆,
that is, Λ = ∩n∈Zfn(∆). We consider the case where the stable direction is one-
dimensional. Then the blender Λ has a dominated splitting with three hyperbolic
directions (the stable, the center unstable, and the strong unstable directions). A
key property of a blender is its internal dynamical configuration that implies that
every curve which crosses a distinctive open region of ∆ and is almost tangent to
the one-dimensional strong unstable direction intersects the local stable manifold
of Λ. This roughly means that Λ topologically behaves as a hyperbolic set with
stable manifold of dimension two. Another relevant property of a blender is its
robustness: for diffeomorphisms g near f the continuation of the hyperbolic set Λ
for g is also a blender.

A blender is an important ingredient for obtaining robust non-hyperbolic dynam-
ics: blenders play a similar role as the thick horseshoes introduced by Newhouse
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[14, 15]. They are used to turn heterodimensional cycles and homoclinic tangen-
cies C1-robust, see [4, 5]. We remark that recently some authors have introduced
blenders whose center unstable direction is indecomposable and has dimension ≥ 2,
see [13, 1].

We study how blenders occur. As far as we know, their construction involves
series of perturbations which are genuinely C1, see for instance [4, 5]. We present
an explicit family of quadratic maps (which we call a center unstable Hénon-like
family) with blenders. A novelty here is that the blenders are obtained without
perturbations and their occurrence only involves an appropriate selection of param-
eters of the family.

Theorem 1.1. Consider the center unstable Hénon-like family

(1.1) Gξ,µ,κ,η(x, y, z) = (ξx+ y, µ+ y2 + κx2 + ηxy, y), ξ > 1.

There is an open set B of parameters (ξ, µ, κ, η) such that any diffeomorphism F
Cr-close to Gξ,µ,κ,η with (ξ, µ, κ, η) ∈ B has a blender.

One important feature of the family (1.1) is the existence of the term y in the x-
component. This term gives us a superposition property (see Definition 2.1) of the
hyperbolic set which enables us to obtain the blender, compare the family treated
in [9].

Coexistence of critical and noncritical dynamics. Homoclinic tangencies and
Hénon-like dynamics are in the core of the so-called critical dynamics, while het-
erodimensional cycles are genuine bifurcations of non-critical dynamics, for more
details see Preface of [6]. There are many cases where the effects of the critical
and the non-critical dynamics overlap: the system has a critical region and a non-
critical one and there are transitions between these two regions. We study such
kind of configuration in dimension three: diffeomorphisms having two saddles of
different indices (dimension of the unstable direction) whose invariant manifolds
are cyclically related by a heterodimensional cycle with non-transverse heteroclinic
intersections. This configuration (depicted in Figure 1.1) is called a non-transverse
heterodimensional cycle: the two invariant manifolds of dimension one meet quasi-
transversally and the two-dimensional ones have a tangential intersection. The
dynamics close to the saddles and the quasi-transverse heteroclinic intersection
provide the non-critical part of the dynamics, while the critical one is given by the
heteroclinic tangency.

The non-transverse cycle that we consider contains a heterodimensional tan-
gency. In the C1 case, it is known that the unfolding of these tangencies leads to
robustly non-dominated dynamics and in some cases to very intermingled dynam-
ics related to universal dynamics introduced in [3], see [8] for detail. In the C2

case, the non-transverse cycles are not special in the following sense: there exists
C2 open setw of n-dimensional (n > 2) diffeomorphisms having heterodimensional
tangencies in a coindex-(n − 2) heterodimensional cycle, see [12]. Note that the
occurence of C2 Newhouse phenomenon and strange attractors were observed in
[11].

Using Theorem 1.1 and the renormalization scheme that we will present below,
we prove the existence of blenders near some of these non-transverse heterodimen-
sional cycles under high regularity assumptions, see Corollary 1.3. Let us observe
that by adjusting the parameters, we can obtain convergence of the renormalization
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Figure 1.1. Non-transverse heterodimensional cycles

to different types of Hénon-like maps, see the comment after Theorem 1.2. This
illustrates the richness of the dynamics near these cycles.

Renormalization. Renormalization means providing a sequence of local coordi-
nate changes near a tangency point and reparametrizations, which gives a sequence
of return maps along heteroclinic orbits converging to a limit map with interesting
dynamics. Using a renormalization scheme one can translate relevant properties of
the limit maps to some diffeomorphisms close to the one with the tangency.

Renormalization methods play an important role in the study of homoclinic bi-
furcations (dynamics at homoclinic tangencies). This method leads to the approx-
imation of the dynamics by quadratic families and allows to translate properties of
such families (such as existence of strange attractors and sinks, or thick hyperbolic
sets) to properties of the diffeomorphisms, see for instance [16, Chapter 3].

So far, renormalizations have not been sufficiently exploited in the context of
heterodimensional bifurcations. We consider renormalization schemes for non-
transverse heterodimensional cycles. Depending on the conditions satisfied by the
diffeomorphism, this renormalization may converge to different types of dynamics.
We wonder if this limit map may exhibit blenders. In general, it is not always the
case. We prove that, under some (degenerate) conditions, the renormalization con-
verges to the center unstable Hénon-like families in Theorem 1.1, see Theorem 1.2.

We now state precise definitions and results.

Definitions and statements of the results. Consider diffeomorphisms f defined
on a closed three-dimensional manifold M having hyperbolic periodic points P and
Q of saddle type with different indices (dimension of the unstable bundle and
denoted by index(·)). We assume that f has a non-transverse heterodimensional
cycle associated to the saddles P and Q (assume that index(P ) = 2 > index(Q) =
1). This means that

W s(P ) ∩Wu(Q) 6= ∅ and W s(Q) ∩Wu(P ) 6= ∅,
where the first intersection between one-dimensional manifolds is quasi-transverse,
that is, there is X ∈W s(P ) ∩Wu(Q) such that

(1.2) dim(TXW
s(P ) + TXW

u(Q)) = dim(Es(P )) + dim(Eu(Q)),

and the two-dimensional manifolds Wu(P ) and W s(Q) have a non-transverse inter-
section (a tangency) along the orbit of a point Y . This geometrical configuration is
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depicted in Figure 1.1 (the tangency in (a) is elliptic and the one in (b) is hyperbolic,
see [11]).

Associated to the heteroclinic point X, there is a transition from a neighborhood
UQ of Q to a neighborhood UP of P following the orbit of X. Similarly, associated
to Y there is a transition from UP to UQ, see also Figure 3.1. We impose some
conditions to these transitions in equation (3.3).

Let per(P ) and per(Q) be the periods of P and Q, respectively. Denote the

eigenvalues of Dfper(P )(P ) and Dfper(Q)(Q) by λ̃, ζ̃, σ̃ and λ, ζ, σ, respectively.
We assume that

(1.3) |λ̃| < 1 < |σ̃| < |ζ̃|, |λ| < |ζ| < 1 < |σ|

and

(1.4)
∣∣∣|σ̃ζ̃|kσζ2

∣∣∣ , ∣∣∣|σ̃−3ζ̃|kσ−1
∣∣∣ , ∣∣∣|λ̃σ̃|kσ∣∣∣ < 1, where k =

log |λ|−1

log |ζ̃|
.

As we mentioned, bifurcations of non-transverse heterodimensional cycles ex-
hibit a rich variety of dynamics. Depending on the way of unfolding, one may
reach different types of dynamics. In the following theorem, starting from a six-
parameter family of diffeomorphisms (where the parameters describe the position
of the continuations of the heteroclinic points above), we select a two-parameter
sub-family converging to a Hénon-like family: there is a renormalization scheme
near the tangency providing a sequence of maps {Fµk(µ̄),νk}, reparametrizations
µk, and parameters νk such that the family converges to a Hénon-like family.

Theorem 1.2. Consider f ∈ Diffr(M), dim(M) = 3 and r ≥ 2, with a non-
transverse heterodimensional cycle associated with saddles P and Q with hetero-
clinic orbits X (quasi-transverse point) and Y (tangency point).

Assume that

• The local dynamics around P and Q are linearized as in (3.1),
• the eigenvalues of Dfper(P )(P ) and Dfper(Q)(Q) satisfy (1.3) and (1.4),
• the transitions between P and Q satisfy (3.3),(3.6) and (3.7).

Then there is a six-parameter family {fµ,ν}µ,ν∈[−ε,ε]3 ⊂ Diffr(M) with f0,0 = f ,
satisfying the following: for any real number ξ > 0, there are

• a sequence of coordinate changes Ψk : K → M defined near the tangency
point Y , where K is a compact neighborhood of the origin of R3 that can
be taken arbitrarily large,

• reparametrizations µk : I → R3, where I is a compact neighborhood of 0 in
R that can be taken arbitrarily large,

• parameter values νk ∈ R3,
• a sequence of pairs of natural numbers (mk, nk)k, mk, nk →∞, and natural

numbers N1 and N2 independent of k and ξ,

such that the map

(1.5) Fµk(µ̄),νk(x̄) = (Ψ−1
k |Ψk(K)) ◦ fN2+mk+N1+nk

µk(µ̄),νk
◦Ψk(x̄)

satisfies the following properties:

(1) Suppose (µ̄, x̄) is contained in a (fixed) compact set of R×R3, then the sequence
{(µk(µ̄), νk)} converges to (0,0) ∈ R6 and the sequence {Ψk(x̄)} converges to
the tangency point Y as k → +∞.



BLENDERS, CU-HÉNON-LIKE FAMILIES AND HETERODIMENSIONAL BIFURCATIONS 5

(2) The sequence of maps {Fµk(µ̄),νk} converges in the Cr topology to a one-parameter
family conjugate to

(1.6) Gµ(x, y, z) = Gξ,µ,κ1,κ2
(x, y, z) = (ξx+ y, µ+ y2 + κ1x

2 + κ2xy, y),

where κ1, κ2 are constants depending only on f .

An immediate consequence of this theorem and Theorem 1.1 is the following:

Corollary 1.3. Let f be a Cr diffeomorphisms (r ≥ 2) satisfying the hypotheses
of Theorem 1.2. Then every Cr-neighborhood of f contains an open set of diffeo-
morphisms having blenders.

Let us give a comment to Theorem 1.2. The numbers (mk, nk) correspond to
the consecutive times during which the points stay close to the saddles P and
Q, respectively. The selection of these numbers determines convergence of the
renormalization and the number ξ. This choice may lead to ξ > 1 (center unstable
Hénon-like maps) or ξ < 1 (center stable Hénon-like maps). This means that
arbitrarily close to the original system there are both types of dynamics.

Connecting one-dimensional invariant manifolds. We now show an applica-
tion of the methods above. To exploit completely the consequence of our techniques
is beyond the goal of this paper (it is a part of on-going research project).

Theorem 1.2 asserts that arbitrarily Cr-close to certain types of diffeomorphisms
f having a non-transverse heterodimensional cycle, there exist diffeomorphisms g
having center unstable blenders Λg near the point of tangency. The renormaliza-
tion gives us some local information, but does not provide information about the
connections between Λg and the continuations Pg, Qg of P , Q (semi-global infor-
mation). Since the dynamics is not dominated close to the tangency point, it is not
easy to describe the relative positions of the invariant manifolds of the these sets.

Under some additional hypotheses on the contracting multipliers of Q, the next
theorem gives the creation of robust intersections between the “one-dimensional”
invariant manifolds W s(Λg, g) and Wu(Qg, g). This intersection is in principle
harder to obtain than the one between the “two-dimensional” invariant manifolds.

Theorem 1.4. Let f be a diffeomorphism having a non-transverse heterodimen-
sional cycle associated to saddles P and Q satisfying the hypothesis of Theorem 1.2.

Consider a real number α > 0 satisfying α < log |λ|
log |ζ| − 1, where |λ| < |ζ| are the

moduli of contracting eigenvalues of Dfper(Q)(Q) in (1.3). Then, for every r ≥ 2,
arbitrarily C1+α close to f , there exists a Cr diffeomorphism g having a center-
unstable blender Λg such that W s

loc(Λg, g) ∩Wu(Qg, g) 6= ∅ holds C1-robustly.

Note that the C1-robustness in the conclusion of Theorem 1.4 implies the Cr-
robustness of the connection for all r > 1. The number α in the theorem is in
(0, 1/2), see Lemma 3.1 in Section 3.3.

In the C1-topology, the connecting lemma of Hayashi [10] and the constructions
in [4] tell us that there are diffeomorphisms arbitrarily C1-close to f with robust
cycles. We wonder if this is possible to obtain such connections for systems Cr-
close to f for r > 1. We use a detailed estimate on the hyperbolic behavior of
the limit map obtained in the renormalization process to get robust intersections
for C1+α-approximations. As α is in (0, 1/2), we do not obtain, for example, a
C2-result.
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The above result gives a connection from Qg to Λg. However, in general it is also
difficult to get non-empty intersections between W s(Qg, g) and Wu(Λg, g). This
difficulty is due to the fact that the transition map from P to Q does not preserves
the “central direction”. Thus, the question still remains whether or not a Cr-robust
heterodimensional cycle can be created from a bifurcation of the heterodimensional
tangency.

To get such intersections one can consider two possible directions. The first one
is to get a renormalization scheme providing further geometrical information of the
cycles. This strategy is well exploited in the renormalizations in [17, 18], where
the dynamics is normally hyperbolic (which is not our case). Another direction
is to consider heterodimensional tangencies as in [8] associated to robustly non-
hyperbolic transitive sets. These sets have rich structures that may help to find
such intersections.

Organization of the paper. In Section 2 we introduce the definition of a blender,
state a result guaranteeing its existence, and prove Theorem 1.1 about the occur-
rence of blenders for some Hénon-like families. In Section 3 we describe the class
of non-transverse heterodimensional cycles we consider. This description involves
properties of the transitions between the saddles in the cycle following the non-
transverse heteroclinic orbits and the local dynamics near the saddles. The six-
parameter family of diffeomorphisms in Theorem 1.2 is presented in Section 4. In
Section 5 we introduce the renormalization scheme and prove Theorem 1.2. Fi-
nally, in Section 6, Theorem 1.4 is shown by previous theorems and a certain C1+α

perturbation which is performed locally near the local unstable manifold of the
continuation of Q.

2. Blenders for center unstable Hénon-like maps

In this section, we consider diffeomorphisms which are Cr-near the center un-
stable Hénon-like endomorphism

(2.1) Gµ,κ,ξ(x, y, z) = (y, µ+ y2 + κz2, ξz + y).

This map is conjugate to the Hénon family in (1.1) when η = 0 by the coordinate
change

(2.2) Θ̃ : (x, y, z) 7−→ (z, y, x).

We will prove the existence of blenders for diffeomorphisms close to Gµ,κ,ξ where
the parameters are in some specific ranges (see Theorem 1.1).

2.1. Conditions for the existence of blenders. Before going to the proof of
the theorem, let us recall the definition of a blender and sufficient conditions for the
existence of blenders in [2, §1]. First, we give an axiomatic definition of a blender.

Definition 2.1 (Blender, Definition 3.1 in [5]). Let f : M → M be a diffeomor-
phism. A transitive hyperbolic compact set Λ of f with index k, k ≥ 2, is a
cu-blender if there are a C1-neighborhood U of f and a C1-open set D of embed-
dings of (k − 1)-dimensional disks D into M such that for every g ∈ U and every
disk D ∈ D the local stable manifold W s

loc(Λg) of Λg (the continuation of Λ for g)
intersects D. The set D is called the superposition set of the blender.



BLENDERS, CU-HÉNON-LIKE FAMILIES AND HETERODIMENSIONAL BIFURCATIONS 7

We now give some preliminary definitions that we borrow from [2]. Let ∆ =
Ix × Iy × Iz be a cube in R3 where Ix = [x−, x+], Iy = [y−, y+] and Iz = [z−, z+]
are intervals. Divide the boundary of ∆ into three parts as follows:

∂ss∆ := ∂Ix × Iy × Iz, ∂uu∆ := Ix × ∂Iy × Iz, ∂u∆ := Ix × ∂(Iy × Iz).

Note that ∂uu∆ ⊂ ∂u∆. For θ > 1 let Cuθ , Cuuθ , and Csθ be cone fields defined as
follows: for p ∈ ∆, put

Cuθ (p) =
{

(u, v, w) ∈ Tp∆
∣∣ θ|u| 6√v2 + w2

}
,

Cuuθ (p) =
{

(u, v, w) ∈ Tp∆
∣∣ θ√u2 + w2 6 |v|

}
,

Csθ(p) =
{

(u, v, w) ∈ Tp∆
∣∣ θ√v2 + w2 6 |u|

}
.

(2.3)

Note that Cuuθ (p) ⊂ Cuθ (p).
Then we define as follows:

• A regular curve L ⊂ ∆ is vertical if TpL ⊂ Cuuθ (p) for every point p in L,
and the end-points of L are contained in different connected components of
∂uu∆.
• A surface S ⊂ ∆ is called a vertical strip in ∆ if TpS ⊂ Cuθ (p) for every
p in S and there exists a C1 embedding E : Iy × J → ∆ (where J is a
subinterval of Iz) such that L(z) := E(Iy×{z}) is a vertical curve for every
z ∈ J . The width of S, denoted by w(S), is the infimum of the length
of the curves in S which are transverse to Cuuθ joining the two boundary
components of L(∂J).

Let W be a curve in ∆ tangent to the cone field Cs whose endpoints are con-
tained in different connected components of ∂ss∆. Note that there are two different
homotopy classes of vertical segments through ∆ disjoint from W .

• A vertical curve L in ∆ with L ∩W = ∅ is to the right of W if it is in the
homotopy class of {x−} × Iy × {z+} for some x0 ∈ Ix. Similarly, a vertical
strip S through ∆ is to the right of W if any vertical curve in S is to the
right of W .

For a three dimensional diffeomorphism F , the next geometric conditions (H1)–
(H5) guarantee the existence of a blender in ∆, see [2, §1]:

(H1) There is a connected component A of ∆∩F (∆) disjoint from ∂ss∆∪F (∂u∆).
(H2) There is a connected component B of F (∆) ∩∆ such that B is disjoint from

Ix × Iy × {z+}, from ∂ss∆ and from F (∂uu∆).
(H3) There are θ > 1 and ` ∈ N such that the cone fields Cuθ , Cuuθ , and Csθ satisfy

the following conditions: There is c > 1 such that
(i) For every p ∈ F−1(A∪B) such that F i(p) ∈ ∆ for every i = 0, . . . , `−1

and every v ∈ Cuθ (p)\{0}, (DF i)pv belongs to the interior of Cuθ (F i(p))
and |(DF `)pv| > c|v|.

(ii) For every p ∈ F−1(A ∪ B) and every v ∈ Cuuθ (p) \ {0}, w := (DF )pv
belongs to the interior of Cuuθ (F (p)).

(iii) For every p ∈ A∪B and every v ∈ Csθ(p) \ {0}, w := (DF−1)pv belongs
to the interior of Csθ(F−1(p)) and |w| > c|v|.

Note that conditions (H1) and (H3) imply that F has a (unique) hyperbolic fixed
point P∗ in A with index one. Let W s

0 be the connected component of W s(P∗)∩∆



8 LORENZO J. DÍAZ, SHIN KIRIKI, AND KATSUTOSHI SHINOHARA

containing P∗. Observe that the curve W s
0 is tangent to the cone field Csθ . So we

can speak of vertical curves and strips being to the left or to the right of W s
0 .

(H4) There is a neighborhood U− of the left side {z = z−} of ∆ so that every
vertical strip S through ∆ to the right of W s

0 does not intersect U−.
(H5) There exist neighborhoods U of W s

0 and U+ of the right side {z = z+} of
∆ such that for every vertical strip S through ∆ to the right of W s

0 one of
the two following possibilities holds:

(i) The intersection F (S)∩A contains a vertical strip Σ through ∆ to the
right of W s

0 and disjoint from U+;
(ii) F (S)∩B contains a vertical strip Σ through ∆ to the right of W s

0 and
disjoint from U .

Note that the presentation of (H3) is slightly different from the one in [2]. In our
(H5), each non-zero vector of Cuuθ is expanded only after ` iterations. However, by
some standard argument, one can check that the conditions (H1)–(H5) above are
also sufficient to guarantee the occurrence of the blender. Indeed, these conditions
imply that the width of vertical strips in ∆ grows exponentially after iterations by
F `. This implies that the stable manifold W s(P∗) of P∗ intersects transversally
every vertical strip S through ∆ to the right of W s

0 , see [2, Lemma 1.8]. In par-
ticular, for Λ =

⋂
i∈Z F

i(∆) we have W s
loc(Λ) ∩ S 6= ∅. Thus Λ is a blender whose

superposition set is formed by the vertical segments through ∆ to the right of W s
0 .

2.2. Proof of Theorem 1.1. We consider the open set of parameters O and the
cube ∆ in R3 defined as follows:

O =
{

(µ, κ, ξ) | − 10 < µ < −9, 0 < κ < 10−4, 1.18 < ξ < 1.19
}
,

∆ = {(x, y, z) | |x|, |y| 6 4, −40 6 z 6 0} .
(2.4)

The boundary ∂∆ of ∆ is divided into two parts ∂u∆ := [−4, 4]×∂([−4, 4]×[−40, 0])
and ∂ss∆ := ∆ ∩ {x = ±4}. Moreover, consider the subset ∂uu∆ := ∆ ∩ {y = ±4}
of ∂u∆. The goal of this section is to prove the following proposition.

Proposition 2.2. There is ε > 0 such that every diffeomorphism F sufficiently
close to Gµ,κ,ξ,η (see (1.1) for the definition of Gµ,κ,ξ,η) where (µ, κ, ξ, η) ∈ O ×
(−ε, ε) has a blender.

This proposition immediately implies Theorem 1.1. It follows from the next
three lemmas and the sufficient conditions for blenders in Section 2.1. So, let us
start the proof of the proposition above.

Lemma 2.3. If a three-dimensional diffeomorphism F is sufficiently C1-close to
Gµ,κ,ξ with (µ, κ, ξ) ∈ O, then there are compact subsets A and B of ∆ satisfying
(H1) and (H2) for F .

Proof. First, we investigate these properties for Gµ,κ,ξ with (µ, κ, ξ) ∈ O.
Let Πz : R3 → R2 and Πx : R3 → R2 be the projections Πz(x, y, z) = (x, y) and

Πx(x, y, z) = (y, z). We first observe the relation between Πz(∆) and Gµ,κ,ξ(∆).
For z ∈ [−40, 0], write

Dz = [−4, 4]2 × {z}, ∂uuDz = [−4, 4]× {−4, 4} × {z}.
Note that, Gµ,κ,ξ is an endomorphism such that DGµ,κ,ξ has a zero eigenvalue
whose eigenspace is the x-axis. Thus, for every z ∈ [−40, 0], from (2.1) we have

Πz(Gµ,κ,ξ(Dz)) =
{

(x, y) | y = µ+ x2 + κz2, |x| 6 4
}
.
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Consider the sets

D+
z := Dz ∩ {y > 0}, and D−z := Dz ∩ {y < 0}.

Since −10 < µ < −9 and 0 < κz2 < 0.16, by direct calculations, one can obtain
the following conditions, see Figure 2.1-(a):

• Πz(Gµ,κ,ξ(D
+
z ))∩Πz(∆) contains a segment I+

z transverse in the xy-plane
to Πz(∂

uu∆) and such that I+
z ⊂ {(x, y) | 2.4 < x < 3.8}.

• Πz(Gµ,κ,ξ(D
−
z ))∩Πz(∆) contains a segment I−z transverse in the xy-plane

to Πz(∂
uu∆) and such that I−z ⊂ {(x, y) | − 3.8 < x < −2.4}.

• We have Πz(Gµ,κ,ξ(∂
uuDz)) = {(±4, µ+ 16 + κz2)}. By the conditions on

the constants, its y-coordinate µ+ 16 + κz2 is greater than 4. That is, the
projection Πz(Gµ,κ,ξ(∂

uuDz)) is outside Πz(∆).

(a) (b)

Figure 2.1. Projected images of ∆ and Gµ,κ,ξ(∆)

Consider the sets

∆+ := ∆ ∩ {y > 0}, ∆− := ∆ ∩ {y < 0}, and ∂0∆ := ∆ ∩ {z = 0}.
The following properties of Πx(∆) and Πx(Gµ,κ,ξ(∆)) can be checked by direct
calculations, see Figure 2.1-(b).

• Πx(Gµ,κ,ξ(∆
+)) contains Πx(∆) = {(z, y) | − 40 6 z 6 0, |y| 6 4} in its

interior.
• Πx(Gµ,κ,ξ(∆

−)) ∩Πx(∆) contains the set Πx(∆) ∩ {−40 < z < −4}, and
• Πx(Gµ,κ,ξ(∆

±)) ∩Πx(∂0∆) = ∅.
Note that

∆± =
⋃

z∈[−40,0]

D±z .

Consider now the sets given by

A = Gµ,κ,ξ(∆
+) ∩∆ and B = Gµ,κ,ξ(∆

−) ∩∆.

By the comments above,

Πz(A) =
⋃

z∈[−40,0]

I+
z and Πz(B) =

⋃
z∈[−40,0]

I−z ,

and Πx(A) = Πx(∆) and Πx(B) ∩ Πx(∂0∆) = ∅. Moreover, from the above obser-
vations, we have
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• A ∩ ∂ss∆ = ∅ and A ∩Gµ,κ,ξ(∂u∆) = ∅;
• B ∩ ∂ss∆ = ∅, B ∩ ∂0∆ = ∅, and B ∩Gµ,κ,ξ(∂uuDz) = ∅.

This implies that A and B satisfy (H1) and (H2).
Clearly, any diffeomorphism F sufficiently C1 close to Gµ,κ,ξ also satisfies these

properties. �

Lemma 2.4. For any diffeomorphism F sufficiently C1-close to Gµ,κ,ξ, (µ, κ, ξ) ∈
O, the cone fields Cu2 , Cuu2 and Cs2 satisfy (H3) for A,B as in Lemma 2.3.

Proof. First, note that for p = (x, y, z) ∈ ∆ with Gµ,κ,ξ(p) ∈ A ∪ B and v =
(u, v, w) ∈ Tp∆, we have

(2.5) (u1, v1, w1) := (DGµ,κ,ξ)pv = (v, 2yv + 2κzw, v + ξw).

For the proof of (H3)-(i) and (ii), we just investigate the property of Gµ,κ,ξ with
(µ, κ, ξ) ∈ O, which implies that the same conditions hold for F near Gµ,κ,ξ.

Proof of (H3)-(i). Consider the cone

Cu(p) := Cu2 (p) =
{

(u, v, w) ∈ TpR3 | 2|u| 6
√
v2 + w2

}
.

We consider the norm

|(u, v, w)|∗ := max
{
|u|,
√
v2 + w2

}
.

We will see that |(DGµ,κ,ξ)pv|∗ > |v|∗ for every v ∈ Cuu(p) \ {0}. By compactness
this implies that |(DGµ,κ,ξ)pv|∗ > c0|v|∗ for some uniform c0 > 1. Since | · |∗ is
equivalent to | · |, this implies that there are ` and c > 0 such that |(DG`µ,κ,ξ)pv| >
c|v|. We now go to the details of the proof.

First, note that from the proof of Lemma 2.3, the condition Gµ,κ,ξ(p) ∈ A ∪ B
implies |y| > 2.4. (remember that the x-coordinate of Gµ,κ,ξ(p) is equal to the
y-coordinate of p).

We divide the proof into two cases: 6.5|v| > |w| and 6.5|v| < |w|. In the case of
6.5|v| > |w|, by this inequality and the choice of parameters in (2.4), we have

|v1| = |2yv + 2κzw| > 2|y||v| − 2|κ||z||w| > 4.8|v| − 0.052|v| > 4.7|v|.

Thus,

(2.6)
√
v2

1 + w2
1 ≥ |v1| > 4.7|v| = 4.7|u1|.

Therefore, (u1, v1, w1) ∈ Cu(Gµ,κ,ξ(p)).
To get the uniform expansion of the vectors, note that

w2
1 = (v + ξw)2 > v2 − 2ξ|v||w|+ ξ2w2 > (1− 13ξ)v2 + ξ2w2,

thus, together with (2.6), one obtains

|(DGµ,κ,ξ)pv|2∗ = v2
1 + w2

1 > (22− 13ξ)v2 + ξ2w2 > 4v2 + 1.182w2 > |v|2∗.

Next, we consider the case of 6.5|v| < |w|. Since

|w1| = |v + ξw| > ξ|w| − |v| > 6.5ξ|v| − |v| > 5|v|,

one has √
v2

1 + w2
1 > |w1| > 5|v| = 5|u1|.
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This implies (u1, v1, w1) ∈ Cu(Gµ,κ,ξ(p)). Moreover, by (2.4), (2.5) and 2.4 < |y| <
3.8,

v2
1 = (2yv + 2κzw)2 > 4y2v2 − 8|yvκzw|+ 4κ2z2w2 > 23v2 − 0.02w2,

w2
1 = (v + ξw)2 > ξ2w2 − 2ξ|v||w|+ v2 > 1.026w2 + v2.

Therefore,

|(DGµ,κ,ξ)pv|2∗ = v2
1 + w2

1 > 24v2 + 1.006w2 > |v|2∗.
This completes the proof of (H3)-(i).

Proof of (H3)-(ii). For p ∈ ∆ with Gµ,κ,ξ(p) ∈ A ∪B, take a cone

Cuu(p) := Cuu2 (p) =
{

(u, v, w) ∈ TpR3 | 2
√
u2 + w2 6 |v|

}
⊂ Cu(p).

This implies that |w| ≤ |v|/2 for any (u, v, w) ∈ Cuu(p). Recalling (2.5) and 2.4 <
|y|, we have

|v1| = |2yv + 2κzw| > 2|y||v| − 2|κ||z||w| > 4.7|v|.
On the other hand,

u2
1 + w2

1 = v2 + (v + ξw)2 6 2v2 + 2ξ|v||w|+ ξ2w2 6 2v2 + 1.19v2 + 0.63v2 < 4v2.

Hence,

2
√
u2

1 + w2
1 < 4|v| < |v1|.

Thus (DGµ,κ,ξ)pv ∈ Cuu(Gµ,κ,ξ(p)), which completes the proof of (H3)-(ii).

Proof of (H3)-(iii). The existence of a contracting and invariant strong stable
cone field follows from the fact that DGµ,κ,ξ is an endomorphism whose eigenspace
associated the eigenvalue 0 is spanned by (1, 0, 0). This implies that for every
diffeomorphism F sufficiently close to Gµ,κ,ξ with (µ, κ, ξ) ∈ O, the cone field Cs2(p)
with p ∈ A ∪B satisfies (H3)-(iii). �

Lemma 2.5. Every diffeomorphism F sufficiently C1-close to Gµ,κ,ξ, with (µ, κ, ξ) ∈
O, satisfies conditions (H4) and (H5) for A, B as in Lemma 2.3.

Proof. Again, we mainly consider the properties for Gµ,κ,ξ with (µ, κ, ξ) ∈ O. The
conclusion for F near Gµ,κ,ξ follows almost immediately.
Proof of (H4). By construction, A contains unique saddle fixed point P∗ =
(x∗, y∗, z∗) which satisfies

x∗ = y∗ = µ+ y∗
2 + κz∗

2 = (1− ξ)z∗.

Note that W s
0 = {(x, y∗, z∗) | |x| ≤ 4} and that every point in W s

0 is mapped
to P∗ by Gµ,κ,ξ by Gµ,κ,ξ. Therefore W s

0 is a local stable manifold of P∗. Since
2.4 < y∗ < 3.8 and 1.18 < ξ < 1.19, one has the following estimation:

(2.7) −21.2 < z∗ = − y∗
ξ − 1

< −12.6.

Note that the cones Cuu(p) are defined around the y-axis with slope 1/2. Thus a
simple calculation gives that any vertical curve L, (i.e., a curve with TpL ⊂ Cuu(p)),
through ∆ to the right W s

0 does not intersect a small neighborhood U− of {z =
−40}∩∆. This implies that (H4) holds for Gµ,κ,ξ and thus for every diffeomorphism
F sufficiently C1-close to Gµ,κ,ξ.
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Proof of (H5). Consider the subsets of ∆ defined by

A′ = {(x, y, z) | |x| 6 4, 2.4 6 y 6 3.8, −22 6 z 6 −3.3} ,
B′ = {(x, y, z) | |x| 6 4, −3.8 6 y 6 −2.4, −7.3 6 z 6 0} .

Figure 2.2. Vertical segments LA′ , LB′ and their images

We define the notion of vertical curves through A′ (resp. B′) in the natural
way. That is, a curve σ in A′ (resp. B′) is called vertical if it is tangent to Cuu
and connects A′ ∩ {y = 3.8} and A′ ∩ {y = 2.4} (resp. B′ ∩ {y = −3.8} and
B′ ∩ {y = −2.4}).

Then, one can observe the following (see Figure 2.2): For every vertical curve L
through ∆ to the right of W s

0 ,

• either LA′ = L ∩A′ is a vertical curve through A′,
• or LB′ = L ∩ B′ is a vertical curve through B′ (note that both cases may

hold simultaneously).

In each case, we have the following:

• In the first case, Gµ,κ,ξ(LA′) contains a vertical curve through ∆ which
is to the right of W s

0 and disjoint from a small neighborhood U+ of ∂0∆
(remember that ∂0∆ = ∆ ∩ {z = 0});
• In the second case, Gµ,κ,ξ(LB′) contains a vertical curve through ∆ which

is to the right of W s
0 and disjoint from a small neighborhood U of W s

0 .

Therefore, (H5) holds for Gµ,κ,ξ, and for any diffeomorphism sufficiently C1-close
to Gµ,κ,ξ. �

Remark 2.6. In the proof above, we can see that the image of the segment ˆ̀ :=
{(0, t, 0) | |t| < 4} under diffeomorphism F which is sufficiently close to Gµ,κ,ξ
contains a vertical segment which is to the right of W s

0 of the blender. Thus it has
non-empty intersection with the stable manifold of the blender. This fact is used in
Section 6.

3. The non-transverse heterodimensional cycles

In this section we describe the conditions satisfied by the diffeomorphism with
non-transverse heterodimensional cycles in Theorem 1.2.
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3.1. Local dynamics at the saddle points. Let P and Q be saddle periodic
points of f ∈ Diffr(M) with dim(M) = 3 and r > 2. In what follows, we suppose
that per(P ) = per(Q) = 1 for simplicity, that the points have indices index(P ) = 2
and index(Q) = 1, and that the unstable manifold Wu(P ) and the stable manifold
W s(Q) have a heterodimensional tangency, and the two invariant manifolds Wu(Q)
and W s(P ) have a quasi-transverse intersection. We fix small coordinate neighbor-
hoods UP and UQ of P and Q, respectively, and consider transitions between these
neighborhoods along the cycle.

For simplicity, we assume that f |UP
and f |UQ

are Cr linearized, i.e.,

(3.1) f(x, y, z) =

{
(λ̃x, σ̃y, ζ̃z) if (x, y, z) ∈ UP
(λx, σy, ζz) if (x, y, z) ∈ UQ

where

|λ̃| < 1 < |σ̃| < |ζ̃|, |λ| < |ζ| < 1 < |σ|.
This assumption is guaranteed by the conditions on the eigenvalues of Df(P ) and

of Df(Q), see [19, 20]. In what follows we assume that λ and ζ̃ are both positive
(in the negative case it is enough to consider a pair number of iterations).

Caveat. In what follows, for simplicity we assume that all eigenvalues are positive.
For the cases where some eigenvalues are negative, the proofs work almost similarly
with slight modifications.

3.2. Transitions along heteroclinic orbit. In this subsection we describe the
transitions from UQ to UP and from UP to UQ along the heteroclinic orbits.

We consider first the transition from UQ to UP along the quasi-transverse orbit
X. In the linearizing coordinate in UQ, up to multiplication by some constant along
the the y-direction, we can take the quasi-transverse intersection between Wu(Q)
and W s(P ) with X = (0, 1, 0) ∈ UQ. Similarly, there exists a positive integer N1

such that X̃ = fN1(X) = (1, 0, 0) ∈W s
loc(P ), see Figure 3.1.

Figure 3.1. Non-transverse heterodimensional cycle and its transitions

The transition of fN1 from a small neighborhood of X to that of X̃ is expressed
as

(3.2) fN1 :

 x
1 + y
z

 7−→
 1 + α1x+ α2y + α3z + H̃1(x, y, z)

β1x+ β2y + β3z + H̃2(x, y, z)

γ1x+ γ2y + γ3z + H̃3(x, y, z)

 ,



14 LORENZO J. DÍAZ, SHIN KIRIKI, AND KATSUTOSHI SHINOHARA

where each H̃i is the higher order term satisfying the following conditions: for every
i ∈ {1, 2, 3},

H̃i(0) = 0; (∂/∂x)H̃i(0) = (∂/∂y)H̃i(0) = (∂/∂z)H̃i(0) = 0.

We assume that

(3.3) β3 = γ2 = γ3 = 0.

Note that since f is a diffeomorphism,

(3.4) β2γ1 6= 0.

Next, we consider the transition from UP to UQ along the orbit of heterodi-
mensional tangency. Let Y ∈ UP denote a point of tangency between Wu

loc(P )

and W s(Q). There is a positive integer N2 such that Ỹ = fN2(Y ) is contained
in W s

loc(Q). By some linear coordinate changes in UP and in UQ, one may set
Y = (0, 1, 1) ∈ UP and fN2(Y ) = (1, 0, 1) ∈ UQ respectively. Note that this coor-
dinate change can be done independently of the previous one involving X and X ′.
Hereafter, these new coordinates are both denoted by (x, y, z).

Since the tangency is nondegenerate, the transition of fN2 from a small neigh-
borhood of Y to that of Ỹ is expressed, by taking Taylor expansion, as

(3.5) fN2 :

 x
1 + y
1 + z

 7−→
 1 + a1x+ a2y + a3z +H1(x, y, z)

b1x+ b2y
2 + b3z

2 + b4yz +H2(x, y, z)
1 + c1x+ c2y + c3z +H3(x, y, z)

 ,

where every Hi is the higher order term with the following conditions: for each
i ∈ {1, 2, 3},

Hi(0) = 0; (∂/∂x)Hi(0) = (∂/∂y)Hi(0) = (∂/∂z)Hi(0) = 0.

We assume that

(3.6) (∂2/∂y2)H2(0) = (∂2/∂z2)H2(0) = (∂2/∂y∂z)H2(0) = 0, c3 = 0.

Furthermore, we assume that

(3.7) b2b3 6= 0, γ1a3 > 0.

3.3. On the range of eigenvalues. Theorem 1.2 assumes some conditions on the
eigenvalues. In this section, we discuss the non-emptiness of the set of the numbers
which satisfy these conditions.

We are interested in the existence of 6-ple of numbers

0 < λ̃ < 1 < σ̃ < ζ̃, 0 < λ < ζ < 1 < σ

satisfying the following conditions:

0 < (σ̃ζ̃)kσζ2 < 1,(3.8)

0 < (σ̃−3ζ̃)kσ−1 < 1,(3.9)

0 < (λ̃σ̃)kσ < 1,(3.10)

where k =
log λ−1

log ζ̃
.

We prove the following:

Lemma 3.1. • Let P ⊂ R6 denote the set of points (λ̃, σ̃, ζ̃, λ, ζ, σ) which
satisfy the conditions above. Then, P is a non-empty open set of R6.
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• On P, the value log λ/ log ζ ranges over (1, 3/2).

Note that the second item implies that the range of α in Theorem 1.4 is (0, 1/2).

Proof. The openness of P is clear. Thus we concentrate on the non-emptiness.
There are three inequalities (3.8), (3.9) and (3.10). First, we restrict our attention
to (3.8), (3.9). Indeed, if we can prove the non-emptiness of numbers satisfying (3.8)

and (3.9), then, by taking sufficiently small λ̃ > 0, we can prove the non-emptiness
of the parameter satisfying (3.10).

The inequality (3.8) is equivalent to the following:

log σ < log λ

(
log σ̃

log ζ̃
+ 1− 2

log ζ

log λ

)
=: R.

Similarly, by a direct calculation we see that (3.9) is equivalent to

log σ > − log λ

(
1− 3

log σ̃

log ζ̃

)
=: L.

Then, consider the two terms L and R. The non-emptiness of P is equivalent to
the following two inequalities:

L < R and R > 0.(3.11)

Indeed, if (3.11) holds, then take σ so that log σ > L and log σ < R hold (note that
the variable σ does not appear in L and R and the only restriction on σ is σ > 1,
that is, log σ > 0).

Put

S :=
log σ̃

log ζ̃
, T :=

log ζ

log λ
.

Note that the conditions 1 < σ̃ < ζ̃ and 1 > ζ > λ implies that we have

0 < S, T < 1.

The inequalities L < R and R > 0 are respectively equivalent to the following:

T > −S + 1 and T > (1/2)(S + 1)

By Figure 3.2 below, we know that the set of (S, T ) which satisfies these conditions
is non-empty.

Figure 3.2. The domain of (S, T )

Now we prove the non-emptiness of P. First, fix some (S, T ) from the region of

Figure 3.2. Then, take (σ̃, ζ̃) and (ζ, λ) which correspond to the values of (S, T ).

Finally, take σ and λ̃. This gives us the desired 6-ple of numbers.
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Finally, we see the range of log λ
log ζ = 1/T . By the figure above, the range of T is

2/3 < T < 1. Thus the range of 1/T is (1, 3/2), which completes the proof. �

4. The six-parameter family {fµ,ν}

In this section we construct a six-parameter family {fµ,ν} ⊂ Diffr(M), µ, ν ∈
[−ε, ε]3, with f0,0 = f in Theorem 1.2. This family is obtained by local perturba-

tions near the quasi-transverse intersection X̃ and the heterodimensional tangency
Ỹ . To define the local perturbations, we use a smooth bump function

(4.1) B(x, y, z) = b(x)b(y)b(z),

where b is a Cr function on R satisfying
b(x) = 0 if 2ρ 6 |x|;
0 < b(x) < 1 if ρ < |x| < 2ρ;

b(x) = 1 if |x| 6 ρ,

where ρ > 0 is some small number. Let UX̃ and UỸ be 2ρ-neighborhoods of X̃ =

(1, 0, 0) and of Ỹ = (1, 0, 1) which satisfy UX̃ ⊂ UP , P 6∈ Cl(UX̃) and UỸ ⊂ UQ,
Q 6∈ Cl(UỸ ), where Cl( · ) means the closure of the corresponding set.

The number ρ is taken so small such that

f(UX̃) ∩ UX̃ = ∅ and f(UỸ ) ∩ UỸ = ∅

hold.
For µ = (µ1, µ2, µ3), ν = (ν1, ν2, ν3) ∈ R3, let {tµ,ν} be a family of maps satisfy-

ing the following:

• if (1 + x, y, 1 + z) ∈ UỸ ,

tµ,ν(1 + x, y, 1 + z) = (1 + x, y, 1 + z) +B(x, y, z)(µ1, µ2, µ3),

• if (1 + x, y, z) ∈ UX̃ ,

tµ,ν(1 + x, y, z) = (1 + x, y, z) +B(x, y, z)(ν1, ν2, ν3),

• in the complement of UX̃ ∪ UỸ , tµ,ν is the identity.

Then this family is in Diffr(M) for small µ, ν ∈ [−ε, ε]3 where ε > 0 is some small
number.

We now define

(4.2) fµ,ν = tµ,ν ◦ f,

which has the following properties.

• Since P 6∈ Cl(UX̃) and Q 6∈ Cl(UỸ ), fµ,ν has saddle periodic points Pµ,ν =
P and Qµ,ν = Q. Moreover, near P and Q, fµ,ν has the same forms as in
(3.1).

• For any (x, 1 + y, z) sufficiently near X = (0, 1, 0),

(4.3) fN1
µ,ν(x, 1 + y, z) = fN1(x, 1 + y, z) + (ν1, ν2, ν3),

which has the same form as (3.2) when ν = 0. The parameters ν2 and

ν3 control the unfolding of the quasi-transverse intersection X̃. See Figure
4.1-(a).
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• For any (x, y + 1, z + 1) sufficiently near Y = (0, 1, 1),

(4.4) fN2
µ,ν(x, 1 + y, 1 + z) = fN2(x, 1 + y, 1 + z) + (µ1, µ2, µ3),

which has the same form as (3.5) when µ = 0. The parameter µ2 controls

the unfolding of the heterodimensional tangency at Ỹ . See Figure 4.1-(b).

(b)(a)

y

z

x

x

y

z

1

Q
P

(1 + ν1, ν2, ν3)

(1 + µ1, µ2, 1 + µ3)

Figure 4.1. (a) Quasi-transverse intersection (b) heterodimen-
sional tangency

5. Renormalizations: Proof of Theorem 1.2

The renormalization scheme involves maps of the form fN2+m+N1+n
µ,ν where N1

and N2 are (fixed) transition times, and n and m are the permanence times in UQ
and UP , respectively. We pick up pair of sojourn times to get return map with
neutral behavior.

5.1. For selecting the sojourn times. We first prove an auxiliary result which
enables us to get the “neutral dynamics”. For that we state an “irrationality con-
dition” of real numbers (Claim 5.2). This condition is used to choose a convenient

combination of product of the strong unstable eigenvalue ζ̃ of P and the strong
stable one λ of Q in (3.1). With this condition we pick up a sequence of renormal-
izations converging to a central unstable Hénon-like family.

We put

Z := {(ζ̃, λ) ∈ R2 | 0 < λ < 1 < ζ̃}.

Lemma 5.1. There is a residual subset R of Z such that for every (ζ̃, λ) ∈ R the
following holds: For any ε > 0, N0 > 0 and ξ > 0 satisfying ε/ξ < 1, there exist
integers m,n > N0 such that the following holds:∣∣∣γ1a3λ

nζ̃m − ξ
∣∣∣ < ε, |m− nk − k̃| < 1,

where γ1 and a3 are the constants given in (3.2), (3.5) and (3.7), k = log λ−1/log ζ̃

and k̃ = log(γ1a3ξ
−1)/ log ζ̃.

To prove this lemma we need the following claim whose proof is postponed.

Claim 5.2. There exists a residual subset R of Z such that for every (ζ̃, λ) ∈ R
the following holds:

Cl
({
m log ζ̃ + n log λ

∣∣∣ m,n ∈ N
})

= R.
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Assuming this claim let us give a proof of the lemma above.

Proof of Lemma 5.1. Fix ε > 0, N0 > 0 and ξ > 0. We take ε0 > 0 such that
eε0 − 1 < ε/ξ. By the condition ε/ξ < 1, we have ε0 < 1. From Claim 5.2 and
(3.7), for any ε0 > 0, N0 > 0 and ξ > 0, there are integers m,n > N0 such that∣∣∣log(γ1a3ξ

−1) +m log ζ̃ + n log λ
∣∣∣ < ε0.(5.1)

For such m and n, we have |m− nk − k̃| < ε0/ log ζ̃ < 1.
By taking the exponential of (5.1), we have

ξe−ε0 < γ1a3λ
nζ̃m < ξeε0 .

Then, by subtracting ξ from each side, we get
∣∣∣γ1a3λ

nζ̃m − ξ
∣∣∣ < ε. �

Proof of Claim 5.2. Let {ri}i∈N be a sequence which is dense in R. For every ri
and j ∈ N, let us consider Ui,j ⊂ Z defined as follows:

Ui,j :=
{

(ζ̃, λ)
∣∣∣ ∃ m,n ∈ N s.t. |m log ζ̃ + n log λ− ri| < 1/j

}
.

The sets Ui,j are clearly open in Z. for every positive integers i and j. We claim the
density of Ui,j . Then R := ∩i,jUi,j is the desired residual set (by Baire’s category
theorem). Consider the (open) set

Vi,j(m,n) :=
{

(X,Y ) = (log ζ̃, log λ) ∈ R2
∣∣∣ |mX + nY − ri| < 1/j

}
.

Observe that, in XY -plane, Vi,j(m,n) is an open strip containing the (open) seg-
ment ((ri−1/j)/n, (ri+1/j)/n) on the Y -axis, going downward right in the fourth
quadrant (0,+∞) × (−∞, 0) with slope −m/n. Then, by the density of rational
numbers {m/n ; m,n ∈ Z>0} and taking n large, we get

Cl

( ⋃
m,n>0

Vi,j(m,n)

)
= (0,+∞)× (−∞, 0).

Then the pullback of ∪m,nVi,j(m,n) to Z under the map (x, y) 7→ (log |x|, log |y|)
coincides with Ui,j , which shows the density of Ui,j . �

5.2. Renormalizations near tangencies. Before going our construction recall
the conditions (1.3)–(1.4) and (3.2)–(3.7). In what follows we assume that (λ, ζ̃)
belongs to the residual subset R of Lemma 5.1.

Our renormalization scheme consists of a sequence of coordinate changes Ψm,n,
reparametrizations of µm,n and parameters νm,n depending on given integersm,n >
0, which satisfy the following conditions.

• The coordinate change Ψm,n : K → UQ, (where K is a compact neighbor-
hood of the origin) (x, y, z) = Ψm,n(x̄, ȳ, z̄) is defined by

(5.2) Ψm,n(x̄, ȳ, z̄) := (σ−nσ̃−mx̄+ 1, σ−2nσ̃−2mȳ + σ−n, σ−nσ̃−mz̄ + 1).

Note that Ψm,n(K) converges to the point of heterodimensional tangency

Ỹ = (1, 0, 1) ∈ UQ as m,n → ∞. This means that for any K if m,n are
sufficiently large, we can define Ψm,n.
• The reparametrization µm,n : I → R3, µ = µm,n(µ̄), is defined by

(5.3) µm,n(µ̄) := (−λ̃ma1, σ
−2nσ̃−2mµ̄+ σ−n − λ̃mb1, −λ̃mc1),

which converges to 0 as m,n→∞ where I is a (fixed) closed interval.
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• The sequence of parameter values {νm,n} is given as

(5.4) νm,n := (−λnα1 − ζnα3, σ̃
−m − λnβ1, ζ̃

−m − λnγ1),

which converges to 0 as m,n→∞.

Using the renormalization (Ψm,n, µm,n, νm,n), the return map by iterations of

fµ,ν near the heterodimensional tangency Ỹ is defined by

(5.5) Fm,n(x̄, ȳ, z̄) := (Ψ−1
m,n|Ψm,n(K)) ◦ fN2+m+N1+n

µm,n(µ̄),νm,n
◦Ψm,n(x̄, ȳ, z̄),

where N1 and N2 are the constants in (3.2) and (3.5), which are independent of
m,n. Note that the domain of Fm,n is K and K can be chosen arbitrarily large by
letting m,n large.

5.3. Proof of Theorem 1.2. In this subsection, we prove Theorem 1.2. For that
we fix ξ > 0 and select a sequence (mk, nk) ⊂ N2 such that γ1a3λ

nk ζ̃mk converges
to ξ (recall Lemma 5.1). Then for those {Fmk,nk

} we get the convergence to the
center unstable Hénon-like family.

Proof of (1). The claim is obtained immediately from (5.2)–(5.4) under the condi-
tions for eigenvalues in (1.3).

Proof of (2). The proof is done by calculating entries in the formula (5.5) using

(1.3), (1.4), (3.2)–(3.7) and (λ, ζ̃) ∈ R of Lemma 5.1. In the proof, we omit the
subscript k for simplicity. Thus, for example, we write Fm,n in the sense of Fmk,nk

.
Let us provide step-by-step calculations to obtain entries in the formula of return

map Fm,n. By the coordinate change Ψm,n of (5.2), each (x̄, ȳ, z̄) ∈ R3 is mapped
to

x0 := (σ−nσ̃−mx̄+ 1, σ−2nσ̃−2mȳ + σ−n, σ−nσ̃−mz̄ + 1).

Note that if (x̄, ȳ, z̄) is contained in a compact domain and m,n are sufficiently

large, x0 is close to the heterodimensional tangency Ỹ = (1, 0, 1).
First, after n iterations of fµm,n(µ̄),νm,n

, in other words, the linear transformation
(3.1), x0 moves to fnµm,n(µ̄),νm,n

(x0) = (xn, yn + 1, zn) where

(xn, yn + 1, zn) = (λnσ−nσ̃−mx̄+ λn, σ−nσ̃−2mȳ + 1, ζnσ−nσ̃−mz̄ + ζn).

We write x̃n = (xn, yn, zn). These entries can be described by Landau notation as

(5.6) xn = O(λn), yn = O(σ−nσ̃−2m), zn = O(ζn).

Note that this also implies that the point (xn, yn+1, zn) converges to (0, 1, 0) when
n tends to +∞. This guarantees that the points in Ψm,n(∆) stay in UQ and then
leave it by the transition map.

Thus, we apply the transition fN1

µm,n(µ̄),νm,n
defined by (4.3) (where the parameter

µm,n(µ̄) is not yet involved). Recalling the choice of ν in (5.4) and the conditions
β3 = γ2 = γ3 = 0 in (3.3) we get the following formula in the local coordinate of
UP ,

fN1+n
µm,n(µ̄),νm,n

(x0) =
(
1 + λnσ−nσ̃−mα1x̄+ σ−nσ̃−2mα2ȳ + ζnσ−nσ̃−mα3z̄ + H̃1(x̃n),

σ̃−m + λnσ−nσ̃−mβ1x̄+ σ−nσ̃−2mβ2ȳ + H̃2(x̃n), ζ̃−m + λnσ−nσ̃−mγ1x̄+ H̃3(x̃n)
)
.

Note that from (3.2), for each i = 1, 2, 3, H̃i starts from a quadratic term. Since

0 < λ < ζ, the dominant terms in H̃i are yn = O(σ−nσ̃−2m) and zn = O(ζn) in
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(5.6). In fact,

(5.7) H̃i(x̃n) = O(σ−2nσ̃−4m) +O(ζ2n).

By the next m iterations of the linear transformation by (3.1) in UP , we have
fm+N1+n
µ,νm,n

(x0) = (xm, 1 + ym, 1 + zm) near Y = (0, 1, 1) where

xm = λ̃m + λnλ̃mσ−nσ̃−mα1x̄+ λ̃mσ−nσ̃−2mα2ȳ + λ̃mσ−nσ̃−mζnα3z̄ + λ̃mH̃1(x̃n),

1 + ym = 1 + λnσ−nβ1x̄+ σ−nσ̃−mβ2ȳ + σ̃mH̃2(x̃n),

1 + zm = 1 + λnσ−nσ̃−mζ̃mγ1x̄+ ζ̃mH̃3(x̃n).

Put xm := (xm, ym, zm). From (1.4), (5.6) and (5.7), we have the following:

(5.8) xm = O(λ̃m), ym = O(σ−2nσ̃−3m) +O(σ̃mζ2n), zm = O(σ−nσ̃−m).

We can see that these three numbers converge to zero as m,n→ +∞. Indeed, the
convergence of xm and zm are easy. The convergence of ym comes from the first
condition of the eigenvalue condition (1.4), This means that after m-times iteration,
the point leaves UP by the transition map.

By the transition fN2

µm,n(µ̄),νm,n
(which does not depend on νm,n), we have in the

local coordinate (x̂, ŷ, ẑ) = fN2+m+N1+n
µm,n(µ̄),νm,n

(x0) in UQ, where

x̂ =1 + (λnλ̃mσ−nσ̃−ma1α1 + λnσ−na2β1 + λnσ−nσ̃−mζ̃ma3γ1)x̄

+ (λ̃mσ−nσ̃−2ma1α2 + σ−nσ̃−ma2β2)ȳ + λ̃mσ−nσ̃−mζna1α3z̄

+ λ̃ma1H̃1(x̃n) + σ̃ma2H̃2(x̃n) + ζ̃ma3H̃3(x̃n) +H1(xm),

ŷ =σ−2nσ̃−2mµ̄+ σ−n

+ λnλ̃mσ−nσ̃−mb1α1x̄+ λ̃mσ−nσ̃−2mb1α2ȳ + λ̃mσ−nσ̃−mζnb1α3z̄

+ (λ2nσ−2nβ2
1b2 + λ2nσ−2nσ̃−2mζ̃2mγ2

1b3 + λ2nσ−2nσ̃−mζ̃mβ1γ1b4)x̄2

+ σ−2nσ̃−2mβ2
2b2ȳ

2 + (2λnσ−2nσ̃−mβ1β2b2 + λnσ−2nσ̃−2mζ̃mβ2γ1b4)x̄ȳ

+ λ̃mb1H̃1(x̃n) + (2λnσ−nσ̃mβ1b2x̄+ λnσ−nζ̃mγ1b4x̄+ 2σ−nβ2b2ȳ)H̃2(x̃n)

+ (λnσ−nζ̃mβ1b4x̄+ 2λnσ−nσ̃−mζ̃2mγ1b3x̄+ σ−nσ̃−mζ̃mβ2b4ȳ)H̃3(x̃n)

+ σ̃2mb2H̃2(x̃n)2 + σ̃mb4ζ̃
mH̃2(x̃n)H̃3(x̃n) + ζ̃2mb3H̃3(x̃n)2 +H2(xm),

ẑ =1 + (λnλ̃mσ−nσ̃−mc1α1 + λnσ−nc2β1)x̄

+ (λ̃mσ−nσ̃−2mc1α2 + σ−nσ̃−mc2β2)ȳ + λ̃mσ−nσ̃−mζnc1α3z̄

+ λ̃mc1H̃1(x̃n) + σ̃mc2H̃2(x̃n) +H3(xm).

Finally, using the inverse of (5.2), we get that the return map Fm,n(x̄, ȳ, z̄) =
(x̄1, ȳ1, z̄1) defined by (5.5) satisfies

(5.9)

x̄1 = (λnλ̃ma1α1 + λnσ̃ma2β1 + λnζ̃ma3γ1)x̄+ (λ̃mσ̃−ma1α2 + a2β2)ȳ

+ λ̃mζna1α3z̄ + λ̃mσnσ̃ma1H̃1(x̃n) + σnσ̃2ma2H̃2(x̃n)

+ σnσ̃mζ̃ma3H̃3(x̃n) + σnσ̃mH1(xm),
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(5.10)

ȳ1 = µ̄+ λnλ̃mσnσ̃mb1α1x̄+ λ̃mσnb1α2ȳ + λ̃mσnσ̃mζnb1α3z̄

+ (λ2nσ̃2mβ2
1b2 + λ2nζ̃2mγ2

1b3 + λ2nσ̃mζ̃mβ1γ1b4)x̄2 + β2
2b2ȳ

2

+ (2λnσ̃mβ1β2b2 + λnζ̃mβ2γ1b4)x̄ȳ + λ̃mσ2nσ̃2mb1H̃1(x̃n)

+ (2λnσnσ̃3mβ1b2x̄+ λnσnσ̃2mζ̃mγ1b4x̄+ 2σnσ̃2mβ2b2ȳ)H̃2(x̃n)

+ (2λnσnσ̃mζ̃2mγ1b3x̄+ λnσnσ̃2mζ̃mβ1b4x̄+ σnσ̃mζ̃mβ2b4ȳ)H̃3(x̃n)

+ σ2nσ̃4mb2H̃2(x̃n)2 + σ2nσ̃3mζ̃mb4H̃2(x̃n)H̃3(x̃n)

+ σ2nσ̃2mζ̃2mb3H̃3(x̃n)2 + σ2nσ̃2mH2(xm),

(5.11)
z̄1 = (λnλ̃mc1α1 + λnσ̃mc2β1)x̄+ (λ̃mσ̃−mc1α2 + c2β2)ȳ + λ̃mζnc1α3z̄

+ λ̃mσnσ̃mc1H̃1(x̃n) + σnσ̃2mc2H̃2(x̃n) + σnσ̃mH3(xm).

Now, we check the convergence of (5.9)–(5.11) as m,n tend to infinity. First, we

estimate the higher order terms containing H̃i and Hi.

• Higher order terms containing H̃1, H̃2, H̃3. The coordinate x̄1 in (5.9) has

three higher order terms containing H̃1, H̃2 and H̃3 whose (m,n)-dependent coeffi-
cients are respectively

λ̃mσnσ̃m, σnσ̃2m, σnσ̃mζ̃m.

By condition (1.3), we have

(5.12) 0 < λ̃mσnσ̃m, σnσ̃2m < σnσ̃mζ̃m.

As noted above, every H̃i has order at least two. Thus, it is enough to check the
convergence to 0 of σnσ̃mζ̃mH̃i(x̃n). From (5.7),

(5.13) σnσ̃mζ̃mH̃i(x̃n) = O(σnσ̃mζ̃mζ2n) +O(σ−nσ̃−3mζ̃m).

Since |m− nk − k̃| < 1 by Lemma 5.1, we have

σnσ̃mζ̃mζ2n < C(σσ̃k ζ̃kζ2)n, σ−nσ̃−3mζ̃m < C ′(σ−1σ̃−3k ζ̃k)n

where C,C ′ > 0 are constants independent of m and n. Conditions (1.4) implies
that the expression in (5.13) converges to 0 as m,n→ +∞.

Moreover, using (1.3) and (5.7), one can easily check that the rth order deriva-

tives of σnσ̃mζ̃mH̃i(x̃n) also converge to 0 as m,n→ +∞. Thus, these higher order
terms also converge to 0 as m,n→ +∞ in the Cr topology on compact domains.

We now evaluate the expression of ȳ1 in (5.10), which has higher order terms

containing H̃1, H̃2, H̃3, H̃
2
2 , H̃2H̃3, H̃

2
3 . Thus, let us see the convergences of terms

containing H̃1, H̃2 and H̃3. It is enough to study the following (m,n)-dependent
terms

λ̃mσ2nσ̃2mH̃i, λ
nσnσ̃3mH̃i, σ

nσ̃2mH̃i, λ
nσnσ̃mζ̃2mH̃i.

Note that the estimate of σnσ̃2mH̃i was already done, see (5.12). Moreover, since

λnσnσ̃mζ̃2m = (λnζ̃m)σnσ̃mζ̃m and λnζ̃m converges to a constant by Lemma 5.1,

the convergence of λnσnσ̃mζ̃2mH̃i follows from the discussion above, see (5.13). So

we have only to check the convergence of λ̃mσ2nσ̃2mH̃1(x̃n) and λnσnσ̃3mH̃2(x̃n).
By (5.7),

λ̃mσ2nσ̃2mH̃1(x̃n) = O(λ̃mσ̃−2m) +O(λ̃mσ2nσ̃2mζ2n),

λnσnσ̃3mH̃2(x̃n) = O(λnσ−nσ̃−m) +O(λnσnσ̃3mζ2n).
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By a similar discussion as above, using |m − nk − k̃| < 1 of Lemma 5.1 and (1.4),
these terms also converge to 0 as m,n→ +∞.

Moreover, same as in the case of x̄1, one can check the convergence of rth order
derivatives of λ̃mσ2nσ̃2mH̃1(x̃n) and λnσnσ̃3mH̃2(x̃n). Hence, these higher order
terms converge to 0 as m,n→ +∞ in the Cr topology.

It remains to check the convergence of (m,n)-dependent terms involving H̃1 and

H̃2 in the expression of z̄1. These estimations follow from (5.12). Thus, we finish

checking the convergence for higher order terms containing H̃1, H̃2 and H̃3.

• Higher order terms containing H1, H2, H3. We start by evaluating the expres-
sions of x̄1 and z̄1. From (3.5), H1 and H3 start from degree two terms. Hence,
the orders of H1 and H3 are dominated by those of x2

m, y
2
m, z

2
m, xmym, ymzm, zmxm,

which can be evaluated directly from (5.8). In this way, one can check the terms
containing H1 and H3 in the expressions of x̄1 and z̄1 in (5.9) and (5.11) as follows:
for i = 1, 3,

σnσ̃mHi(xm) = O(λ̃2mσnσ̃m) +O(σ−3nσ̃−5m) +O(σnσ̃3mζ4n) +O(σ−nσ̃−m).

This converges to 0 under the conditions (1.3)-(1.4) as m,n → ∞. Moreover, this
and (5.8) imply that the rth order derivatives of σnσ̃mHi(xm) also converge to 0
as m,n→ +∞.

Next, we evaluate the expressions of ȳ1 which only contains terms H2. From
(3.5), H2(xm) starts from the terms of x2

m, xmym and zmxm. From (5.8) with
(1.4), we only have to check the order of terms for xmym and zmxm. Note that
from (5.8),

σ2nσ̃2mxmym = O(λ̃mσ̃−m) +O(λ̃mσ2nσ̃3mζ2n), σ2nσ̃2mzmxm = O(λ̃mσnσ̃m),

both of which converge to 0 under (1.3)–(1.4) as m,n → ∞. This implies that
σ2nσ̃2mH2 and its rth order derivatives tend to 0 as m,n→ +∞.

• Conclusion. Recall that λnζ̃m converges to (γ1a3)−1ξ. Hence, due to the above
evaluations, (5.9)–(5.11) converge to the following

(5.14) (x̄, ȳ, z̄) 7−→ (ξx̄+ a2β2ȳ, µ̄+ b3(ξa−1
3 )2x̄2 + β2

2b2ȳ
2 + ξa−1

3 β2b4x̄ȳ, c2β2ȳ)

in the Cr topology on compact domains.

Finally, to improve the appearance of (5.14), consider the next coordinate change

(5.15) Θ : (x̄, ȳ, z̄, µ̄) 7−→ (β2a
−1
2 b2x̄, β

2
2b2ȳ, β2c

−1
2 b2z̄, β

2
2b2µ̄) =: (x̃, ỹ, z̃, µ̃).

By Θ, (5.14) is conjugate to

(5.16) (x̃, ỹ, z̃) 7−→ (ξx̃+ ỹ, µ̃+ ỹ2 + κ1x̃
2 + κ2x̃ỹ, ỹ),

where (remembering the condition (3.7))

(5.17) κ1 = (ξa2a
−1
3 )2b−1

2 b3, κ2 = ξa2(a3b2)−1b4.

This ends the proof of Theorem 1.2-(3). �

6. Robust connections between saddles of different indices

In this section, we prove Theorem 1.4, that is, we give the perturbation to obtain
the connection between the blender and the saddle Q.
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6.1. Further perturbation. Let {fµ,ν} = {fµk(µ̄),νk} be the family in Theorem
1.2. We consider another additional n-dependent perturbation {gn} = {gnk

} of
{fµ,ν} in a small neighborhood of X = (0, 1, 0) in UQ to show Theorem 1.4. In the
following, to simplify the notations, we again drop the subscript k of mk and nk.

Let us consider a smooth bump function b satisfying the following:

• b(t) = 0 for |t| > 1/2.
• b(t) = 1 for |t| < 1/3.
• 0 ≤ b(t) ≤ 1.

Then, given n > 0, consider the functions B,Bn : R3 → R defined as follows:

• B(x, y, z) := b(x)b(y)b(z),
• Bn(x, y, z) := λnB(x/ζn, y/ζn, z/ζn),

and an n-dependent neighborhood of X = (0, 1, 0) defined as follows:

UX,n = UX = {(x, 1 + y, z) | |x|, |y|, |z| < ζn/2.} .

Note that UX converges to {X} as n→ +∞. We define θn : M →M as follows:

• if (x, 1 + y, z) ∈ UX ,

θn(x, 1 + y, z) := (x, 1 + y, z) + (Bn(x, y, z), 0, 0);

• otherwise, θn is the identity map.

Finally, we define

(6.1) gn := θn ◦ fµk(µ̄),νk .

For this perturbation, we prove the following:

Lemma 6.1. Suppose λ/ζ1+α < 1. Then the C1+α distance between gnk
and

fµ,ν = fµk(µ̄),νk goes to zero as k (hence nk) tends to +∞.

Note that the condition λ/ζ1+α < 1 is equivalent to α < log λ
log ζ − 1.

Proof. The convergence in the C0 topology is easy to see. To see the C1+α conver-
gence, we only need to check the C1+α smallness of each partial derivative of Bn
for large n. By the symmetry, we only confirm for (Bn)x (partial derivative of Bn
with respect to x) and omit the check for (Bn)y and (Bn)z.

The partial derivative (Bn)x is given as follows:

(Bn)x = (Bn)x(x, y, z) :=

(
λ

ζ

)n
b′
(
x

ζn

)
b

(
y

ζn

)
b

(
z

ζn

)
.

Then, since λ/ζ < λ/ζ1+α < 1, we can see the the C1 smallness of this function
for large n.

Let us confirm the smallness of α-Hölder constant for large n. Given (x0, y0, z0),
(x, y, z) ∈ R3, we have

(Bn)x(x0 + x, y0 + y, z0 + z)− (Bn)x(x0, y0, z0)

|(x, y, z)|α

=

(
λ

ζ1+α

)n b′(x0+x
ζn

)
b
(
y0+y
ζn

)
b
(
z0+z
ζn

)
− b′

(
x0

ζn

)
b
(
y0
ζn

)
b
(
z0
ζn

)
|(x/ζ, y/ζ, z/ζ)|α

.

In the last formula, (λ/ζ1+α)n converges to zero as n→ +∞ if (λ/ζ1+α) < 1, and
the absolute value of the rest of the formula is bounded by the Hölder constant
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of b′(x)b(y)b(z), which does not depend on n and (x0, y0, z0). This shows that the
α-Hölder constant of |(Bn)x| converges to 0 as n tends to +∞. �

This perturbation may give some effect on points in the renormalizations. How-
ever, we can prove the following:

Lemma 6.2. The perturbation θn does not give any effect on the first return map of
the renormalization. More precisely, for every X ∈ Φm,n(∆), we have (gn)i(X) =
(fµ,ν)i(X) for i ∈ [0, N2 +m+N1 + n].

In particular, the blender of fµ,ν is not affected by the perturbation. Thus gn
also has the same blender.

Proof. Take X ∈ Φm,n(∆). The only possibility where (gn)i(X) may get some
effect from the perturbation is that (gn)n(X) is contained in the support of the
perturbation UX . Thus, let us calculate the position of (gn)n(X).

A point X ∈ Φm,n(∆) has the following form:

(σ−nσ̃−mx+ 1, σ−2nσ̃−2my + σ−n, σ−nσ̃−mz + 1),

where the point (x, y, z) is chosen from some compact domain. Hence, the coordi-
nate of (fµ,ν)n(X) is given as

(λnσ−nσ̃−mx+ λn, σ−nσ̃−2my + 1, ζnσ−nσ̃−mz + ζn).

We show that, if n is sufficiently large, then the z-coordinate of this point is
greater than ζn/2, which is the z-coordinate of the boundary of UX . This implies
that the point (gn)n(X) is outside the support of the perturbation.

To see this, we take the quotient of these two quantities:

ζn/2

ζnσ−nσ̃−mz + ζn
=

1

2(σ−nσ̃−mz + 1)
.

If z is bounded, then by taking sufficiently large m and n, one can check that the
last term lies in the interval (0, 1), which completes the proof. �

6.2. Proof of Theorem 1.4. The perturbation above keeps Qg = Q intact. Mean-
while, the local unstable manifold of Q is no longer a straight line in UQ. Indeed,
Wu

loc(Q) has a bumped sub-arc near X which contains the vertical part given as

` = `m,n := {(λn, 1 + σ−nσ̃−2my, 0) | |y| < 4β2
2b2},

see Figure 6.1. Let us consider another segment

ˆ̀= ˆ̀
m,n := {Φm,n(0, y, 0) | |y| < 4} ,

which is contained in the boundary of the box

(6.2) ∆m,n := Φm,n(∆),

where Φm,n := Ψm,n ◦Θ ◦ Θ̃, see (5.2), (5.15) and (2.2) for definitions and ∆ is the
box given in (2.4). In the next proposition, we compare the gN2+m+N1 -images of `

and ˆ̀.

Proposition 6.3. The C1 distance between the (gN2+m+N1)-images of ` and that of

gn(ˆ̀), measured in the Φm,n-coordinate, becomes arbitrarily small by letting k (hence
(m,n)) large (remember that k is the subscript for renormalizations in Theorem
1.2).
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Figure 6.1

By Remark 2.6, gN2+m+N1+n(ˆ̀) has non-empty intersection with the stable man-
ifold of the blender Λg. Hence, Proposition 6.3 implies that in the perturbed system
the unstable manifold Wu(Q) has non-empty intersection with the superposition
region of the blender Λg as a vertical segment for sufficiently large m,n. This
concludes Theorem 1.4.

Thus, we only need to prove Proposition 6.3. Let us start the proof.

Proof. The proof is obtained by similar calculations in Theorem 1.2-(2). In the
following, we give explicit calculations of image of two segments with respect to
Ψm,n-coordinate and prove the smallness of the C1 distance of these two segments.

Since the coordinate change Θ ◦ Θ̃ is bounded (independent of m and n), it implies
the C1 smallness of the difference of two segments in the Φm,n-coordinate.

• Calculation of ˆ̀. First, for any (0, t, 0) ∈ Φ−1
m,n(ˆ̀) where |t| < 4, we put

(x̂(t), ŷ(t), ẑ(t)) := Ψ−1
m,n ◦ gN2+m+N1+n ◦ Φm,n(0, t, 0).

Note that by Lemma 6.2, we know that ˆ̀does not get any effect by the perturbation.
Thus by the same procedure as in (5.9)-(5.11), each entry of (x̂(t), ŷ(t), ẑ(t)) is given
as follows:

x̂(t) = (λ̃mσ̃−ma1α2 + a2β2)t+ σnλ̃mσ̃ma1H̃1(ˆ̃xn(t)) + σnσ̃2ma2H̃2(ˆ̃xn(t))

+ σnζ̃mσ̃ma3H̃3(ˆ̃xn(t)) + σnσ̃mH1(x̂m(t));

ŷ(t) = µ̄+ σnλ̃mb1α2t+ β2
2b2t

2 + σ2nλ̃mσ̃2mb1H̃1(ˆ̃xn(t)) + 2tσnσ̃2mβ2b2H̃2(ˆ̃xn(t))

+ tσnζ̃mσ̃mβ2b4H̃3(ˆ̃xn(t)) + σ2nζ̃mσ̃3mb4H̃2(ˆ̃xn(t))H̃3(ˆ̃xn(t))

+ σ2nσ̃4mb2H̃2(ˆ̃xn(t))2 + σ2nζ̃2mσ̃2mb3H̃3(ˆ̃xn(t))2 + σ2nσ̃2mH2(x̂m(t));

ẑ(t) = (λ̃mσ̃−mc1α2 + c2β2)t+ σnλ̃mσ̃mc1H̃1(ˆ̃xn(t))

+ σnσ̃2mc2H̃2(ˆ̃xn(t)) + σnσ̃mH3(x̂m(t)).

Here, ˆ̃xn(t) and x̂m(t) in the higher order terms are given as

ˆ̃xn(t) = gn ◦ Φm,n(0, t, 0)− (0, 1, 0), x̂m(t) = gm+N1+n ◦ Φm,n(0, t, 0)− (0, 1, 1).
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• Calculation of `. Next, for any point (λn, 1 + σ−nσ̃−2mt, 0) ∈ ` where |t| <
4β2

2b2, let us calculate its image under Ψ−1
m,n ◦ gN2+m+N1 . First, if m,n are suf-

ficiently large, then ` is contained in the domain of the definition of the tran-
sition from UX to UY . Thus gN1(`) ⊂ UP . Then, we calculate gm+N1(`) :=
(x(t), y(t) + 1, z(t) + 1). They are given as follows:

x(t) = λ̃m + tσ−nσ̃−2mα2 − ζnλ̃mα3 + λ̃mH̃1(x̃n(t)),

y(t) = tσ−nσ̃−mβ2 + σ̃mH̃2(x̃n(t)),

z(t) = ζ̃mH̃3(x̃n(t)).

By a similar argument to obtain (5.8), we can check that these three numbers
converge to zero as m,n tends to +∞. Hence these points are in the domain of
transition map from UP to UQ, see also Remark 6.4 after the end of this proof.

Finally, we calculate

(x(t), y(t), z(t)) := Ψ−1
m,n ◦ gN2+m+N1(λn, 1 + σ−nσ̃−2mt, 0).

By the same computation as the proof of Theorem 1.2-(2), one has

x(t) = (λ̃mσ̃−ma1α2 + a2β2)t+ σnλ̃mσ̃ma1H̃1(x̃n(t)) + σnσ̃2ma2H̃2(x̃n(t))

+ σnζ̃mσ̃ma3H̃3(x̃n(t)) + σnσ̃mH1(x̃m(t))− λ̃mζnσ̃mσna1α3;

y(t) = µ̄+ σnλ̃mb1α2t+ β2
2b2t

2 + σ2nλ̃mσ̃2mb1H̃1(x̃n(t)) + 2tσnσ̃2mβ2b2H̃2(x̃n(t))

+ tσnζ̃mσ̃mβ2b4H̃3(x̃n(t)) + σ2nζ̃mσ̃3mb4H̃2(x̃n(t))H̃3(x̃n(t))

+ σ2nσ̃4mb2H̃2(x̃n(t))2 + σ2nζ̃2mσ̃2mb3H̃3(x̃n(t))2

+ σ2nσ̃2mH2(x̃m(t))− λ̃mζnσ̃2mσ2nb1α3;

z(t) = (λ̃mσ̃−mc1α2 + c2β2)t+ σnλ̃mσ̃mc1H̃1(x̃n(t))

+ σnσ̃2mc2H̃2(x̃n(t)) + σnσ̃mH3(x̃m(t))− λ̃mζnσ̃mσnc1α3,

where

x̃n(t) = (λn, σ−nσ̃−2mt, 0), x̃m(t) = gm+N1(λn, 1 + σ−nσ̃−2mt, 0)− (0, 1, 1).

Note that convergence of the higher order terms in the above (x̃(t), ỹ(t), z̃(t))
and (x(t), y(t), z(t)) are already contained in the proof of Theorem 1.2-(2). Then
we have

‖(x(t), y(t), z(t))− (x̃(t), ỹ(t), z̃(t))‖C1 6 O(λ̃mζnσ̃2mσ2n).

The conditions (1.3)-(1.4) imply that λ̃mζnσ̃2mσ2n converges to 0 as m,n→∞. �

Remark 6.4. Let us discuss the importance of the perturbation θn. If we do not
give the perturbation, then gm+N1(`) is in general not contained in the domain of the
transition fN2 . More precisely, without θn, in the y-coordinate of gm+N1(`) there

remains a term of the form λnζ̃mβ2 which converges to some non-zero constant.
The perturbation θn is performed so as to annihilate this term.
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