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TRANSVERSE GEOMETRY OF FOLIATIONS CALIBRATED BY

NON-DEGENERATE CLOSED 2-FORMS

DAVID MARTÍNEZ TORRES, ÁLVARO DEL PINO, AND FRANCISCO PRESAS

Abstract. Codimension one foliated manifolds (M,F) admitting a closed 2-
form ω making each leaf symplectic are a natural generalization of 3-dimensional
taut foliations. Remarkably, on such closed foliated manifolds (M,F) there
exists a class of 3-dimensional transverse closed submanifolds W on which F

induces a taut foliation FW . Our main result says that the foliated subman-
ifold (W,FW ) has the same transverse geometry as (M,F). More precisely,
the inclusion induces an essential equivalence between the corresponding ho-
lonomy groupoids. The proof of our main result relies on a leafwise Lefschetz
hyperplane theorem, which is of independent interest.

1. Introduction and Statement of Main Results

Let F be a foliation by surfaces on a closed 3-dimensional manifold W . The
foliation F is called taut if for every leaf there exists a loop C through it such that
C ⋔ F (C is everywhere transverse to F). This topological definition is equivalent
to the following differential geometric characterization: there exists a closed 2-form
inducing an area form on each leaf, see [21].

Taut foliations have no Reeb components. The latter are a source of flexibility in
the construction of foliations by surfaces on 3-manifolds. Hence, it is not surprising
that the existence of a Reebless foliation F on W has consequences for both the
topology of W and the topology of the pair (W,F). The most well-known topo-
logical constraints for a Reebless foliation are related to the fundamental group of
W : the universal covering space of W is diffeomorphic to R3 [17]; also, work of
Novikov on vanishing cycles ensures that the fundamental group of any leaf injects
into the fundamental group of F , and that every loop C ⋔ F must be non-trivial
in homotopy.

A 3-dimensional closed manifold with a taut foliation has additional remarkable
properties: there exist metrics making each compact region of a leaf a minimal
hypersurface inside its relative homology class (topological tautness equals geometric
tautness), and the taut condition can be reformulated in terms of foliation cycles
(topological tautness equals homological tautness).

The notion of tautness has a straightforward generalization to codimension one
foliations on closed manifolds of arbitrary dimension (Mp,F). One requires the
existence through any leaf of a loop C ⋔ F , or, equivalently [20], the existence
of a closed p − 1-form whose restriction to every leaf of F is a volume form. It
is still true for taut foliations on arbitrary dimension that topological tautness is
equivalent to both geometric tautness [19] or homological tautness [21, 10]. Like-
wise, the absence of vanishing cycles in the 3-dimensional case generalizes to the
absence of exploding plateaus [1]. However, the lack of exploding plateaus carries
no homotopical information. This explains why most of the topological aspects of
the rich theory of 3-dimensional taut foliations do not extend to higher dimensions.
In fact, taut foliations in high dimensions are very flexible objects, as shown by the
h–principle proved in [13].
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We have proposed the following generalization of 3-dimensional taut foliations
to higher dimensions:

Definition 1. [11] A codimension one foliation F of M2n+1 is said to admit a
2-calibration if there exists a closed 2-form ω such that the restriction of ωn to the
leaves of F is nowhere vanishing. A triple (M,F , ω), where ω is a 2-calibration for
F , is referred to as a 2-calibrated foliation.

Remark 1. Recall that a symplectic structure on a manifold of dimension 2n is
given by a closed 2-form Ω which is everywhere non-degenerate; the non-degeneracy
condition is equivalent to Ωn being nowhere vanishing, that is to say, a volume form.
The definition of a 2-calibrated foliation (M,F , ω) can be understood as follows: the
closed 2-form ω makes every leaf of F a symplectic manifold.

In this paper we will study codimension one foliations which admit a 2-calibration.
For that purpose we will take advantage of the tools furnished by a 2-calibration ω;
we will not be interested in describing the (Poisson) geometry of triples (M,F , ω).
Foliations will be of class C3 in the transverse direction unless otherwise stated.

Taut foliations on closed manifolds of arbitrary dimension have, by definition,
1-dimensional closed submanifolds everywhere transverse to the foliation. Remark-
ably, foliations admitting 2-calibrations have 3-dimensional closed submanifolds
everywhere transverse to the foliation, which capture the topology of the ambient
leaf space.

Theorem 1 ([11, 12]). Let M be a closed manifold and let F be a codimension
one foliation of M admitting a 2-calibration, which is of class C3 in the transverse
direction. There exists W →֒ M a 3-dimensional closed submanifold W ⋔ F , with
the following properties:

(1) W inherits a taut foliation FW from F .
(2) The map between leaf spaces induced by the inclusion

W/FW →M/F

is a homeomorphism.

Following Haefliger’s viewpoint, the transverse geometry of a foliation (M,F) is
described by the group-like structures in which the holonomy parallel transport is
encoded. These are either the holonomy pseudogroup or the holonomy groupoid
(see section 2 for more details). It is well-known that the leaf spaceM/F is encoded
in these group-like structures. Therefore, Theorem 1 suggests a relation between
the transverse geometries of (M,F) and the 3-dimensional taut foliation (W,FW ).

The purpose of this article is to relate the transverse geometries of (M,F) and
(W,FW ). Our main result is the following.

Theorem 2. Let M be a closed manifold and let F be a foliation of M admitting
a 2-calibration. There exists W →֒M , a 3-dimensional closed submanifold W ⋔ F ,
which inherits a taut foliation FW from F with the following (equivalent) properties:

• the map between holonomy groupoids induced by the inclusion

ι : Hol(FW ) → Hol(F) (1)

is an essential equivalence,
• any total transversal T for (W,FW ) is also a total transversal for (M,F),

and the holonomy pseudogroups H(F , T ) and H(FW , T ), induced on T by
F and FW , respectively, coincide.

It is a well-known folklore result that Theorem 2 implies that both (M,F) and
(W,FW ) have the same transverse geometry. Since we could not find a precise



HOLONOMY GROUPOIDS 3

reference for this statement in the literature, we shall illustrate the equivalence of
transverse geometries by stating a few corollaries of Theorem 2.

The first corollary says that the bijection of leaf spaces in Theorem 1 is compa-
tible with dynamical properties of the leaves:

Corollary 1. Let M be a closed manifold and let F be a foliation of M admitting
a 2-calibration. Let W →֒ M be a 3-dimensional submanifold as in the statement
of Theorem 2.

The induced homeomorphism between leaf spaces

W/FW →M/F

preserves the growth type of the leaves.

Proof. Let T be any total transversal to FW . The growth type of a leaf [18] of
F (resp. FW ) coincides with the growth type of the corresponding orbit of the
compactly generated pseudogroup H(F , T ) (resp. H(FW , T )) [9]. Therefore, the
corollary is an immediate consequence of Theorem 2. �

The next corollaries rely on the fact that essential equivalences between etale Lie
groupoids identify sheaves on the Lie groupoids, invariant global sections of those
sheaves, sheaf valued cohomologies, etc.

Corollary 2. LetM be a closed manifold admitting a foliation F which is smooth in
the transverse direction and admits a 2-calibration. LetW →֒M be a 3-dimensional
submanifold as in the statement of Theorem 2.

The inclusion establishes a bijection between transverse real analytic structures
on (M,F) and transverse real analytic structures on (W,FW ).

Proof. For the foliated space (M,F) its structural sheaf A is the sheaf of smooth
functions constant on leaves. This is a sheaf on Hol(F), meaning that its stalks
have a (continuous right) action of the holonomy groupoid ([16], Chapter 5). A
transverse real analytic structure on the codimension one foliated space (M,F) is
given by a sheaf Aω on Hol(F), Aω ⊂ A, with the following property: for each
x ∈ M there exists a neighborhood U and a function τ ∈ Aω(U) such that τ
induces a homeomorphism U/FU → τ(U) and Aω(U) = τ∗Cω(τ(U)), with FU the
foliation induced by F on U .

An essential equivalence between etale Lie groupoids establishes an equivalence
between sheaves on the groupoids [15]: one of the functors amounts to pulling back
the sheaf by the essential equivalence (the inverse image functor). In our specific
case, the essential equivalence is ι : Hol(FW ) → Hol(F) in (1), and it is clear that
ι∗Aω is a subsheaf of the structural sheaf of (W,FW ) defining a transverse real
analytic structure.

The functor in the other direction ι! is defined as follows: firstly, it pulls back a
given sheaf B on Hol(FW ) to the auxiliary manifold of points in Hol(F) representing
paths with starting point in W , and then pushes the sheaf forward to M using the
ending point map. In fact, the functor ι! has very clear geometric description: it
uses the holonomy parallel transport on (M,F) to ‘spread’ the sheaf from W to M
(strictly speaking from Hol(FW ) to Hol(F)).

It is easy to check that if B is a sheaf defining a transverse real analytic structure
on (W,FW ), then ι!B also defines a transverse real analytic structure on (W,FW ).

The two functors above are such that ι∗ ◦ ι! = Id and, since the holonomy
groupoids have unique local bisections ([16], Chapter 5) through any given point,
ι! ◦ ι∗C is canonically isomorphic to C, where C is any sheaf on (M,F). Of course,
this implies that if C defines a transverse real analytic structure on (M,F), the
sheaf ι! ◦ ι∗C defines the same transverse real analytic structure, and this finishes
the proof of the corollary. �
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Corollary 3. Let M be a closed manifold and let F be a foliation of M admitting
a 2-calibration. Let W →֒ M be a 3-dimensional submanifold as in the statement
of Theorem 2.

The inclusion establishes a bijection between transverse Riemannian metrics on
(M,F) and transverse Riemannian metrics on (W,FW ). More generally, the cor-
respondence extends to transverse invariant measures.

Proof. The normal bundle to the foliation ν(F) is a bundle on Hol(F) (the holo-
nomy groupoid acts on it), and so its second symmetric power is as well. Let RF

be the sheaf on Hol(F) of sections of Sym2ν(F). Transverse invariant Riemannian
metrics on (M,F) are by definition invariant global sections of RF .

It is clear that ι identifies RF with RFW
(up to canonical isomorphims). Since

an essential equivalence identifies sheaves together with their invariant global sec-
tions [15], ι establishes a one-to-one correspondence between transverse Riemannian
metrics.

More generally, an invariant transverse (Radon) measure is also an invariant
global section of a sheaf MF on Hol(F): for each open subset U , MF (U) is defined
as the continuous dual of the continuous functions on U which have compact support
and are constant on the leaves of the foliation induced by F on U . One checks that
ι identifies MF with MFW

, and this finishes the proof of the corollary. �

For a foliated space (M,F), there are several homology/cohomology theories
that can be defined in terms of the holonomy groupoid Hol(F). One is the dif-
ferentiable cohomology of the holonomy groupoid H∗

d (Hol(F)). When Hol(F) is
Hausdorff, H∗

d (Hol(F)) coincides with Haefliger’s cohomology [8] with coefficients
in the structural sheaf of the foliation. Others are the homology theories defined
out of the convolution algebra of the groupoid, namely, the periodic, Hochschild
and periodic cyclic homologies (see for example [3]).

Corollary 4. Let M be a closed manifold and let F be a foliation of M admitting
a 2-calibration. Let W →֒ M be a 3-dimensional submanifold as in the statement
of Theorem 2.

(1) Assume that Hol(F) is a Hausdorff Lie groupoid. Then the induced homo-
morphism between differentiable cohomology algebras

H∗
d (Hol(FW )) → H∗

d(Hol(F))

is an isomorphism.
(2) Assume that the foliation is smooth in the transverse direction. Then the

induced homomorphism between cyclic (resp. Hochschild, periodic cyclic)
homologies is an isomorphism.

Proof. If Hol(F) is a Hausdorff, then so is Hol(FW ), since this is a property sta-
ble under essential equivalences. An essential equivalence between Hausdorff Lie
groupoids induces an isomorphism between the corresponding differentiable coho-
mologies [2] (the proof is done for smooth groupoids, but holds in any regularity
class). When the Lie groupoids are (non-necessarily Hausdorff) smooth foliation
groupoids –and this is the case for holonomy groupoids– the essential equivalence
also induces an isomorphism between between cyclic, Hochschild and periodic cyclic
homologies [3]. Therefore the corollary is an immediate consequence of Theorem
2. �

The structure of the paper is the following: in Section 2 we briefly recall the
definitions of holonomy pseudogroup and holonomy groupoid, and we present some
basic material on essential equivalences of Lie groupoids. In particular, we easily
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characterize when the morphism in Theorem 2 between holonomy groupoids

Hol(FW ) → Hol(F) (2)

is an essential equivalence. This characterization leads to a sufficient condition
for (2) to be an essential equivalence; the sufficient condition is a Lefschetz-type
requirement for the zero-th and first homotopy groups of the pair (F, F ∩W ), where
F is any leaf of F .

As we shall recall in Section 3, Lefschetz-type theorems are classical results for
hyperplane sections in Kähler geometry, which have been extended by Donaldson
[4] to the symplectic setting by means of the so called approximately holomorphic
theory. Very much as in the symplectic setting, approximately holomorphic theory
can also be applied to a closed manifold endowed with a 2-calibrated foliation
(M,F , ω) to produce Lefschetz-type theorems for the pair (M,W ), where W is a
Donaldson-type submanifold [11] (indeed, the 3-dimensional submanifold appearing
in the statement of Theorem 2 is of this kind). Despite the non-compactness of
the leaves, we shall prove that Lefschetz type-theorems are also valid for the pair
(F, F ∩W ).

Theorem 3. Let (M2n+1,F , ω) be a closed manifold of dimension 2n+1 endowed
with a 2-calibrated foliation. Let W be a Donaldson-type submanifold of dimension
2j + 1. Then, for every leaf F of F it holds that

πk(F, F ∩W ) = {1}, 0 ≤ k ≤ j.

Theorem 3 states that the higher the dimension of a Donaldson-type submanifold
W is, the more topology of F is captured by F ∩W . This should also imply the
higher the dimension ofW is, the more properties of the geometry of F are captured
by FW . Indeed, Theorems 1 and 2 are a consequence of Theorem 3 for 3-dimensional
Donaldson-type submanifolds. For higher dimensional ones we have:

Theorem 4. Let M be a closed manifold of dimension at least 7 and let F be a
foliation of M admitting a 2-calibration. Then there exists a 5-dimensional closed
submanifold W ⋔ F such that the map between homotopy groupoids induced by the
inclusion

Π(FW ) → Π(F) (3)

is an essential equivalence.

The authors are grateful to M. Crainic and P. Frejlich for their valuable sugges-
tions. The present work is part of the authors activities within CAST, a Research
Network Program of the European Science Foundation. The second and third au-
thors are supported by the Spanish National Research Projects MTM2010–17389
and MTM2013-42135. The first author acknowledges partial support of ERC Start-
ing Grant no. 279729.

2. Transverse submanifolds and essential equivalence of holonomy

groupoids

In this section we briefly sketch the construction of the holonomy pseudogroup of
a foliation, and recall its relation with the transverse geometry of the foliation. We
also introduce the holonomy groupoid, which is an alternative way to encode the
transverse geometry. Since most of the results stated in the Introduction use the
holonomy groupoid, we will recall some basic material of Lie groupoids. The reader
familiar with these constructions may skip them and go directly to subsection 2.3,
where we characterize some important essential equivalences between holonomy
groupoids.
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2.1. Holonomy pseudogroup. Let γ be a piecewise smooth path contained in a
leaf of the foliated manifold (M,F), starting at x and ending at y. Let Tx and Ty
be submanifolds through x and y, respectively, transverse to F , and of dimension
complementary to the rank of F . The holonomy parallel transport along γ defines
a diffeomorphism

hγ : (Ux, x) → (Uy, y),

where Ux ⊂ Tx and Uy ⊂ Ty are neighborhoods of x and y, respectively; the germ
of the diffeomorphism hγ only depends on the relative homotopy class of γ inside
its leaf.

A total transversal T to (M,F) is a (not necessarily closed nor connected) sub-
manifold transverse to F , of dimension the co-rank of F , and intersecting every
leaf of the foliation; any foliated atlas of (M,F) provides total transversals.

Let T be a total transversal. The representative of the holonomy pseudogroup
H(F , T ) is the smallest pseudogroup of diffeomorphisms containing the holonomy
parallel transports of paths starting and ending at points of T . There is a natural
equivalence relation between pseudogroups: Haefliger’s equivalence [9]. Two total
transversals T, T ′ produce Haefliger equivalent pseudogroups H(F , T ), H(F , T ′).
Strictly speaking, the holonomy pseudogroup H(F) is the Haefliger’s equivalence
class of any such H(F , T ).

Following Haefliger’s insight, the transverse geometry of (M,F) is understood
as those properties of the representatives of the holonomy pseudogroups that are
stable under Haefliger’s equivalence (and which are therefore properties of H(F)).
Interestingly enough, there are some properties of a foliated manifold, which de-
spite their original definition, happen to be manifestly dependent only on the the
transverse geometry. For example, for compact foliated manifolds, being H(F)
compactly generated [9], growth properties of the leaves of (M,F) correspond to
growth properties of the orbits of H(F).

2.2. Holonomy and Lie groupoids. An alternative way to encode the holonomy
of F is the holonomy groupoid Hol(F) (the graph of the foliation in [22]). This is
the collection of germs of all possible holonomy parallel transports. More precisely,
the points of the holonomy groupoid correspond to paths inside a leaf modulo the
holonomy equivalence relation: two paths γ, γ′ inside a leaf, starting at x and ending
at y, are holonomy equivalent if they give rise to the same germ of holonomy parallel
transport. Concatenation of paths induces a Lie groupoid structure on Hol(F) with
base manifold M .

Definition 2. A Lie groupoid G ⇒ M over M is a (possibly non-Hausdorff)
manifold G (of class Ck, k ≥ 1) endowed with the following additional structure:

(1) two surjective submersions to M : the source and target maps s, t,
(2) a multiplication map G(2) → G defined on the manifold of pairs of elements

G(2) = {(g, h) | s(g) = t(h)},

satisfying the usual axioms for the multiplication on a Lie group,
(3) inversion map given by an involutive diffeomorphism,
(4) instead of a unit, an embedding M → G whose image are the units of the

groupoid.

For a good reference on the notion of Lie groupoids see [16], Chapter 5. We note
the following basic facts:

• The set of elements with source and target a fixed x ∈M form a Lie group,
called the isotropy group of G at x, which we denote by Gx;
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• There is an equivalence relation onM induced by G: two points are related if
they are source and target of an element of G; the classes of this equivalence
relation fit into a (possibly singular) foliation. More precisely, there is
an action of G in M ([16], Chapter 5) whose orbits are the leaves of the
aforementioned foliation.

Remark 2. It is convenient to think of a Lie groupoid G ⇒ M as a Ck desingu-
larization of its leaf space M/G.

Example 1. For the holonomy groupoid Hol(F) ⇒ M , the source and target maps
are the starting and ending point respectively. Multiplication is (as already men-
tioned) induced by concatenation of paths. The foliation associated to the action of
Hol(F) ⇒ M is nothing but F . Note that the regularity of the holonomy groupoid
coincides with the transverse regularity of the foliation (in our case of class at least
C3).

Example 2. In general there might be plenty of Lie groupoids over M besides
Hol(F) whose action onM recovers F . If in the definition of the holonomy groupoid
we do not quotient by the holonomy equivalence relation, but by the stronger leafwise
homotopy relative to starting and ending points, we obtain the homotopy groupoid
Π(F) ⇒M .

The orbits of the action of the homotopy groupoid on M are precisely the leaves
of F . For each point x ∈ M , the isotropy group of Π(F) at x is the fundamental
group π1(F, x), where F is the leaf containing x.

Let K(F, x) denote the normal subgroup of π1(F, x) of homotopy classes of loops
with trivial holonomy parallel transport. By definition of the holonomy groupoid,
there is an obvious etale surjection

p : Π(F) → Hol(F). (4)

The inverse image of the units in Hol(F) is the collection of subgroups K(F, x),
where x ranges through M . Equivalently, the isotropy group Holx can be identified
with the quotient group π1(F, x)/K(F, x).

A morphism of Lie groupoids is a map of pairs (G′,M ′) → (G,M) which inter-
twines source, target, multiplication and unit embedding maps (with the obvious
regularity requirements).

Example 3. Let (M,F) be a foliated manifold and W a submanifold transverse to
F , so it inherits a foliation FW . The inclusion of W in M induces a morphism of
Lie groupoids

Π(FW ) → Π(F). (5)

Let x ∈ M and let F be the leaf through x. The map induced by (5) on isotropy
groups

π1(F ∩W,x) → π1(F, x)

takes K(F ∩W,x) inside of K(F, x); the reason is that one may choose a transversal
to FW (of dimension the co-rank of FW ) which is also a transversal to F . Therefore
(5) induces a morphism between the holonomy groupoids

Hol(FW ) → Hol(F). (6)

One has the obvious notion of isomorphism of Lie groupoids. Isomorphisms are
scarce, and they are not quite the right equivalence relation among Lie groupoids.
On the other hand, there is a much broader family of morphism between Lie
groupoids which does preserve a great deal of the information that a Lie groupoid
encodes.
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2.3. Essential equivalences and holonomy groupoids. A morphism of Lie
groupoids φ : (G′ ⇒ M ′) → (G ⇒ M) is an essential equivalence if the following
two conditions hold:

(1) The composition

t ◦ pr1 : Gs×φ M
′ −→ M

(h, x) 7−→ t(h) (7)

is a surjective submersion;
(2) The square

G′ φ
//

(s,t)

��

G

(s,t)

��

M ′ ×M ′ φ×φ
// M ×M

(8)

is a fibered product of manifolds.

Remark 3. If one regards G′ ⇒ M ′ and G ⇒ M as Ck-desingularizations for
M ′/G′ and M/G, respectively, then an essential equivalence plays the role of an
isomorphism. From this perspective, essential equivalences are the most relevant
morphisms in Lie groupoid theory.

Example 4. Let T be a total transversal of (M,F). Let Hol(F)|T denote the points
in the holonomy group with source and target in T . Then Hol(F)|T is a Lie groupoid
and the inclusion

Hol(F)|T → Hol(F)

is an essential equivalence.

Remark 4. The pseudogroup H(F , T ) can be reconstructed from Hol(F)|T as its
pseudogroup of local bisections [16]. Therefore H(F , T ) and Hol(F)|T carry the
same information.

Next, we want to discuss when the morphism in (6) is an essential equivalence.
More generally, one has the following result:

Lemma 1. Let φ : (G′ ⇒ M ′) → (G ⇒ M) be a morphism of Lie groupoids such
that φ : M ′ →M is an embedding. Let F (resp. F ′) be the possibly singular foliation
induced by G on M (resp. G′ on M ′). Then φ is an essential equivalence if and
only if the following conditions hold:

(1) The image φ(M ′) has non-empty intersection with every leaf of F , and the
restriction φ : M ′ →M is transverse to F .

(2) For every x′ ∈M ′,
(i) The induced map on isotropy groups G′

x′ → Gφ(x′) is an isomorphism;
(ii) The image of the leaf through x′ is given by φ(M ′)∩F , where F is the

leaf through φ(x′).

Proof. The lemma simply restates the two conditions which define an essential
equivalence, when φ is an embedding on units:

The map (7) is a surjective submersion if and only if condition (1) holds (this has
nothing to do with G′, and is just a property of how φ is defined on units). Because
φ is an embedding on units, the isomorphism of isotropy groups is necessary for (7)
to be a fibered product (the isomorphism between isotropy groups is a necessary
condition for any morphism to be an essential equivalence; in our setting this is much
more transparent); likewise, each leaf of F ′ must be identified with the intersection
of φ(M ′) with a leaf of F . But since φ is a morphism, it is also straightforward to
check that these conditions are sufficient to show that (7) is a fibered product. �
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Corollary 5. Let (M,F) be a foliated manifold and let W be a submanifold trans-
verse to F , with induced foliation FW . The induced map on holonomy groupoids

Hol(FW ) → Hol(F)

is an essential equivalence if and only if the inclusion induces isomorphisms

π0(F ∩W,x) → π0(F, x),

π1(F ∩W,x)/K(F ∩W,x) → π1(F, x)/K(F, x),

where F is the leaf through x.

Corollary 6. Let (M,F) be a foliated manifold and let W be a submanifold trans-
verse to F , with induced foliation FW . If every leaf F of F satisfies

π0(F, F ∩W ) = {1}, π1(F, F ∩W ) = {1},

then the induced morphism of holonomy groupoids

Hol(FW ) → Hol(F)

is an essential equivalence.

Proof. By using long exact homotopy sequence for the pair (F, F ∩W ), we deduce
the isomorphism on zero-th homotopy groups, and the epimorphism of fundamental
groups

π1(F ∩W,x) → π1(F, x),

for every x ∈ F . The epimorphism automatically implies the surjectivity of

h : π1(F ∩W,x) → π1(F, x)/K(F, x). (9)

We claim that the kernel of (9) is K(F ∩W,x): by definition, if γ ⊂ F ∩W is such
that h([γ]) = 0, its holonomy parallel transport with respect to F gives the trivial
germ. Since the parallel transport does not depend on the choice of model for the
(pullback of) the normal bundle, we may take ν(FW ) as model for ν(F) (because
γ ⊂ W ). Thus we conclude that [γ] ∈ K(F ∩W,x). Reversing the argument one
shows that K(F ∩W,x) is in the kernel of (9).

�

The analogous result for the homotopy groupoids is the following:

Corollary 7. Let (M,F) be a foliated manifold and let W be a submanifold trans-
verse to F , with induced foliation FW . If every leaf F of F satisfies

π0(F, F ∩W ) = {1}, π1(F, F ∩W ) = {1}, π2(F, F ∩W ) = {1}

then the induced morphism of homotopy groupoids

Π1(FW ) → Π1(F)

is an essential equivalence.

3. Applications of approximately holomorphic theory to

2-calibrated foliations

3.1. Preliminaries.

Definition 3. A submanifold W →֒ (M,F , ω) is a 2-calibrated submanifold if it
is everywhere transverse to F and intersects each leaf of F in a symplectic subman-
ifold w.r.t. ω. In particular, (W,FW , ω|W ) is a 2-calibrated foliation.
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These submanifolds are constructed by applying approximately holomorphic
techniques, first described by Donaldson [4] in the symplectic setting. Let us sum-
marize some of the needed definitions and results.

Let M2n+1 be a closed manifold endowed with a 2-calibrated foliation (F , ω).
After a small perturbation, we may assume without loss of generality that [ω] is a
rational class; by scaling the class, we may also assume that it is integral. We let
L → M be the pre–quantum line bundle associated to ω; this is a Hermitian line
bundle with a compatible connection ∇ whose curvature is −2πiω.

We let ∇F denote the component of ∇ tangential to F . After choosing an almost
complex structure J compatible with ω, the tangential connection can be further
decomposed into its complex linear and antilinear parts, yielding ∇F = ∂ + ∂̄.

According to [11], Corollary 1.2, upon choosing the almost complex structure
J , it is possible to construct a family sk : M → Lk of sections of the k-th tensor
powers of L, for k large enough, such that Wk := s−1

k (0) are closed, 2-calibrated
submanifolds of codimension two. We call these Wk Donaldson-type submanifolds.

To state conditions that are required for the sequence sk, we need to fix a metric
g on M which over the leaves satisfies g = ω(·, J ·). Further, we define a family of
scaled metrics gk = kg.

Definition 4.

(1) A sequence of sections sk :M → Lk is said to be approximately holomorphic
if there is a universal constant C > 0 such that:

|∇psk|gk < C |∇p∂̄sk|gk < Ck−1/2, p = 0, 1,

for k large enough.
(2) A sequence of sections sk :M → Lk is said to be ν-transverse to zero along

the foliation F if at any point either |sk|gk ≥ ν or |∇Fsk|gk ≥ ν.

To every such an approximately–holomorphic transverse to zero sequence sk one
associates a sequence of functions fk :M \Wk → R by fk = log |sk|

2. The Lefschetz
hyperplane theorem for Donaldson-type submanifolds ([4, 11]) states:

Proposition 1. Fixing a leaf F , the function fk : F \ (Wk ∩F ) → R, which might
not be Morse, has only critical points of index at least n.

This proposition, when applied to a closed leaf, implies Theorem 3 immediately
–as seen in [4, 12]– for codimension two Donaldson-type submanifolds. The higher
codimension case can then be proven by an easy induction.

However, since the leaf F is, in general, open, gradient flows may behave badly.
The point precisely is that leaves are very special non–compact manifolds and the
Morse–theoretical proof found in [4] can be adapted. In the next section we explain
the assumptions needed for Morse theory to work in an open manifold and, after
that, we show that these assumptions are indeed satisfied by the leaf F after some
tweaking.

3.2. Gradient flows and the topology of open manifolds. The study of flows
which behave well on open manifolds already appears in the literature on foliation
theory [6]. For the sake of completeness, we review these facts tailored to the
applications we have in mind.

Let f be a Morse function on a manifold M . For any a ∈ R set Ma = {x ∈
M | f(x) ≤ a}, and denote by Crita(f) the subset of critical points of f lying in
M\Ma.
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Let a be a regular value for f and let b > a. Assume for the moment that M is
compact. It is customary to study the relative topology of the pair (Mb,Ma) using
minus the gradient flow of f with respect to some fixed metric g. The key point
is that the following dichotomy holds: for any x ∈Mb\Ma the trajectory of −∇gf
starting at x either entersMa in finite time, or converges to one of the finitely many
critical points in Crita(f).

IfM is no longer compact but f is proper, then of course the study of the relative
topology of the pair (Mb,Ma) goes exactly as in the compact case. There might be
cases –as in our setting coming from approximately holomorphic geometry– that
the natural Morse functions to be used are not proper, and one needs to impose an
appropriate form of the above dichotomy for trajectories of −∇gf :

Lemma 2. Let f be a Morse function on a manifold M and let g be a metric on
M so that ∇gf is complete. Let a be a regular value, b > a, and assume that the
following holds:

(1) For every compact subset X ⊂ Mb, there exist finitely many critical points
c1, . . . , ciX in Crita(f) such that the following dichotomy holds: a trajectory
of −∇gf starting at x ∈ X either reaches Ma in finite time, or converges
to a critical point in {c1} ∪ · · · ∪ {ciX}.

(2) Every c ∈ Crita(f) has index ≥ j.

Then we have that πk(M,Ma) = 0, for k = 0, . . . j − 1.

Proof. Let us start by making the following observation: if X is as in assumption
(1) and the collection {c1} ∪ · · · ∪ {ciX} is empty, then we claim that X is taken
in finite time to Ma by the flow φ of −∇gf . Indeed, for every x ∈ X there exists
a time tx > 0 such that f(φtx(x)) < a; further, since for fixed t, φt is continuous,
there is a small ball Bg(x, εx) centered at x such that φtx(Bg(x, εx)) ⊂Ma. Then,
the result follows by compactness of X .

Now, let N be a compact manifold and h : (N, ∂N) → (Mb,Ma) be a smooth
map. Let U be a relatively compact neighborhood of h(N). Then assumption (1)
implies that trajectories starting at points in Ū can only enter Ma in finite time or
converge to one of the finitely many critical points {c1}, . . . , {ciŪ }. In particular,
there is a small relatively compact neighborhood V of h(∂N) such that the flow of
−∇gf sends V into Ma: this follows if V is selected so that f(V ) lies below the
critical values {f(c1)}, . . . , {f(ciŪ )}.

Let W be a relatively compact open subset of Mb\Ma so that W ∪ V covers
h(N). We shall construct h′, a small perturbation of h relative to V .

Because W is relatively compact, the dichotomy in (1) holds again. Then the
usual finite induction argument from [14] applies: the previous finitely many critical
points are ordered by decreasing value, and a perturbation h′ of h relative to V
transverse to the ascending disks is constructed. This perturbation can be taken
to be arbitrarily small, so we can still assume that h′(N\V ) ⊂W .

If N has dimension at most j − 1 then, by hypothesis (2), transversality to the
ascending disks means empty intersection. The hypotheses of the claim at the start
of the proof are satisfied and it follows that πk(M,Ma) = 0, for k = 0, . . . j− 1. �

The following result –whose proof we defer to the last section– describes quan-
titative conditions on the gradient vector field granting the dichotomy in point (1)
of Lemma 2.

Proposition 2. Let f be a Morse function and let g be a complete metric on M .
Let a < b ∈ R be given and assume that there exist real constants D,E > 0 such
that:
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(1) There exist open subsets Ci ⊂ Mb, i ∈ I, such that for any pair i, i′ ∈ I,
i 6= i′, we have dg(Ci, Ci′) > D.

(2) The diameter of the sets Ci is at most E.
(3) There exist real numbers δ1, δ2 > 0, such that

δ2 ≥ |∇g(f)(p)| ≥ δ1, ∀p ∈Mb \

(
⋃

i∈I

Ci

)
.

Then −∇gf is complete and the dichotomy in point (1) of Lemma 2 for −∇gf
holds.

3.3. Proof of Theorem 3. Fix some leaf F ∈ F . In this section all we need to do
is to check that for a well chosen Morse function and metric on F the hypotheses of
Proposition 2 are satisfied for F . Our candidate is the restriction to the leaf of the
function fk = log |sk|

2, and the restriction to the leaf of any Riemmanian metric
on M .

We shall prove a couple of preliminary lemmas, for which we need to recall some
notation. Given a function f , defined on a manifold endowed with a codimension
one foliation (M,F), the tangential differential dFf is the composition of the dif-
ferential with the projection T ∗M → (TF)∗. The points in which dFf vanishes are
the tangential critical points of f , which we denote by ΣF (f). Of course, ΣF (f)
are nothing but the critical points of the restriction of f to each leaf of F .

Lemma 3. For every k large enough, Wk ⊂ M has a tubular neighborhood that
contains a full regular level set of fk = log |sk|

2 and which is also disjoint from
ΣF(fk).

Proof. It is enough to check that hk = ||sk||
2 satisfies the Lemma, since log is an

increasing monotone function.
We claim that the neighborhood U = {x ∈M | ||sk(x)|| < ν} of the submanifold

Wk does not intersect ΣF(fk). Assume that p ∈ U . By the ν–transversality along
F of the section sk, there is a unitary vector field v ∈ TpF such that ||∇vsk(p)|| ≥
ν. By asymptotic holomorphicity, for k large, we have that the unitary vector
field Jv ∈ TpF satisfies ||∇Jvsk(p) − i∇vsk(p)|| = O(k−1/2). Therefore, the map
∇Fsk(p) is surjective. We conclude that p 6∈ ΣF(fk).

�

Lemma 4. Let F , a leaf of F , be fixed. After a perturbation of the sequence
sk, preserving transversality to zero and approximately holomorphicity, it can be
assumed that:

(1) the restrictions of the fk to F are Morse functions.
(2) ΣF(fk) is a finite union of disjoint circles in general position with respect

to F , and the tangency points are turning points.

Proof. According to [6], after an arbitrarily small Cr perturbation, r ≥ 2, the
set of tangential critical points ΣF (fk) can be assumed to fit into a 1-dimensional
manifold, such that all but a finite number of its points c1, . . . , cd are non-degenerate
critical points for the restriction of fk to the corresponding leaf. These turning
points are the points where ΣF(fk) fails to be transverse to F and they are birth-
death type singularities for the restriction of fk to the leaf. The property which
will be relevant for us is the following: the turning point is a quadratic critical
point for the restriction of a local transverse coordinate to ΣF (fk), so in a small
foliated chart a plaque not containing the turning point intersects ΣF (fk) either in
the empty set or in two tangential critical points.
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To prove assertion (2) in the Lemma one can as well suppose that none of the
c1, . . . , cd belong to the fixed leaf F : in [6] a explicit model for displacing the birth–
death points to a different leaf is described, using a Cr perturbation. Therefore,
we guarantee that (fk)|F is a Morse function.

These Cr perturbations of fk can be taken to be the result of a Cr perturbation
of sk. Indeed, let εk be a Cr perturbation of fk. The function εk can be assumed
to be identically zero away from an arbitrary small neighborhood of ΣF(fk) so, by
lemma 3, the following expression is well defined:

s̃k = sk
√
1 + εk/fk,

since fk is bounded from below in the support of εk. It is clear that

||s̃k|| = fk + εk.

The asymptotic holomorphicity of the sequence s̃k can be readily checked:

∇s̃k = ∇sk
√
1 + εk/fk + sk

fk∇εk − εk∇fk

2f2
k

√
1 + εk/fk

,

where the second term is Cr-small and the first is Cr-close to ∇sk. A similar
computation for the higher order derivatives concludes the claim.

�

We can finally address the proof of the theorem.

Proof of Theorem 3. Fix a leaf F and assume that we have all the data needed
for developing approximately–holomorphic geometry in M2n+1. The metrics gk
induce complete metrics in F . Given an approximately–holomorphic sequence sk,
with corresponding Donaldson-type submanifolds Wk, an application of Lemma 4
yields a new approximately–holomorphic sequence, still denoted by sk, that induces
Morse functions (fk)|F in F \Wk.

By Lemma 3, Wk has an ε-neighborhood containing a regular level ak. Lemmata
3 and 4 together mean that ΣF(fk) has a small tubular neighborhood of positive
radius not intersecting the level ak.

By Lemma 4, the manifold ΣF(fk) is transverse to F except in a finite number
of turning points c1, . . . , cd. Fix a closed geodesic arc Ti through each ci, transverse
to the foliation. Let B2n(0, r) ⊂ R

2n be the closed ball of radius r. For r > 0
sufficiently small, the exponential map for the leafwise metric gFk yields disjoint
foliated charts φi : Ui → [0, 1]× B2n(0, r) satisfying φi(Ti) = [0, 1]× {0}. Having
fixed r, by taking the Ti sufficiently short – effectively shrinking Ui in the vertical
direction – it can be assumed that:

φi(Σ
F (fk) ∩ Ui) ⊂ [0, 1]×B2n(0, r/2)

Consider the family of closed arcs Ij ⊂ ΣF (fk), j ∈ [1, 2, .., d], whose interiors
are precisely ΣF (fk) \ (∪i=1..dUi). For sufficiently small 0 < s < r, the exponen-
tial map for the metric gFk defines disjoint charts ψj : Vj → [0, 1]× B2n(0, s) with
φj(Ij) = [0, 1]× {0}. The union of the Ui and the Vj covers ΣF(fk).

The subsets Ci, as in Proposition 2, can be defined and they come in two families:

(1) s/2–neighborhoods, in the metric gFk , of the points x ∈
◦

Ij ∩ F , for any j,
(2) r/2–neighborhoods, in the metric gFk , of the points x ∈ Ti ∩ F , for any i.

By construction, the gFk –diameter of the Ci is bounded above by r/2. Further,
the gFk –distance between any two sets Ci and Ci′ is bounded below by s. Therefore
conditions (1) and (2) in Proposition 2 hold. Condition (3) follows immediately
from the fact that the union of the Ci is the intersection of a neighborhood of
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ΣF(fk) with the leaf F .

An application of Lemma 2 shows that the relative homotopy groups πj(F, F ∩
Wk) vanish for j < n and for k large enough, since we already did the index com-
putation in Proposition 1. This proves the theorem when Wk has codimension two.
The general case follows iterating the previous construction (alternatively, we could
have used approximately holomorphic sections of Lk ⊗ Cj)

�

Proof of Theorem 2. Combining Theorem 3 and Corollary 6, we construct a 3-
dimensional Donaldson-type submanifold W ⋔ F so that the natural map

Hol(FW ) → Hol(W )

is an essential equivalence.
As for the pseudogroup approach, the vanishing of π0(F, F ∩W ) implies that

any total transversal T to FW is a total transversal to F , and the vanishing of
π1(F, F ∩W ) easily gives H(FW , T ) = H(F , T ). �

Proof of Theorem 4. It follows from combining Theorem 3 and Corollary 7. �

4. Proof of Proposition 2

Under the assumptions of Proposition 2, given any x ∈M , we denote by γx the
positive half of the flow line that contains x. Let γtx designate the segment of the
curve γx between x and φt(x).

Lemma 5. Let a < b ∈ R be given. There is a constant R, independent of t ∈ R

and x ∈Mb, such that dg(φt(x), x) > R implies f(φt(x)) < a.

Proof. For every curve γ we denote by γ̃ the (possibly disconnected) curve:

γ̃ =

{
p ∈ γ : p /∈

⋃

i∈I

Ci

}
,

that is, the segments of γ that are disjoint from the sets Ci.
Given any curve γ ⊂ B(x,R) starting at x and intersecting the boundary of

B(x,R) at y, we can associate to it another curve, which we denote by η = ηγ ,
using the following procedure:

(1) list, in order, all the sets Ci that γ intersects. Remove all the consecu-
tive repetitions of the same Ci, listing just the first one in each series of
repetitions. Write {Cij}j∈[1,..k] for this finite list,

(2) mark the entry and exit points ej and fj of γ into each Cij . In the case of
consecutive repetitions of the same Ci, just mark the first entry point and
the last exit point of the series. For simplicity, denote f0 = x and ek+1 = y,

(3) call η the piecewise smooth curve formed by connecting these marked points
in the order they appear. From ej to fj, take the shortest geodesic between
the two points. From fj to ej+1, take the shortest path not intersecting
any Ci. Denote these paths by l(ej, fj) and l(fj, ej+1) respectively.

Assume R > E +D. If k = 0, 1, it is immediate that

length(η̃)

length(η)
≥

D

E +D
,
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otherwise, the following estimate holds:

length(η̃)

length(η)
=

∑k
j=0 length(l(fj, ej+1))

∑k
j=0 length(l(fj, ej+1)) +

∑k
j=1 length(l(ej , fj))

≥

∑k−1
j=1 length(l(fj, ej+1))

∑k−1
j=1 length(l(fj , ej+1)) + kE

≥
(k − 1)D

(k − 1)D + kE
≥

D

2(E +D)
.

For any radius r > E +D, denote by τ the time at which the curve γx first in-
tersects the ball B(x, r). Denote this intersection point by y. Consider the segment
γτx and its associated curve η = ηγτ

x
. Use the fact that over γ̃τx we have a lower

bound for the gradient |∇gf | > δ1 > 0:

|f(y)− f(x)| ≥ δ1 length(γ̃
τ
x) ≥ δ1 length(η̃) ≥ δ1 length(η)

D

2(E +D)
≥ r

δ1D

2(E +D)

which implies that, if r is taken to be large enough, |f(y)−f(x)| > b−a, and hence
y ∈Ma.

�

Proof of Proposition 2. Let X ⊂ Mb be a compact set. Let R be the universal
constant given by Lemma 5. Denote by X(R) the R-neighborhood of X , which is
a relatively compact set. Lemma 5 implies that any trajectory starting at X either
reaches the interior of Ma – which is equivalent to saying that it reaches Ma in
finite time – or it remains in X(R) for all time.

It must be shown that if a trajectory γx remains within X(R) for all times then it
must converge to a critical point. Since X(R) is relatively compact and f is a Morse
function, there is a finite number k of critical points in its closure. Each of those
critical points {ci}

k
i=1 has an arbitrarily small neighborhood Vi which corresponds

to a ball in the standard Morse model around ci. In particular, a trajectory that
intersects Vi must intersect just once, either converging to ci or escaping from Vi
eventually. From this it follows that there is a time t0 > 0 such that γx(t) /∈ Vi,
for all t > t0 and every i. Since the gradient |∇gf | > δ > 0 is bounded from below
in X(R) \ ∪i=1..kVi, this shows that f(γx(t)) < a for t large enough, which is a
contradiction.

�
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