{VERSION 6 0 "IBM INTEL NT" "6.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Comment" 2 18 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 257 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 258 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 259 "" 0 1 255 0 0 1 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 260 "" 0 1 255 0 0 1 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 261 "" 0 1 255 0 0 1 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 262 "" 0 1 0 0 255 1 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 263 "" 0 1 0 0 255 1 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 264 "" 0 1 0 0 255 1 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 265 "" 0 1 255 0 0 1 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 266 "" 0 1 255 0 0 1 0 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 267 "" 0 1 255 0 0 1 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 268 "" 0 1 0 0 255 1 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 269 "" 0 1 0 0 255 1 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 270 "" 0 1 255 0 0 1 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 271 "" 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 272 "" 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 273 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 274 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 275 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 12 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Plot" -1 13 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Normal" -1 256 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Normal" -1 257 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Normal" -1 258 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "with(plots):" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 256 "" 0 " " {TEXT 257 33 "Sistemas de Equa\347\365es de Diferen\347a" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 12 "Um problema:" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 105 "Queremos contar quantos caminhos (fechados) de tamanho n come\347am e terminam no v\351rtice 1 de um tri\342ngulo." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 212 "display(polygonplot([[0,0],[1,0],[cos(Pi/3),sin(Pi/3 )]],scaling=constrained,axes=none,thickness=4),textplot([[-0.1,0,\"1\" ,align=left],[1.1,0,\"2\",align=right],[cos(Pi/3),sin(Pi/3)+.1,\"3\",a lign=above]],color=blue));" }}{PARA 13 "" 1 "" {GLPLOT2D 250 142 142 {PLOTDATA 2 "6(-%)POLYGONSG6$7%7$$\"\"!F)F(7$$\"\"\"F)F(7$$\"+++++]!#5 $\"+SSDg')F0-%*THICKNESSG6#\"\"%-%%TEXTG6&7$$!\"\"F%+ALIGNRI GHTGF@-F86&7$F.$\"+SSDg'*F0Q\"3F>%+ALIGNABOVEGF@-%*AXESSTYLEG6#%%NONEG -%(SCALINGG6#%,CONSTRAINEDG" 1 2 0 1 10 0 2 9 1 1 1 1.000000 45.000000 45.000000 0 0 "Curve 1" "Curve 2" "Curve 3" "Curve 4" }}}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 76 "Por simetria, vemos que come\347ar e terminar em 1 ou em 2 ou em 3 d\341 no mesmo." }}{PARA 0 "" 0 "" {TEXT -1 36 "Chamemos essa quantidade, ent\343o, de " }{XPPEDIT 18 0 " F[n]" "6#&%\"FG6#%\"nG" }{TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 17 "De modo an\341logo, " }{XPPEDIT 18 0 "A[n]" "6#&%\"AG6#%\"nG" }{TEXT -1 73 " ser\341 o n\372mero de caminhos (abertos) indo de um v\351rtic e a outro distinto." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 " " {TEXT -1 176 "Queremos ver se conseguimos escrever uma equa\347\343o para cada vari\341vel que relacione os caminhos de tamanho n com os d e tamanho n-1. A id\351ia \351 dividir os caminhos de tamanho n em " } {TEXT 258 17 "classes distintas" }{TEXT -1 33 " e contar quantos h\341 em cada uma." }}{PARA 0 "" 0 "" {TEXT -1 82 "Por exemplo, vamos lista r os caminhos fechados com in\355cio e fim em 1 de tamanho 4:" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 13 "1, 2, 3, \+ 2, 1" }}{PARA 0 "" 0 "" {TEXT -1 13 "1, 3, 2, 3, 1" }}{PARA 0 "" 0 "" {TEXT -1 13 "1, 2, 1, 2, 1" }}{PARA 0 "" 0 "" {TEXT -1 13 "1, 3, 1, 3, 1" }}{PARA 0 "" 0 "" {TEXT -1 13 "1, 3, 1, 2, 1" }}{PARA 0 "" 0 "" {TEXT -1 13 "1, 2, 1, 3, 1" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 109 "Vamos olhar agora para os primeiros n-1(=3 no ca so) passos. O importante \351 ver onde terminamos ap\363s 3 passos." } }{PARA 0 "" 0 "" {TEXT -1 49 "Vou marcar de cores distintas destinos d istintos:" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 9 "1, 2, 3, " }{TEXT 259 1 "2" }{TEXT -1 3 ", 1" }}{PARA 0 "" 0 "" {TEXT -1 9 "1, 3, 2, " }{TEXT 262 1 "3" }{TEXT -1 3 ", 1" }}{PARA 0 " " 0 "" {TEXT -1 9 "1, 2, 1, " }{TEXT 260 1 "2" }{TEXT -1 3 ", 1" }} {PARA 0 "" 0 "" {TEXT -1 9 "1, 3, 1, " }{TEXT 263 1 "3" }{TEXT -1 3 ", 1" }}{PARA 0 "" 0 "" {TEXT -1 9 "1, 3, 1, " }{TEXT 261 1 "2" }{TEXT -1 3 ", 1" }}{PARA 0 "" 0 "" {TEXT -1 9 "1, 2, 1, " }{TEXT 264 1 "3" } {TEXT -1 3 ", 1" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 97 "Note que n\343o existe nenhum caminho de 4 passos de 1 a \+ 1 que ap\363s 3 passos esteja em 1 (por que?)." }}{PARA 0 "" 0 "" {TEXT -1 89 "H\341 tantos caminhos vermelhos quanto caminhos abertos d e 3 passos indo de 1 a 2, ou seja, " }{XPPEDIT 18 0 "A[3]" "6#&%\"AG6# \"\"$" }{TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 84 "De modo an\341lo go, h\341 tantos azuis quantos caminhos abertos de 1 a 3, ou seja, tam b\351m " }{XPPEDIT 18 0 "A[3]" "6#&%\"AG6#\"\"$" }{TEXT -1 2 ". " }} {PARA 0 "" 0 "" {TEXT -1 45 "Como acima todos os caminhos est\343o lis tados, " }{XPPEDIT 18 0 "F[4] = A[3]+A[3];" "6#/&%\"FG6#\"\"%,&&%\"AG6 #\"\"$\"\"\"&F*6#F,F-" }{TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 59 " O argumento pode ser feito de forma geral e conclu\355mos que " }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 256 "" 0 "" {XPPEDIT 18 0 "F[n]= 2*A[n]" "6#/&%\"FG6#%\"nG*&\"\"#\"\"\"&%\"AG6#F'F*" }{TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 25 "Se quisermos saber agora " }{XPPEDIT 18 0 "A[4]" "6#&%\"AG6#\"\"%" }{TEXT -1 42 ", digamos de 1 a 2, fa\347amo s a mesma coisa:" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 9 "1, 2, 3, " }{TEXT 265 1 "1" }{TEXT -1 3 ", 2" }}{PARA 0 " " 0 "" {TEXT -1 8 "1, 3, 2," }{TEXT 266 1 " " }{TEXT 270 1 "1" }{TEXT -1 3 ", 2" }}{PARA 0 "" 0 "" {TEXT -1 9 "1, 2, 1, " }{TEXT 268 1 "3" } {TEXT -1 3 ", 2" }}{PARA 0 "" 0 "" {TEXT -1 9 "1, 3, 2, " }{TEXT 267 1 "1" }{TEXT -1 3 ", 2" }}{PARA 0 "" 0 "" {TEXT -1 9 "1, 3, 1, " } {TEXT 269 1 "3" }{TEXT -1 3 ", 2" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 99 "Agora o que n\343o consta s\343o caminhos que ap\363s 3 passos estejam em 2, nosso destino final. Novamente " } {XPPEDIT 18 0 "A[4]" "6#&%\"AG6#\"\"%" }{TEXT -1 43 " ser\341 a soma d e caminhos vermelhos e azuis." }}{PARA 0 "" 0 "" {TEXT -1 80 "Os verme lhos s\343o em mesmo n\372mero que os fechados de 1 a 1 de 3 passos, o u seja, " }{XPPEDIT 18 0 "F[3]" "6#&%\"FG6#\"\"$" }{TEXT -1 78 " e os \+ azuis s\343o em mesmo n\372mero que os abertos de 1 a 3 em 3 passos, o u seja, " }{XPPEDIT 18 0 "A[3]" "6#&%\"AG6#\"\"$" }{TEXT -1 2 ": " } {XPPEDIT 18 0 "A[4]=A[3]+F[3]" "6#/&%\"AG6#\"\"%,&&F%6#\"\"$\"\"\"&%\" FG6#F+F," }{TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 28 "Novamente, va le que em geral" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 256 "" 0 "" {XPPEDIT 18 0 "A[n]=A[n-1]+F[n-1]" "6#/&%\"AG6#%\"nG,&&F%6#,&F'\"\"\"F ,!\"\"F,&%\"FG6#,&F'F,F,F-F," }{TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 41 "Obtemos assim o seguinte sistem a de ED's:" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {XPPEDIT 18 0 "A[n]=A[n-1]+F[n-1]" "6#/&%\"AG6#%\"nG,&&F%6#,&F'\"\"\"F ,!\"\"F,&%\"FG6#,&F'F,F,F-F," }}{PARA 0 "" 0 "" {XPPEDIT 18 0 "F[n]=2* A[n]" "6#/&%\"FG6#%\"nG*&\"\"#\"\"\"&%\"AG6#F'F*" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 4 "com " }{XPPEDIT 18 0 "A[0] =0" "6#/&%\"AG6#\"\"!F'" }{TEXT -1 3 " e " }{XPPEDIT 18 0 "F[0]=1" "6# /&%\"FG6#\"\"!\"\"\"" }{TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 52 "Se quisermos, digamos, F[11], podemos f azer um loop:" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "# inicializ\nA[0]:=0;\nF[0 ]:=1;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"AG6#\"\"!F'" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"FG6#\"\"!\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 81 "# e faz loop\nfor n from 1 to 11 do\n A[n]:=A[n-1] +F[n-1];\n F[n]:=2*A[n-1];\nend do;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #>&%\"AG6#\"\"\"F'" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"FG6#\"\"\" \"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"AG6#\"\"#\"\"\"" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"FG6#\"\"#F'" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"AG6#\"\"$F'" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&% \"FG6#\"\"$\"\"#" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"AG6#\"\"%\"\" &" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"FG6#\"\"%\"\"'" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#>&%\"AG6#\"\"&\"#6" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"FG6#\"\"&\"#5" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"AG6# \"\"'\"#@" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"FG6#\"\"'\"#A" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"AG6#\"\"(\"#V" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#>&%\"FG6#\"\"(\"#U" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #>&%\"AG6#\"\")\"#&)" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"FG6#\"\") \"#')" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"AG6#\"\"*\"$r\"" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"FG6#\"\"*\"$q\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"AG6#\"#5\"$T$" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#>&%\"FG6#\"#5\"$U$" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"AG6#\"#6 \"$$o" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"FG6#\"#6\"$#o" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 76 "Para equa\347\365es escalares, t \355nhamos rsolve. Vamos ver se d\341 certo aqui tamb\351m:" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 86 "unassign('n');\nrsolve(\{a(n )=a(n-1)+f(n-1),f(n)=2*a(n-1),a(0)=0, f(0)=1\},\{a(n), f(n)\});" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#<$/-%\"aG6#%\"nG,&*&\"\"$!\"\")F,F(\" \"\"F,*&F+F,)\"\"#F(F.F./-%\"fGF',&*(F1F.F+F,F-F.F.*&F+F,F0F.F." }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 54 "Antes de obtermos essa f\363rmula, um pouco de estrutura." }}{PARA 0 "" 0 "" {TEXT -1 83 "Podemos escrev er o sistema de duas equa\347\365es como uma \372nica igualdade entre \+ vetores:" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 257 "" 0 "" {XPPEDIT 18 0 "RTABLE(86601808,MATRIX([[A[n]], [F[n]]]),Vector[column] ) = RTABLE(86627784,MATRIX([[A[n-1]+F[n-1]], [2*A[n-1]]]),Vector[colum n]);" "6#/-%'RTABLEG6%\")3=g')-%'MATRIXG6#7$7#&%\"AG6#%\"nG7#&%\"FGF/& %'VectorG6#%'columnG-F%6%\")%yFm)-F)6#7$7#,&&F.6#,&F0\"\"\"FC!\"\"FC&F 3FAFC7#,$*&\"\"#FCF@FCFCF4" }{TEXT -1 3 " = " }{XPPEDIT 18 0 "RTABLE(8 6077512,MATRIX([[1, 1], [2, 0]]),Matrix);" "6#-%'RTABLEG6%\")7v2')-%'M ATRIXG6#7$7$\"\"\"F,7$\"\"#\"\"!%'MatrixG" }{TEXT -1 1 " " }{XPPEDIT 18 0 "RTABLE(86596232,MATRIX([[A[n-1]], [F[n-1]]]),Vector[column]);" " 6#-%'RTABLEG6%\")Kif')-%'MATRIXG6#7$7#&%\"AG6#,&%\"nG\"\"\"F1!\"\"7#&% \"FGF.&%'VectorG6#%'columnG" }{TEXT -1 1 "," }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 22 "de modo que, definindo" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 258 "" 0 "" {XPPEDIT 18 0 "v[n] \+ = RTABLE(86849556,MATRIX([[A[n]], [F[n]]]),Vector[column]);" "6#/&%\"v G6#%\"nG-%'RTABLEG6%\")c&\\o)-%'MATRIXG6#7$7#&%\"AGF&7#&%\"FGF&&%'Vect orG6#%'columnG" }{TEXT -1 5 ", M=" }{XPPEDIT 18 0 "RTABLE(86077512,MA TRIX([[1, 1], [2, 0]]),Matrix)" "6#-%'RTABLEG6%\")7v2')-%'MATRIXG6#7$7 $\"\"\"F,7$\"\"#\"\"!%'MatrixG" }{TEXT -1 2 ", " }}{PARA 0 "" 0 "" {TEXT -1 47 "vemos que o sistema pode ser escrito ent\343o como" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 256 "" 0 "" {XPPEDIT 18 0 "v[n]= M*v[n-1]" "6#/&%\"vG6#%\"nG*&%\"MG\"\"\"&F%6#,&F'F*F*!\"\"F*" }{TEXT -1 5 ", " }{XPPEDIT 18 0 "v[0] = RTABLE(86379832,MATRIX([[0], [1]]) ,Matrix);" "6#/&%\"vG6#\"\"!-%'RTABLEG6%\")K)zj)-%'MATRIXG6#7$7#F'7#\" \"\"%'MatrixG" }{TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 37 "cuja solu\347\343o \351, como no caso esc alar," }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {XPPEDIT 18 0 "v[n]=M^n*v[0]" "6#/&%\"vG6#%\"nG*&)%\"MGF'\"\"\"&F%6#\"\"!F+" } {TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "#pacote de \341lgebra linear\nwith(LinearAlgebra );" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#7er%#&xG%$AddG%(AdjointG%3Backwa rdSubstituteG%+BandMatrixG%&BasisG%-BezoutMatrixG%/BidiagonalFormG%-Bi linearFormG%5CharacteristicMatrixG%9CharacteristicPolynomialG%'ColumnG %0ColumnDimensionG%0ColumnOperationG%,ColumnSpaceG%0CompanionMatrixG%0 ConditionNumberG%/ConstantMatrixG%/ConstantVectorG%%CopyG%2CreatePermu tationG%-CrossProductG%-DeleteColumnG%*DeleteRowG%,DeterminantG%)Diago nalG%/DiagonalMatrixG%*DimensionG%+DimensionsG%+DotProductG%6EigenCond itionNumbersG%,EigenvaluesG%-EigenvectorsG%&EqualG%2ForwardSubstituteG %.FrobeniusFormG%4GaussianEliminationG%2GenerateEquationsG%/GenerateMa trixG%(GenericG%2GetResultDataTypeG%/GetResultShapeG%5GivensRotationMa trixG%,GramSchmidtG%-HankelMatrixG%,HermiteFormG%3HermitianTransposeG% /HessenbergFormG%.HilbertMatrixG%2HouseholderMatrixG%/IdentityMatrixG% 2IntersectionBasisG%+IsDefiniteG%-IsOrthogonalG%*IsSimilarG%*IsUnitary G%2JordanBlockMatrixG%+JordanFormG%1KroneckerProductG%(LA_MainG%0LUDec ompositionG%-LeastSquaresG%,LinearSolveG%$MapG%%Map2G%*MatrixAddG%2Mat rixExponentialG%/MatrixFunctionG%.MatrixInverseG%5MatrixMatrixMultiply G%+MatrixNormG%,MatrixPowerG%5MatrixScalarMultiplyG%5MatrixVectorMulti plyG%2MinimalPolynomialG%&MinorG%(ModularG%)MultiplyG%,NoUserValueG%%N ormG%*NormalizeG%*NullSpaceG%3OuterProductMatrixG%*PermanentG%&PivotG% *PopovFormG%0QRDecompositionG%-RandomMatrixG%-RandomVectorG%%RankG%6Ra tionalCanonicalFormG%6ReducedRowEchelonFormG%$RowG%-RowDimensionG%-Row OperationG%)RowSpaceG%-ScalarMatrixG%/ScalarMultiplyG%-ScalarVectorG%* SchurFormG%/SingularValuesG%*SmithFormG%8StronglyConnectedBlocksG%*Sub MatrixG%*SubVectorG%)SumBasisG%0SylvesterMatrixG%/ToeplitzMatrixG%&Tra ceG%*TransposeG%0TridiagonalFormG%+UnitVectorG%2VandermondeMatrixG%*Ve ctorAddG%,VectorAngleG%5VectorMatrixMultiplyG%+VectorNormG%5VectorScal arMultiplyG%+ZeroMatrixG%+ZeroVectorG%$ZipG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "M:=Matrix(2,2,[1,1,2,0]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"MG-%'RTABLEG6%\")!)G)o)-%'MATRIXG6#7$7$\"\"\"F.7$\" \"#\"\"!%'MatrixG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "v0:=Ma trix(2,1,[0,1]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#v0G-%'RTABLEG6% \")SUP(*-%'MATRIXG6#7$7#\"\"!7#\"\"\"%'MatrixG" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 103 "# gera os primeiros onze\nfor k from 1 to 11 \+ do\n # multiplica\347\343o matricial \351 ponto\n k, M^k.v0;\nend do ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$\"\"\"-%'RTABLEG6%\")[%yu*-%'MATR IXG6#7$7#F#7#\"\"!%'MatrixG" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$\"\"#-% 'RTABLEG6%\")?'>v*-%'MATRIXG6#7$7#\"\"\"7#F#%'MatrixG" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$\"\"$-%'RTABLEG6%\")o#zv*-%'MATRIXG6#7$7#F#7#\"\"# %'MatrixG" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$\"\"%-%'RTABLEG6%\")7fj(* -%'MATRIXG6#7$7#\"\"&7#\"\"'%'MatrixG" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$\"\"&-%'RTABLEG6%\")+'3x*-%'MATRIXG6#7$7#\"#67#\"#5%'MatrixG" }} {PARA 11 "" 1 "" {XPPMATH 20 "6$\"\"'-%'RTABLEG6%\")#Rux*-%'MATRIXG6#7 $7#\"#@7#\"#A%'MatrixG" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$\"\"(-%'RTAB LEG6%\")s(=b)-%'MATRIXG6#7$7#\"#V7#\"#U%'MatrixG" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$\"\")-%'RTABLEG6%\")kNd')-%'MATRIXG6#7$7#\"#&)7#\"#')%' MatrixG" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$\"\"*-%'RTABLEG6%\")Scn&)-% 'MATRIXG6#7$7#\"$r\"7#\"$q\"%'MatrixG" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$\"#5-%'RTABLEG6%\")%3qu*-%'MATRIXG6#7$7#\"$T$7#\"$U$%'MatrixG" }} {PARA 11 "" 1 "" {XPPMATH 20 "6$\"#6-%'RTABLEG6%\"(WP6%-%'MATRIXG6#7$7 #\"$$o7#\"$#o%'MatrixG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 55 "# compara com o resultado do primeiro loop\nA[11],F[11];" }}{PARA 11 " " 1 "" {XPPMATH 20 "6$\"$$o\"$#o" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 51 "# tentar ingenuamente obter a forma fechada\nM^n.v0; " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%\".G6$)-%'RTABLEG6%\")!)G)o)-%'M ATRIXG6#7$7$\"\"\"F07$\"\"#\"\"!%'MatrixG%\"nG-F(6%\")SUP(*-F,6#7$7#F3 7#F0F4" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 73 "Ok, o Maple n\343o entr ega o jogo de como ele escreveu aquela forma fechada." }}{PARA 0 "" 0 "" {TEXT -1 97 "Pelo que sabemos de \341lgebra linear, se conseguirmos diagonalizar M, ou seja, se pudermos escrever" }}{PARA 0 "" 0 "" {XPPEDIT 18 0 "M=S*Lambda*S^(-1)" "6#/%\"MG*(%\"SG\"\"\"%'LambdaGF')F& ,$F'!\"\"F'" }{TEXT -1 6 ", com " }{XPPEDIT 18 0 "Lambda" "6#%'LambdaG " }{TEXT -1 27 " uma matriz diagonal, ent\343o" }}{PARA 256 "" 0 "" {TEXT -1 0 "" }}{PARA 256 "" 0 "" {XPPEDIT 18 0 "M^k=S*Lambda^k*S^(-1) " "6#/)%\"MG%\"kG*(%\"SG\"\"\")%'LambdaGF&F))F(,$F)!\"\"F)" }{TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 35 "e sabemos ainda que as entradas de " }{XPPEDIT 18 0 "Lambda" "6#%'LambdaG" }{TEXT -1 71 " s\343o autoval ores de M e as colunas de S os autovetores correspondentes." }}{PARA 0 "" 0 "" {TEXT -1 47 "(veja a planilha sobre \341lgebra linear no sit e!)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 50 "# achar autovetores \+ e autovalores\nEigenvectors(M);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$-%' RTABLEG6%\")))G*y*-%'MATRIXG6#7$7#\"\"#7#!\"\"&%'VectorG6#%'columnG-F$ 6%\")c6*y*-F(6#7$7$\"\"\"#F.F,7$F:F:%'MatrixG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "(l,S):=%;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>6$% \"lG%\"SG6$-%'RTABLEG6%\")))G*y*-%'MATRIXG6#7$7#\"\"#7#!\"\"&%'VectorG 6#%'columnG-F)6%\")c6*y*-F-6#7$7$\"\"\"#F3F17$F?F?%'MatrixG" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 59 "# arma matriz diagonal\nLamb da:=DiagonalMatrix([l[1],l[2]]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>% 'LambdaG-%'RTABLEG6%\")7!or*-%'MATRIXG6#7$7$\"\"#\"\"!7$F/!\"\"%'Matri xG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "# conferindo\nM=S.Lam bda.S^(-1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%'RTABLEG6%\")!)G)o)- %'MATRIXG6#7$7$\"\"\"F-7$\"\"#\"\"!%'MatrixG-F%6%\")W-4)*F(F1" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "Ln:=DiagonalMatrix([l[1]^n,l [2]^n]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#LnG-%'RTABLEG6%\")7e5)* -%'MATRIXG6#7$7$)\"\"#%\"nG\"\"!7$F1)!\"\"F0%'MatrixG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 53 "#finalmente vemos a forma fechada\n vn:=S.Ln.S^(-1).v0;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#vnG-%'RTABLE G6%\")CP;)*-%'MATRIXG6#7$7#,&*&\"\"$!\"\")\"\"#%\"nG\"\"\"F5*&F0F1)F1F 4F5F17#,&*&F0F1F2F5F5*(F3F5F0F1F7F5F5%'MatrixG" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 70 "Ok, mas como podemos ter certeza que nossa matriz se r\341 diagonaliz\341vel?" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 77 "# nem toda matriz \351 diagonaliz \341vel\nB:=Matrix(2,2,[1,1,0,1]);\nEigenvectors(B);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"BG-%'RTABLEG6%\")gs;)*-%'MATRIXG6#7$7$\"\"\"F.7$ \"\"!F.%'MatrixG" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$-%'RTABLEG6%\")S#[ $)*-%'MATRIXG6#7$7#\"\"\"F+&%'VectorG6#%'columnG-F$6%\")3M:')-F(6#7$7$ F,\"\"!7$F8F8%'MatrixG" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 128 "De fat o, a matriz de \"autovetores\" acima tem algo errado. N\343o podemos t er uma coluna de zeros e ainda ter uma matriz invert\355vel." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 21 "Uns resultados \+ \372teis:" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 271 8 "Teorema:" }{TEXT -1 62 " Se M nxn tem n autovalores distintos, \+ ent\343o \351 diagonaliz\341vel." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT 272 20 "Teorema (Espectral):" }{TEXT -1 80 " Se \+ M nxn \351 sim\351trica (M=M^T), ent\343o M \351 diagonaliz\341vel e t em autovalores reais." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 89 "# uma matriz real com autovalores i magin\341rios\nB:=Matrix(2,2,[0,1,-1,0]);\nEigenvectors(B);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"BG-%'RTABLEG6%\")7yP)*-%'MATRIXG6#7$7$\" \"!\"\"\"7$!\"\"F.%'MatrixG" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$-%'RTAB LEG6%\");!o))*-%'MATRIXG6#7$7#^#\"\"\"7#^#!\"\"&%'VectorG6#%'columnG-F $6%\")w=())*-F(6#7$7$F/F,7$F-F-%'MatrixG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 189 "# mas uma matriz sim\351trica qualquer\nA:=RandomMat rix(3,3,outputoptions=[shape=symmetric]);\n# confere simetria\nA^%T=A; \n# e autovalores reais, a menos de erros num\351ricos\nevalf(Eigenval ues(A));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"AG-%'RTABLEG6%\")o#=*) *-%'MATRIXG6#7%7%\"#n!#J\"##*7%F/\"#W\"#H7%F0F3\"#**%'MatrixG" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#/-%'RTABLEG6%\")w\"G*)*-%'MATRIXG6#7%7 %\"#n!#J\"##*7%F.\"#W\"#H7%F/F2\"#**%'MatrixG-F%6%\")o#=*)*F(F5" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#-%'RTABLEG6%\")S?.**-%'MATRIXG6#7%7#^$ $\"+:x@ktdN$F2$!+;;5kC!#<7#^$$\"+Rgf8nF2$\"+;; 5kWF9&%'VectorG6#%'columnG" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 133 "ob s: os n\372meros complexos acima s\343o puramente erro num\351rico (no te que a parte imagin\341ria \351 ordens de grandeza menor que a parte real)" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 57 "Maple tem v\341rias fun\347\365es relativas a autovalores/vetores." } }{PARA 0 "" 0 "" {TEXT -1 55 "Os autovalores s\343o ra\355zes do polin \364mio caracter\355stico: " }}{PARA 0 "" 0 "" {TEXT -1 25 "p(lambda)= det(M-lambda*I)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 52 "id:=Iden tityMatrix(2);\npc:=Determinant(M-lambda*id);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#idG-%'RTABLEG6%\")GI#*)*-%'MATRIXG6#7$7$\"\"\"\"\"!7 $F/F.%'MatrixG" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#pcG,(%'lambdaG!\" \"*$)F&\"\"#\"\"\"F+F*F'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "# ra\355zes de pc s\343o autovalores\nsolve(pc=0);" }}{PARA 11 "" 1 " " {XPPMATH 20 "6$\"\"#!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 66 "# fun\347\343o para o polin. caract.\nCharacteristicPolynomial(M,l ambda);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,(%'lambdaG!\"\"*$)F$\"\"# \"\"\"F)F(F%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "Eigenvalues (M);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'RTABLEG6%\")+8>(*-%'MATRIXG 6#7$7#\"\"#7#!\"\"&%'VectorG6#%'columnG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 10 "Exerc\355cio: " }}{PARA 0 "" 0 "" {TEXT -1 16 "1) resolva para " }{XPPEDIT 18 0 "A[n ]" "6#&%\"AG6#%\"nG" }{TEXT -1 3 " e " }{XPPEDIT 18 0 "F[n]" "6#&%\"FG 6#%\"nG" }{TEXT -1 39 ", mas em vez de em um tri\342ngulo, em um " } {TEXT 256 9 "tetraedro" }{TEXT -1 72 ". Considere se quiser, um quadra do com as diagonais para represent\341-lo. " }}{PARA 0 "" 0 "" {TEXT -1 24 "2) tente o mesmo com um " }{TEXT 274 9 "pent\341gono" }{TEXT -1 14 " com todas as " }{TEXT 275 9 "diagonais" }{TEXT -1 1 "." }} {PARA 0 "" 0 "" {TEXT -1 11 "3) para um " }{TEXT 273 8 "quadrado" } {TEXT -1 103 ", voc\352 deve notar que h\341 dois tipos de v\351rtices , adjacentes e opostos. Tente obter 3 ED's relacionando " }{XPPEDIT 18 0 "F[n]" "6#&%\"FG6#%\"nG" }{TEXT -1 2 ", " }{XPPEDIT 18 0 "Ad[n]" "6#&%#AdG6#%\"nG" }{TEXT -1 3 " e " }{XPPEDIT 18 0 "Op[n]" "6#&%#OpG6# %\"nG" }}}}{MARK "35 0 0" 0 }{VIEWOPTS 1 1 0 3 2 1804 1 1 1 1 } {PAGENUMBERS 0 1 2 33 1 1 }{RTABLE_HANDLES 86882880 97374240 97478448 97519620 97579268 97635912 97708600 97774392 85518772 86573564 85675640 97470084 4113744 97892888 97891156 97168012 98090244 98105812 98163724 98167260 98348240 86153408 98377812 98868016 98871876 98918268 98928176 99032040 98923028 97191300 }{RTABLE M7R0 I5RTABLE_SAVE/86882880X,%)anythingG6"6"[gl!"%!!!#%"#"#"""""#F'""!F& } {RTABLE M7R0 I5RTABLE_SAVE/97374240X,%)anythingG6"6"[gl!"%!!!##"#""""!"""F& } {RTABLE M7R0 I5RTABLE_SAVE/97478448X,%)anythingG6"6"[gl!"%!!!##"#"""""""!F& } {RTABLE M7R0 I5RTABLE_SAVE/97519620X,%)anythingG6"6"[gl!"%!!!##"#"""""""#F& } {RTABLE M7R0 I5RTABLE_SAVE/97579268X,%)anythingG6"6"[gl!"%!!!##"#""""$""#F& } {RTABLE M7R0 I5RTABLE_SAVE/97635912X,%)anythingG6"6"[gl!"%!!!##"#""""&""'F& } {RTABLE M7R0 I5RTABLE_SAVE/97708600X,%)anythingG6"6"[gl!"%!!!##"#"""#6"#5F& } {RTABLE M7R0 I5RTABLE_SAVE/97774392X,%)anythingG6"6"[gl!"%!!!##"#"""#@"#AF& } {RTABLE M7R0 I5RTABLE_SAVE/85518772X,%)anythingG6"6"[gl!"%!!!##"#"""#V"#UF& } {RTABLE M7R0 I5RTABLE_SAVE/86573564X,%)anythingG6"6"[gl!"%!!!##"#"""#&)"#')F& } {RTABLE M7R0 I5RTABLE_SAVE/85675640X,%)anythingG6"6"[gl!"%!!!##"#"""$r""$q"F& } {RTABLE M7R0 I5RTABLE_SAVE/97470084X,%)anythingG6"6"[gl!"%!!!##"#"""$T$"$U$F& } {RTABLE M7R0 I4RTABLE_SAVE/4113744X,%)anythingG6"6"[gl!"%!!!##"#"""$$o"$#oF& } {RTABLE M7R0 I5RTABLE_SAVE/97892888X*%*algebraicG6"6"[gl!#%!!!"#"#""#!""F& } {RTABLE M7R0 I5RTABLE_SAVE/97891156X,%*algebraicG6"6"[gl!"%!!!#%"#"#"""F'#!""""#F'F& } {RTABLE M7R0 I5RTABLE_SAVE/97168012X,%)anythingG6"6"[gl!"%!!!#%"#"#""#""!F(!""F& } {RTABLE M7R0 I5RTABLE_SAVE/98090244X,%)anythingG6"6"[gl!"%!!!#%"#"#"""""#F'""!F& } {RTABLE M7R0 I5RTABLE_SAVE/98105812X,%)anythingG6"6"[gl!"%!!!#%"#"#)""#%"nG""!F*)!""F)F& } {RTABLE M7R0 I5RTABLE_SAVE/98163724X,%)anythingG6"6"[gl!"%!!!##"#"",&)""#%"nG#"""""$)!""F*#F /F-,&F(F+F.#F)F-F& } {RTABLE M7R0 I5RTABLE_SAVE/98167260X,%)anythingG6"6"[gl!"%!!!#%"#"#"""""!F'F'F& } {RTABLE M7R0 I5RTABLE_SAVE/98348240X*%*algebraicG6"6"[gl!#%!!!"#"#"""F'F& } {RTABLE M7R0 I5RTABLE_SAVE/86153408X,%*algebraicG6"6"[gl!"%!!!#%"#"#"""""!F(F(F& } {RTABLE M7R0 I5RTABLE_SAVE/98377812X,%)anythingG6"6"[gl!"%!!!#%"#"#""!!"""""F'F& } {RTABLE M7R0 I5RTABLE_SAVE/98868016X*%*algebraicG6"6"[gl!#%!!!"#"#^#"""^#!""F& } {RTABLE M7R0 I5RTABLE_SAVE/98871876X,%*algebraicG6"6"[gl!"%!!!#%"#"#^#!"""""^#F)F)F& } {RTABLE M7R0 I5RTABLE_SAVE/98918268X,%)anythingG6#%*symmetricG6"[gl!"&!!!#'"$"$"#n!#J"#W"##* "#H"#**F' } {RTABLE M7R0 I5RTABLE_SAVE/98928176X,%)anythingG6#%*symmetricG6"[gl!"&!!!#'"$"$"#n!#J"#W"##* "#H"#**F' } {RTABLE M7R0 I5RTABLE_SAVE/99032040X*%)anythingG6"6"[gl!#%!!!"$"$^$$"+:x@k tdN$F-$!+;;5kC!#<^$$"+Rgf8nF-$"+;;5kWF3F& } {RTABLE M7R0 I5RTABLE_SAVE/98923028X,%)anythingG6#%)identityG6"[gl!""!!!#!"#"#F' } {RTABLE M7R0 I5RTABLE_SAVE/97191300X*%)anythingG6"6"[gl!#%!!!"#"#""#!""F& }