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Abstract. We prove that a H-surface M in H2 × R, H 6 1
2 ,

inherits the symmetries of its boundary ∂M, when ∂M is either
a horizontal curve with curvature greater than one or two parallel
horizontal curves with curvature greater than one, whose distance
is greater or equal to π. Furthermore we prove that the asymptotic
boundary of a surface with mean curvature bounded away from
zero consists of parts of straight lines, provided it is sufficiently
regular.

1. Introduction

An old question in classical Differential Geometry in Euclidean space
concerns the influence of the boundary on the behavior of a H-surface.
A similar question can also be asked when the ambient space is a ho-
mogeneous 3-manifold.

In this paper we consider this problem when the ambient space is
the product H2×R and the boundary of the H-surface M, |H| 6 1/2,
is either a horizontal curve (Theorem 2.2) or two parallel horizontal
curves (Theorem 3.1) with curvature greater than one. By parallel
curves we mean congruent up to a vertical translation. The main result
is that M inherits the symmetries of its boundary. In particular, if the
boundary curve is a horizontal circle or two parallel horizontal circles
with distance greater or equal to π, then M is rotational.

Our results strongly depend on the geometry of rotational H-surfaces
in H2 × R for H 6 1/2. We point out that there are no rotational
H-surfaces in R3 with geometric behavior analogous to the rotational
surfaces in H2 × R with H 6 1/2. In fact, the geometry of rotational
H-surfaces in R3 (Delaunay surfaces) is similar to that of rotational
surfaces in H2 × R with H > 1/2 (see the Appendix).
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We recall the principal related results in Euclidean and hyperbolic
3-space.

It has been conjectured that a connected compact embedded H-
surface in R3 with boundary a round circle is spherical. Of course, this
conjecture can be posed in hyperbolic space H3 and in the product
space H2 × R. In R3 this is still an open problem. F. Braga Brito, W.
Meeks, H. Rosenberg and R. Sa Earp proved the conjecture provided
the surface is transverse to the plane containing the circle, along the
circle ([10]). F. Braga Brito and R. Sa Earp proved that, if the radius of
the circle and the mean curvature are equal to one, then the conjecture
is true assuming only that the surface is immersed ([8]). In fact they
also proved analogous characterizations of a spherical cap for f -surfaces
(special Weingarten surfaces) of disk type ([9]). We remark that N.
Kapouleas announced examples of immersed H-surfaces with genus
g > 3, with boundary a circle ([17]).

In hyperbolic space L. Barbosa and R. Sa Earp proved the following
sharp result: if a compact connected immersed surface in H3, with
boundary a round circle, has constant mean curvature smaller or equal
to one, then it is totally umbilical ([4], [5] and [6]). B. Nelli and H.
Rosenberg proved the same result in the embedded case ([22]). In [32],
R. Sa Earp and E. Toubiana generalized the above result of [22] to
f -surfaces in hyperbolic 3-space satisfying f 2 6 1. They also proved
the following: if M has constant mean curvature one, is embedded into
H3 with ∂M = C1 ∪ C2, where C1 and C2 are two parallel circles and
dist(C1, C2) great enough, then M is a piece of a catenoid cousin ([32]).

For further results, the reader is referred to [3], [18] and [28] for the
Euclidean space and [25] and [31] for the hyperbolic space.

Now, we describe our results for H-surfaces in H2 × R.
First, assume M is compact, immersed into H2×R, with mean curva-

ture 1/2, with boundary a round circle in a horizontal slice. Then M is
part of the rotational surface with vanishing Abresch-Rosenberg holo-
morphic quadratic differential Q. An analogous result holds if M has
constant mean curvature less than 1/2 (Theorem 2.2 and 5.1). In both
situations M is part of an entire rotational vertical graph. More gener-
ally, we prove that if ∂M is a horizontal curve with curvature greater
than one, then M is a vertical graph, in particular M has genus zero
and inherits the symmetries of its boundary (Theorem 2.2). Assume
now M is compact, embedded and has constant mean curvature 6 1/2.
Assume also that ∂M = C1∪C2, where C1 and C2 are parallel horizon-
tal curves with curvature greater than one and dist(C1, C2) > π. Then
M inherits the symmetries of C1 ∪C2. Consequently, if C1 and C2 are
two parallel circles then M is part of an embedded complete rotational
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H-annulus. The last assertion follows from the geometric classification
of rotational H-surfaces (Appendix).

Finally, we consider surfaces M in H2×R which are regular up to the
asymptotic boundary and whose mean curvature is bounded away from
zero. In [30] R. Sa Earp gives examples suggesting that the asymptotic
boundary of such surfaces must lie on a vertical line in ∂∞(H2) × R.
We prove that if the asymptotic boundary ∂∞M in ∂∞(H2)× R is C1

and the surface is C1 up to ∂∞M , then each component of ∂∞M is
part of a vertical line. As far as we know, the same question is open,
if one relaxes the regularity up to the asymptotic boundary. Observe
that in the minimal case many other possibilities can occur ([12], [23],
[30] and [34]). In particular, in [23] B. Nelli and H. Rosenberg solve the
Dirichlet Problem in H2 ×R for any Jordan curve γ in the asymptotic
boundary ∂∞(H2)× R that is a vertical graph.

The paper is organized as follows. Section 2 and 3 deal with com-
pact H-surfaces with boundary either one curve or two curves, with
curvature greater than one. In Section 4, we study the behavior of the
asymptotic boundary of a H-surface with strictly positive mean cur-
vature. Finally, in the Appendix we discuss the geometry of rotational
H-surfaces for any H ∈ R, since we will need to use these surfaces
throughout the whole paper. Rotational surfaces in H2 ×R have been
studied in [1], [16], [21], [27] and [34]. Further results on H-surfaces in
H2 × R are in [14], [24].

2. H-surfaces with boundary a curve with curvature
greater than one

In this section we discuss existence and uniqueness of compact
H-surfaces, |H| 6 1/2, with boundary a curve on a horizontal slice,
with curvature greater than one. Then, we study under which con-
ditions a compact H-surface with boundary a planar curve inherits
the symmetries of its boundary. In particular we deal with the circle
boundary case.

Let H ∈ (0, 1/2]. Denote by t the third coordinate in H2×R and by σ
the origin in H2(in the disk model of H2 we have σ = 0). We denote by
SH the simply connected embedded surface in H2 × R with constant
mean curvature H, invariant by rotation about the axis {σ} × R,
tangent to H2 × {0} at σ. Recall that SH is an entire vertical graph
(Appendix).

Let us recall the Convex Hull Lemma ([26]). Let K be a compact
set in H2 × R. For any H ∈ (0, 1

2
], we define FH

K as follows. A surface
B belongs to FH

K if K is contained in the mean convex side of B and
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if it is obtained from SH either by vertical and horizontal translations
or by symmetry with respect to a horizontal slice.

Using the maximum principle one can prove the following.

Lemma 2.1. (Convex Hull Lemma) [26] Let M be a compact surface
immersed in H2×R with constant mean curvature H ∈ (0, 1

2
]. Then M

is contained in the convex hull of the family FH
∂M .

Now we recall the Flux Formula in our context. Let Ω be Jordan
domain lying in the slice H2 := H2×{0} of H2×R. Let Y = ∂

∂t
be the

vertical Killing vector field in H2×R. Let n = nΩ be a unit normal field
on Ω. The flux ΦΩ of Y through Ω is defined by ΦΩ =

∫
Ω

〈Y, n〉 dA. Let

Ωt ⊂ H2×{t}, be any vertical copy of Ω. Then it is clear that the Flux
of Y through Ωt (with the same orientation) is the same that the Flux
through Ω, i.e ΦΩt = ΦΩ, since Y is vertical. Let M be a compact H-
surface in H2×R with boundary C = ∂Ω. Assuming that 0 < H 6 1/2
and C has curvature greater than one, the Convex Hull Lemma implies
that the intersection of the vertical cylinder over ∂Ω with M \ ∂M is
empty. Let Ωt be any fixed vertical copy of Ω such that Ωt ∩M = ∅.
Let Σ be the piece of the vertical cylinder over C bounded by C and
∂Ωt. The closed surface M∪Σ∪Ωt, with the orientation induced by the
(nonvanishing) mean curvature vector of M is an oriented homological
boundary of a three-dimensional chain in H2 × R. The following Flux
Formula holds ([19], [20],[4], Appendix B in [6], or [15]).

∫

∂M

〈Y, ν〉 ds = 2H

∫

Ω

〈Y, n〉 dA. (1)

InH2×R there is a natural notion of vertical graph ( [14], [26] or [30]):
let Ω be a subset of H2 and let u : Ω −→ R be a C2 function. The
vertical graph of u is the subset of H2 × R given by

{(x, y, t) ∈ Ω× R | t = u(x, y)} .

We choose the unit normal vector field to the graph of u with positive
third component and we compute the mean curvature (of the graph)
with respect to it.

The graph of a function u : H2 −→ R has the function H as mean
curvature if and only if u satisfies the following partial differential equa-
tion.

divH
(∇Hu

Wu

)
=2H, (2)
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where divH,∇H are the hyperbolic divergence and gradient respectively
and Wu =

√
1 + |∇Hu|2H, being | · |H the norm in H2.

Consider the halfspace model for H2, with Euclidean coordinates
x, y, y > 0. In this model, equation (2) takes the following form

div

(∇u

Wu

)
=

2H

y2
, (3)

where div is the Euclidean divergence and Wu =
√

1 + y2(u2
x + u2

y).

The following Theorem is a consequence of a result proved by L.
Hauswirth, H. Rosenberg and J. Spruck ([13], Th. 3.2). We sketch a
proof for completeness.

Theorem 2.1. Let Ω be a domain in H2 such that ∂Ω is C2,α and has
curvature greater than one. For any H ∈ [−1

2
, 1

2
], there exists a vertical

graph GH with constant mean curvature H and boundary ∂Ω.

Proof.
By formula (3), one has to solve the following Dirichlet problem





F [u] = div
(
∇u
Wu

)
− 2H

y2 = 0 in Ω,

u = 0 on ∂Ω.

In order to prove existence, we use the continuity method. For every
t ∈ [0, 1], consider the Dirichlet problem





F t[u] = div
(
∇u
Wu

)
− 2Ht

y2 = 0 in Ω,

u = 0 on ∂Ω.
(4)

Let S = {t ∈ [0, 1] | there exists a solution of (4)}. Observe that
u ≡ 0 is a solution of (4) for t = 0, hence 0 ∈ S. If one proves that S
is open and closed, then 1 ∈ S and the desired solution is a solution of
(4) for t = 1.

That S is open follows from the Implicit Function Theorem. S closed
follows from C2,α a-priori estimates for solutions of (4). By Schauder’s
theory ([11]), C2,α a-priori estimates follow from C1 a-priori estimates.
The Convex Hull Lemma guarantees C0 estimates and boundary gradi-
ent bounds on solutions of (4). Therefore, we infer with Theorem 3.1 in
[35] that boundary gradient bounds imply interior gradient bounds. ¤
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Theorem 2.2. Let M be a compact surface immersed in H2 × R with
boundary a C2,α Jordan curve C with curvature greater than one, con-
tained in the slice H2 × {0}. Assume that M has constant mean cur-
vature H ∈ (0, 1

2
]. Then M is a vertical graph (given by Theorem 2.1).

In particular M has genus zero and inherits the same symmetries of
its boundary. If C is a circle, then M is a part of the simply connected
rotational surface containing C with constant mean curvature H.

Proof.
Denote by P = {t = 0} the slice containing the boundary curve C

and denote by Ω the domain in P, bounded by C. Consider the convex
hull of the family FH

C . As C has curvature greater than one, for any
point of p ∈ C there is a surface of the family FH

C tangent to C at p.
By Lemma 2.1, M is contained in the convex hull of the family FH

C ,
hence M\∂M is entirely contained in the vertical cylinder over C and
M does not meet P outside Ω.

By Theorem 2.1 there exists a graph GH on Ω, with boundary C and
constant mean curvature H. We can choose GH to be contained in the
halfspace t > 0 with mean curvature vector pointing downwards. We
will prove that M is contained in one of the two halfspaces determined
by the slice P.

First assume that M is embedded. Lift up GH to be above M, then
move GH down towards M : by the maximum principle, one can not
touch M till the boundary of M and the boundary of GH coincide.
Hence M lies below GH . Then GH ∪M bounds a domain U in H2×R
and the mean curvature vector of M points either inside U or outside
U.

Assume, by contradiction, that M has points in both halfspaces
{t > 0}, {t < 0}. By the maximum principle, the mean curvature
vector at a highest point of M points downwards, i.e. outside U, while
the mean curvature vector at a lowest point of M points upwards, i.e.
inside U. This is a contradiction. Then M is contained in a halfspace,
say {t > 0}, M ∪ Ω bounds a domain W in H2 × R and the mean
curvature vector of M points inside W. We already know that M lies
below GH . Now move down GH to be disjoint from M, then lift GH up
towards M. At a first interior contact point the mean curvature vectors
of M and GH coincide. Contradiction by the maximum principle. Then
one can lift GH till the boundaries of M and GH coincide, that is M
is above GH . This implies that GH ≡ M, as desired.

Now, by applying Alexandrov’s reflection method with vertical geo-
desic planes ([2],[29] or [33]), one obtains that M has all the symme-
tries of C. In particular, if C is a circle, then M is part of the simply
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connected rotational surface SH containing C. Observe that if M is
embedded a simpler alternative argument based on Alexandrov Reflec-
tion Principle, using the horizontal slices, yields that M is a vertical
graph.

Now let M be an immersed surface (not necessarily embedded).
First assume that C is a circle.
By Lemma 2.1, M is contained in the convex hull of the family FH

C .
As C is a circle, this convex hull is the domain bounded by the compact
part of SH containing C, say B1

C , and its symmetry with respect to the
slice P, say B2

C .
Let ν1

3 , ν3, ν2
3 the third components of the inward unit conormal

along C of B1
C , M, B2

C respectively. As M is between B1
C and B2

C , then
at any point of C

ν2
3 6 ν3 6 ν1

3 . (5)

Consider the Flux Formula for M , with Ω equal to the planar domain
bounded by C, Y = (0, 0, 1) and nΩ = (0, 0,±1) according to the
orientation given by M. In order to fix ideas, assume that nΩ = (0, 0, 1).
Formula (1) yields

∫

C

ν3 = 2HArea(Ω). (6)

Now, consider the Flux Formula for B1
C and B2

C , with Ω equal to the
planar domain bounded by C, Y = (0, 0, 1). By formula (1)

∫

C

ν1
3 = 2HArea(Ω) = −

∫

C

ν2
3 . (7)

Then, equalities (6) and (7) yield

−
∫

C

ν2
3 =

∫

C

ν3 =

∫

C

ν1
3 . (8)

If, in equation (5), the inequalities are strict at every point of C then,
one has a contradiction by equation (8).

Then, there is at least one point p in C such that ν3 agrees with
either ν2

3 or ν1
3 at p. Therefore, by the boundary maximum principle,

M coincides with either B2
C or B1

C .
If the boundary of M is an embedded curve C with curvature greater

than one the proof is analogous. It is enough to replace the caps Bi
C ,

i = 1, 2 by the graph GH of mean curvature H and boundary C and
its symmetry with respect to the slice P . ¤
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Remark 1. Notice that one can prove the analogous results for a
surface M, whose mean curvature function H(x, y) satisfies for any
(x, y) ∈ Ω: 0 < |H(x, y)| 6 1

2
.

3. H-surfaces with boundary two parallel curves with
curvature greater than one

We say that C1 and C2 are parallel curves, if they are congruent up
to a vertical translation.

Theorem 3.1. Let M be a compact embedded surface in H2 ×R, with
boundary two parallel, embedded C2,α curves Ca ⊂ Pa = {t = a}, and
C−a ⊂ P−a = {t = −a}, with curvature greater than one. Assume
that M has constant mean curvature H, with |H| 6 1/2. Then M is
symmetric with respect to the horizontal slice {t = 0}. If 2a > π, then
M is contained in the closed slab {−a 6 t 6 a}, with M ∩ (Pa∪P−a) =
Ca ∪ C−a. Furthermore, M inherits the symmetries of Ca ∪ C−a.

Proof.
Let Da be the bounded domain in Pa with boundary Ca. Let ext(Da) =

Pa \Da. By the Convex Hull Lemma, M ∩ ext(Da) = Ca and
M ∩ ext(D−a) = C−a. For any point p ∈ Ca, there exists a circle con-
taining Da in its interior, tangent to Ca at p. Let Zp be the cylinder
over such a circle. Denote by Z+

p the mean convex open domain of

H2 × R bounded by Zp. Each Zp has mean curvature greater than 1
2

hence, by the maximum principle, M is contained in ∩p∈CaZ
+
p . Notice

that ∂(∩p∈CaZ
+
p ) is the cylinder over Ca. We call it Z and we have

that M ∩ Z = Ca ∩ C−a. Then, we apply Alexandrov reflection with
horizontal slices to infer that the slice {t = 0} is a plane of symmetry
for M.

Now, assume that 2a > π.
By Theorem 2.1, there exists a graph S1 with boundary Ca with mean

curvature H and mean curvature pointing downward, and a graph S2

with boundary C−a, with mean curvature H and mean curvature vector
pointing upward. By the maximum principle M lies below S1 and above
S2, hence M ∪ S1 ∪ S2 is a closed embedded surface, not smooth along
Ca∪C−a. Let U be the domain in H2×R bounded by M ∪S1∪S2. We
claim that the mean curvature vector at any point of M points towards
U. Consider the family of minimal catenoids (Appendix). Let us recall
their shape. For any t ∈ (0, π

2
) there exists a catenoid bounded by two

circles at infinity at height ±t. When t → 0, the catenoids tend to the
double covering of the slice {t = 0} and when t → π

2
, the catenoids tend

to infinity. Then, one comes with catenoids from infinity towards M.
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Let p be the first contact point between M and one of the catenoids.
By the maximum principle, the mean curvature vector of M at p points
inside U, then it points inside U at any point of M.

Now we prove that M is contained in the closed slab {−a 6 t 6 a},
with M ∩ {t = ±a} = Ca ∪ C−a.

Assume by contradiction that M has some points above the slice
t = a, and let q be a highest point of M. As S1 is above M, the mean
curvature vector at q points upwards. This gives a contradiction by
comparing M with a horizontal slice. Now, assume by contradiction
that M has some points below the slice t = −a, and let q be a lowest
point of M. As S2 is below M, the mean curvature vector at q points
downwards. And this gives a contradiction by comparing M with a
horizontal slice.

By applying the Alexandrov reflection method with vertical geodesic
planes, we obtain that M inherits the symmetries of Ca ∪ C−a. ¤
Corollary 3.1. Let M be a compact embedded surface in H2 × R
with boundary two parallel circles. Assume that M has constant mean
curvature H, with |H| 6 1/2. Let d be the distance of the two boundary
curves. If d > π, then M is part of an embedded complete rotational
surface of constant mean curvature H.

Proof.
By the previous Theorem, M is part of a rotational surface with

mean curvature H. From the proof of Lemma 3.1, we infer that the
mean curvature vector of M points towards the interior of M∪Da∪D−a,
where Da ⊂ Pa, D−a ⊂ P−a are the domains bounded by Ca and C−a

respectively. By the geometric classification of the rotational surface
with constant mean curvature H, M must be a part of an embedded
complete rotational surface. ¤

4. Surfaces with nonempty asymptotic boundary

In [30] R. Sa Earp describes many examples of complete H-surfaces
with H > 0. When the asymptotic boundary is nonempty, then it
consists of parts of straight lines.

Theorem 4.1. Let M be a surface in H2×R with mean curvature sat-
isfying 0 < δ 6 H(p) at any point p ∈ M . Assume that the asymptotic
boundary of M in ∂∞(H2)×R is a C1 curve and that M is C1 up to the
asymptotic boundary (eventually M has nonempty finite boundary).

Then, each connected component of the asymptotic boundary of M
is part of a vertical straight line in ∂∞(H2)× R.

Proof.
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Let C be a connected component of the asymptotic boundary of M ,
C ⊂ ∂∞M ⊂ ∂∞(H2) × R. We show that C is vertical at the point p
for any p ∈ C. We can assume that p = 1 ∈ ∂∞(H2)× {0}.

Suppose that C is not vertical at p. Then, an open neighborhood of p
in C is a graph (eiθ, t(θ)) for θ in an open interval around 0 (p = 1 = ei0)
with t(0) = 0. Let ε > 0 be a small number. There exists a real
number ν = ν(ε) > 0 such that |t(θ)| < ε/2 for any θ ∈ [−ν, ν]. We set
p1 := (eiν , t(ν)) and p2 := (e−iν , t(−ν)) and we call Cε ⊂ C the closed
subarc of C bounded by p1 and p2 and containing p

Cε⊂∂∞(H2)×(−ε/2, ε/2), ∂Cε = {p1, p2}.
Since M is C1 up to the asymptotic boundary, there exists a sim-

ple arc C ′
ε ⊂ M with asymptotic boundary p1 and p2 such that the

connected component Mε of M\C ′
ε containing Cε in its asymptotic

boundary satisfies Mε ⊂ H2 × (−ε, ε). Summarizing, we have

Mε⊂M∩H2×(−ε, ε), ∂Mε = C ′
ε, ∂∞Mε = Cε⊂∂∞(H2)×(−ε/2, ε/2).

Let Π : H2×R→ H2 be the projection on the first two coordinates.
For ε small enough, Π(Cε) ⊂ ∂∞H2 is an open arc with end points

Π(p1) and Π(p2) and containing 1 = p in its interior. Moreover Π(Mε)
is an open subset of H2 with asymptotic boundary Π(Cε).

Let Γ ∈ H2 be the geodesic (−1, 1) and let Ts, s > 0, be the hyper-
bolic translation along Γ defined as follows: any point x ∈ Γ is sent to
the point of Γ between x and −1 whose hyperbolic distance from x is
s. Then, extend Ts to H2 × R by vertical translation.

Let η > 0 be a small number. For s great enough and ε small
enough, the curve Ts(Π(C ′

ε)) is inside the open euclidean ball centered
at −1 with radius η. Thus Ts(Π(Mε)) is the connected component of
H2\Ts(Π(C ′

ε)) containing 1 in the asymptotic boundary.
The vertical projection of the surface Ts(Mε) covers a large part of

H2 in the euclidean sense. Its boundary is the simple arc Ts(C
′
ε). Let

γs ⊂ ∂∞(H2) × (−ε, ε) be a C1 arc with end points Ts(p1) and Ts(p2)
such that γs ∪ Ts(Cε) is a Jordan curve which projects one to one onto
∂∞(H2)× {0}.

Finally, let Rs ⊂ H2×R be any embedded smooth disk, disjoint from
the interior of Ts(Mε), with finite boundary Ts(C

′
ε) and asymptotic

boundary γs:

Rs∩Ts(Mε) = Ts(C
′
ε),

∂Rs = Ts(C
′
ε),

∂∞Rs = γs.
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Then Rs ∪ Ts(Mε) is an embedded simply connected surface, it is C0

along Ts(C
′
ε) and smooth everywhere else. The surface Rs ∪ Ts(Mε)

separates H2 × R in two connected components and its asymptotic
boundary is the Jordan curve γs ∪ Ts(Cε) ⊂ ∂∞(H2)× [−ε, ε].

First, we assume that the mean curvature vector of Ts(Mε) points
towards the connected component containing H2 × (ε, +∞).

We can assume that δ < 1/2. Let us consider the simply connected
H-surface Sδ given in Proposition 5.2 with H = δ and with rotational
axis equals to the vertical geodesic {0}×R. Now, lift up Sδ to be above
Rs∪Ts(Mε), then move Sδ down. By our construction and the geometry
of Sδ the first contact with Rs ∪ Ts(Mε) will be at an interior point of
Ts(Mε). This gives a contradiction with the maximum principle. If the
mean curvature vector of Ts(Mε) points towards the other component,
one does the same reasoning with the surface obtained from Sδ by
symmetry with respect to the slice H2×{0}. Therefore, the asymptotic
boundary C is vertical at any point p ∈ C. ¤

5. Appendix: Geometric behavior of the rotational
H-surfaces in H2 × R

In the Appendix we describe in details the geometric behavior of
rotational H-surfaces. Our discussion is based on formulae founded in
[34]. Rotational surfaces in H2 ×R have been studied in [1], [16], [21],
[27] and [34]. Recall that the plane and the catenoid are the unique
rotational minimal surfaces in R3. In 1841, Delaunay ([7]) determined
all rotational H-surfaces in R3 with H 6= 0, by a geometric construction.
They are called Delaunay’s surfaces. Namely, the spheres, the circular
cylinders, the undoloids and the nodoids. We will see in Proposition
5.3 that for H > 1/2 the geometric behavior of rotational H-surfaces
in H2 × R is analogous to the geometric behavior of the Delaunay’s
surfaces.

We work with the disk model for H2, so that

H2 = {(x, y) ∈ R2, x2 + y2 < 1},
and the metric is

ds2
H =

(
2

1− (x2 + y2)

)2

(dx2 + dy2).

Therefore the product metric on H2 × R reads as follows

d s̃2 =

(
2

1− (x2 + y2)

)2

(dx2 + dy2) + dt2,
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where (x, y) ∈ H2 and t ∈ R. We consider the following particular
geodesic of H2

Γ={(x, 0), x ∈ (−1, 1) }⊂H2.

Up to ambient isometry, we can assume the rotational surfaces are
generated by curves in the vertical geodesic plane P = Γ×R ⊂ H2×R
and that the rotational axis is the vertical geodesic R := {(0, 0)} × R.

On the geodesic Γ we denote by ρ ∈ R the signed distance to the
origin (0, 0), thus x = tanh ρ/2. Therefore the metric on P is

ds2 =

(
2

1− x2

)2

dx2 + dt2 = dρ2 + dt2.

Let us consider a curve in P which is a vertical graph: c(ρ) = (ρ, λ(ρ))
where λ is a smooth real function defined for ρ > 0. On the rotational
surface generated by c we consider the orientation given by the unit
normal field pointing up. It is shown in [34] (formula (21)) that the
curve c generates a rotational surface with constant mean curvature H
if and only if the function λ is given by

λ(ρ) =

∫ ρ

∗

d + 2H cosh r√
sinh2 r − (d + 2H cosh r)2

dr, (9)

where d is a real parameter and ∗ is the minimum such that the con-
dition sinh2 r − (d + 2H cosh r)2 > 0 is satisfied. Using the isometry
(x, y, t) 7→ (x, y,−t) we can assume that H > 0. We will analyze
consecutively the cases H = 0, H ∈ (0, 1/2] and H > 1/2.

Proposition 5.1. (Minimal rotational surfaces) For each d > 0 there
exists a complete minimal rotational surface Md (Figure 1 ). The sur-
face M0 is the horizontal slice {t = 0}. For d > 0 the rotational
surface Md (called catenoid) is embedded and homeomorphic to an an-
nulus. The distance between the rotational axis and the “neck” of Md

is arcsinh d. The asymptotic boundary of Md is two horizontal circles
in ∂∞(H2)×R and the vertical distance between them is a nondecreas-
ing function h(d) satisfying limd→0 h(d) = 0 and limd→+∞ h(d) = π.
Therefore Md converges to the double covering of the slice {t = 0}
when d goes to 0.

Moreover any minimal rotational surface is, up to an ambient iso-
metry, a part of a complete surface Md.
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Figure 1

Proof.
If the graph of a function λ generates a minimal surface we deduce

from formula (9) that

λ(ρ) =

∫ ρ

arcsinh(d)

d√
sinh2 r − d2

dr.

Thus we have λ ≡ 0 for d = 0. For d > 0 the function λ is defined
for ρ > arcsinh(d) > 0 and the graph c has a vertical tangent at
ρ = arcsinh d. It is clear that limρ→+∞ λ(ρ) exists and is finite. Let
us call c̃ the union of the curve c with its symmetry with respect to
the horizontal geodesic {y = 0} of P . Therefore c̃ is a complete curve
which generates a rotational complete and embedded minimal surface
homeomorphic to an annulus.

As in formula (41) of [34] we introduce the new coordinate s setting
ds =

√
1 + λ′2dρ (s is the arclength of the graph c(ρ) = (ρ, λ(ρ))).

Then using the formulae (49), (36) and (37) of [34] we get

ρ(s) =

∫ s

0

sinh t√
(1 + d2) cosh2 t− 1

dt + arcosh
√

1 + d2,

= arcosh(
√

1 + d2 cosh s).

and

λ◦ρ(s)=

∫ s

0

d√
(1 + d2) cosh2 t− 1

dt,

for s > 0. Therefore we have

h(d)=2

∫ +∞

0

d√
(1 + d2) cosh2 t− 1

dt.
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Consider the positive function defined by f(t, d) = d√
(1+d2) cosh2 t−1

for

t, d > 0. Let d0 > 0 be any positive real number. Clearly the integral
h(d) is convergent for any d ∈ [d0, +∞). Moreover we have

∂

∂d
f(t, d) =

sinh t

((1 + d2) cosh2 t− 1)3/2
·

We deduce that the integral

∫ +∞

0

∂

∂d
f(t, d)dt,

is uniformly convergent for d > d0 > 0. Consequently the function
h(d) is differentiable on [d0, +∞) and

h′(d) = 2

∫ +∞

0

∂

∂d
f(t, d)dt, (10)

= 2

∫ +∞

0

sinh t

((1 + d2) cosh2 t− 1)3/2
dt. (11)

As this is true for d > d0 > 0 for any d0 > 0, then h is differentiable
for d > 0 and its derivative is given by (11). We deduce that h(d) is
nondecreasing and we have limd→0 h(d) = 0.

Finally, from the inequalities

d√
(1 + d2)

1

cosh t
6 d√

(1 + d2) cosh2 t− 1
6 1

cosh t
,

for any d, t > 0, we get

lim
d→+∞

h(d) = 2

∫ +∞

0

lim
d→+∞

d√
(1 + d2) cosh2 t− 1

dt,

= 2

∫ +∞

0

dt

cosh t
,

= 2

∫ +∞

0

du

u2 + 1
, (u = sinh t),

= π.

This concludes the proof. ¤
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For later use we define the functions g(ρ) and f(ρ) setting for d ∈ R
and H > 0,

g(ρ) = d + 2H cosh ρ,

f(ρ) = sinh2 ρ− (d + 2H cosh ρ)2,

= (1− 4H2) cosh2 ρ− 4dH cosh ρ− 1− d2,

so that λ′(ρ) = g(ρ)/
√

f(ρ).

Lemma 5.1. Assume 0 < H < 1/2. We have f(ρ) > 0 if and

only if cosh ρ > 2dH+
√

1−4H2+d2

1−4H2 . Let ρ1 > 0 such that cosh ρ1 =
2dH+

√
1−4H2+d2

1−4H2 , then f(ρ1) = 0 and ρ1 = 0 if and only if d = −2H.

(1) If d > −2H, then −d
2H

< cosh ρ1. Consequently the function λ is
nondecreasing for ρ > ρ1 > 0 and has a nonfinite derivative at
ρ1.

(2) If d = −2H, then λ′(ρ) = 2H
√

cosh ρ−1√
(1−4H2) cosh ρ+4H2+1

. Therefore the

function λ is defined for ρ > 0, it has a zero derivative at 0 and
is nondecreasing for ρ > 0.

(3) If d < −2H, then there exists ρ0 > ρ1 > 0 such that −d
2H

=
cosh ρ0. Consequently the function λ is defined for ρ > ρ1 > 0
with a nonfinite derivative at ρ1, it is nonincreasing for
ρ1 < ρ < ρ0, has a zero derivative at ρ0 and it is nondecreasing
for ρ > ρ0.

(4) For any d we have limρ→+∞ λ(ρ) = +∞.

Next Lemma, is analogous to Lemma 5.1 in the case H = 1/2. We
observe that, in this case, the set {ρ > 0 | f(ρ) > 0} is nonempty if
and only if d < 0.

Lemma 5.2. Assume H = 1/2 and d < 0. Then f(ρ) > 0 if and only

if cosh ρ > 1+d2

−2d
. Let ρ1 > 0 such that cosh ρ1 = 1+d2

−2d
, then f(ρ1) = 0

and ρ1 = 0 if and only if d = −1.

(1) If d ∈ (−1, 0), then −d
2H

< cosh ρ1. Consequently the function λ
is nondecreasing for ρ > ρ1 > 0 and has a nonfinite derivative
at ρ1.

(2) If d = −1, then λ′(ρ) = 1√
2

√
cosh ρ− 1. Therefore the function

λ is defined for ρ > 0, it has a zero derivative at 0 and is
nondecreasing for ρ > 0.

(3) If d < −1 there exists ρ0 > ρ1 > 0 such that −d
2H

= cosh ρ0.
Consequently the function λ is defined for ρ > ρ1 > 0 with a
nonfinite derivative at ρ1, it is nonincreasing for ρ1 < ρ < ρ0,
has a zero derivative at ρ0 and it is nondecreasing for ρ > ρ0.
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(4) For any d we have limρ→+∞ λ(ρ) = +∞.

The proof of Lemma 5.1 and 5.2 is a straightforward computation
taking into account Formula (9). As a consequence of Lemma 5.1 and
5.2 we have the following results.

Proposition 5.2. (Rotational H-surfaces with |H| 6 1/2)
Assume 0 < H 6 1/2. There exists a one-parameter family Hd,

d ∈ R for H < 1/2 and d < 0 for H = 1/2, of complete rotational
H-surfaces.

(1) For d > −2H, the surface Hd is a properly embedded annu-
lus (Figure 2-a), symmetric with respect to the slice {t = 0},
the distance between the “neck” and the rotational axis R =
{(0, 0)}×R is arcosh(2dH+

√
1−4H2+d2

1−4H2 ) for H < 1/2 and arcosh(1+d2

−2d
)

for H = 1/2.
(2) For d = −2H, the surface H−2H is an entire vertical graph,

denoted by SH (Figure 2-b). Moreover SH is contained in the
halfspace {t > 0} and it is tangent to the slice H2 × {0} at the
point (0, 0, 0).

(3) For d < −2H, the surface Hd is a properly immersed (and
nonembedded) annulus (Figure 2-c), it is symmetric with respect
to the slice {t = 0}, the distance between the “neck” and the

rotational axis R is arcosh(2dH+
√

1−4H2+d2

1−4H2 ) for H < 1/2 and

arcosh(1+d2

−2d
) for H = 1/2.

(4) In each of the previous case the surface is unbounded in the
t-coordinate. When d tends to −2H with either d > −2H or
d < −2H, then the surfaces Hd tends towards the union of SH

and its symmetry with respect to the slice {t = 0}. Furthermore,
any rotational H-surface with 0 < H 6 1/2 is, up to an ambient
isometry, a part of a surface of the family Hd.
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Proof.
The result is a straightforward consequence of Lemma 5.1 and 5.2.

For d = −2H, H−2H is the rotational surface generated by the graph
of the function λ.

For d 6= −2H, let γ be the union of the graph of λ joint with its
symmetry with respect to the slice {t = 0}. Then Hd is the rotational
surface generated by the curve γ. ¤

Observe that, for H > 1/2, the set {ρ > 0 | f(ρ) > 0} is nonempty
if and only if d < −√4H2 − 1.

Lemma 5.3. Let H and d satisfying H > 1/2 and d < −√4H2 − 1.
Then, there exist two numbers 0 6 ρ1 < ρ2 such that cosh ρ1 =
2dH+

√
1−4H2+d2

1−4H2 and cosh ρ2 = 2dH−√1−4H2+d2

1−4H2 . Therefore, f(ρ) > 0
if and only if ρ1 < ρ < ρ2 and f(ρ1) = f(ρ2) = 0.

(1) If d < −2H, then ρ1 > 0 and there exists a unique number
ρ0 ∈ (ρ1, ρ2) satisfying g(ρ0) = 0. Furthermore g 6 0 on [ρ1, ρ0)
and g > 0 on (ρ0, ρ2]. Consequently, the function λ is defined
on [ρ1, ρ2], has a nonfinite derivative at ρ1 and ρ2, has a zero
derivative at ρ0, is nonincreasing on (ρ1, ρ0) and nondecreasing
on (ρ0, ρ2).

(2) If d = −2H, then ρ1 = 0 and λ′(ρ) = 2H
√

cosh ρ−1√
(1−4H2) cosh ρ+4H2+1

.

Consequently, the function λ is defined on [0, ρ2], is nondecreas-
ing, has a zero derivative at 0 and a nonfinite derivative at ρ2.
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(3) If −2H < d < −√4H2 − 1, then ρ1 > 0 and g > 0 on [ρ1, ρ2].
Therefore the function λ is defined on [ρ1, ρ2], is nondecreasing
and has nonfinite derivative at ρ1 and ρ2.

The proof of Lemma 5.3 follows from formula (9) by a computation.
In the following Proposition we assume the notations of Lemma 5.3

Proposition 5.3. (Rotational surfaces with H > 1/2)
Assume H > 1/2. There exists a one-parameter family Dd of com-

plete rotational H-surfaces, d 6 −√4H2 − 1.

(1) For d < −2H, the surface Dd is an immersed (and nonem-
bedded) annulus, invariant by a vertical translation and is con-
tained in the closed region bounded by the two vertical cylinders
ρ = ρ1 and ρ = ρ2. Furthermore ρ1 → +∞ and ρ2 → +∞ when
d → −∞ and ρ1 → 0 and ρ2 → arcosh(4H2+1

4H2−1
) when d → −2H.

Such surfaces are analogous to the nodoids of Delaunay in R3

(Figure 3-a).
(2) For d = −2H, the surface D−2H is an embedded sphere and the

maximal distance from the rotational axis is ρ2 = arcosh(4H2+1
4H2−1

)
(Figure 3-b).

(3) For −2H < d < −√4H2 − 1, the surface Dd is an embedded
annulus, invariant by a vertical translation and is contained in
the closed region bounded by the two vertical cylinders ρ = ρ1

and ρ = ρ2. Furthermore ρ1 → 0 and ρ2 → arcosh(4H2+1
4H2−1

)

when d → −2H and both ρ1, ρ2 → arcosh( 2H√
4H2−1

) when d →
−√4H2 − 1. Moreover ρ1 < arcosh( 2H√

4H2−1
) < ρ2. Such sur-

faces are analogous to the undoloids of Delaunay in R3 (Figure
3-c).

(4) For d = −√4H2 − 1, the surface D−√4H2−1 is the vertical cylin-

der over the circle with hyperbolic radius arcosh( 2H√
4H2−1

).

Proof.
For d = −√4H2 − 1 we get the limit case of a vertical cylinder given

by cosh ρ = 2H√
4H2−1

. A straightforward computation shows the mean

curvature of such a cylinder is H.
For the other cases the proof is a straightforward consequence of

Lemma 5.3. Let γ be the union of the graph of λ joint with its symme-
tries with respect to the horizontal slices on which λ is vertical. When
d = −2H, γ is a compact arc and for d 6= −2H, γ is periodic and
complete, embedded only when d > −2H. ¤
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From Proposition 5.1, 5.2, 5.3 and Proposition 26 in [34], we in-
fer the following classification of rotational H-surfaces with vanishing
Abresch-Rosenberg holomorphic quadratic differential. The classifi-
cation of H-surfaces with vanishing Abresch-Rosenberg holomorphic
quadratic differential is established in [1].

Theorem 5.1. Let M be a rotational H-surface, H > 0, with vanishing
Abresch-Rosenberg holomorphic quadratic differential. We have up to
congruence:

(1) If H = 0 then M is a slice H2 × {t}.
(2) If H > 1/2 then M is an embedded two-sphere.
(3) If H = 1/2 then M is the entire vertical graph S1/2.
(4) If H < 1/2 then M is either the entire vertical graph SH or the

embedded annulus H2H .
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et Géométrie, Grenoble 16, 43-79, (1998) .



20 B. NELLI, R. SA EARP, W. SANTOS AND E. TOUBIANA

[7] C. Delaunay: Sur la surface de rvolution dont la courbure moyenne est
constante. J. Math. Pure et Appl. 6, 1, 309-320, (1841).

[8] F. Braga Brito and R. Sa Earp: Geometric configurations of constant
mean curvature surfaces with planar boundary. An. Acad. Bras. Ci. 63,No 1,
5-19 (1991).

[9] F. Braga Brito and R. Sa Earp: On the Structure of certain Weingarten
surfaces with boundary a circle. An. Fac. Sci. Toulouse VI, No 2, 243-255
(1997).

[10] F. Brito, W. Meeks III, H. Rosenberg and R. Sa Earp: Structure
Theorems for Constant Mean Curavture Surfaces Bounded by a Planar Curve.
Indiana Univ. Math. Jour. 40 (1) 333-343 (1991).

[11] D. Gilbarg and N.S. Trudinger: Elliptic Partial Differential Equations
of Second Order. Springer- Verlag (1998).

[12] L. Hauswirth: Minimal surfaces of Riemann type in three-dimensional
product manifolds. Pacific J. Math. 224, No 1, 91-117 (2006).

[13] L. Hauswirth, H. Rosenberg and J. Spruck: Infinite boundary value
problems for constant mean curvature graphs in H2 × R and S2 × R.
http://www.math.jhu.edu/ js/jsfinal.pdf

[14] L. Hauswirth, R. Sa Earp and E. Toubiana: Associate and conjugate
minimal immersions in M× R. Preprint.

[15] D. Hoffman, J. de Lira and H. Rosenberg: Constant Mean Curvature
Surfaces in M2 × R. Trans. Amer. Math. Soc. 358 n.2 (2006), 491-507.

[16] W.T. Hsiang and W.Y. Hsiang: On the uniqueness of isoperimetric solu-
tions and embedded soap bubbles in noncompact symmetric spaces I. Invent.
Math 98, 39-58 (1989).

[17] N. Kapouleas: Compact constant mean curvature surfaces in Euclidean
three-space. J. Diff. Geom. 33, 683-715 (1991).

[18] M. Koiso: Symmetry of hypersurfaces of constant mean curvature with sym-
metric boundary. Math. Z. 191, 567-574 (1986).

[19] N. J. Korevaar, R. Kusner and B. Solomon. The structure of complete
embedded surfaces with constant mean curvature. J. Diff. Geom. 30, 465-503
(1989).

[20] R. B. Kusner: Global geometry of extremal surfaces in three-space. Doctoral
Thesis, Berkeley, 1987.

[21] Montaldo and I. Onnis: Invariant CMC surfaces in H2×R. Glasg. Math.
J. 46 No. 2, 311-321 (2004).

[22] B. Nelli and H. Rosenberg: Some remarks on embedded hypersurfaces in
Hyperbolic Space of constant mean curvature and spherical boundary. Ann.
Glob. An. and Geom. 13, 23-30, (1995).

[23] B. Nelli and H. Rosenberg: Minimal surfaces in H2×R. Bull. Braz. Soc.
33, 263-292 (2002).



EXISTENCE AND UNIQUENESS 21

[24] B. Nelli and H. Rosenberg: Global properties of constant mean curvature
surfaces in H2 × R. Pacific Journ. Math. 226, No 1, 137-152 (2006).

[25] B. Nelli and R. Sa Earp: Some Properties of Hypersurfaces of Prescribed
Mean Curvature in Hn+1. Bull. Sc. Math. 120, No 6, 537-553 (1996).

[26] B. Nelli and R. Sa Earp: Vertical Ends of Constant Mean Curvature
H = 1

2 in H2 × R. Preprint.

[27] R.H.L. Pedrosa and M. Ritore: Isoperimetric domains in the Riemann-
ian product of a circle with a simply connected space form and applications to
free boundary problems. Indiana Univ. Math. J. 48 No. 4, 1357-1394 (1999).

[28] H. Rosenberg and R. Sa Earp: Some Structure Theorems for Complete
Constant Mean Curvature Surfaces with Boundary a Convex Curve. Proc.
Amer. Math. Soc. 113, No 4, 1045-1053 (1991).

[29] A. Ros and H. Rosenberg: Constant mean curvature surfaces in a halfs-
pace of R3 with boundary in the boundary of the halfspace. J. Diff. Geom. 44,
807-817 (1996) .

[30] R. Sa Earp: Parabolic and Hyperbolic Screw motion in H2 × R.
http://www.mat.puc-rio.br/ earp/pscrew.pdf, to appear in Journ. Austra.
Math. Soc..

[31] R. Sa Earp, E. Toubiana: Some Applications of Maximum Principle to
Hypersurfaces in Euclidean and Hyperbolic Space. New Approaches in Nonlin-
ear Analysis, Themistocles M. Rassias Editor, Hardonic Press (1999) 183-202.

[32] R. Sa Earp and E. Toubiana: Symmetry of properly embedded special
Weingarten surfaces in H3. Trans. Amer. Math. Soc. 352, No 12, 4693-4711
(1999).

[33] R. Sa Earp and E. Toubiana: Variants on Alexandrov reflection principle
and other applications of maximum principle. Séminaire de Théorie Spectrale
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Rio de Janeiro, Rio de Janeiro, 22453-900 RJ, Brazil

E-mail address: earp@mat.puc-rio.br

Universidade Federal do Rio de Janeiro, Instituto de Matemtica,
Av. Brigadeiro Trompowsky, s/n Cidade Universitria, Ilha do Fundão,
Caixa Postal 68530, 21945-970 Rio de Janeiro RJ, Brazil

E-mail address: walcy@im.ufrj.br



22 B. NELLI, R. SA EARP, W. SANTOS AND E. TOUBIANA
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