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Abstract. We deduce that a connected compact immersed min-
imal surface in H2×R whose boundary has an injective horizontal
projection on an admissible convex curve in ∂∞H2×R and satisfies
an admissible bounded slope condition, is the Morrey’s solution of
the Plateau problem and is a horizontal minimal graph. We prove
that there is no entire horizontal minimal graph in H2 × R.
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1. Introduction

The theory of minimal and constant mean curvature surfaces in the
product space H2 × R has been developed since the discovery of a
holomorphic quadratic differential by Abresch and Rosenberg [1]. Re-
cently, many results on the minimal surfaces theory were achieved for
the vertical minimal graphs see, for instance, [5], [3] and [7].

However, there exists another notion of graph that also arises nat-
urally in the theory: “horizontal graph”. For the definition we follow
[6] were many explicit examples were given. We choose the upper half-
plane model of hyperbolic plane H2 = {(x, y), y > 0}, endowed with

the hyperbolic metric dσ2 =
dx2 + dy2

y2
. A horizontal graph in H2×R is

the set S = {(x, g(x, t), t), (x, t) ∈ Ω} ⊂ H2×R , where Ω ⊂ ∂∞H2×R
is a domain and g(x, t) > 0, for every (x, t) ∈ Ω. This means that in any
slice of H2×R given by t = cst, each horizontal geodesic x = cst, y > 0
intersects S in one point at most. We call the positive function g(x, t)
the horizontal length of the graph. If S is a horizontal minimal graph
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in H2 × R the positive function g(x, t) satisfies:

(1) MH(g) := gxx(g
2 + g2t ) + gtt(1 + g2x)− 2gxgtgxt + g(1 + g2x) = 0.

There are many entire vertical minimal graphs in H2 × R [5], [7], but,
in this paper, we prove the following “Bernstein type result”:

Theorem 1.1. There is no entire horizontal minimal graph in H2×R.

There exists a family of complete embedded minimal surfaces invari-
ant by parabolic screw motions whose asymptotic boundary are two
parallel straight lines [6]. These minimal surfaces can be seen as hor-
izontal minimal graphs given by a a function y = gM(x, t, d, ℓ), d ̸= 0
over a strip in the xt plane ∂∞H2 × R continuous up to the boundary
taking zero boundary data [6]. The generating curves of some examples
are given in Figure 1.
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Figure 1

Generating curves of horizontal minimal complete graphs

We recall now the horizontal mean curvature equation in H2 × R:
MH(g) =

2H

g2
(
g2t + g2(1 + g2x)

)3/2
, where g is a C2 positive function

and H is the mean curvature.
It turns out that there are also many examples of horizontal constant

mean curvature graphs in H2 × R. Indeed there exists a 2-parameter
family constituted of entire horizontal graphs with positive mean cur-
vature H < 1/2 [6, Theorem 2.2]. On the other hand, there exist
horizontal graphs with mean curvature 1/2 in H2 × R, given by ex-

plicit formulas. For example, y =
x√

t2 − 1
, x > 0, t > 1 [6, Equation
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(31)]. Moreover, any horocylinder given by y = c, c > 0 is an entire
horizontal graph with mean curvature H = 1/2.

Finally, there is no entire horizontal graph with mean curvature H >
1/2.

We believe that, if S is an entire horizontal H-graph in H2 ×R with
constant mean 0 < H 6 1/2, then S is invariant by a 1-parameter
group of isometries of H2 × R. These are the Bernstein type problems
for horizontal H-graphs, 0 < H 6 1/2, in H2 × R.

We need the following definition to establish our uniqueness result.

Definition 1.1. We say that a C0 Jordan domain Ω ⊂ ∂∞H2 × R
with boundary γ is admissible if, up to an Euclidean translation, γ =
γ+ ∪ γ−, where γ± are graphs of functions f± : [−a, a] → R, x =
f±(t), a > 0, respectively, satisfying

(1) f+ > 0 and f− < 0 on (−a, a).
(2) f±(±a) = 0.

We say that a C0 Jordan curve γ is admissible, if it bounds an admis-
sible domain Ω.

Definition 1.2. Let Γ be a C1 horizontal graph in H2 × R over a C1

convex admissible curve γ.
Let p be a point of Γ at height c. Let πp be the Euclidean plane

passing through p determined by the tangent line to Γ at p and the
equidistant line to the geodesic x = 0, y > 0, t = c, issuing from the t-
axis at height c passing through p.

We say that Γ satisfies an admissible bounded slope condition, if for
every p ∈ Γ, Γ is contained in one side of πp.

At last, we prove the following:

Theorem 1.2. Let M # H2 × R be a compact connected immersed
minimal surface C1 up to the boundary Γ.

Assume Γ is a C1 horizontal graph over a C1 convex admissible curve
γ in ∂∞H2 ×R. Assume further that Γ satisfies an admissible bounded
slope condition. Then M is the Morrey’s solution of the Plateau prob-
lem and is a horizontal minimal graph.

The author is grateful to Eric Toubiana and Barbara Nelli for their
valuable observations. The author thanks to the referee for his helpful
remarks.
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2. Some model horizontal minimal graphs in H2 × R.
Proof of the nonexistence result.

First, Let us give some remarks about the horizontal minimal equa-
tion.

Remark 2.1.

(1) Is is easy to see that the Euclidean planes in H2 × R given by
y = ax + bt + c; a, b, c ∈ R, y > 0 are positive subsolutions
[7] of equation (1). In particular the horocylinders given by
y = c, c > 0, are subsolutions of (1).

(2) Of course, the vertical geodesic planes P = P(R, x0) =

{(x, y, t) ∈ H2 × R; y =
√

R2 − (x− x0)2, t ∈ (−∞,∞),
R2 − (x− x0)

2 > 0}, where R > 0 and x0 ∈ R, are solutions of
equation (1).

(3) Minimality is invariant by a positive isometry of H2 × R given
by a hyperbolic translation of H2 × {0} along a geodesic L [8].
In particular, the homothety in H2 with center x0 ∈ R, ratio
λ > 0, keeping H2 invariant gives rise to an isometry of the
product space H2 × R given by (x, y, t) 7→ (λ(x− x0), λy, t) +
(x0, 0, 0). Thus, the family of equidistant curves to the geodesic
x = 0, y > 0, at any slice {t = cst}, provides a Killing system
of coordinates of the ambient space. Explicit formulas are given
in [8, Exercise 2.6.1].
In view of this observation, we deduce that if y = g(x, t) is a

solution of (1) on a domain Ω then y = λg(x
λ
, t), λ > 0 is also

a solution of (1) on Tλ(Ω), where Tλ is the linear map given by

the matrix

(
λ 0
0 1

)
.

An entire horizontal graph in H2 ×R is a graph given by a function
y = g(x, t) defined for all values of the independent variables x, t. We
use the geometry of the hyperbolic minimal surfaces described in [7]
to prove the non existence of an entire horizontal minimal graph in
H2×R. We remark that Laurent Hauswirth [2] has given a classification
of minimal surfaces invariant by hyperbolic translations.

Example 2.1.
Keeping the notations of [7], we summarize the properties of the

family Md, d > 1, as follows: First, we consider the disk model for
H2. Each Md, d > 1 is invariant by hyperbolic translations along a
geodesic γ in H2 × {0}. Furthermore, Md is symmetric with respect to
the slice t = 0, it contains the equidistant curve γd of γ in H2 × {0}
and is contained in a slab −H(d) 6 t 6 H(d) of H2 × R. Each slice
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t = c, c ∈ (−H(d), H(d)), c ̸= 0, cuts Md along an equidistant curve of
γ contained in the non mean convex side of γd. Let Γ be the geodesic
orthogonal to γ passing through the origin of H2×{0} and let us denote
by∞ the point in the asymptotic boundary of Γ lying in the component
of H2×{0}\γ not intersecting Md. It follows that each Md is transverse
to the family of geodesics with same asymptotic boundary ∞. Let c1
be the closed arc of ∂∞H2 × {0}, given by the asymptotic boundary
of the component of H2 × {0} \ γ that contains γd. The asymptotic
boundary of Md consists of two copies of c1 in the slices t = ±H(d),
respectively, and two vertical segments joining these arcs.

Now turning to our model of H2 × R, we infer that there exists a
family Md̂ of complete horizontal minimal graph, given by a function

hd̂ ∈ C2(R)∩C0(R) defined in a rectangleR = R(a, d̂) = {(x, t); −a 6
x 6 a,−(d̂ + π)/2 6 t 6 (d̂ + π)/2, a, d̂ > 0}, taking zero value
asymptotic boundary data on ∂R . Notice that the vertical width of

R is greater than π. For any a > 0 and d̂ > 0, there exists such a
model minimal surface. Furthermore, letting a ↓ 0 we have that the
horizontal length hd̂(x, t) goes to zero uniformly.

Proof of the Theorem 1.1.

Proof. We argue by contradiction. Were the statement false, there
would exist an entire horizontal minimal graph S, given by a function
y = g(x, t) defined for all value of the independent variables x, t. Recall-
ing Example 2.1, let Md̂ be a fixed complete horizontal minimal graph,

given by a function hd̂ ∈ C2(R)∩C0(R) defined in the fixed rectangle

R = {(x, t); −a 6 x 6 a,−(d̂+π)/2 6 t 6 (d̂+π)/2; a, d̂ > 0}, taking
zero value boundary data on ∂R. Consider that 1-parameter family of
complete graphs given by y = λhd̂(

x
λ
, t), λ > 0, (x, t) ∈ Tλ(R). This

is still a complete graph of the family Md̂ . Note that if λ < 1 then
Tλ(R) is a thinner rectangle with the same vertical height as R and
Tλ(R) ⊂ R. If λ > 1 then Tλ(R) is a larger rectangle with vertical
height the same as R and Tλ(R) ⊃ R.

Now, let c := min
R

g(x, t). We may choose λ = λ0 ≪ 1 so small such

that λ0hd̂(
x
λ0
, t) < c,∀(x, t) ∈ Tλ0(R). We may also choose λ = λ1 big

enough such that λ1hd̂(0, 0) > max
R

g(x, t). These choices of λ are given

geometrically by applying hyperbolic translations to our fixed model
surface Md̂, in each slice of H2 × R. Thus, we may assume that our
initial model minimal graph given by the function λ0hd̂(

x
λ0
, t) is be-

low (horizontally) the entire graph S restricted to the thin rectangle
Tλ0(R). Moreover, we also may assume that if λ = λ1 then, at the
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origin, the horizontal length of corresponding model minimal surface
is above (horizontally) the entire graph S restricted to R. Therefore,
we may move the family Md̂ toward S, coming from the infinity by
doing hyperbolic translations. We must then find a first point of tan-
gent contact with S, during the movement of the family Md̂. So some
model minimal surface of the family Md̂ touches S and is below (hor-
izontally) S, for some λ0 < λ < λ1. We conclude therefore that S is a
minimal model surface, by the maximum principle. We thus arrive to
a contradiction, since S is entire. This completes the proof of Theorem
1.1.

�
Remark 2.2. We observe that the proof of Theorem 1.1 shows the
following:

There is no complete properly immersed minimal surface M in H2×
R, such that the part of the asymptotic boundary of M in ∂∞H2 × R
is contained in some vertical straight line.

3. Proof of the uniqueness result

We now prove our uniqueness result:

Proof of the Theorem 1.2:

Proof. Let Ω be the admissible domain with boundary γ. Let L be the
t-axis {x = 0} in ∂∞H2 × R.

Without loss of generality, we assume that the two connected com-
ponents of γ \ L are graphs over the same interval of L, each one is
contained in one side of L, as in Definition 1.1. We prove the Theorem
by establishing several claims.
Claim 1. The “horizontal cylinder” C := γ × {y; y > 0} has “non-
negative mean curvature” with respect to the unit inner normal in the
following sense: We recall that the Euclidean planes t = ℓx+cst, y > 0
are minimal surfaces [6]. Of course, the slices t = cst, y > 0 and the
vertical planes x = cst, y > 0, are minimal surfaces, because they are
geodesic surfaces. At any point p belonging to the horizontal cylinder
C, there is one (and only one) of those minimal surfaces tangent o C at
p, staying in H2 × R \ Ω× R.
Claim 2. The horizontal projection of M \ ∂M into ∂∞H2 × R lies in
Ω. In other words, M \ ∂M in strictly contained in Ω × {y; y > 0},
that we call the interior of the mean convex side of C.

Since ∂M ⊂ C, by comparing with the Euclidean planes of Claim
1, by maximum principle, one obtains that M \ ∂M is contained in
Ω× {y; y > 0}. This proves the assertion.
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Claim 3. M is a Killing-graph with respect to the 1-parameter group G
of isometries given by (x, y, t) 7→ (λx, λy, t), λ > 0 (hyperbolic transla-
tions with respect to the y-axis in each slice of H2×R). In particular, M
is embedded. Let L2 be the top horizontal line {(a, f(a), y), y > 0} of C
and L1 the bottom horizontal line {(−a, f(−a), y), y > 0} of C. First,
by the geometry of our admissible domains, we have that C \ L1 ∪ L2,
is a Killing graph. Secondly, as Γ is a horizontal graph, we conclude
therefore that the boundary Γ of M is a graph in the Killing system
of coordinates Furthermore, in view of the geometry of the admissible
domains, doing the translations (homotheties in each slice of H2 × R)
with ratio λ > 1, we see that the boundary of the translated surface
does not touch the original surface during the movement. That is, the
part of any orbit of the Killing field contained in the exterior of the
mean convex side of C, passing through a point of Γ, does not intersect
M \ ∂M . In fact, for λ > 1 the two points of the boundary of the
translated surface lying in C have horizontal length strictly bigger than
the corresponding length of the original surface. The other part of the
boundary of the translated surface stays in the interior of the non mean
convex side of C. On the other hand, the admissible bounded slope as-
sumption, using the Euclidean planes as suitable barriers, ensures that
the part of any orbit of the Killing field contained in the interior of the
mean convex side of C, passing through a point of Γ, does not inter-
sect M \∂M . Taking into account this geometric phenomenon, we will
argue by absurd.

Suppose, to the contrary, that there are two points p, q ∈ M in the
same orbit of G (equidistant curves in each slice). As we proved in the
last paragraph, p, q are interior points of M ,i.e p, q ∈ M \ ∂M . Let
us perform now hyperbolic translations, making λ ↑ ∞, λ > 1. Recall
that during this movement, the boundary of the translated surfaces
keeps away from the interior of the mean convex side of C. We would
then find a translated copy of M touching M at some first interior
point. Hence M would be equal to some translated copy, for λ > 1, by
the maximum principle. This contradiction proves the assertion.

Claim 4. There exists only one Killing-graph M with boundary Γ. That
is, M is the Morrey’s solution of the Plateau problem [4]. Mimicking
the proof of the Claim 3, we can deduce the uniqueness of the Killing-
graph with the same boundary, that is M = S. To see this carefully,
we do hyperbolic translations on S towards the infinity (λ ↑ ∞, λ >
1), until S is above M , then moving back S towards M , we infer,
by maximum principle, that S does not touch M before the copy of
the boundary of S reaches the original position, identifying with the
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boundary ofM . Hence S is aboveM , in the Killing system. Conversely,
doing hyperbolic translations on M, using the preceding reasoning, we
conclude that M is above S. We have therefore M = S, as desired.

Claim 5. M is a horizontal minimal graph. Being M a Killing graph,
each horizontal line x = 0, t = t0 starting from a point of L at height
t0, t0 ∈ [−a, a] intersects M at exactly one point. Now observe that Γ
is a C1 graph over γ, by our assumptions. Hence, the vertical geodesic
plane {x = 0, y > 0} passing through L is transverse to M , by the
maximum principle. We find a neighborhood U of L ∩ Ω, say U =
{−η < x < η} ∩ Ω, for some η > 0, such that the restriction of M to
U × {y; y > 0} is a horizontal graph, as well.

Now we focus the restriction ofM to the right side of L, i.e, the points
of M such that the coordinate x is positive. The argument about the
restriction of M to the left side of L, i.e, the points of M satisfying
x < 0 is the same. Let us denote by Lx the intersection of the vertical
line y = 0, x = x, in the xt plane, with Ω. Let us set x0 := sup x, x > 0,
such that the restriction of M to Lx × {y; y > 0}, 0 6 x < x0 is a
horizontal graph. Let us denote Lx0 = [p, q], where p = (x0, a1) and
q = (x0, b1) are the points of Lx0 in γ. Noticing that x0 > η, by the
previous argument, let (d, l) be the vertical point of γ in the halfplane
x > 0, i.e x = d is the maximum of the coordinate x of γ restricted to
the halfplane {x > 0}. We deduce that if x0 = d, then the restriction
of M to the right side of L is a horizontal graph. If x0 < d, we argue
by contradiction. Let γ̃ be the arc of γ in the right side of Lx0 joining
the points (x0, a1) and (x0, b1) of γ. Now, we may choose a convex arc
C in the intersection of Ω with the vertical strip 0 < x < x0, joining
the points (x0, a1) and (x0, b1) of γ, such that γ̃ ∪ C bounds a convex
admissible domain Ω′ contained in Ω. The construction yields that the
restriction of M to γ̃ ∪C ×{y; y > 0} is a horizontal graph. But then,
by employing the translations (x, y, t) → (λ(x − x0), λy, t) + (x0, 0, 0)
(homotheties in each slice starting at a point of Lx0), working in the
same way as before, we derive that M (restricted to Ω′ × {y; y > 0})
is a Killing graph with respect to this coordinate system. Thus each
horizontal line x = x0, t ∈ [a1, b1], y > 0, starting from Lx0 , intersects
M at exactly one point. We observe that Lx0 is transverse to γ at
the two points (x0, a1) and (x0, b1) of intersection, by the convexity
of γ. Thus, by the maximum principle again, as the restriction of M
to Lx0 × {y, y > 0} is a horizontal graph over Lx0 , then the vertical
geodesic plane {x = x0, y > 0} passing through Lx0 is transverse to M.
Thus, we find a neighborhood U ′ of Lx0 in the xt plane such that the
restriction ofM to U ′×{y; y > 0} is a horizontal graph, a contradiction
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with the assumption on x0. Therefore, x0 = d and we conclude that M
is a horizontal minimal graph, as desired. This completes the proof of
Theorem 1.2.

�
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