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Abstract. In this paper we prove a general and sharp Asymp-
totic Theorem for minimal surfaces in H2 × R. As a consequence,
we prove that there is no properly immersed minimal surface whose
asymptotic boundary Γ∞ is a Jordan curve homologous to zero in
∂∞H2 × R such that Γ∞ is contained in a slab between two hori-
zontal circles of ∂∞H2 × R with width equal to π.

We construct vertical minimal graphs in H2×R over certain un-
bounded admissible domains taking certain prescribed finite bound-
ary data and certain prescribed asymptotic boundary data. Our
admissible unbounded domains Ω in H2 × {0} are non necessarily
convex and non necessarily bounded by convex arcs; each compo-
nent of its boundary is properly embedded with zero, one or two
points on its asymptotic boundary, satisfying a further geometric
condition.

1. Introduction

In this paper we prove an Asymptotic Theorem for minimal surfaces
in H2 × R. Indeed, we prove a surprising general and sharp nonexis-
tence result. As a consequence, we deduce that there is no complete
properly immersed minimal surface whose asymptotic boundary Γ∞ is
a Jordan curve homologous to zero in ∂∞H2 ×R contained in an open
slab between two horizontal circles of ∂∞H2 × R with width equal to
π. The last statement is still true in a closed slab with width equal
to π in the class of minimal surfaces continuous up to the asymptotic
boundary. This result is sharp in the following sense. We show that for
any ` > π there is a Jordan curve Γ∞ ⊂ ∂∞H2×R homologous to zero
with vertical height equal to ` which is the asymptotic boundary of a
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complete minimal surface, continuous up to its asymptotic boundary
Γ∞. Moreover, this surface is invariant by hyperbolic translations and
consists of two vertical minimal graphs over the exterior of an equidis-
tant curve, symmetric about the horizontal slice H2×{0}. In fact, the
Jordan curve Γ∞ is the union of two vertical segments with two half
circles in ∂∞H2. Another consequence of our Asymptotic Theorem is
that there is no complete properly immersed minimal surface contained
in an open slab of width equal to π of H2 × R, such that the vertical
projection of its asymptotic boundary on ∂∞H2 × {0} omits an open
arc.

Those results contrast with an analogous situation when the am-
bient space is the hyperbolic three-space H3, due to the existence of
the vertical minimal graph (taking the upper half-space model) whose
asymptotic boundary is any convex curve lying in ∂∞H3. Indeed, the
authors have solved the Dirichlet Problem in H3 for the vertical min-
imal surface equation over a convex domain Ω in ∂∞H3, taking any
prescribed continuous boundary data on ∂Ω ([19]). There are also the
general results proved by M. Anderson [1] and [2].

We give some geometric conditions to construct vertical minimal
graphs in H2 × R over certain unbounded admissible domains taking
certain prescribed finite boundary data and certain prescribed asymp-
totic boundary data.

To obtain our existence results we establish the Perron process when
the finite boundary data and the asymptotic boundary data are con-
tinuous except perhaps at a finite set.

As a consequence, we prove the following. Let Ω be a convex un-
bounded domain. Let g : ∂Ω ∪ ∂∞Ω → R be a bounded function
everywhere continuous except at a finite set S. Then g admits an ex-
tension u satisfying the vertical minimal surface equation over Ω such
that the total boundary of the graph of u is the union of the graph of
g on (∂Ω ∪ ∂∞Ω) \ S with vertical segments at the points of S. This
result was obtained independently by M. Rodŕıguez and H. Rosenberg

We build barriers at each convex point of a convex finite boundary,
where the boundary data are continuous and bounded and we construct
barriers at each point of the asymptotic boundary where the asymptotic
data is continuous. Our admissible unbounded domains Ω in H2×{0}
are not necessarily convex nor necessarily bounded by convex arcs;
each component of its boundary is properly embedded with zero, one
or two points on its asymptotic boundary, satisfying a further geometric
condition: each connected component C0 of ∂Ω satisfies the Exterior
circle of (uniform) radius ρ condition. Particularly, we consider an
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admissible domain Ω that is the exterior of a C2 Jordan curve Γ in the
horizontal slice.

We obtain the existence of minimal graph M over an admissible
domain Ω in H2 × {0} such that the finite boundary of M is ∂Ω and
the asymptotic boundary of M is a certain Jordan curve Γ∞ consisting
of the union of bounded continuous vertical graphs with the vertical
segments joining the points of discontinuities, such that Γ∞ is contained
inside a certain slab of ∂∞H2 × R depending on the geometry of Ω.

We consider admissible domains, that we call E-admissible domains,
such that each component of the boundary has two points at its as-
ymptotic boundary and has at each point of its finite boundary an
exterior equidistant curve. We obtain analogous existence results for
E-admissible domains.

2. An asymptotic theorem

In this section we prove an Asymptotic Theorem that ensures some
nonexistence results about minimal surfaces with some given asymp-
totic boundary.

Theorem 2.1 (Asymptotic Theorem).
Let γ ⊂ ∂∞H2 × R be an arc. Assume there exist a vertical straight

line L ⊂ ∂∞H2 × R and a subarc γ′ ⊂ γ such that

(1) γ′ ∩ L 6= ∅ and ∂γ′ ∩ L = ∅,
(2) γ′ stays on one side of L,
(3) γ′ ⊂ ∂∞H2 × (t0, π + t0), for some real number t0.

Then there is no properly immersed minimal surface (maybe with finite
boundary), M ⊂ H2 × R, with asymptotic boundary γ and such that
M ∪ γ is a continuous surface with boundary.

Proof. By assumption there exists a point p in γ′ ∩ L. If there is a
vertical segment in γ′ ∩ L, we choose p to be the midpoint of this
segment. Up to a vertical translation, we can assume that p ∈ ∂∞H2×
{0}. The vertical projection of γ′ on ∂∞H2 × {0} is an arc β with p as
one of the two end points. Let ε > 0 be a real number to be chosen
later. Let q1, q2 ∈ ∂∞H2 × {0} be two distinct points such that q1 ∈ β,
q2 6∈ β and the Euclidean distance on ∂∞H2 × {0} from p to qi is ε,
i = 1, 2. Let c ⊂ H2 × {0} be the complete geodesic with asymptotic
boundary {q1, q2} and let S = c × R be the vertical geodesic plane
defined by c.

Let M ⊂ H2 × R be a minimal surface (if any) with asymptotic
boundary γ and such that M∪γ is a continuous surface with boundary.
If ε is small enough we have S∩∂M = ∅. Let M0 ⊂ M be the connected
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component of M\S containing p in its asymptotic boundary. Therefore,
the asymptotic boundary of M0 is a subarc γ0 of γ′ containing p in its
interior: γ0 ⊂ γ′ ⊂ γ and p ∈ Int(γ0). Let β′ ⊂ β ⊂ ∂∞H2 × {0} be
the subarc of β with end points p and q1. For ε small enough we have
γ0 ⊂ β′× (−π/2, π/2). By construction there exist two real numbers a
and b satisfying a < 0 < b, b− a < π and ∂γ0 = {(q1, a), (q1, b)}.

Observe that, by continuity, for ε small enough the whole component
M0 is inside the slab H2× (−π/2, π/2). Furthermore, the finite bound-
ary ∂M0 of M0 is contained in the vertical geodesic plane S. Therefore,
there is a complete geodesic c1 ⊂ H2 × {0} with asymptotic boundary
in the open arc (p, q2) ⊂ ∂∞H2 × {0}\β, such that M0 ∩ (c1 × R) = ∅.

Let C ⊂ H2 × R be a complete catenoid whose a component of the
asymptotic boundary stays at height T1 and the other component at
height T2 such that T1 < a < b < T2 (such a catenoid exists since
0 < b−a < π), note that T2−T1 < π, the reader can see the geometric
behaviour of the catenoids in Lemma 5.1 or [15]. By continuity, we can
choose T1 and T2 such that M0 is entirely contained in the open slab
H2 × (T1, T2). Finally, let t1, t2 be two real numbers satisfying
T1 < t1 < a < b < t2 < T2, such that M0 is entirely contained in the
open slab H2 × (t1, t2).

Let C be the part of C contained in the slab {t1 6 t 6 t2}, that is,
C = C ∩ (H2 × [t1, t2]). Observe that C is a compact surface. Up to
a hyperbolic translation we can send C into the connected component
of H2×R\(c1×R) not containing p in its asymptotic boundary, so we
can assume that C has this property.

Let c2 ⊂ H2×{0} be a complete geodesic with an asymptotic bound-
ary point in Int(β′) and the other asymptotic boundary point in the
open arc (p, q2). We choose c2 such that c1 is contained in the com-
ponent of (H2 × {0}) \ c2 containing p in its asymptotic boundary.
Consider the hyperbolic translations along c2. Observe that all trans-
lated copies of C have a component of the finite boundary at height
t1 and the other component at height t2. Therefore the boundary of
any translated copy of C has no intersection with M0. Consequently
some translated copy of C must achieve a first interior contact point
with M0, which contradicts the maximum principle. This concludes
the proof of the Theorem.

¤

Remark 1. Let us fix cylindrical coordinates (θ, t) in ∂∞H2×R. Notice
that the assumptions on the curve γ′ in the Statement of Theorem 2.1,
ensure that there exists a point p := (θτ , τ) and a continuous function
h(t) defined (locally) in an interval around τ , say I := [τ − ε, τ + ε],
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with h(τ) = θτ , such that γ′ is given by a “horizontal graph” (h(t), t)
for t ∈ I, and h(t) reaches a local maximum or local minimum at τ .
Thus, γ′ is parametrized locally by t 7→ (cos(h(t)), sin(h(t)), t), t ∈ I,
and is locally contained in one of the half-side θ > θτ or θ 6 θτ of
the vertical straightline L = {θτ} × R tangent to γ′ at p. Notice that,
if Γ∞ is a Jordan curve homologous to 0 in ∂∞H2 × R, lifting to the
universal cover R2, then we see that there is a vertical point p and
a subarc γ′ that satisfy the assumptions (1) and (2) of Theorem 2.1.
Nevertheless the assumption (3) of Theorem 2.1 may not be satisfied,
see for example the surfaces given in Proposition 2.1-(1) (Figure 1(a)).
Observe also that the subarc γ′ of Theorem 2.1 can contain a vertical
segment of length < π.

Of course, such Jordan curve Γ∞ is contained in a slab–closed region
of ∂∞H2×R between two copies ∂∞H×{a} and ∂∞H×{b} of ∂∞H2–
with width b−a. If b−a 6 π then Γ∞ is contained in a slab of width π.
If not, then considering the height function t restricted to Γ∞, we have
that the higher point ph and the lower point pl satisfy t(ph)− t(pl) > π.
In this case, Γ∞ is not contained in any slab of width π.

At last, if Γ∞ is the asymptotic boundary of some minimal surface of
H2×R, continuous up to Γ∞, then Theorem 2.1 shows that any subarc
γ′ ⊂ Γ∞ satifying the assumptions (1) and (2) must contain a vertical
segment with length > π.

Corollary 2.1. Let Γ∞ ⊂ ∂∞H2 × R be a Jordan curve homologous
to zero (in ∂∞H2 × R). We have the following:

(1) Suppose that Γ∞ is strictly contained in a closed slab between
two horizontal circles of ∂∞H2×R with width equal to π. Then,
(a) there is no properly immersed minimal surface M with as-

ymptotic boundary Γ∞, possibly with finite boundary, such
that M ∪ Γ∞ is a continuous surface with boundary.

(b) there is no complete properly immersed minimal surface
with asymptotic boundary Γ∞ (without any assumption on
M ∪ Γ∞).

(2) Suppose that Γ∞ is contained in a slab with width equal to π
but is not contained in any slab with width strictly less than π.
Then, there is no complete minimal surface properly immersed
in H2 × R, with asymptotic boundary Γ∞ such that M ∪ Γ∞ is
a continuous surface with boundary.

Proof. The Statement (1a) is a direct consequence of Theorem 2.1. The
Statement (1b) is a direct consequence of the proof of Theorem 2.1.

Let us prove the Statement (2). Assume there exists a properly im-
mersed complete minimal surface M with asymptotic boundary Γ∞ ⊂
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∂∞H2 × [0, π]. By the maximum principle, we deduce that Int(M) ⊂
H2 × (0, π). We deduce from Theorem 2.1 that Γ∞ consists of two
vertical segments of length π: {q1}× [0, π] and {q2}× [0, π], qi ∈ ∂∞H2

(identified with ∂∞H2 × {0}), i = 1, 2, and two simple arcs c, γ ⊂
∂∞H2× [0, π], the arc c joining the points (q1, 0) and (q2, 0) and the arc
γ joining the points (q1, π) and (q2, π). Observe that c and γ have the
same vertical projection. Therefore we have

Γ∞ = ({q1} × [0, π]) ∪ γ ∪ ({q2} × [0, π]) ∪ c.

Up to an ambient isometry, we can assume that q1 = eiπ/4, q2 = e−iπ/4

and that the vertical projection of Γ∞ on ∂∞H2 × {0} is the arc
{(eiθ, 0) | −π/4 6 θ 6 π/4}.

Let H be the parabolic complete minimal surface (foliated by horocy-
cles) whose asymptotic boundary is the vertical segment {−1}×[0, π] ⊂
∂∞H2 × R with (∂∞H2 × {0}) ∪ (∂∞H2 × {π}), see [6], [10] and [18].
The “neck” of H is a horocycle N in the slice H2 × {π/2}.

Claim. If N ∩M = ∅ then H ∩M = ∅.
Assume by contradiction that N ∩M = ∅ and H+ ∩M 6= ∅, where

H+ := H ∩ (H2 × [π/2, π]). For any ε > 0 we denote by H+
ε the ε-

vertical translated of H+: H+
ε = H+ + ε∂/∂t. Observe that if H+

ε ∩
M = ∅ for any ε > 0, letting ε → 0 then M and H+ would have a
first interior point of contact, contradicting the maximum principle.
Therefore, there exists ε > 0 such that H+

ε ∩M 6= ∅ and (N + ε∂/∂t)∩
M = ∅. Furthermore, the finite and asymptotic boundary of H+

ε is
far away from M ∪ ∂∞M . Consider the hyperbolic translations along
the geodesic β with asymptotic boundary {−1, 1}, going from 1 to −1.
Thus we would obtain a last interior contact point of M and some
translated copy of H+

ε , which contradicts the maximum principle.
We show in the same way that N ∩M = ∅ and H− ∩M 6= ∅ is not

possible. This proves the Claim.

Up to a hyperbolic translation along the geodesic β (with asymptotic
boundary {−1, 1}), we can assume that N∩M = ∅ (since−1 ∈ ∂∞H2 is
not in the asymptotic boundary of M), and therefore the Claim shows
that H ∩M = ∅. Consider now the translated copies of H, along β,
going from −1 to 1. As M is properly immersed, some translated copy
of H will have a first contact point with M at a point p ∈ M , which
contradicts the maximum principle. This concludes the proof of the
Corollary ¤

The following result is a direct consequence of the proof of the As-
ymptotic Theorem (Theorem 2.1).
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Corollary 2.2. Let S∞ ⊂ ∂∞H2×R be a closed set strictly contained
in a slab with width equal to π. Assume that the vertical projection of
S∞ on ∂∞H2×{0} omits an open arc. Then, there is no complete prop-
erly immersed minimal surface M in H2×R with asymptotic boundary
S∞.

Proof. By assumption there exists a complete geodesic c ⊂ H2 × {0}
such that S∞ is contained in the asymptotic boundary of a component
of H2 × R \ c × R. We call U the other component. Let C be a
catenoid, observe that any compact part of C may be mapped into U
by an ambient isometry. In this situation, we can proceed as in the
proof of Theorem 2.1. ¤

Remark 2. We will see in Proposition 2.1 that for any t0 > π there
exists a Jordan curve Γ∞ ⊂ ∂∞H2 × [0, t0], homologous to zero, which
is the asymptotic boundary of a properly embedded complete minimal
surface. Therefore the results in Theorem 2.1 and Corollary 2.1 are
sharp. The formulae of the generating curves in Proposition 2.1 below
are the same as formulae given by the first author in [18]. The geometric
description of the surfaces given in Proposition 2.1 is new. We remark
that L. Hauswirth [10] has given a classification of minimal surfaces
invariant by hyperbolic translations using another approach.

Proposition 2.1. Let q1, q2 ∈ ∂∞H2 (identified with ∂∞H2 × {0}), be
two distinct asymptotic points. Let γ ⊂ H2 (identified with H2 × {0}),
be the complete geodesic with asymptotic boundary {q1, q2}. Let us call
c1 (resp. c2) the closed arc in ∂∞H2 joining q1 to q2 (resp. q2 to q1)
with respect to the counterclockwise orientation.

There exist a one-parameter family Md, d > 0, of complete prop-
erly embedded minimal surfaces, invariant by the hyperbolic translations
along γ. The geometric behaviour of Md is as follows.

(1) If d > 1, then Md contains the equidistant line γd of γ in
H2 × {0} staying at the distance cosh−1(d) from γ in the con-
nected component of H2\γ whose asymptotic boundary is c1.
Furthermore Md is symmetric with respect to the slice H2×{0}
and we have (see Figure 1(a))

∂∞Md = (c1 × {−H(d)}) ∪ (c1 × {H(d)})
∪ ({q2} × [−H(d), H(d)]) ∪ ({q1} × [−H(d), H(d)]),

where

H(d) :=

∫ +∞

cosh−1(d)

d√
cosh2 u− d2

du, d > 1. (1)
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Therefore, ∂∞Md is a Jordan curve homologous to zero in ∂∞H2×
R. Furthermore, the part Md∩(H2×[0, H(d)] is a graph over the
component of H2\γd whose asymptotic boundary is c1. Finally,
H(d) is a nonincreasing function satisfying

lim
d→1

H(d) = +∞, lim
d→+∞

H(d) =
π

2
.

(a) (b) (c)

Figure 1

(2) If d = 1, then M1 is the surface given by Formula 5 , and its
asymptotic boundary is given by (see Figure 1(b))

∂∞M1 = ({q1} × (−∞, 0]) ∪ c1 ∪ ({q2} × (−∞, 0]).

(3) If 0 < d < 1, then Md is an entire vertical graph over H2 and
contains the geodesic γ × {0}. The asymptotic boundary of Md

is given by (see Figure 1(c))

∂∞Md = (c2 × {−G(d)}) ∪ (c1 × {G(d)})
∪ ({q1} × [−G(d), G(d)]) ∪ ({q2} × [−G(d), G(d)]),

where

G(d) :=

∫ +∞

0

d√
cosh2 u− d2

du, 0 < d < 1.

Therefore, ∂∞Md is a Jordan curve non homologous to zero in
∂∞H2 × R. Furthermore G(d) is a nondecreasing function and
we have

lim
d→0

G(d) = 0, lim
d→1

G(d) = +∞.

Proof. We work with the disk model for H2, so that

H2 = {(x, y) ∈ R2, x2 + y2 < 1}.
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Therefore the product metric on H2 × R reads as follows

ds̃2 =

(
2

1− (x2 + y2)

)2

(dx2 + dy2) + dt2,

where (x, y) ∈ H2 and t ∈ R.
Up to an isometry, we can assume that q1 = −i and q2 = i. Therefore

we have c1 = {eiθ; −π/2 6 θ 6 π/2} and c2 = {eiθ; π/2 6 θ 6 3π/2}.
We consider the following particular geodesic of H2

Γ={(x, 0), x ∈ (−1, 1) }⊂H2.

We can assume that the surfaces invariant under hyperbolic trans-
lation along γ (called hyperbolic surfaces), are generated by curves in
the vertical geodesic plane P = Γ× R ⊂ H2 × R.

On the geodesic Γ we denote by ρ ∈ R the signed distance to the
origin (0, 0), thus x = tanh(ρ/2). Therefore the metric on P is

ds2 = dρ2 + dt2.

Let us consider a curve in P which is a vertical graph: c(ρ) = (ρ, λ(ρ))
where λ is a smooth real function defined on a part of ρ > 0. Let us
call M the hyperbolic surface generated by c. On M we consider the
orientation given by the upward unit normal field. With respect to this
orientation the principal curvatures of M are given by

k1(ρ) =
λ′′

(1 + λ′2)3/2
(ρ), and k2(ρ) =

λ′√
1 + λ′2

(ρ) tanh(ρ),

so that, M is a minimal surface if and only if

λ′2 =
d2

cosh2 ρ− d2
,

for some d > 0.
Up to the isometry (z, t) → (z,−t), we can assume that λ is a

nondecreasing function, that is, λ′ > 0. Therefore, the condition for
M being minimal is

λ′(ρ) =
d√

cosh2 ρ− d2
(2)

In the case where d > 1 we can choose, up to a vertical translation,

λ(ρ) =

∫ ρ

cosh−1(d)

d√
cosh2 u− d2

du,

for ρ > cosh−1(d). Setting v = cosh u/d− 1 we obtain:

H(d) =

∫ +∞

0

dv√
(v + 1)2 − 1

√
(v + 1)2 − 1/d2

.
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This shows that H(d) is a nonincreasing function. Furthermore

lim
d→+∞

H(d) =

∫ +∞

0

dv√
(v + 1)2 − 1

√
(v + 1)2

,

=

∫ 1

0

dx√
1− x2

, setting x =
1

v + 1
,

=
π

2
.

Claim. We have limd→1 λ(ρ) = +∞ for any ρ > 0.

This clearly implies that limd→1 H(d) = +∞, since H(d) = limρ→+∞ λ(ρ)
and λ(ρ) is a nondecreasing function.

Setting v = cosh(u)/d− 1 we get

λ(ρ) =

∫ cosh(ρ)/d−1

0

1
√

v + 2
√

(v + 1 + 1
d
)(v + 1− 1

d
)

dv√
v

> 1√
cosh(ρ)

d
+ 1

√
cosh(ρ)+1

d

∫ cosh(ρ)/d−1

0

dv√
v2 + (1− 1

d
)v

.

Denoting by I(d) the last integral, we have

I(d) =
2

1− 1
d

∫ cosh(ρ)/d−1

0

dv√
( 2v

1− 1
d

+ 1)2 − 1
.

Setting s = 2v
1− 1

d

+ 1 we obtain

I(d) =

∫ 2 cosh(ρ)−d−1
d−1

1

ds√
s2 − 1

= cosh−1(
2 cosh(ρ)− d− 1

d− 1
),

from what we deduce that limd→1 I(d) = +∞ for any ρ > 0, which
concludes the proof of the Claim.

In the case where d = 1 we can choose, up to a vertical translation,

λ(ρ) = log(
eρ − 1

eρ + 1
),

for ρ > 0. The hyperbolic surface generated by λ is a vertical graph
over the connected component of H2\γ whose asymptotic boundary
is c1. This graph takes the value −∞ on γ and the value zero on c1

(because limρ→0 λ(ρ) = −∞ and limρ→+∞ λ(ρ) = 0). Since this is the
unique hyperbolic surface, up to isometry, with unbounded height, we
deduce that M1 is congruent to the hyperbolic surface given by Formula
(5).
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Finally, in the case where 0 < d < 1, the function λ is defined for
any ρ > 0 and, up to a vertical translation, we can set

λ(ρ) =

∫ ρ

0

d√
cosh2 u− d2

du.

We can extend λ on R setting λ(ρ) := −λ(−ρ) for any ρ 6 0. Therefore
λ is defined on R and is an odd function, and the hyperbolic surface
Md generated by λ is an entire vertical graph on H2 symmetric with
respect to γ. We can prove in the same way as in the case where d > 1
that for any ρ > 0 we have limd→1 λ(ρ) = +∞. This implies that
limd→1 G(d) = +∞.

The other assertions in the Statement are straightforward verifica-
tions.

¤

3. vertical minimal graphs

There are many notions of graphs in H2×R, but the notion of vertical
minimal graphs has appeared in many important theorems. See, for
instance [4], [7], [11], [12], [18], [23].

Consider a C2 function t = u(x, y). The vertical minimal surface
equation in H2 × R, is given by:

divH
(∇Hu

Wu

)
= 0, (3)

where divH and ∇H are the hyperbolic divergence and gradient respec-
tively and Wu =

√
1 + |∇Hu|2H, being | · |H the norm in H2.

Focusing on the halfspace model for H2, with Euclidean coordinates
x, y, y > 0, the vertical minimal surface equation (3) takes the following
form

(1 + y2u2
x)uyy + (1 + y2u2

y)uxx − 2y2uxuyuxy − yuy(u
2
x + u2

y) = 0. (4)

There are many explicit examples of entire and complete minimal
graphs with nice geometric properties. For instance, in the half-plane
model,

(1) The equation [18]

t = `x, x ∈ (−∞,∞), y > 0

gives rise to an entire minimal graph (left side of Figure 2)
symmetric about the geodesic {x = 0}, that is constant (the
constant varying in the interval (−∞,∞)) on each leaf of the
foliation given by geodesics with a fixed common asymptotic
boundary point p (in this model p = ∞). Thus the asymptotic
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boundary consists in the union of a vertical line with a complete
embedded curve in ∂∞H2 × R asymptotic to that line.

(2) The equation [18]

t =
`

2
ln(x2 + y2), y > 0

yields an entire minimal graph (right side of Figure 2) symmet-
ric about the geodesic {x2 + y2 = 1, y > 0}, that is constant
on each leaf of the foliation given by (hyperbolic) translations
of a fixed geodesic; hence, the asymptotic boundary consists of
two embedded curves in ∂∞H2 × R with two symmetric ends,
each end asymptotic to a half-vertical line.

Figure 2. Ball model for H2 × {0}

Of course, the previous examples give two different explicit
non trivial minimal graphs over a half-plane of H2 taking zero
boundary value data on a geodesic but having different asymp-
totic boundaries.

(3) We observe that there exists a function which takes infinite
boundary value data on the positive y axis and zero asymptotic
value boundary data at the positive x axis (halfspace model for
H2), invariant by hyperbolic translations [18].

t = ln

(√
x2 + y2 + y

x

)
, y > 0, x > 0 (5)

Notice that (5) yields a complete vertical minimal graph over a domain
bounded by a geodesic in H2×{0}, taking infinite boundary value data
on the geodesic and zero asymptotic boundary value data on an arc L
of ∂∞H2 × {0}. The asymptotic boundary of the graph is then the
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union of L with the two upper half vertical lines arising from the end
points of L. We will use this special vertical minimal graph as a barrier
at an asymptotic boundary point.

We remark that the miniaml surface given by Formula (5) was used
by P. Collin and H. Rosenberg [4] in the important construction of
entire minimal graphs in H2 × R that are conformally the complex
plane C, disproving a conjecture by R. Schoen.

In the Poincaré disk model for H2 with Euclidean coordinates x, y,
x2 + y2 < 1, the vertical minimal surface equation (3) becomes

D(u) := (1 +
(1− x2 − y2)2

4
u2

x)uyy + (1 +
(1− x2 − y2)2

4
u2

y)uxx

−2
(1− x2 − y2)2

4
uxuy uxy+2

(1− x2 − y2)

4
(xux + yuy) (u2

x+u2
y) = 0

(6)

We observe that equation (6) is a second order quasilinear strictly ellip-
tic equation for all real values of the independent variables x, y. More-
over, the eigenvalue of the associate matrix are 1 and

Wu = 1 + (1−x2−y2)2

4
(u2

x + u2
y). The same observation holds for the

equation (4), replacing (1−x2−y2)2

4
by y2. Hence we conclude that both

equations are regular and strictly (uniformly) elliptic up to the asymp-
totic boundary of H2 × {0}. For this reason we can state the classical
maximum principle and uniqueness for prescribed continuous finite and
asymptotic boundary data.

Theorem 3.1 (Classical maximum principle). Let g1, g2 : ∂Ω∪∂∞Ω →
R be continuous functions satisfying g1 6 g2. Let ui : Ω → R be a
continuous extension of gi satisfying the minimal surface equation (6)
on Ω, i = 1, 2. Then u1 6 u2.

Proof. The proof is classical elliptic theory, since the minimal surface
equation (6) is strictly elliptic up to the asymptotic boundary. A geo-
metric approach can be done in this way. Assume that u1(p) > u2(p)
at some point p ∈ Ω. Then, lifting the graph of u2 vertically we obtain
a last interior contact point between the graph of u1 and the graph of
u2, which gives a contradiction by the interior maximum principle.

¤
We will solve some Dirichlet problems over certain unbounded do-

mains, given certain prescribed finite boundary data and given certain
prescribed asymptotic boundary data.

Among such domains we will consider exterior domains Ω. Of course,
the classical examples of such minimal graphs over an exterior domain
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are given by the one parameter family of half-catenoids, see Lemma 5.1.
We will use this family as barriers. We show some generating curves
in Figure 3, where R = tanh ρ/2, and ρ is the hyperbolic distance from
the axe t.

R

1

Figure 3. Ball model for H2 × {0}

We remark that we use also as barriers the one-parameter family of
minimal surfaces invariant by hyperbolic translations given by Propo-
sition 2.1.

4. The Perron process for the vertical minimal surface
equation

In the product H2×R, we consider the disk model for the hyperbolic
plane H2. Let Ω ⊂ H2 × {0}, be a domain. In H2 × {0}, we have that
∂Ω = ∂Ω ∪ ∂∞Ω, where ∂Ω ⊂ H2 × {0} and ∂∞Ω ⊂ ∂∞H2 × {0}.
Definition 1 (Problem (P )). Let g : ∂Ω∪ ∂∞Ω → R be a continuous
function except perhaps at a finite set S of points (discontinuities).
We consider the Dirichlet problem, say Problem (P ), for the vertical
minimal surface equation (6) taking at any point of ∂Ω ∪ ∂∞Ω \ S,
prescribed boundary (finite and asymptotic) value data g.

Let u : ΩS := Ω \ S → R be a continuous function.
Let U ⊂ Ω be a closed round disk in H2×{0}. If u|∂U is a C1 function

then solving the Plateau problem [13] and using a standard adaptation
of Rado’s Theorem [17] (since u|∂U is a vertical graph over a circle), it
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follows that u|∂U has an unique minimal extension ũ on U , continuous
up to ∂U . If u|∂U is C0, one uses an approximation argument or uses a
local barrier at a boundary point of U. We then define the continuous
function MU(u) on ΩS by:

MU(u)(x) =

{
u(x) if x ∈ ΩS \ U

ũ(x) if x ∈ U
(7)

We say that u is a subsolution (resp. supersolution) of (P ) if:

i) For any closed round disk U ⊂ Ω we have
u 6 MU(u) (resp. u > MU(u)).

ii) u |∂Ω∪∂∞Ω 6 g (resp. u |∂Ω∪∂∞Ω > g).

Remark 3. We now give some classical facts about subsolutions and
supersolutions, see [5], [19].

(1) It is easily seen that if u is C2 on Ω, the condition i) above is
equivalent to Du > 0 for subsolution or Du 6 0 for supersolu-
tion.

(2) As usual if u and v are two subsolutions (resp. supersolutions)
of (P ) then sup(u, v) (resp. inf(u, v)) again is a subsolution
(resp. supersolution).

(3) Also if u is a subsolution (resp. supersolution) and U ⊂ Ω is
a closed round disk then MU(u) is again a subsolution (resp.
supersolution).

(4) Let φ (resp. u) be a supersolution (resp. a subsolution) of
Problem (P ) such that u 6 φ, then we have MU(u) 6 MU(φ) 6
φ for any disk U with U ⊂ Ω.

Note that if φ and u are continuous on Ω then necessarily
u 6 φ on Ω.

Note also that due to the nature of Equation (6), Ω is a bounded

domain in H2 × {0}.
Definition 2 (Barriers). We consider the Dirichlet Problem (P ), see
Definition 1. Let p ∈ ∂Ω ∪ ∂∞Ω, be a boundary point where g is
continuous.

(1) Suppose that for any M > 0 and for any k ∈ N there is an open
neighborhood Nk of p in R2 and a function ω+

k (resp. ω−k ) in

C2(Nk ∩ Ω) ∩ C0(Nk ∩ Ω) such that
i) ω+

k (x) |(∂Ω∪∂∞Ω)∩Nk
> g(x) and ω+

k (x) |∂Nk∩Ω> M
(resp. ω−k (x) |(∂Ω∪∂∞Ω)∩Nk

6 g(x) and ω−k (x) |∂Nk∩Ω6 −M)
ii) D(ω+

k ) 6 0 (resp. D(ω−k ) > 0) in Nk ∩ Ω,
iii) limk→+∞ ω+

k (p) = g(p) (resp. limk→+∞ ω−k (p) = g(p)).
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(2) Suppose that there exists a supersolution φ (resp. a subsolution
η) in C2(Ω)∩C0(Ω) such that φ(p) = g(p) (resp. ϕ(p) = g(p)).

In both cases (1) or (2) we say that p admits an upper barrier (ω+
k , k ∈ N

or φ) (resp. lower barrier ω−k , k ∈ N or ϕ) for the Problem (P ). If p
admits an upper and a lower barrier we say more shortly that p admits
a barrier.

Example 4.1. [Barrier at any convex point for any bounded continu-
ous boundary data g]. The construction of B. Nelli and H. Rosenberg,
the Scherk type minimal graph in H2×R over a geodesic triangle, tak-
ing boundary data zero on two sides and boundary data infinite at the
other side [14] is given in Example 4.3. The geodesic triangle and the
boundary data are drawn in Figure 4.

∞ 

0 0

Figure 4

We consider now these Scherk type surfaces when the geodesic trian-
gle ∆ is isosceles and the zero boundary data is taken on the two sides
with equal length and the boundary data −∞ is taken on the other
side. We show that these surfaces can be used as an upper barrier (in
the sense of Definition 2-(1)) at any convex point p0 ∈ ∂Ω, for any
boundary bounded data g continuous at p0. For the lower barrier the
construction is analogous.

Let ∆ be a geodesic isosceles triangle in H2 × {0} with sides A, C1

and C2, with |C1| = |C2|. Let ω be the solution of the minimal surface
equation taking zero boundary data on C1 and C2, and boundary data
−∞ on A. Let S be the graph of ω. Let a be the common vertex of
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C1 and C2. Let γ be the axis of symmetry of ∆, hence a ∈ γ. Let
{b} = γ ∩ A. Let β be a geodesic intersecting ∆ orthogonal to γ at a
point d ∈ (a, b). Set β ∩ C1 = {c}.

We claim the following:

(1) ω along γ is nonincreasing in [a, b].
(2) ω along β is nonincreasing in [c, d].

Assume momentarily the Claim. Let p0 ∈ ∂Ω be a convex point
and let g be a boundary data continuous at p0. Let M > 0 be any
positive real number. It suffices to show that for any k ∈ N there is an
open neighborhood Nk of p0 in R2 and a function ω+

k in C2(Nk ∩Ω) ∩
C0(Nk ∩ Ω) such that

i) ω+
k (x) |∂Ω∩Nk

> g(x) and ω+
k (x) |∂Nk∩Ω> M

ii) D(ω+
k ) = 0 in Nk ∩ Ω,

iii) ω+
k (p0) = g(p0) + 1/k.

By continuity there exists ε > 0 such that for any p ∈ ∂Ω such that
dist(p, p0) < ε we have g(p) < g(p0) + 1/k. By assumption there exists
an open geodesic arc γ⊥, through p0 such γ⊥ ∩Ω = ∅. We may assume
that the disk Dε(p0) intersects γ⊥ at two points.

We choose ∆ such that p0 ∈ γ, |A| < ε, Ω∩A = ∅, and γ orthogonal
to γ⊥ at p0. Let M1 > max{M, g(p0) + 1/k}. We consider the Scherk
surface (graph of ω) taking M1 boundary value data on C1, C2 and
−∞ on A. By continuity, there exists a point p1 at γ where ω(p1) =
g(p0)+1/k. Up to a horizontal translation along γ sending p1 to p0, we
may assume that ω(p0) = g(p0) + 1/k. Therefore we set Nk = ∆ ∩ Ω
and ω+

k = ω |Nk
is the restriction of ω to Nk. The Claim shows that

ω+
k (x) |∂Ω∩Nk

> g(x), as desired.
We now proceed to the proof of the Claim. Let p1, p2 ∈ [a, b) such

that p1 < p2. Let p3 ∈ (p1, p2) be the middle point in the segment [p1, p2]
and let γ3 be the geodesic orthogonal to γ at p3. Let S3 be the connected
component of S\(γ3×R) containing (a, 0). Now the maximum principle
shows that the reflection of S3 with respect to γ3 × R is above S,
since this is true on the boundary. Hence ω(p1) > ω(p2), as desired.
The proof of the second part of the Claim is analogous, considering
the reflections about the vertical geodesic planes orthogonal to [c, d].
The same argument also shows that S is symmetric about the vertical
geodesic plane γ×R. This accomplishes the construction of the desired
barrier.

Example 4.2 (Barrier at an asymptotic point). The surface given by
Formula (5), may be seen as a complete vertical minimal graph over a
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domain bounded by a geodesic in H2 × {0}, taking infinite boundary
value data on the geodesic and zero asymptotic boundary value data
on an arc L of ∂∞H2 × {0}. The asymptotic boundary of the graph is
then the union of L with the two half vertical lines arising from the end
points of L, see Figure 1(b). We can therefore choose the geodesic as
small as we wish in the Euclidean sense, because the minimal surface
equation extends smoothly to H2 × {0}. Then we can put a copy of it
above and below the graph of g at any point p where g is continuous.
Thus we obtain a barrier at any point p of ∂∞Ω where g is continuous,
in the sense of Definition 2-(1).

Theorem 4.1 (Perron process). Let Ω ⊂ H2×{0} be a domain and let
g : ∂Ω ∪ ∂∞Ω → R be a continuous function except perhaps at a finite
set S. Suppose that the Dirichlet Problem (P ) has a supersolution φ.
Set Sφ = {ϕ, subsolution of (P ), ϕ 6 φ}. Assume that Sφ 6= ∅. We
define for each x ∈ Ω \ S

u(x) = sup
ϕ∈Sφ

ϕ(x).

We have the following:

(1) The function u is C2 on Ω and satisfies the minimal surface
equation (6).

(2) Let p ∈ ∂Ω be a finite boundary point where g is continuous.
Suppose that p admits a barrier in the sense of Definition 2−(1).
Then the solution u is continuous at p and satisfies u(p) = g(p).
In particular, if ∂Ω is convex at p then u extends continuously
at p and u(p) = g(p).

(3) Let p ∈ ∂∞Ω be an asymptotic boundary point where g is con-
tinuous. Then p admits a barrier, u is continuous at p and
satisfies u(p) = g(p); that is, if (xn) is a sequence in H2 × {0}
such that xn → p in the Euclidean sense then u(xn) → g(p).
In particular, if g is continuous on ∂∞Ω then the asymptotic
boundary of the graph of u is the restriction of the graph of g
to ∂∞Ω.

(4) Let q ∈ ∂∞H2 be an interior point of ∂∞Ω where g is discontin-
uous. Then the vertical segment
{(q, t), t ∈ [A := lim inf

x→q, x6=q
g(x), B := lim sup

x→q, x6=q
g(x)], x ∈ ∂Ω∪ ∂∞Ω}

belongs to the asymptotic boundary of the graph of u. In par-
ticular, if A = −∞ and B = +∞, then the whole vertical line
{q} × R belongs to the asymptotic boundary.

Proof. Observe that for any ϕ ∈ Sφ, MU(ϕ) ∈ Sφ, for any closed disk
U ⊂ Ω. Observe also that the basic compactness theorem holds for
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the vertical minimal surface equation, see [8], [22], [23] and [12]. The
proof of Statements (1) and (2) follows from classical arguments as
in Theorem 3.4 in [19], see also the classical reference [5]. The last
assertion of Statement (2) follows from Example 4.1.

The Statement (3) follows from the previous construction of a suit-
able barrier, in the sense of Definition 2-(1), at any point p of ∂∞Ω
where g is continuous, see Example 4.2.

The proof of Statement (4) follows from a continuity argument. In-
deed, as g is discontinuous at q we have A 6= B. let t0 ∈ (A,B). Let
(xn) and (yn), n ∈ N, be two sequences in ∂∞Ω, such that xn, yn → q,
lim g(xn) = A, and g(yn) = B. We can assume that g(xn) < t0 < g(yn),
for any n. Let Γn be a closed arc joining in Ω the point xn to yn, close
to q in the Euclidean sense and such that Γn∩∂∞Ω = {xn, yn}. Notice
that the restriction of the graph of u to the closed arc Γn is continuous
and intersects the slice H2×{t0}, at some point (zn, t0), where zn is an
interior point of Γn, and zn → q as n → ∞. Hence, (q, t0) belongs to
the asymptotic boundary of the graph of u, for any t0 ∈ [A,B] (as the
asymptotic boundary is a closed set). This completes the proof of the
Theorem.

¤

Corollary 4.1. Let Ω ⊂ H2 × {0} be a domain and let
g : ∂Ω∪∂∞Ω → R be a bounded function everywhere continuous except
perhaps at a finite set S ⊂ ∂Ω∪ ∂∞Ω. Assume that the finite boundary
∂Ω is convex or, alternatively, that each finite boundary point admits
a barrier.

Then, g admits an extension u : Ω \ S → R satisfying the vertical
minimal surface equation (6). Furthermore, the total boundary of the
graph of u (that is the finite and asymptotic boundary) is the union of
the graph of g on (∂Ω ∪ ∂∞Ω) \ S with the vertical segments
{(q, t), t ∈ [A := lim inf

x→q, x6=q
g(x), B := lim sup

x→q, x6=q
g(x)], x ∈ ∂Ω ∪ ∂∞Ω}

at any q ∈ S.

Proof. Since g is bounded, there are some constant functions which
are supersolutions and other which are subsolutions of Problem (P ).
We consider a slight variation of Perron process taking the set S of
continuous subsolutions of (P ). Let u be the solution given by the
Perron process (Theorem 4.1). It follows from Theorem 4.1 that the
total boundary of the graph of u contains the union of the graph of g
on (∂Ω ∪ ∂∞Ω) \ S with the vertical segments given in the Statement
at any q ∈ S ∩ ∂∞Ω. If q ∈ S is on ∂Ω or is not an interior point of
∂∞Ω then, taking into account that each finite boundary point has a
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barrier by assumption, we can prove in the same way that the vertical
segment [A,B] is contained in the total boundary of the graph of u.

For any qi ∈ S we set Ai := lim inf
x→qi, x 6=qi

g(x) and Bi := lim sup
x→qi, x 6=qi

g(x),

x ∈ ∂Ω ∪ ∂∞Ω.
It remains to show that for any qi ∈ S and any real number t satis-

fying t > Bi or t < Ai the point (qi, t) is not in the total boundary of
the graph of u.

Assume first that t > Bi. Let ε > 0 be a real number satisfying
Bi + ε < t. There exists a continuous function g+ : ∂Ω ∪ ∂∞Ω → R
such that g+ > g on (∂Ω∪∂∞Ω)\S and g+(qj) = qj +ε for any qj ∈ S.
Then the minimal extension u+ of g+ given by the Perron process is
continuous up to Ω. It follows that u+ is a supersolution of Problem
(P ) for the boundary data g and, consequently we have ϕ 6 u+ on
Ω for any ϕ ∈ S. It follows that the point (qi, t) is not in the total
boundary of the graph of u.

Assume now that t < Ai and consider a continuous function g− :
∂Ω∪∂∞Ω → R such that g− < g on (∂Ω∪∂∞Ω)\S and g−(qj) = qj−ε
for any qj ∈ S. Since the minimal extension of g− is a subsolution of
Problem (P ), we infer that the point (qi, t) is not in the total boundary
of the graph of u. This concludes the proof of the Corollary.

¤

Remark 4.

(1) It follows from Corollary 4.1 that if Ω is a convex unbounded
domain, then there exists an unique vertical minimal graph over
Ω taking any prescribed bounded continuous finite and asymp-
totic boundary data.

(2) In the special case when Ω = H2, consider a bounded function
g on ∂∞H2 × {0}, continuous except perhaps at a finite set of
points S. With the aid of Corollary 4.1 we see that g admits a
minimal entire extension u. If g is continuous, we remark that
uniqueness of the extension follows from Theorem 3.1.

This problem when g is continuous on ∂∞H2, is called Dirich-
let problem at infinity and was solved by B. Nelli and H. Rosen-
berg [14].

Example 4.3. Let ∆ be a geodesic triangle in H2 × {0} with sides
A, C1 and C2. We want to show that there exists a minimal Scherk
type graph over ∆ taking zero boundary value data on the interior of
C1 ∪ C2 and taking +∞ as boundary value data on A. This is proved
by B. Nelli and H. Rosenberg in [14].
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For this purpose we first show that for any n ∈ N there exists a
solution un of the minimal surface equation on the interior of ∆ taking
zero boundary value data on the interior of C1 ∪ C2 and taking n
as boundary value data on A. We consider the set Sn of continuous
functions ϕ on ∆ satisfying:

(1) For any closed round disk U ⊂ int ∆, ϕ 6 MU(ϕ), where MU(ϕ)
is given in Formula (7)

(2) ϕ 6 0 on the interior of C1 ∪ C2

(3) ϕ 6 n on A.

For any subarc C ′ of C1 ∪ C2 and any subarc A′ of A there is con-
tinuous subsolutions and supersolutions on ∆ assuming zero boundary
value data on C ′ and n boundary value data on A′. Those functions
give barriers at any interior point of the sides A, C1 and C2. Therefore
the solution un given by the Perron process, Theorem 4.1-(1), assumes
the desired boundary value data

Let A∞ be the complete geodesic containing A. Taking into ac-
count Formula (5), let φ be the minimal graph over the half-plane with
boundary A∞ that contains ∆, taking +∞ as boundary value data on
A∞ and zero asymptotic boundary value data. We will write down a
slight variation of Perron process.

Let Sφ be the family of continuous functions ϕ defined on
int ∆ ∪ int(C1 ∪ C2) satisfying:

(1) For any closed round disk U ⊂ int ∆, ϕ 6 MU(ϕ), where MU(ϕ)
is given in Formula (7)

(2) ϕ 6 0 on the interior of C1 ∪ C2

(3) ϕ 6 φ

Notice that the functions un constructed above belong to Sφ. There-
fore we infer that the solution u given by Perron process assumes infi-
nite boundary value data on A. We claim that u takes zero boundary
value data on the interior of C1 ∪ C2. Actually, let C3 be an arc of
geodesic lying in ∆ joining a point c1 on C1 to a point c2 on C2. Let
a = C1 ∩C2 and let ∆0 be the geodesic triangle with vertices a, c1 and
c2.

Let f be the restriction of φ to C3. Notice that the solution of the
Dirichlet problem on ∆0 taking zero boundary value data on the sides
[a, c1], [a, c2] and f on the side [c1, c2] gives rise to an upper barrier at
any point of the interior of C1 ∪ C2. Of course the zero function is a
lower barrier to the problem. Thus u takes the desired boundary value
data, as we claimed.

Example 4.4. We consider a geodesic triangle ∆ in H2×{0} with two
vertices a, b on ∂∞H2 × {0} and a third vertex c on H2 × {0}. Doing
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a similar construction as in Example 4.3, we can solve our Dirichlet
problem on ∆ taking infinite boundary value data on the complete
geodesic (a, b) and zero boundary value data on the two other sides.

Assume now that the interior angle at vertex c is π/k, k ∈ N∗. Using
Schwarz reflection on the geodesics arcs (c, a), (c, b), and successively
about the geodesic boundaries as well, we obtain a complete embed-
ded minimal surface in H2 × R. Since the angle at the vertex c is
π/k, k ∈ N∗, we get a complete graph over an ideal geodesic polygon
with 2k sides, taking successively boundary values +∞ and−∞. These
minimal complete graphs can also be built combining some results on
harmonic maps from the complex plane into the hyperbolic plane, done
in [24], [9] and [11]. We observe that these examples are a particular
case of a general result found in [4].

5. Minimal graphs with finite and asymptotic boundary in
H2 × R

Lemma 5.1. Let ρ > 0 and let Cρ ⊂ H2 × {0} be a circle of radius ρ.
Then there exists a unique catenoid Mρ in H2 × R orthogonal to the
slice H2 × {0} along Cρ. Its asymptotic boundary is ∂∞H2 × {±t0}, for
some 0 < t0, where t0 := f(ρ) is an increasing function of ρ given by

f(ρ) =

∞∫

ρ

sinh ρ√
sinh2 r − sinh2 ρ

dr (8)

Furthermore, lim
ρ→0

f(ρ) = 0, and lim
ρ→∞

f(ρ) = π/2.

The proof of Lemma 5.1 follows from Proposition 5.1 of [15] and [20].
For later use we call M+

ρ (resp. M−
ρ ) the part of the catenoid Mρ in

H2 × [0,∞)(resp. in H2 × (−∞, 0]).

Proposition 5.1 (A characterization of vertical minimal graphs). Let
M be a minimal surface immersed in H2 × R, whose finite boundary
is a Jordan curve Γ and whose asymptotic boundary is ∂∞H2 × {t0} ⊂
∂∞H2 × R, t0 > 0. Assume that Γ is a vertical graph over a Jordan
curve C ⊂ H2 × {0}. Assume also that the vertical projection of M is
contained in ext C.
Then M is a vertical graph. Furthermore, if Γ = C, then t0 < π/2
and M inherits all symmetries of Γ. Particularly, if Γ is an horizontal
circle then M is part of a catenoid.

Proof. The proof is somewhat straightforward. We will just sketch it as
follows. The first statement is a consequence of Alexandrov Reflection
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Principle on horizontal slices doing vertical reflections. The second
statement (t0 < π/2) is a consequence of Lemma 5.1 using the family
of catenoids, coming from the infinity towards M . The third statement
is a consequence of Alexandrov reflection Principle on vertical geodesic
planes.

¤
The following Remark is inferred from Lemma 5.1 and maximum

principle.

Remark 5. Let Cρ be a circle of radius ρ in H2 × {0}, and let Γ∞ ⊂
∂∞H2×R, be a Jordan curve that is a vertical graph over ∂∞H2×{0}.
If the height function t of Γ∞ satisfies t > f(ρ) there is no vertical
minimal graph over ext(Cρ) whose finite boundary is Cρ and whose
asymptotic boundary is Γ∞.

Definition 3 (Admissible unbounded domains in H2). Let Ω be an
unbounded domain in the slice H2 × {0} and let ∂Ω be its boundary.
We say that Ω is an admissible domain if each connected component
C0 of ∂Ω satisfies one of the following conditions:

(1) C0 is a Jordan curve.
(2) C0 is a properly embedded curve such that the asymptotic

boundary is one point.
(3) C0 is a properly embedded curve such that the asymptotic

boundary is two distinct points.

Finally, each connected component C0 of ∂Ω satisfies the Exterior
circle of (uniform) radius ρ condition, that is, at any point p ∈ C0 there
exists a circle Cρ of radius ρ such that p ∈ C0 ∩Cρ and int Cρ ∩Ω = ∅.

If Ω is an unbounded admissible domain then we denote by ρΩ the
supremum of the set of these ρ.

If the components of ∂Ω are compact, we set C := ∂Ω, hence C =
C1∪. . .∪Cn is the union of disjoint Jordan curves Cj, j = 1, . . . , n with
pairwise disjoint interiors. We set ext(C) = ext(C1)∩· · ·∩ext(Cn) and
int(C) = int(C1) ∪ · · · ∪ int(Cn). In this case we set ρC := ρΩ.

In the next theorem we need the function f(ρ) given in Lemma 5.1
(height of the catenoid Mρ arising orthogonally from the slice along a
circle of radius ρΩ).

Theorem 5.1. Let Ω be an admissible unbounded domain. Let
g : ∂Ω ∪ ∂∞Ω → R be a bounded function taking zero boundary value
data on ∂Ω, everywhere continuous except perhaps at a finite set S ⊂
∂∞Ω. Let Γ∞ ⊂ ∂∞H2 × R be the union of the graph of g restricted to
∂∞Ω with the vertical segments at the points of ∂∞H2 of discontinuities
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of g.
If the height function t of Γ∞ satisfies −f(ρΩ) 6 t 6 f(ρΩ), then there
exists a vertical minimal graph over Ω with finite boundary ∂Ω and
asymptotic boundary Γ∞.

Particularly, if C ⊂ H2×{0} is a Jordan curve satisfying the Exterior
circle of radius ρ condition and if g : ∂∞H2 → R is a continuous
function satisfying −f(ρΩ) 6 g(p) 6 f(ρΩ) at any point p ∈ ∂∞H2,
then there exists a unique vertical minimal graph over Ω with finite
boundary ∂Ω and asymptotic boundary Γ∞.

Finally, there is no such minimal graph, if ∂Ω is compact and the
height function t of Γ∞ satisfies |t| > π/2.

Proof. Consider the family of catenoids Mρ given by Lemma 5.1. No-
tice that our assumptions imply that at each point p ∈ C there exists
a circle CρC

(p) of radius ρC contained in int(C) with p ∈ Cρ(p) ∩ C.
Let M+

ρC
(p) and M−

ρC
(p) be the the upper and lower half- catenoids

cutting orthogonally the slice t = 0 along the circle CρC
(p).

Take one of these lower half-catenoids as a subsolution, and take one
of these upper half-catenoids as the supersolution φ in Perron process,
Theorem 4.1. It follows that this family of half- catenoids provide also
a family of barriers at each point of C to our problem in the sense of
Definition 2-(2). Therefore our Dirichlet Problem (P), see Definition 1,
can be solved using Corollary 4.1.

If C ⊂ H2 × {0} is a Jordan curve satisfying the Exterior circle
of radius ρ condition, and if g : ∂∞H2 → R is continuous, then the
uniqueness follows from the classical maximum principle Theorem 3.1.
This proves the first assertion of the statement.

To prove the nonexistence part assume by contradiction that there
exists a solution u such that the height function t of Γ∞ satisfies t >
π/2. Notice that the graph of u is above the slice t = 0. Now choose a
catenoid Mρ with t axis and large “neck” (ρ big enough) disjoint from
the graph of u. LetMρ(ε) = Mρ+ε be the ε-vertical translation ofMρ,
with ε > 0 small enough. Now shrink the catenoid Mρ(ε) in the family
of catenoids with the same axis making the “neck” going to zero. We
will find a first interior point of contact of the graph of u with one of
these catenoids. This gives a contradiction by the maximum principle
and completes the proof of the Theorem.

¤

Remark 6. A computation shows that any catenoid in H2 × R has
finite total extrinsic curvature. We set here a question: is it true that
the same holds for any exterior minimal graph in H2 × R?
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We now restrict our attention to certain admissible domains such
that each component of the boundary has two points at its asymp-
totic boundary and has at each point of its finite boundary an exterior
equidistant curve. To be more precise:

Definition 4 (E-admissible unbounded domains in H2). Let Ω be an
unbounded domain in the slice H2 × {0} and let ∂Ω be its boundary.
We say that Ω is an E-admissible domain if

(1) Each connected component C0 of ∂Ω is a properly embedded
curve such that the asymptotic boundary consists of two dis-
tinct points.

(2) We require that there exists r > 0 such that each point of ∂Ω
satisfies the Exterior equidistant curve of (uniform) curvature
tanh r condition; that is, at any point p ∈ ∂Ω there exists an
equidistant curve Er of curvature tanh r (with respect to the
exterior unit normal to Ω at p ), with p ∈ ∂Ω∩Er and Er∩Ω =
∅.

Thus every E-admissible domain is an admissible domain.
If Ω is a convex domain satisfying the condition (1) of Definition 4

then Ω is an E-admissible domain.
If each connected component C0 of ∂Ω is an equidistant curve then

Ω is an E-admissible (maybe nonconvex) domain.
If Ω is an unbounded E-admissible domain then we denote by rΩ > 0

the infimum of the set of these r. If Ω is a convex E-admissible domain
then rΩ = 0.

We will use in the next result the function H defined by Formula (1)
in Proposition 2.1.

Theorem 5.2. Let Ω be an E-admissible unbounded domain. Let
g : ∂Ω ∪ ∂∞Ω → R be a bounded function taking zero boundary value
data on ∂Ω, everywhere continuous except perhaps at a finite set S ⊂
∂∞Ω. Let Γ∞ ⊂ ∂∞H2 × R be the union of the graph of g restricted to
∂∞Ω with the vertical segments at the points of discontinuities of g.
If the height function t of Γ∞ satisfies −H(cosh rΩ) 6 t 6 H(cosh rΩ),
then there exists a vertical minimal graph over Ω with finite boundary
∂Ω and asymptotic boundary Γ∞.

Proof. The proof is the same as in Theorem 5.1, replacing the minimal
catenoids by the minimal surfaces invariant by hyperbolic translations
Md, d > 1, given in Proposition 2.1. This completes the proof of the
Theorem. ¤

Notice that if Ω is convex then it is E-admissible and rΩ = 0, thus
H(cosh rΩ) = ∞.
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