Sharp solvability criteria for Dirichlet problems of mean curvature type in Riemannian manifolds: non-existence results

Yunelsy N Alvarez* ${ }^{*} \quad$ Ricardo Sa Earp ${ }^{\dagger}$

February 22, 2019

Abstract

It is well known that the Serrin condition is a necessary condition for the solvability of the Dirichlet problem for the prescribed mean curvature equation in bounded domains of \mathbb{R}^{n} with certain regularity. In this paper we investigate this fact for the vertical mean curvature equation in the product $M^{n} \times \mathbb{R}$. Precisely, given a \mathscr{C}^{2} bounded domain Ω in M and a function $H=H(x, z)$ continuous in $\bar{\Omega} \times \mathbb{R}$ and non-decreasing in the variable z, we prove that the strong Serrin condition $(n-1) \mathcal{H}_{\partial \Omega}(y) \geq$ $n \sup |H(y, z)| \forall y \in \partial \Omega$, is a necessary condition for the solvability of the Dirichlet problem in a large class of Riemannian manifolds within which are the Hadamard manifolds and manifolds whose sectional curvatures are bounded above by a positive constant. As a consequence of our results we deduce Jenkins-Serrin and Serrin type sharp solvability criteria.

1 Introduction

We denote by M a complete Riemannian manifold of dimension $n \geq 2$ and let Ω be a domain in M. The focus of our work is the prescribed mean curvature equation for vertical graphs in $M \times \mathbb{R}$, this is,

$$
\begin{equation*}
\mathcal{M} u:=\operatorname{div}\left(\frac{\nabla u}{W}\right)=n H(x, u), \tag{1}
\end{equation*}
$$

[^0]where H is a continuous function over $\bar{\Omega} \times \mathbb{R}$ and non-decreasing in the variable $z, W=\sqrt{1+\|\nabla u(x)\|^{2}}$ and the quantities involved are calculated with respect to the metric of M. In a coordinates system $\left(x_{1}, \ldots, x_{n}\right)$ in M, it follows that
\[

$$
\begin{equation*}
\mathcal{M} u=\frac{1}{W} \sum_{i, j=1}^{n}\left(\sigma^{i j}-\frac{u^{i} u^{j}}{W^{2}}\right) \nabla_{i j}^{2} u=n H(x, u) \tag{2}
\end{equation*}
$$

\]

where $\left(\sigma^{i j}\right)$ is the inverse of the metric $\left(\sigma_{i j}\right)$ of $M, u^{i}=\sum_{j=1}^{n} \sigma^{i j} \partial_{j} u$ are the coordinates of ∇u and $\nabla_{i j}^{2} u(x)=\nabla^{2} u(x)\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)$. We will denote by \mathfrak{Q} the operator defined by

$$
\mathfrak{Q} u=\mathcal{M} u-n H(x, u) .
$$

We notice that the matrix of the operator \mathcal{M} is given by $A=\frac{1}{W} g$, where g is the induce metric on the graph of u. This implies that the eigenvalues of A are positive and depends on x and on ∇u. Hence, \mathcal{M} is locally uniformly elliptic. Furthermore, if Ω is bounded and $u \in \mathscr{C}^{1}(\bar{\Omega})$, then \mathcal{M} is uniformly elliptic in $\bar{\Omega}$ (see [19] for more details).

It has been proved in chronological order by Finn [9], Jenkins-Serrin [14] and Serrin [18], that the very well known Serrin condition is a necessary condition for the solvability of the Dirichlet problem for equation (1) in bounded domains of \mathbb{R}^{n}.

Dirichlet problems for equations whose solutions describe hypersurfaces of prescribed mean curvature has been also studied outside of the Euclidean space. Several works have considered a Serrin type condition that provides some existence theorem in their respective context (see [1], [2], [7], [8], [13], [16], [17] and [19] as examples). However, non-existence theorem has been only investigated in a few cases that we summarize below.

For instance, P.-A Nitsche [17] was concerned with graph-like prescribed mean curvature hypersurfaces in hyperbolic space \mathbb{H}^{n+1}. In the half-space setting, he studied radial graphs over the totally geodesic hypersurface $S=\{x \in$ $\left.\mathbb{R}^{n+1} ;\left(x_{0}\right)^{2}+\cdots+\left(x_{n}\right)^{2}=1\right\}$. He established an existence result if Ω is a bounded domain of S of class $\mathscr{C}^{2, \alpha}$ and $H \in \mathscr{C}^{1}(\bar{\Omega})$ is a function satisfying $\sup |H| \leq 1$ and $|H(y)|<\mathcal{H}_{C}(y)$ everywhere on $\partial \Omega$, where \mathcal{H}_{C} denotes the hyperbolic mean curvature of the cylinder C over $\partial \Omega$. Furthermore he showed the existence of smooth boundary data such that no solution exists in case of $|H(y)|>\mathcal{H}_{C}(y)$ for some $y \in \partial \Omega$ under the assumption that H has a sign. We observe that his results does not provide Serrin type solvability criterion.

Also, E. M. Guio-R. Sa Earp [12, 13] considered a bounded domain Ω contained in a vertical totally geodesic hyperplane P of \mathbb{H}^{n+1} and studied the Dirichlet problem for the mean curvature equation for horizontal graphs over Ω, that is, hypersurfaces which intersect at most only once the horizontal horocycles orthogonal to Ω. They considered the hyperbolic cylinder C generated by horocycles cutting ortogonally P along the boundary of Ω and the Serrin
condition, $\mathcal{H}_{C}(y) \geq|H(y)| \forall y \in \partial \Omega$. They obtained a Serrin type solvability criterion for prescribed mean curvature $H=H(x)$ and also proved a sharp solvability criterion for constant H.

Finally, M. Telichevesky [20, Th. 6 p. 246] proved that if M is a Hadamard manifold having -1 as an upper bound for the sectional curvature, then mean convexity is a necessary condition for the existence of a vertical minimal graphs in $M \times \mathbb{R}$ over a domain Ω of M possibly unbounded. This result combined with an existence result of Aiolfi-Ripoll-Soret [1, Th. 1 p. 72] gives sharp solvability criterion for the minimal hypersurface equation in bounded domains of M.

To the best of our knowledge, no other Serrin-type solvability criterion has been proved outside of the Euclidean setting.

In this paper we generalize the aforementioned non-existence result in the $M \times \mathbb{R}$ context. More precisely, we prove the following ${ }^{1}$:

Theorem 1 (main theorem). Let $\Omega \subset M$ be a bounded domain whose boundary is of class \mathscr{C}^{2}. Let $H \in \mathscr{C}^{0}(\bar{\Omega} \times \mathbb{R})$ be a function either non-positive or non-negative and non-decreasing in the variable z. Let us assume that there exists $y_{0} \in \partial \Omega$ such that

$$
(n-1) \mathcal{H}_{\partial \Omega}\left(y_{0}\right)<n \sup _{z \in \mathbb{R}}\left|H\left(y_{0}, z\right)\right| .
$$

Suppose also that cut $\left(y_{0}\right) \cap \Omega=\emptyset$. Furthermore, assume that the radial curvature over the radial geodesics issuing from y_{0} and intersecting Ω is bounded above by K_{0}, where
(a) $K_{0} \leq 0$, or
(b) $K_{0}>0$ and $\operatorname{dist}\left(y_{0}, x\right)<\frac{\pi}{2 \sqrt{K_{0}}}$ for all $x \in \bar{\Omega}$.

Then there exists $\varphi \in \mathscr{C}^{\infty}(\bar{\Omega})$ such that there is no $u \in \mathscr{C}^{0}(\bar{\Omega}) \cap \mathscr{C}^{2}(\Omega)$ satisfying equation (1) with $u=\varphi$ in $\partial \Omega$.

The statement ensures that the strong Serrin condition

$$
\begin{equation*}
(n-1) \mathcal{H}_{\partial \Omega}(y) \geq n \sup _{z \in \mathbb{R}}|H(y, z)| \forall y \in \partial \Omega \tag{3}
\end{equation*}
$$

is a necessary condition for the solvability of the Dirichlet problem for equation (1).

Some direct consequences inferred from our main non-existence theorem are stated as follows.

Corollary 2. Let M be a Cartan-Hadamard manifold and $\Omega \subset M$ a bounded domain whose boundary is of class \mathscr{C}^{2}. Let $H \in \mathscr{C}^{0}(\bar{\Omega} \times \mathbb{R})$ be a function either

[^1]non-negative or non-positive and non-decreasing in the variable z. Suppose there exists $y_{0} \in \partial \Omega$ such that
$$
(n-1) \mathcal{H}_{\partial \Omega}\left(y_{0}\right)<n \sup _{z \in \mathbb{R}}\left|H\left(y_{0}, z\right)\right| .
$$

Then there exists $\varphi \in \mathscr{C}^{\infty}(\bar{\Omega})$ such that there is no $u \in \mathscr{C}^{0}(\bar{\Omega}) \cap \mathscr{C}^{2}(\Omega)$ satisfying equation (1) with $u=\varphi$ in $\partial \Omega$.

Corollary 3. Let M be a simply connected and compact manifold whose sectional curvature satisfies $\frac{1}{4} K_{0}<K \leq K_{0}$ for a positive constant K_{0}. Let $\Omega \subset M$ be a domain with $\operatorname{diam}(\Omega)<\frac{\pi}{2 \sqrt{K_{0}}}$ and whose boundary is of class \mathscr{C}^{2}. Let $H \in \mathscr{C}^{0}(\bar{\Omega} \times \mathbb{R})$ be a function either non-negative or non-positive and nondecreasing in the variable z. Suppose there exists $y_{0} \in \partial \Omega$ such that

$$
(n-1) \mathcal{H}_{\partial \Omega}\left(y_{0}\right)<n \sup _{z \in \mathbb{R}}\left|H\left(y_{0}, z\right)\right| .
$$

Then there exists $\varphi \in \mathscr{C}^{\infty}(\bar{\Omega})$ such that there is no $u \in \mathscr{C}^{0}(\bar{\Omega}) \cap \mathscr{C}^{2}(\Omega)$ satisfying equation (1) with $u=\varphi$ in $\partial \Omega$.

We remark that the assumption in the above statement guarantees that the injectivity radius of M is greater than $\frac{\pi}{2 \sqrt{K_{0}}}$.

2 Sharp solvability criteria

We now want to highlight Serrin type solvability criteria derived from the combination of our non-existence results with existence results obtained by others $[19,1]$ and by the authors $[3,4]$.

Firstly, we observe that the combination of corollary 2 with the existence theorem from Aiolfi-Ripoll-Soret [1, Th. 1 p. 72] for the minimal case shows that the sharp solvability criterion of Jenkins-Serrin [14, Th. 1 p. 171] also holds in Cartan-Hadamard manifolds:

Theorem 4 (Sharp Jenkins-Serrin-type solvability criterion). Let M be a Cartan-Hadamard manifold and $\Omega \subset M$ a bounded domain whose boundary is of class $\mathscr{C}^{2, \alpha}$ for some $\alpha \in(0,1)$. Then the Dirichlet problem for equation $\mathcal{M} u=0$ in Ω has a unique solution for arbitrary continuous boundary data if, and only if, Ω is mean convex.

Secondly, combining corollary 3 with the existence result of Spruck [19, Th. 1.4 p .787] we infer the following:

Theorem 5 (Sharp Serrin-type solvability criterion). Let M be a simply connected and compact manifold whose sectional curvature satisfies $\frac{1}{4} K_{0}<K \leq$ K_{0} for a positive constant K_{0}. Let $\Omega \subset M$ be a domain with $\operatorname{diam}(\Omega)<\frac{\pi}{2 \sqrt{K_{0}}}$ and whose boundary is of class $\mathscr{C}^{2, \alpha}$ for some $\alpha \in(0,1)$. Then the Dirichlet problem for equation (1) in Ω has a unique solution for every constant H and arbitrary continuous boundary data if, and only if, $(n-1) \mathcal{H}_{\partial \Omega} \geq n|H|$.

Notice that it was not established in every Cartan-Hadamard manifold a sharp Serrin type result [18, p. 416] for arbitrary constant H. For example, if $M=\mathbb{H}^{n}$, it follows from the existence result of Spruck [19, Th. 1.4 p. 787] that the Serrin condition is a sufficient condition if $H \geq \frac{n-1}{n}$. In the opposite case $0<H<\frac{n-1}{n}$, Spruck noted that it was possible to establish an existence result if the strict inequality $(n-1) \mathcal{H}_{\partial \Omega}>n H$ holds. He used the entire graphs of constant mean curvature $\frac{n-1}{n}$ in $\mathbb{H}^{n} \times \mathbb{R}$ as barriers (see [5] for explicit formulas). However, this restriction over the Serrin condition in the last case does not allow to establish Serrin type solvability criterion for every constant H directly from the existence result of Spruck [19, Th. 5.4 p. 797] when the ambient is the hyperbolic space.

We have established an existence result [4, 3, Th. 4.4 p. 51$]$ for prescribed $H \in \mathscr{C}^{1, \alpha}(\bar{\Omega} \times \mathbb{R})$ which extends the existence result of Spruck. We have the following Serrin type solvability criterion:

Theorem 6 (Serrin type solvability criterion 1). Let $\Omega \subset \mathbb{H}^{n}$ be a bounded domain with $\partial \Omega$ of class $\mathscr{C}^{2, \alpha}$ for some $\alpha \in(0,1)$. Let $H \in \mathscr{C}^{1, \alpha}(\bar{\Omega} \times \mathbb{R})$ be a function satisfying $\partial_{z} H \geq 0$ e $0 \leq H \leq \frac{n-1}{n}$ em $\Omega \times \mathbb{R}$. Then the Dirichlet problem for equation (1) has a unique solution $u \in \mathscr{C}^{2, \alpha}(\bar{\Omega})$ for every $\varphi \in$ $\mathscr{C}^{2, \alpha}(\bar{\Omega})$ if, and only if, the strong Serrin condition (3) holds.

By combining the existence result of Spruck [19, Th. 1.4 p. 787] with corollary 2 , and putting together theorem 6 , we deduce that the sharp solvability criterion of Serrin [18, p. 416] for arbitrary constant H also holds in the $\mathscr{C}^{2, \alpha}$ class if we replace \mathbb{R}^{n} for \mathbb{H}^{n} :

Theorem 7 (Sharp Serrin type solvability criterion). Let $\Omega \subset \mathbb{H}^{n}$ be a bounded domain whose boundary is of class $\mathscr{C}^{2, \alpha}$. Then the Dirichlet problem for equation (1) has a unique solution for every constant H and for arbitrary continuous boundary data if, and only if, $(n-1) \mathcal{H}_{\partial \Omega}(y) \geq n|H|$.

We have also proved [4, 3, Th. 4.1 p .40$]$ a generalization of an existence result of Spruck [19, Th. 1.4 p. 787] for constant mean curvature. That is, under certain regularity for $\partial \Omega$ and the boundary data φ, if the function H satisfies

$$
\begin{equation*}
\operatorname{Ricc}_{x} \geq n \sup _{z \in \mathbb{R}}\left\|\nabla_{x} H(x, z)\right\|-\frac{n^{2}}{n-1} \inf _{z \in \mathbb{R}}(H(x, z))^{2}, \forall x \in \Omega \tag{4}
\end{equation*}
$$

in addition to the strong Serrin condition (3), then the Dirichlet problem for equation (1) is solvable for arbitrary boundary data sufficient smooth. This result in combination with corollary 2 yields the following generalization in the $\mathscr{C}^{2, \alpha}$ class of a theorem of Serrin [18, Th. p. 484] in the Euclidean space:

Theorem 8 (Serrin type solvability criterion 2). Let M be a CartanHadamard manifold and $\Omega \subset M$ a bounded domain whose boundary is of class $\mathscr{C}^{2, \alpha}$ for some $\alpha \in(0,1)$. Suppose that $H \in \mathscr{C}^{1, \alpha}(\bar{\Omega} \times \mathbb{R})$ is either non-negative
or non-positive in $\bar{\Omega} \times \mathbb{R}, \partial_{z} H \geq 0$ and

$$
\operatorname{Ricc}_{x} \geq n \sup _{z \in \mathbb{R}}\left\|\nabla_{x} H(x, z)\right\|-\frac{n^{2}}{n-1} \inf _{z \in \mathbb{R}}(H(x, z))^{2}, \forall x \in \Omega .
$$

Then the Dirichlet problem for equation (1) has a unique solution $u \in \mathscr{C}^{2, \alpha}(\bar{\Omega})$ for every $\varphi \in \mathscr{C}^{2, \alpha}(\bar{\Omega})$ if, and only if, the strong Serrin condition (3) holds.

Finally, using corollary 3 we also obtain:
Theorem 9 (Serrin type solvability criterion 3). Let M be a complete and compact manifold whose sectional curvature satisfies $\frac{1}{4} K_{0}<K \leq K_{0}$ for a positive constant K_{0}. Let $\Omega \subset M$ be a domain with $\operatorname{diam}(\Omega)<\frac{\pi}{2 \sqrt{K_{0}}}$ and whose boundary is of class $\mathscr{C}^{2, \alpha}$ for some $\alpha \in(0,1)$. Suppose that $H \in \mathscr{C}^{1, \alpha}(\bar{\Omega} \times \mathbb{R})$ is either non-negative or non-positive in $\bar{\Omega} \times \mathbb{R}, \partial_{z} H \geq 0$ and

$$
\operatorname{Ricc}_{x} \geq n \sup _{z \in \mathbb{R}}\left\|\nabla_{x} H(x, z)\right\|-\frac{n^{2}}{n-1} \inf _{z \in \mathbb{R}}(H(x, z))^{2}, \forall x \in \Omega
$$

Then the Dirichlet problem for equation (1) has a unique solution $u \in \mathscr{C}^{2, \alpha}(\bar{\Omega})$ for every $\varphi \in \mathscr{C}^{2, \alpha}(\bar{\Omega})$ if, and only if, the strong Serrin condition (3) holds.

3 Proof of the main non-existence theorem

The proof of theorem 1 is based in two results that will be proved in the sequel. The following fundamental proposition can trace its roots back to the work of Finn [9, Lemma p. 139] when he established the theorem ensuring the non-existence of solutions for Dirichlet problems for the minimal surface equation in non-convex domain of \mathbb{R}^{2}. His lemma was extended by JenkinsSerrin [14, Prop. III p. 182] for the minimal hypersurface equation in \mathbb{R}^{n}, and subsequently by Serrin [18, Th. 1 p. 459] for quasilinear elliptic operators (see also [10, Th. 14.10 p. 347]). Afterward M. Telichevesky [20, Lemma. 11 p. 250] extended the result for the minimal vertical equation in $M \times \mathbb{R}$. We will use some of the ideas of these works.

Proposition 10. Let $\Omega \in M$ a bounded domain. Let Γ^{\prime} be a relative open portion of $\partial \Omega$ of class \mathscr{C}^{1}. Let $H(x, z) \in \mathscr{C}^{0}(\bar{\Omega} \times \mathbb{R})$ be a function non-decreasing in the variable z. Let $u \in \mathscr{C}^{2}(\Omega) \cap \mathscr{C}^{1}\left(\Omega \cup \Gamma^{\prime}\right) \cap \mathscr{C}^{0}(\bar{\Omega})$ and $v \in \mathscr{C}^{2}(\Omega) \cap \mathscr{C}^{0}(\bar{\Omega})$ satisfying

$$
\left\{\begin{array}{cl}
\mathfrak{Q} u \geq \mathfrak{Q} v & \text { in } \Omega \\
u \leq v & \text { in } \partial \Omega \backslash \Gamma^{\prime} \\
\frac{\partial v}{\partial N}=-\infty & \text { in } \Gamma^{\prime}
\end{array}\right.
$$

where N is the inner normal to Γ^{\prime}. Under these conditions $u \leq v$ in Γ^{\prime}. Therefore $u \leq v e m \Omega$.

Proof. By way of contradiction, suppose that $m=\max _{\Gamma^{\prime}}(u-v)>0$. Hence, $u \leq v+m$ em Γ^{\prime}. Then $u \leq v+m$ in $\partial \Omega$ since $u \leq v$ in $\partial \Omega \backslash \Gamma^{\prime}$ by hypotheses. In view of the function H is non-decreasing in z and $m>0$, we have

$$
\mathfrak{Q}(v+m)=\mathcal{M}(v+m)-n H(x, v+m) \leq \mathcal{M} v-n H(x, v)=\mathfrak{Q} v \leq \mathfrak{Q} u
$$

As a consequence of the maximum principle (see [10, Th. 10.1 p .263$]$) $u \leq v+m$ in Ω. Let $y_{0} \in \Gamma^{\prime}$ be such that $m=u\left(y_{0}\right)-v\left(y_{0}\right)$. Let $\gamma_{y_{0}}=\exp _{y_{0}}\left(t N_{y_{0}}\right)$, for $t>0$ near 0 . Then

$$
u\left(\gamma_{y_{0}}(t)\right)-u\left(y_{0}\right) \leq\left(v\left(\gamma_{y_{0}}(t)\right)+m\right)-\left(v\left(y_{0}\right)+m\right)=v\left(\gamma_{y_{0}}(t)\right)-v\left(y_{0}\right)
$$

Dividing the expression by t and passing to the limit as t goes to zero it follows that $\frac{\partial u}{\partial N} \leq-\infty$. This is a contradiction since $u \in \mathscr{C}^{1}\left(\Gamma^{\prime}\right)$, hence, $u \leq v$ in Γ^{\prime}.

The next lemma plays a fundamental role in this paper. In this lemma we establish a height a priori estimate for solutions of equation $\mathcal{M} u=n H(x, u)$ in Ω in those points of $\partial \Omega$ on which the strong Serrin condition (3) fails.

Lemma 11. Let $\Omega \subset M$ be a bounded domain whose boundary is of class \mathscr{C}^{2}. Let $H \in \mathscr{C}^{0}(\bar{\Omega} \times \mathbb{R})$ be a non-negative function and non-decreasing in the variable z, and $u \in \mathscr{C}^{2}(\Omega) \cap \mathscr{C}^{0}(\bar{\Omega})$ satisfying $\mathcal{M} u=n H(x, u)$. Let us assume that there exists $y_{0} \in \partial \Omega$ such that

$$
\begin{equation*}
(n-1) \mathcal{H}_{\partial \Omega}\left(y_{0}\right)<n H\left(y_{0}, k\right) \tag{5}
\end{equation*}
$$

for some $k \in \mathbb{R}$. Suppose also that $\operatorname{cut}\left(y_{0}\right) \cap \Omega=\emptyset$. Furthermore, assume that the radial curvature over the radial geodesics issuing from y_{0} and intersecting Ω is bounded above by K_{0}, where
(a) $K_{0} \leq 0$, or
(b) $K_{0}>0$ and $\operatorname{dist}\left(y_{0}, x\right)<\frac{\pi}{2 \sqrt{K_{0}}}$ for all $x \in \bar{\Omega}$.

Then for each $\varepsilon>0$ there exists $a>0$ depending only on $\varepsilon, \mathcal{H}_{\partial \Omega}\left(y_{0}\right)$, the geometry of Ω and the modulus of continuity of $H(x, k)$ in y_{0}, such that

$$
\begin{equation*}
u\left(y_{0}\right)<\max \left\{k, \sup _{\partial \Omega \backslash B_{a}\left(y_{0}\right)} u\right\}+\varepsilon \tag{6}
\end{equation*}
$$

Proof. We proceed the proof in two steps. Firstly, we will find an estimate for $u\left(y_{0}\right)$ depending on k and $\sup _{\partial B_{a}\left(y_{0}\right) \cap \Omega} u$ for some a that does not depend on u. Secondly, we will get an upper bound for $\sup _{\partial B_{a}\left(y_{0}\right) \cap \Omega} u$ in terms of $\sup _{\partial \Omega \backslash B_{a}\left(y_{0}\right)} u$.

Step 1.

First of all note that from (5) there exists $\nu>0$ such that

$$
\begin{equation*}
(n-1) \mathcal{H}_{\partial \Omega}\left(y_{0}\right)<n H\left(y_{0}, k\right)-4 \nu . \tag{7}
\end{equation*}
$$

Let $R_{1}>0$ be such that $\partial B_{R_{1}}\left(y_{0}\right) \cap \Omega$ is connected and

$$
\begin{equation*}
\left|H(x, k)-H\left(y_{0}, k\right)\right|<\frac{\nu}{n}, \forall x \in B_{R_{1}}\left(y_{0}\right) \cap \Omega \tag{8}
\end{equation*}
$$

Note also that we can construct an embedded and oriented hypersurface S, tangent to $\partial \Omega$ at y_{0} and whose mean curvature with respect to the normal pointing inwards Ω at y_{0} satisfies

$$
\begin{equation*}
\mathcal{H}_{\partial \Omega}\left(y_{0}\right)<\mathcal{H}_{S}\left(y_{0}\right)<\mathcal{H}_{\partial \Omega}\left(y_{0}\right)+\frac{\nu}{(n-1)} \tag{9}
\end{equation*}
$$

We know that for some $\tau>0$ the map

$$
\begin{aligned}
\Phi_{t}: \quad S & \longrightarrow \Omega \\
y & \longmapsto \exp ^{\perp}\left(y, t N_{y}\right)
\end{aligned}
$$

is a diffeomorphism for each $0 \leq t<\tau$, and so $S_{t}:=\Phi_{t}(S)$ is parallel to S.
Let us consider the distance function $d(x)=\operatorname{dist}(x, S)$. Let $0<R_{2}<$ $\min \left\{\tau, R_{1}\right\}$ be such that

$$
\begin{equation*}
\left|\Delta d(x)-\Delta d\left(y_{0}\right)\right|<\nu \forall x \in B_{R_{2}}\left(y_{0}\right) \cap \Omega \tag{10}
\end{equation*}
$$

We now fix $a<R_{2}$. For $0<\epsilon<a$ we set

$$
\Omega_{\epsilon}=\left\{x \in B_{a}\left(y_{0}\right) \cap \Omega ; d(x)>\epsilon\right\} .
$$

We choose $\phi \in \mathscr{C}^{2}(\epsilon, a)$ satisfying
P1. $\phi(a)=0$,
P2. $\phi^{\prime} \leq 0$,
P3. $\phi^{\prime \prime} \geq 0$,
P4. $\phi^{\prime}(\epsilon)=-\infty$.

We also require that $\phi^{\prime 3} \nu+\phi^{\prime \prime}=0$ in (ϵ, a). Let $v=\max \left\{k, \sup _{\partial B_{a}\left(y_{0}\right) \cap \Omega} u\right\}+\phi \circ d$. So, $v \geq u$ in $\partial \Omega_{\epsilon} \backslash S_{\epsilon}$. In addition, if N is the normal to S_{ϵ} inwards Ω_{ϵ} and $x \in S_{\epsilon} \cap B_{a}\left(y_{0}\right)$, then

$$
\frac{\partial v}{\partial N}(x)=\langle\nabla v(x), N\rangle=\left\langle\phi^{\prime}(d(x)) \nabla d(x), \nabla d(x)\right\rangle=\phi^{\prime}(\epsilon)=-\infty
$$

Let us fix $x \in \Omega_{\epsilon}$. A straightforward computation yields

$$
\mathfrak{Q} v=\frac{\phi^{\prime}}{\left(1+\phi^{2}\right)^{1 / 2}} \Delta d+\frac{\phi^{\prime \prime}}{\left(1+\phi^{\prime 2}\right)^{3 / 2}}-n H(x, v)
$$

Since $v \geq k$ and H is non-decreasing in z it follows that $H(x, v) \geq H(x, k)$. Hence,

$$
\mathfrak{Q} v \leq \frac{\phi^{\prime}}{\left(1+\phi^{2}\right)^{1 / 2}} \Delta d+\frac{\phi^{\prime \prime}}{\left(1+\phi^{\prime 2}\right)^{3 / 2}}-n H(x, k) .
$$

By means of the properties of ϕ we have

$$
\frac{\phi^{\prime}}{\left(1+\phi^{\prime 2}\right)^{1 / 2}}>-1
$$

and by the assumption on the sign of H we obtain

$$
-n H(x, k)<n H(x, k) \frac{\phi^{\prime}}{\left(1+\phi^{\prime 2}\right)^{1 / 2}}
$$

Therefore,

$$
\begin{equation*}
\mathfrak{Q} v<\frac{\phi^{\prime}}{\left(1+\phi^{\prime 2}\right)^{1 / 2}}(\Delta d(x)+n H(x, k))+\frac{\phi^{\prime \prime}}{\left(1+\phi^{2}\right)^{3 / 2}} \tag{11}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
\Delta d(x)+n H(x, k) & =\Delta d(x)-\Delta d\left(y_{0}\right)+\Delta d\left(y_{0}\right)+n H(x, k) \\
& >-\nu-(n-1) \mathcal{H}_{S}\left(y_{0}\right)+n H(x, k) \tag{a}\\
& >-2 \nu-(n-1) \mathcal{H}_{\partial \Omega}\left(y_{0}\right)+n H(x, k) \tag{b}\\
& >2 \nu-n H\left(y_{0}, k\right)+n H(x, k) \tag{c}\\
& >\nu \tag{d}
\end{align*}
$$

where (a) follows directly from (10), (b) from (9), (c) from (7) and (d) from (8). Using this estimate on (11) we have

$$
\begin{aligned}
\mathfrak{Q} v & <\frac{\phi^{\prime}}{\left(1+\phi^{2}\right)^{1 / 2}} \nu+\frac{\phi^{\prime \prime}}{\left(1+\phi^{2}\right)^{3 / 2}} \\
& =\frac{1}{\left(1+\phi^{2}\right)^{3 / 2}}\left(\phi^{\prime}\left(1+\phi^{2}\right) \nu+\phi^{\prime \prime}\right) \\
& <\frac{1}{\left(1+\phi^{\prime 2}\right)^{3 / 2}}\left(\phi^{\prime 3} \nu+\phi^{\prime \prime}\right) .
\end{aligned}
$$

Let us now define ϕ explicitly by ${ }^{2}$

$$
\begin{equation*}
\phi(t)=\sqrt{\frac{2}{\nu}}\left((a-\epsilon)^{1 / 2}-(t-\epsilon)^{1 / 2}\right) \tag{12}
\end{equation*}
$$

We observe that ϕ satisfies P1-P4 and that $\phi^{\prime 3} \nu+\phi^{\prime \prime}=0$ for each $\epsilon<t<a$. Then, $\mathfrak{Q} v<0$ in Ω_{ϵ}. From proposition 10 we deduce that

$$
u \leq v=\max \left\{k, \sup _{\partial B_{a}\left(y_{0}\right) \cap \Omega} u\right\}+\phi(\epsilon) \text { in } S_{\epsilon} \cap B_{a}\left(y_{0}\right) .
$$

In particular,

$$
u\left(\gamma_{y_{0}}(\epsilon)\right) \leq \max \left\{k, \sup _{\partial B_{a}\left(y_{0}\right) \cap \Omega} u\right\}+\sqrt{\frac{2}{\nu}}\left((a-\epsilon)^{1 / 2}\right),
$$

[^2]where $\gamma_{y_{0}}(\epsilon)=\exp _{y_{0}}\left(\epsilon N_{y_{0}}\right)$. Since this estimate holds for each $0<\epsilon<a$, we can pass to the limit as ϵ goes to zero to obtain
\[

$$
\begin{equation*}
u\left(y_{0}\right) \leq \max \left\{k, \sup _{\partial B_{a}\left(y_{0}\right) \cap \Omega} u\right\}+\sqrt{\frac{2 a}{\nu}} . \tag{13}
\end{equation*}
$$

\]

Step 2.

Let $\rho(x)=\operatorname{dist}\left(x, y_{0}\right)$ for $x \in \Omega^{\prime}=\Omega \backslash B_{a}\left(y_{0}\right)$ and $\delta=\operatorname{diam}(\Omega)$. Choose $\psi \in \mathscr{C}^{2}(a, \delta)$ satisfying

$$
\text { P5. } \psi(\delta)=0, \quad \text { P6. } \psi^{\prime} \leq 0, \quad \text { P7. } \psi^{\prime \prime} \geq 0, \quad \text { P8. } \psi^{\prime}(a)=-\infty,
$$

We also need that $\frac{c \psi^{\prime 3}}{t}+\psi^{\prime \prime} \leq 0$ in (a, δ), where c is a constant to be choose later on. Let $w=\sup _{\partial \Omega \backslash B_{a}\left(y_{0}\right)} u+\psi \circ \rho$. We remind that $\rho \in \mathscr{C}^{2}\left(M \backslash\left(\operatorname{cut}\left(y_{0}\right) \cup\left\{y_{0}\right\}\right)\right)$, so $w \in \mathscr{C}^{2}\left(\Omega \backslash B_{a}\left(y_{0}\right)\right)$. The idea is to use proposition 10 again. We note that $w \geq u$ in $\partial \Omega \backslash B_{a}\left(y_{0}\right)$. Also, if N is the normal to $\partial B_{a}\left(y_{0}\right) \cap \Omega$ inwards Ω^{\prime}, we have for each $x \in \partial B_{a}\left(y_{0}\right) \cap \Omega$ that

$$
\frac{\partial w}{\partial N}(x)=\langle\nabla w(x), N\rangle=\left\langle\psi^{\prime}(\rho(x)) \nabla \rho(x), \nabla \rho(x)\right\rangle=\psi^{\prime}(a)=-\infty
$$

For w we have

$$
\mathfrak{Q} w=\frac{\psi^{\prime}}{\left(1+\psi^{\prime 2}\right)^{1 / 2}} \Delta \rho+\frac{\psi^{\prime \prime}}{\left(1+\psi^{\prime 2}\right)^{3 / 2}}-n H(x, w) .
$$

Since $H \geq 0$, it follows

$$
\mathfrak{Q} w \leq \frac{\psi^{\prime}}{\left(1+\psi^{\prime 2}\right)^{1 / 2}} \Delta \rho+\frac{\psi^{\prime \prime}}{\left(1+\psi^{\prime 2}\right)^{3 / 2}}
$$

In any of the hypothesis (a) or (b), the radial geodesics issuing from y_{0} and intercepting Ω do not contain conjugate points to y_{0} (see [15, Th. 6.5 .6 p .151$]$, [6, Th. p. 107]). Then the Laplacian comparison theorem [11, Th. A p. 19] can be use to estimate $\Delta \rho$.

Under the hypothesis (a) we compare M with \mathbb{R}^{n} to obtain

$$
\Delta \rho(x) \geq \frac{n-1}{\rho(x)}
$$

Under the hypothesis (b) we compare M with the sphere $S_{K_{0}}^{n}$ of sectional curvature $K_{0}>0$. In this case we have

$$
\Delta \rho(x) \geq(n-1) \sqrt{K_{0}} \cot \left(\sqrt{K_{0}} \rho(x)\right)
$$

From the second assumption on (b) there also exists $0<\kappa<\frac{\pi}{2 \sqrt{K_{0}}}$ such that $\operatorname{dist}\left(x, y_{0}\right) \leq \frac{\pi}{2 \sqrt{K_{0}}}-\kappa$, for each $x \in \bar{\Omega}$. Thus, for each $x \in \Omega \backslash B_{a}\left(y_{0}\right)$, there
exists a unique normal minimizing geodesic β such that $\beta(0)=y_{0}$ and $\beta\left(t_{0}\right)=x$, where $t_{0} \leq \frac{\pi}{2 \sqrt{K_{0}}}-\kappa$. Let's define the function $\xi(t)=\sqrt{K_{0}} t \cot \left(\sqrt{K_{0}} t\right)$ for $t>0$. We note that ξ is decreasing and $\xi\left(\frac{\pi}{2 \sqrt{K_{0}}}\right)=0$. Then,

$$
\xi(t) \geq \xi\left(\frac{\pi}{2 \sqrt{K_{0}}}-\kappa\right)>0, \forall t \in\left(0, \frac{\pi}{2 \sqrt{K_{0}}}-\kappa\right]
$$

Consequently,

$$
\rho(x) \Delta \rho(x) \geq(n-1) C
$$

where

$$
C=\sqrt{K_{0}}\left(\frac{\pi}{2 \sqrt{K_{0}}}-\kappa\right) \cot \left(\sqrt{K_{0}}\left(\frac{\pi}{2 \sqrt{K_{0}}}-\kappa\right)\right)>0
$$

Thus $\Delta \rho(x) \geq \frac{c}{\rho}$, where $c=n-1$ in the case (a) and $c=(n-1) C$ in the case (b).

Then, we have

$$
\begin{aligned}
\mathfrak{Q} w & \leq \frac{\psi^{\prime}}{\left(1+\psi^{\prime 2}\right)^{1 / 2}} \cdot \frac{c}{\rho}+\frac{\psi^{\prime \prime}}{\left(1+\psi^{\prime 2}\right)^{3 / 2}} \\
& =\frac{1}{\left(1+\psi^{\prime 2}\right)^{3 / 2}}\left(\frac{c}{\rho} \psi^{\prime}\left(1+\psi^{\prime 2}\right)+\psi^{\prime \prime}\right) \\
& <\frac{1}{\left(1+\psi^{\prime 2}\right)^{3 / 2}}\left(\frac{c}{\rho} \psi^{\prime 3}+\psi^{\prime \prime}\right) .
\end{aligned}
$$

Let us define ψ as ${ }^{3}$

$$
\begin{equation*}
\psi(t)=\left(\frac{2}{c}\right)^{1 / 2} \int_{t}^{\delta}\left(\log \frac{r}{a}\right)^{-1 / 2} d r \tag{14}
\end{equation*}
$$

Such a function satisfies P5-P8, and also $\frac{c}{t} \psi^{\prime}(t)^{3}+\psi^{\prime \prime}(t)<0$ for each $a<t<\delta$. Then, $\mathfrak{Q} w<0$ em Ω^{\prime}.

From proposition 10 we can conclude that $u \leq w$ in $\partial B_{a}\left(y_{0}\right) \cap \Omega$, where

$$
\begin{equation*}
\sup _{\partial B_{a}\left(y_{0}\right) \cap \Omega} u \leq \sup _{\partial \Omega \backslash B_{a}\left(y_{0}\right)} u+\psi(a) . \tag{15}
\end{equation*}
$$

We observe that, in fact, this estimate holds for each a such that $\partial B_{a}\left(y_{0}\right) \cap \Omega$ is connected.

We use (15) in (13) from step 1 , so

$$
u\left(y_{0}\right) \leq \max \left\{k, \sup _{\partial \Omega \backslash B_{a}\left(y_{0}\right)} u\right\}+\psi(a)+\sqrt{\frac{2 a}{\nu}}
$$

It is easy to see that $\lim _{a \rightarrow 0} \psi(a)=0$. Hence, for each $\varepsilon>0, a$ can be choose small enough to satisfy

$$
\psi(a)+\sqrt{\frac{2 a}{\nu}}<\varepsilon
$$

[^3]Remark 12. In the case where $H=H(x)$,

$$
u\left(y_{0}\right)<\sup _{\partial \Omega \backslash B_{a}\left(y_{0}\right)} u+\varepsilon,
$$

where a is chosen as before.
At last we are able to prove theorem 1.
Proof of the main non-existence theorem. Obviously we can suppose that $H \geq 0$. Then,

$$
(n-1) \mathcal{H}_{\partial \Omega}\left(y_{0}\right)<n H\left(y_{0}, k\right)
$$

for some $k \in \mathbb{R}$ since H is non-decreasing in z. Let $\varepsilon>0$ and $\varphi \in \mathscr{C}^{\infty}(\bar{\Omega})$ such that $\varphi=k$ in $\partial \Omega \backslash B_{a}\left(y_{0}\right)$ and $\varphi\left(y_{0}\right)=k+\varepsilon$. Hence, no solution of equation (1) in Ω could have φ as boundary values because such a function does not satisfy the estimate (6).

References

[1] A. Aiolfi, J. Ripoll, and M. Soret. The Dirichlet problem for the minimal hypersurface equation on arbitrary domains of a Riemannian manifold. manuscripta mathematica, 149:71-81, 2016.
[2] L. J. Alías and M. Dajczer. Constant mean curvature graphs in a class of warped product spaces. Geometriae Dedicata, 131(1):173-179, Feb 2008.
[3] Y. N. Alvarez. Critérios de solubilidade de tipo Serrin para problemas de Dirichlet para equações de curvatura média pré-determinada em variedades. PhD thesis, PUC-Rio, december, 2018.
[4] Y. N. Alvarez and R. Sa Earp. Existence Serrin type results for the Dirichlet problem for the prescribed mean curvature equation in Riemannian manifolds. In preparation, 2019.
[5] P. Bérard and R. Sa Earp. Examples of H-hypersurfaces in $\mathbb{H}^{n} \times \mathbb{R}$ and geometric applications. Matemática Contemporânea, 34(2008):19-51, 2008.
[6] I. Chavel. Riemannian geometry: a modern introduction. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2006.
[7] M. Dajczer, P. A. Hinojosa, and J. H. de Lira. Killing graphs with prescribed mean curvature. Calculus of Variations and Partial Differential Equations, 33(2):231-248, Oct 2008.
[8] M. Dajczer and J Ripoll. An extension of a theorem of Serrin to graphs in warped products. The Journal of Geometric Analysis, 15(2):193-205, Jun 2005.
[9] R. Finn. Remarks relevant to minimal surfaces, and to surfaces of prescribed mean curvature. Journal d'Analyse Mathématique, 14(1):139-160, 1965.
[10] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer-Verlag, 2001.
[11] R. E. Greene and H. Wu. Function Theory on Manifolds Which Possess a Pole, volume 699 of Lecture Notes in Mathematics. Springer-Verlag, 1979.
[12] E. M. Guio. Estimativas a priori do gradiente, existência e não-existência, para uma equação da curvatura média no espaço hiperbólico. PhD thesis, PUC-Rio, april, 2003.
[13] E. M. Guio and R. Sá Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure \& Applied Analysis, 4(3):549-568, 2005.
[14] H. Jenkins and J. Serrin. The Dirichlet problem for the minimal surface equation in higher dimensions. Journal für die reine und angewandte Mathematik, 229:170-187, 1968.
[15] W. Klingenberg. A Course in Differential Geometry. Graduate Texts in Mathematics. Springer-Verlag, 1978.
[16] Rafael López. Graphs of constant mean curvature in hyperbolic space. Annals of Global Analysis and Geometry, 20(1):59-75, Aug 2001.
[17] P.-A. Nitsche. Existence of prescribed mean curvature graphs in hyperbolic space. Manuscripta mathematica, 108(3):349-367, Jul 2002.
[18] J. Serrin. The Problem of Dirichlet for Quasilinear Elliptic Differential Equations with Many Independent Variables. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 264(1153):413-496, 1969.
[19] J. Spruck. Interior gradient estimates and existence theorems for constant mean curvature graphs in $M^{n} \times R$. Pure and Applied Mathematics Quarterly, 3(3):785-800, 2007.
[20] M. Telichevesky. A note on minimal graphs over certain unbounded domains of Hadamard manifolds. Pacific Journal of Mathematics, 281:243255, 2016.

Yunelsy N Alvarez
Departamento de Matemática
Pontifícia Universidade Católica do Rio de Janeiro
Rio de Janeiro
22451-900 RJ

Brazil
Email address: ynapolez@gmail.com

Ricardo Sa Earp
Departamento de Matemática
Pontifícia Universidade Católica do Rio de Janeiro
Rio de Janeiro
22451-900 RJ
Brazil
Email address: rsaearp@gmail.com

[^0]: *Supported by CNPq of Brazil.
 ${ }^{\dagger}$ Partially supported by CNPq of Brazil. 2000 AMS Subject Classification: 53C42, 49Q05, 35J25, 35J60.
 Keywords and phrases: mean curvature equation; Dirichlet problems; Serrin condition; sectional curvature; Ricci curvature; radial curvature; distance functions; Laplacian comparison theorem; Hadamard manifolds; hyperbolic space.

[^1]: ${ }^{1}$ For the definition of radial curvature we refer that from Greene-Wu [11, p. 5]. We denote by $\operatorname{cut}\left(y_{0}\right)$ the cut locus of y_{0}.

[^2]: ${ }^{2}$ See also $[10, \S 14.4]$ and [12, Th. 4.1 p. 40].

[^3]: ${ }^{3}$ See also $[10, \S 14.4]$

