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Abstract

It is well known that the Serrin condition is a necessary condition for
the solvability of the Dirichlet problem for the prescribed mean curvature
equation in bounded domains of R™ with certain regularity. In this paper
we investigate this fact for the vertical mean curvature equation in the
product M™ x R. Precisely, given a ¥? bounded domain © in M and
a function H = H(z,z) continuous in Q x R and non-decreasing in the
variable z, we prove that the strong Serrin condition (n — 1)Haqa(y) >
nsup |H(y, z)| Vy € 09, is a necessary condition for the solvability of the

z€R

Dirichlet problem in a large class of Riemannian manifolds within which
are the Hadamard manifolds and manifolds whose sectional curvatures are
bounded above by a positive constant. As a consequence of our results
we deduce Jenkins-Serrin and Serrin type sharp solvability criteria.

1 Introduction

We denote by M a complete Riemannian manifold of dimension n > 2 and
let Q be a domain in M. The focus of our work is the prescribed mean curvature
equation for vertical graphs in M x R, this is,

Mu = div (I';;‘) — nH(z,u), (1)
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where H is a continuous function over €2 x R and non-decreasing in the variable

2, W =1/1+||Vu(z)||* and the quantities involved are calculated with respect
to the metric of M. In a coordinates system (z1,...,z,) in M, it follows that
I « i ulud 9
Mu = W Z oY = T3 Viju=nH(x,u), (2)
ij=1

n
where (0%7) is the inverse of the metric (o;) of M, u’ = Zaijaju are the
j=1

coordinates of Vu and VZu(z) = V2 u(x) (821' , a%j). We will denote by Q the

operator defined by
Qu = Mu —nH(x,u).

We notice that the matrix of the operator M is given by A = %g, where g is
the induce metric on the graph of w. This implies that the eigenvalues of A are
positive and depends on  and on Vu. Hence, M is locally uniformly elliptic.
Furthermore, if  is bounded and u € €*(Q), then M is uniformly elliptic in
(see [19] for more details).

It has been proved in chronological order by Finn [9], Jenkins-Serrin [14] and
Serrin [18], that the very well known Serrin condition is a necessary condition
for the solvability of the Dirichlet problem for equation (1) in bounded domains
of R™.

Dirichlet problems for equations whose solutions describe hypersurfaces of
prescribed mean curvature has been also studied outside of the Euclidean space.
Several works have considered a Serrin type condition that provides some exis-
tence theorem in their respective context (see [1], [2], [7], [8], [13], [16], [17] and
[19] as examples). However, non-existence theorem has been only investigated
in a few cases that we summarize below.

For instance, P.-A Nitsche [17] was concerned with graph-like prescribed
mean curvature hypersurfaces in hyperbolic space H"™!. In the half-space set-
ting, he studied radial graphs over the totally geodesic hypersurface S = {x €
R™: (20)? + -+ + (z,)? = 1}. He established an existence result if Q is a
bounded domain of S of class €%® and H € €'(Q) is a function satisfying
sup |H| < 1 and |H(y)| < Hc(y) everywhere on 052, where H¢e denotes the

Q
hyperbolic mean curvature of the cylinder C' over 92. Furthermore he showed
the existence of smooth boundary data such that no solution exists in case of
|H(y)| > He(y) for some y € 0 under the assumption that H has a sign. We
observe that his results does not provide Serrin type solvability criterion.

Also, E. M. Guio-R. Sa Earp [12, 13] considered a bounded domain € con-
tained in a vertical totally geodesic hyperplane P of H"*' and studied the
Dirichlet problem for the mean curvature equation for horizontal graphs over
), that is, hypersurfaces which intersect at most only once the horizontal horo-
cycles orthogonal to €2. They considered the hyperbolic cylinder C' generated
by horocycles cutting ortogonally P along the boundary of € and the Serrin



condition, Heo(y) > |H(y)| V y € 0Q. They obtained a Serrin type solvability
criterion for prescribed mean curvature H = H(z) and also proved a sharp
solvability criterion for constant H.

Finally, M. Telichevesky [20, Th. 6 p. 246] proved that if M is a Hadamard
manifold having —1 as an upper bound for the sectional curvature, then mean
convexity is a necessary condition for the existence of a vertical minimal graphs
in M xR over a domain €2 of M possibly unbounded. This result combined with
an existence result of Aiolfi-Ripoll-Soret [1, Th. 1 p. 72] gives sharp solvability
criterion for the minimal hypersurface equation in bounded domains of M.

To the best of our knowledge, no other Serrin-type solvability criterion has
been proved outside of the Euclidean setting.

In this paper we generalize the aforementioned non-existence result in the
M x R context. More precisely, we prove the following!:

Theorem 1 (main theorem). Let Q C M be a bounded domain whose bound-
ary is of class €*. Let H € €°(2 x R) be a function either non-positive or
non-negative and non-decreasing in the variable z. Let us assume that there
exists yo € 02 such that

(n — DHoaa(yo) < ”SUE |H (y0,2)]| .
zE

Suppose also that cut(yo)NQ = 0. Furthermore, assume that the radial curvature
over the radial geodesics issuing from yg and intersecting € is bounded above by
Ky, where
(a‘) KO < O; or
0

WK,

Then there exists ¢ € €>(Q) such that there is no u € €°(Q)NE2(Q) satisfying
equation (1) with u = ¢ in 0.

(b) Ko > 0 and dist(yo, z) < for all z € Q.

The statement ensures that the strong Serrin condition

(n—1Hoa(y) = nsup [H(y, 2)| Vye€ o0 (3)
z€E

is a necessary condition for the solvability of the Dirichlet problem for equation

(1).
Some direct consequences inferred from our main non-existence theorem are
stated as follows.

Corollary 2. Let M be a Cartan-Hadamard manifold and Q C M a bounded
domain whose boundary is of class €%. Let H € €°(Q x R) be a function either

IFor the definition of radial curvature we refer that from Greene-Wu [11, p. 5]. We denote
by cut(yo) the cut locus of yo.



non-negative or non-positive and non-decreasing in the variable z. Suppose there
exists yo € 0K such that

(n — 1) Hoa(yo) < nsup [H (yo, )] -
zZE€
Then there exists p € €°°(Q) such that there is no u € €°(Q)NE*(Q) satisfying
equation (1) with u = ¢ in 0.

Corollary 3. Let M be a simply connected and compact manifold whose sec-
tional curvature satisfies iKg < K < Ky for a positive constant Ky. Let Q C M
be a domain with diam(Q) < ﬁ and whose boundary is of class €*. Let

H € €°(Q x R) be a function either non-negative or non-positive and non-
decreasing in the variable z. Suppose there exists yo € O such that

(n —1)Hoa(yo) < nsup [ H (yo, 2)] -
zZE€
Then there exists p € €°°(Q) such that there is no u € €°(Q)NE*(Q) satisfying
equation (1) with u = ¢ in 0.

We remark that the assumption in the above statement guarantees that the

injectivity radius of M is greater than 2\/’;?0.

2 Sharp solvability criteria

We now want to highlight Serrin type solvability criteria derived from the
combination of our non-existence results with existence results obtained by oth-
ers [19, 1] and by the authors [3, 4].

Firstly, we observe that the combination of corollary 2 with the existence
theorem from Aiolfi-Ripoll-Soret [1, Th. 1 p. 72] for the minimal case shows
that the sharp solvability criterion of Jenkins-Serrin [14, Th. 1 p. 171] also
holds in Cartan-Hadamard manifolds:

Theorem 4 (Sharp Jenkins-Serrin-type solvability criterion). Let M be
a Cartan-Hadamard manifold and Q@ C M a bounded domain whose boundary
is of class €% for some o € (0,1). Then the Dirichlet problem for equation
Mu =0 in Q has a unique solution for arbitrary continuous boundary data if,
and only if, Q is mean convex.

Secondly, combining corollary 3 with the existence result of Spruck [19, Th.
1.4 p. 787] we infer the following:

Theorem 5 (Sharp Serrin-type solvability criterion). Let M be a simply
connected and compact manifold whose sectional curvature satisfies iKO <K<

Ky for a positive constant Ko. Let Q@ C M be a domain with diam () < 2\/}7

and whose boundary is of class €** for some a € (0,1). Then the Dirichlet
problem for equation (1) in Q has a unique solution for every constant H and
arbitrary continuous boundary data if, and only if, (n — \)Haq > n|H|.




Notice that it was not established in every Cartan-Hadamard manifold a
sharp Serrin type result [18, p. 416] for arbitrary constant H. For example, if
M =H", it follows from the existence result of Spruck [19, Th. 1.4 p. 787] that
the Serrin condition is a sufficient condition if H > ”T’l In the opposite case
0< H< ”T_l, Spruck noted that it was possible to establish an existence result
if the strict inequality (n — 1)Hsq > nH holds. He used the entire graphs of
constant mean curvature =1 in H" x R as barriers (see [5] for explicit formulas).
However, this restriction over the Serrin condition in the last case does not allow
to establish Serrin type solvability criterion for every constant H directly from
the existence result of Spruck [19, Th. 5.4 p. 797] when the ambient is the
hyperbolic space.

We have established an existence result [4, 3, Th. 4.4 p. 51] for prescribed
H € €%%(Q x R) which extends the existence result of Spruck. We have the
following Serrin type solvability criterion:

Theorem 6 (Serrin type solvability criterion 1). Let Q C H" be a bounded
domain with O of class €** for some o € (0,1). Let H € €1*(Q x R) be
a function satisfying 0, H > 0 e 0 < H < "T_l em 2 x R. Then the Dirichlet
problem for equation (1) has a unique solution u € €>*(Q) for every ¢ €
€*(Q) if, and only if, the strong Serrin condition (3) holds.

By combining the existence result of Spruck [19, Th. 1.4 p. 787] with
corollary 2, and putting together theorem 6, we deduce that the sharp solvability
criterion of Serrin [18, p. 416] for arbitrary constant H also holds in the €
class if we replace R™ for H":

Theorem 7 (Sharp Serrin type solvability criterion). Let  C H" be a
bounded domain whose boundary is of class €**. Then the Dirichlet problem
for equation (1) has a unique solution for every constant H and for arbitrary
continuous boundary data if, and only if, (n — 1)Haqa(y) > n|H|.

We have also proved [4, 3, Th. 4.1 p. 40] a generalization of an existence
result of Spruck [19, Th. 1.4 p. 787] for constant mean curvature. That is,
under certain regularity for 9 and the boundary data ¢, if the function H
satisfies

2

Ricey > nsup ||V, H(z, 2)|| — inf (H(z,2))*, Vz e, (4)
zER n — 1 z2€R

in addition to the strong Serrin condition (3), then the Dirichlet problem for
equation (1) is solvable for arbitrary boundary data sufficient smooth. This
result in combination with corollary 2 yields the following generalization in the
€% class of a theorem of Serrin [18, Th. p. 484] in the Euclidean space:

Theorem 8 (Serrin type solvability criterion 2). Let M be a Cartan-
Hadamard manifold and Q@ C M a bounded domain whose boundary is of class
€*< for some a € (0,1). Suppose that H € €1 (Q x R) is either non-negative



or non-positive in QO xR, 9,H>0 and

2

. 2
n—lilel]%(H(m’Z)) , Ve

Rice, > nsup ||V1H(J?, Z)H -
z€R
Then the Dirichlet problem for equation (1) has a unique solution u € €% (Q)
for every ¢ € €%*(Q) if, and only if, the strong Serrin condition (3) holds.

Finally, using corollary 3 we also obtain:

Theorem 9 (Serrin type solvability criterion 3). Let M be a complete
and compact manifold whose sectional curvature satisfies iKO < K < Ky fora
positive constant Ko. Let Q C M be a domain with diam(2) < 2\/7;{7 and whose

boundary is of class €** for some o € (0,1). Suppose that H € €1%(Q x R) is

either non-negative or non-positive in Q x R, 0,H > 0 and

2

2
—lze{R(H(m’Z)) , VaeQ.

Rice, > nsup |V H(x, 2)|| — LY
z€R n
Then the Dirichlet problem for equation (1) has a unique solution u € ¢*(Q)
for every ¢ € €%*(Q) if, and only if, the strong Serrin condition (3) holds.

3 Proof of the main non-existence theorem

The proof of theorem 1 is based in two results that will be proved in the
sequel. The following fundamental proposition can trace its roots back to the
work of Finn [9, Lemma p. 139] when he established the theorem ensuring
the non-existence of solutions for Dirichlet problems for the minimal surface
equation in non-convex domain of R?. His lemma was extended by Jenkins-
Serrin [14, Prop. III p. 182] for the minimal hypersurface equation in R", and
subsequently by Serrin [18, Th. 1 p. 459] for quasilinear elliptic operators (see
also [10, Th. 14.10 p. 347]). Afterward M. Telichevesky [20, Lemma. 11 p. 250]
extended the result for the minimal vertical equation in M x R. We will use
some of the ideas of these works.

Proposition 10. Let Q € M a bounded domain. Let I' be a relative open
portion of O of class €. Let H(x,z) € €°(QxR) be a function non-decreasing
in the variable z. Let u € €2(Q)NEL(QUT)NEO(Q) and v € €*(Q) NE°(Q)
satisfying

Qu> Qv in,
u<w in OQ\ TV,
g—;\’,:foo in IV,

where N is the inner normal to I''. Under these conditions u < v in I''. There-
fore u < v em Q.



Proof. By way of contradiction, suppose that m = Iriﬂa}x(u —v) > 0. Hence,

u<v+memI”. Then u < v+ m in N since u < v in IN \ I by hypotheses.
In view of the function H is non-decreasing in z and m > 0, we have

Qw+m)=Mw+m)—nH(x,v+m) < Mv—nH(z,v) = Qv < Qu.

As a consequence of the maximum principle (see [10, Th. 10.1 p. 263]) u < v+m
in Q. Let yo € I be such that m = u(yo) — v(yo). Let vy, = exp, (tN,,), for
t > 0 near 0. Then

u(yo (1) — wlyo) < (v (g0 (1)) +m) = (v(yo) +m) = vy, () — v(yo)-

Dividing the expression by ¢ and passing to the limit as ¢ goes to zero it follows
that 2% < —oo. This is a contradiction since u € ¢*(I"), hence, u < v in
I. O

The next lemma plays a fundamental role in this paper. In this lemma we
establish a height a priori estimate for solutions of equation Mu = nH(x,u) in
 in those points of 9Q on which the strong Serrin condition (3) fails.

Lemma 11. Let Q C M be a bounded domain whose boundary is of class €2.
Let H € €°(2xR) be a non-negative function and non-decreasing in the variable
z, and u € €2(Q)NE°(Q) satisfying Mu = nH (x,u). Let us assume that there
exists yo € 0N such that

(n — D)Hoa(yo) < nH (yo, k) (5)

for some k € R. Suppose also that cut(yg) N QL = 0. Furthermore, assume that
the radial curvature over the radial geodesics issuing from yo and intersecting Q)
is bounded above by K, where

(a) Ko <0, or

7r
2v Ky

Then for each € > 0 there exists a > 0 depending only on e, Haq(yo), the
geometry of Q and the modulus of continuity of H(x, k) in yo, such that

(b) Ko > 0 and dist(yo, z) < for all x € Q.

u(yo) < max<q k, sup up+te. (6)
00\ Ba(yo)

Proof. We proceed the proof in two steps. Firstly, we will find an estimate for

u(yo) depending on k and  sup u for some a that does not depend on w.
0Ba(yo)NQ
Secondly, we will get an upper bound for  sup w in terms of sup .
0Ba(yo)NQ2 O\ Ba (yo)

Step 1.



First of all note that from (5) there exists v > 0 such that
(n — 1) Hon(yo) < nH (yo, k) — 4v. (7)

Let Ry > 0 be such that 0Bg, (yo) N 2 is connected and
v
|H(z, k) — H(yo, k)| < V x € Bg, (yo) N Q. (8)

Note also that we can construct an embedded and oriented hypersurface
S, tangent to 0) at yy and whose mean curvature with respect to the normal
pointing inwards 2 at yo satisfies

14

—_— (9)

Hoa(yo) < Hs(yo) < Hoa(yo) +

We know that for some 7 > 0 the map

P, : S — Q
y +—— expt(y,tNy)

is a diffeomorphism for each 0 <t < 7, and so Sy := ®4(5) is parallel to S.
Let us consider the distance function d(z) = dist(z,S). Let 0 < Ry <
min{7, R;} be such that

|Ad(z) — Ad(yo)| < vV z € Br,(yo) N (10)
We now fix a < Ry. For 0 < € < a we set
Qe = {x € Ba(yo) N Q;d(x) > €}
We choose ¢ € € (¢,a) satisfying

Pl. ¢(a) =0, P2. ¢’ <0, P3. ¢’ >0, P4. ¢'(e) = —oo.

aBa(yU)mQ
So, v > w in 99, \ Se. In addition, if N is the normal to S, inwards €2, and
x € Se N B,(yo), then

ov / A —
v (@) = (Vu(z), N) = (¢'(d(2))Vd(z), Vd(z)) = ¢'(¢) = —cc.

We also require that ¢"3v+¢”’=0 in (¢, a). Let v = max {k, sup u} +ood.

Let us fix x € Q.. A straightforward computation yields

Qﬁl Qs//
Qu = 1+ ¢2)1/2 Ad + 1+ ¢2)3/2
Since v > k and H is non-decreasing in z it follows that H(x,v) > H(x,k).
Hence,

—nH(z,v).

¢/ ¢//
Qu < (ETDLE Ad + ETDEE —nH(x, k).




By means of the properties of ¢ we have
/
¢
(1 + (;5/2)1/2
and by the assumption on the sign of H we obtain
d)/
(1 + ¢/2)1/2 ’

-1

)

—nH(xz,k) <nH(x, k)

Therefore,
Qu < ¢ (Ad(x) +nH(x,k)) + ¢7N (11)
(1 +¢/2)1/2 ’ (1 +¢/2)3/2
Furthermore,
Ad(z) + nH(x, k) =Ad(x) — Ad(yo) + Ad(yo) + nH (z, k)
>—v—(n—1)Hs(yo) + nH(z, k) (a)
>—2v— (n—1DHoa(yo) + nH(z, k) (b)
>2v —nH (yo, k) +nH(z, k) (c)
>v, (d)
where (a) follows directly from (10), (b) from (9), (¢) from (7) and (d) from (8).

Using this estimate on (11) we have
(b/ (b//
a +¢/2)1/2V+ 1+ ¢2)3/2
1
T+ ¢ (¢'(L+¢%) + ")
1
<qgTam (
(1 + ¢/2)3/2

Qu <

¢/3V+¢N).

Let us now define ¢ explicitly by?

o) =% ((@- 2 - (1~ 2). (12

We observe that ¢ satisfies P1-P4 and that ¢"3v 4 ¢ = 0 for each € < t < a.
Then, Qu < 0 in Q.. From proposition 10 we deduce that

u<v=max< k, sup up+¢@(e) in SN By(yo).
OBq (yo)N2

In particular,

u(Yy, (€)) < max {k, sup u} + \/7 ((a _ 6)1/2) 7
BBa(yO)ﬁQ v

2See also [10, §14.4] and [12, Th. 4.1 p. 40].




where 7,,(¢) = exp,, (eNy,). Since this estimate holds for each 0 < ¢ < a, we
can pass to the limit as € goes to zero to obtain

2
u(yo) <maxq<k, sup w,p+ -« (13)
9Ba(yo)NQ v

Step 2.
Let p(x) = dist(z,yo) for x € Q' = Q\ B,(yo) and § = diam(Q2). Choose
Y € €?(a, ) satisfying

P5. ¢(d) =0, P6. ¢’ <0, P7. 4" >0, P8. ¢'(a) = —o0,

We also need that % +1"” < 0in (a,d), where c is a constant to be choose later

on. Let w= sup u+1op. Weremind that p € €2(M \ (cut(yo) U{yo})),
O\ Ba (yo)

so w € €%(Q\ Ba(yo)). The idea is to use proposition 10 again. We note that

w > win 0N\ By(yo). Also, if N is the normal to 9B, (yo) N 2 inwards ', we

have for each x € 9B, (yo) N that

STU\},(@ = (Vw(z), N) = (¢'(p(2))Vp(z), Vp(x)) = ' (a) = —o0.
For w we have
Quw = i Ap+ v —nH(z,w).

(1 + w/2)1/2

Since H > 0, it follows

(1 + ,(/112>3/2

¢/ w//
Nuw < Ap + DR

- (1 + 1/112>1/2

In any of the hypothesis (a) or (b), the radial geodesics issuing from gy and
intercepting 2 do not contain conjugate points to yo (see [15, Th. 6.5.6 p. 151],
[6, Th. p. 107]). Then the Laplacian comparison theorem [11, Th. A p. 19|
can be use to estimate Ap.

Under the hypothesis (a) we compare M with R" to obtain

n—1

Ap(x) > )

Under the hypothesis (b) we compare M with the sphere Sk, of sectional
curvature Ky > 0. In this case we have

Apl(z) > (n— 1)Ko cot( Kop(z)).

From the second assumption on (b) there also exists 0 < r < 3 7= such
that dist(x, yg) < ﬁ — K, for each z € Q. Thus, for each € Q\ B,(yo), there

10



exists a unique normal minimizing geodesic 8 such that 8(0) = yo and S(ty) = =,

where tq < 2\/% — k. Let’s define the function £(t) = /K t cot (\/KO t) for
t > 0. We note that ¢ is decreasing and & (2\/}7) = 0. Then,
7r T
t)2 & —F/——= — >0, Vte (0, —F== — K| .
€()_§<2\/K0 K) < 2V Ko H]
Consequently,
p(@)Ap(@) = (n—1)C,
where

7r T
C=vVKy | —=—— t{VEo | == — > 0.
’ <2FK0 ”) ” ( ’ (2FK0 K))
Thus Ap(x) > ¢, where ¢ =n — 1 in the case (a) and ¢ = (n — 1)C in the case

(b).

Then, we have

w/ c w//
Qu S(l T 212 ';"" 1+ ¢2)3/2
_ 1 E ! 2 "
~rg (Vv + )
1 C 13 "
<G ()

Let us define ¢ as 3

W(t) = (Z) v /j (1og 2) I (14)

Such a function satisfies P5-P8, and also %w’(t)?’ +4"(t) < 0foreacha <t <.

Then, Qw < 0 em .
From proposition 10 we can conclude that u < w in 9B, (yo) N 2, where

sup u< sup u-+¢(a). (15)
0B, (yo)NQ 9O\ Ba(yo)

We observe that, in fact, this estimate holds for each a such that 9B, (yo) N Q2
is connected.
We use (15) in (13) from step 1, so

2
u(yo) <max<k, sup wup+(a)+4/ -«
O\ Ba(yo) v

It is easy to see that lin%) ¥(a) = 0. Hence, for each € > 0, a can be choose small
a—r

w(a)—&-\/z?a <e. O

11

enough to satisfy

3See also [10, §14.4]



Remark 12. In the case where H = H(z),

u(yo) < sup u+te,
89\ Ba (yo)

where a is chosen as before.

At last we are able to prove theorem 1.

Proof of the main non-ezistence theorem. Obviously we can suppose that H > 0.
Then,

(n — DHoa(yo) < nH(yo, k)

for some k € R since H is non-decreasing in z. Let ¢ > 0 and ¢ € €°°(Q) such
that ¢ = k in 9Q\ By (yo) and ¢(yo) = k+¢. Hence, no solution of equation (1)
in  could have ¢ as boundary values because such a function does not satisfy
the estimate (6). O

References

1]

A. Aiolfi, J. Ripoll, and M. Soret. The Dirichlet problem for the mini-
mal hypersurface equation on arbitrary domains of a Riemannian manifold.
manuscripta mathematica, 149:71-81, 2016.

L. J. Alias and M. Dajczer. Constant mean curvature graphs in a class of
warped product spaces. Geometriae Dedicata, 131(1):173-179, Feb 2008.

Y. N. Alvarez. Critérios de solubilidade de tipo Serrin para problemas de
Dirichlet para equagéoes de curvatura média pré-determinada em variedades.
PhD thesis, PUC-Rio, december, 2018.

Y. N. Alvarez and R. Sa FEarp. Existence Serrin type results for the Dirich-
let problem for the prescribed mean curvature equation in Riemannian
manifolds. In preparation, 2019.

P. Bérard and R. Sa Earp. Examples of H-hypersurfaces in H” x R and
geometric applications. Matemdtica Contemporinea, 34(2008):19-51, 2008.

I. Chavel. Riemannian geometry: a modern introduction. Cambridge Stud-
ies in Advanced Mathematics. Cambridge University Press, 2006.

M. Dajczer, P. A. Hinojosa, and J. H. de Lira. Killing graphs with pre-
scribed mean curvature. Calculus of Variations and Partial Differential
Equations, 33(2):231-248, Oct 2008.

M. Dajczer and J Ripoll. An extension of a theorem of Serrin to graphs in
warped products. The Journal of Geometric Analysis, 15(2):193-205, Jun
2005.

12



[9] R. Finn. Remarks relevant to minimal surfaces, and to surfaces of pre-
scribed mean curvature. Journal d’Analyse Mathématique, 14(1):139-160,
1965.

[10] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of
Second Order. Classics in Mathematics. Springer-Verlag, 2001.

[11] R. E. Greene and H. Wu. Function Theory on Manifolds Which Possess a
Pole, volume 699 of Lecture Notes in Mathematics. Springer-Verlag, 1979.

[12] E. M. Guio. Estimativas a priori do gradiente, existéncia e nao-existéncia,
para uma equacdo da curvatura média no espaco hiperbolico. PhD thesis,
PUC-Rio, april, 2003.

[13] E. M. Guio and R. S4 Earp. Existence and non-existence for a mean cur-
vature equation in hyperbolic space. Communications on Pure € Applied
Analysis, 4(3):549-568, 2005.

[14] H. Jenkins and J. Serrin. The Dirichlet problem for the minimal surface
equation in higher dimensions. Journal fiir die reine und angewandte Math-

ematik, 229:170-187, 1968.

[15] W. Klingenberg. A Course in Differential Geometry. Graduate Texts in
Mathematics. Springer-Verlag, 1978.

[16] Rafael Lopez. Graphs of constant mean curvature in hyperbolic space.
Annals of Global Analysis and Geometry, 20(1):59-75, Aug 2001.

[17] P.-A. Nitsche. Existence of prescribed mean curvature graphs in hyperbolic
space. Manuscripta mathematica, 108(3):349-367, Jul 2002.

[18] J. Serrin. The Problem of Dirichlet for Quasilinear Elliptic Differential
Equations with Many Independent Variables. Philosophical Transactions of
the Royal Society of London. Series A, Mathematical and Physical Sciences,
264(1153):413-496, 1969.

[19] J. Spruck. Interior gradient estimates and existence theorems for constant
mean curvature graphs in M"™ x R. Pure and Applied Mathematics Quar-
terly, 3(3):785-800, 2007.

[20] M. Telichevesky. A note on minimal graphs over certain unbounded do-
mains of Hadamard manifolds. Pacific Journal of Mathematics, 281:243—
255, 2016.

Yunelsy N Alvarez

Departamento de Matematica

Pontificia Universidade Catélica do Rio de Janeiro
Rio de Janeiro

22451-900 RJ

13



Brazil
Email address: ynapolezQgmail.com

Ricardo Sa Earp

Departamento de Matematica

Pontificia Universidade Catélica do Rio de Janeiro
Rio de Janeiro

22451-900 RJ

Brazil

Email address: rsaecarp@gmail.com

14



	Introduction
	Sharp solvability criteria
	Proof of the main non-existence theorem

