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Abstract. We prove a phenomenon of concentration of total curvature for stable
minimal surfaces in the product spaceH2×R, whereH2 is the hyperbolic plane. Under
some geometric conditions on its asymptotic boundary, an oriented stable minimal
surface immersed in H2 × R has infinite total curvature.

We exhibit an example of a minimal graph such that in a domain whose asymptotic
boundary is a vertical segment the total curvature is finite, but the total curvature of
the graph is infinite, by the theorem cited before. We also present some simple and
peculiar examples of infinite total curvature minimal surfaces in H2 × R and their
asymptotic boundaries.

1. Introduction

In this paper, we prove a phenomenon of concentration of total curvature for stable
minimal surfaces in the product space H2 × R, where H2 is the hyperbolic plane.
We recall that a minimal surface M immersed in H2 × R has finite intrinsic total
curvature, or simply finite total curvature, if

∫
M
K dA is finite, whereK is the (intrinsic)

Gaussian curvature of M .
Our main theorem (Theorem 1.1), ensures that under some geometric conditions on
the asymptotic boundary, an oriented stable minimal surface immersed in H2×R (but
not necessarily properly immersed) has infinite total curvature.
Our main result is the following.

Theorem 1.1 (Main Theorem). Let M be a connected and oriented minimal surface
immersed in H2 × R (not necessarily complete). We assume that M is stable and
moreover

(1) the finite asymptotic boundary of M is composed of an arc α properly embedded
in ∂∞H2 × R,

(2) there exists an open and simple arc α0 ⊂ α in ∂f
∞M \ ∂∞(∂M) which is not

contained in a vertical line.
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Then M has infinite total curvature.

Moreover, let p∞ := (x∞, t0) ∈ ∂∞H2 × R, be any point of α0 which does not belong to
a vertical segment contained in α0. Then |n3(p)| → 1 if p → p∞, p ∈ M , where n3 is
the third coordinate of the Gauss map of M .

We emphasize that when the finite asymptotic boundary of a minimal surface in H2×R
is a vertical segment there are examples either of finite or infinite total curvature:

First, we summarize the example given by F. Morabito and M. Rodriguez [19]: It
consists of a complete minimal surface M in H2 × R, invariant by a discrete group
of vertical translations. The finite asymptotic boundary is the finite union of vertical
lines in ∂∞H2×R. It is interesting to note that any nonempty domain S ⊂ M of finite
vertical height has finite total curvature. One can choose such S to be a vertical graph.
Of course, the surface M has infinite total curvature, but the total curvature does not
concentrates in a subset S ⊂ M of bounded vertical height whose asymptotic boundary
is a vertical segment. The reader is referred to the constructions due to L. Hauswirth
and A. Menezes [11], to find other related results.

Secondly, we consider a classical minimal surface M1 in H2 ×R which has been useful
as barrier in many papers about minimal graphs theory, see P. Collin and H. Rosenberg
[4, Lemma 1], B. Nelli and H. Rosenberg [21, Errata corrige 4 (b)] and the authors [28,
Theorem 4.1 (3)]. The surface M1 is globally a vertical graph, see [26, Equation (32)]
for an explicit formula. Thus, M1 is stable. The surface M1 has been characterized by
I. Fernández and P. Mira [6]. A generalization of M1 was carried out by the work of J.
A. Gálvez and H. Rosenberg [9, Proposition 3.1], by J. Plehnert [24, Section 3.2], and
by P. Bérard and the first author in [1].
As a matter of fact, M1 is invariant under an one parameter group of hyperbolic
translations along a horizontal geodesic γ ⊂ H2 × {0}. Let us denote by p∞, q∞ the
asymptotic boundary of γ. Then the finite asymptotic boundary of M1 is composed of
two vertical half-lines in ∂∞H2 × (0,+∞), issuing from p∞ and q∞, and one of the two
arcs of ∂∞H2 × {0} \ {p∞, q∞}, see [28, Proposition 2.1]. Let S be a nonempty open
subset of M1 whose asymptotic boundary is a vertical segment of the finite asymptotic
boundary of M1. Since M1 is invariant by horizontal translations, it follows that S has
infinite total curvature.

We observe that in H2×R, finite total curvature of a complete oriented minimal surface
implies finite index. This is a theorem by P. Bérard and the first author in [1]. Notice
that in Euclidean space a famous result of D. Fisher-Colbrie [7] states that a complete
oriented minimal surface has finite index if and only if it has finite total curvature.
Notice also that finite index does not imply finite total curvature in H2 × R, as the
preceding example M1 shows. The catenoid in H2 × R is another counter-example: It
has infinite total curvature and index one [1, Proposition 3.3 and Theorem 3.5].

We pause momentarily to ask here if the assumption “complete” can be removed from
the Bérard-Sa Earp theorem? If this assertion is true, then a minimal surface in
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H2 × R with finite total curvature is stable, outside a compact subset, see [7, proof of
Proposition 1].
In R3, S.-Y. Cheng and J. Tysk showed that a complete minimal surface with boundary
and with finite total curvature has finite index [2, Theorem 5]. Afterward, A. Grigor’yan
and S.-T. Yau generalized this result assuming only that M is a minimal surface with
finite total curvature, that is they dropped the assumption of completness [10, Theorem
4.9].

We observe also that the hypothesis (2) of the Main Theorem 1.1 is crucial since there
exist many minimal surfaces with finite total curvature whose the asymptotic boundary
is equal to the asymptotic boundary of the boundary, see Remark 3.1.

In Example 5.1 we construct a minimal graph such that in a domain whose asymptotic
boundary is a vertical segment the total curvature is finite, but any neighborhood of
another part of the asymptotic boundary has infinite total curvature. This phenomenon
of concentration of total curvature follows from the Main Theorem 1.1.

We also present in Section 5 some simple and peculiar examples of infinite total cur-
vature minimal surfaces in H2 × R and their asymptotic boundaries.

We point out now an important property of a complete minimal surface immersed in
H2 × R: The finite asymptotic boundary of a complete minimal surface in H2 × R
with finite total curvature is constituted of vertical lines, see [12, Theorem 2.1 and
Proposition 2.4].

Loosely speaking, we note that the main result in our paper [31] is a counterpart of the
Main Theorem in the present paper. To see that, we recall some results from [31] about
oriented stable minimal annular ends with compact boundary, properly immersed into
H2 × R.
In [31] we introduced a suitable notion of asymptotic boundary of a surface M . We
call the set of points of the asymptotic boundary of M with finite (vertical) height, the
finite asymptotic boundary (see Definition 2.2 below). The main result in [31] ensures
that if the end M converges to a vertical plane and the finite asymptotic boundary of
M is contained in two vertical lines, then M has finite total curvature. If the end of
M is embedded we showed that it is a horizontal graph with respect to a horizontal
geodesic γ, or simply a horizontal graph. For a definition of a horizontal graph, see,
for instance, [12].
Summarizing, we proved in [31] the following geometric behavior, up to a compact part
of M :

• Any equidistant curve of γ intersects the end M at most at one point and it
intersects it transversally ([12, Proposition A.3] and [31, Step 7].

• Let n3 be the third coordinate of the unit normal field on M with respect to the
product metric on H2 ×R. We have that n3(p) → 0 uniformly when p → ∂∞E
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[31, Step 3]. Consequently, the tangent plane throughout the end is nowhere
horizontal.

It will be very interesting to investigate a similar result as in [31], for minimal surfaces
immersed intoH2×R with nonempty non compact boundary. The example 5.1 suggests
the following problem: Find geometric conditions on a minimal surface S immersed into
H2×R, with nonempty non compact boundary and whose finite asymptotic boundary
is contained in a vertical line, to have finite total curvature.

We remark that a horizontal graph with respect a geodesic γ which is transverse to
the intersecting equidistant curves to γ is stable. A vertical graph (see the definition,
for instance, in [28]), which is transverse to the intersecting vertical geodesics is stable,
as well. This follows from the classical criterion of stability for minimal surfaces: Let
M be an oriented connected minimal surface immersed into H2 × R. If there exists a
positive smooth function u on a bounded domain Ω of M satisfying Lu = 0, where L
is the stability operator [1, Section 2.2], then Ω is stable, see [7] or [3, Lemma 1.36].

Notice first that there are many minimal surfaces in H2 × R whose finite asymptotic
boundary is the union of regular curves, see, for instance, M. Rodriguez and F. Martin
[18] and the authors [26], [27]. However, there are “local obstructions” to a curve
be the asymptotic boundary of a minimal surface in H2 × R, see [28, Theorem 2.1].
Also, B. Coskunuzer gave a necessary and sufficient condition on a finite collection
of Jordan curves in ∂∞H2 × R to be the asymptotic boundary of a complete area
minimizing surface in H2 × R, [5, Theorem 2.13]. Afterward, B. Kloeckner and R.
Mazzeo generalized this result for a finite collection of Jordan curves in ∂∞(H2 × R),
[16, Proposition 4.4].

Acknowledgements. The second author wishes to thank the Departamento de Matemática da PUC-
Rio for their kind hospitality.

The authors are grateful to the referee for valuable suggestions.

2. Asymptotic boundary

Definition 2.1 (Convergence to an asymptotic boundary point of H2). Let y0 ∈ H2

be a fixed point of H2 and let x∞ ∈ ∂∞H2. We denote by [y0, x∞) ⊂ H2 the geodesic
ray issuing from y0 and with asymptotic boundary x∞. For any ρ > 0 we denote by
γρ ⊂ H2 the geodesic intersecting the ray [y0, x∞) orthogonally at point yρ such that
dH2(y0, yρ) = ρ. Let γ+

ρ be the component of H2\γρ which contains x∞ in its asymptotic
boundary: x∞ ∈ ∂∞γ+

ρ .

Let (xn) be a sequence of points of H2. We say that (xn) converges to x∞, denoted by
xn → x∞, if for any ρ > 0 there exists nρ ∈ N such that xn ∈ γ+

ρ for any n ⩾ nρ.

We observe that if we choose the Poincaré disc model of H2, then xn → x∞ if and only
if the sequence (xn) converges to x∞ in Euclidean sense.
Also, let us consider the Poincaré half-plane model of H2, then in this model ∂∞H2 =
R ∪ {∞}. We have:
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• If x∞ ∈ R then xn → x∞ if and only if the sequence (xn) converges to x∞ in
Euclidean sense.

• If x∞ = ∞ then xn → x∞ if and only if |xn| → +∞.

Definition 2.2 (Asymptotic boundary).

(1) We define the asymptotic boundary of H2 × R setting:

∂∞(H2 × R) :=
(
∂∞H2 × R

)
∪
(
H2 × {−∞,+∞}

)
∪
(
∂∞H2 × {−∞,+∞}

)
.

This decomposition means that for a divergent sequence (pn) of H2×R there are
three possibilities for converging to infinity (up to extracting a subsequence).
That is, setting pn = (xn, tn) ∈ H2 × R, we have the following cases:

• xn → x∞ ∈ ∂∞H2 (see Definition 2.1) and tn → t0 ∈ R. We say that
p∞ := (x∞, t0) ∈ ∂∞H2 × R is an asymptotic point at finite height.

• xn → x0 ∈ H2 and tn → ±∞. That is (pn) converges to
p∞ := (x0,±∞) ∈ H2 × {−∞,+∞}.

• xn → x∞ ∈ ∂∞H2 and tn → ±∞. That is (pn) converges to
p∞ := (x∞,±∞) ∈ ∂∞H2 × {−∞,+∞}.

(2) Let Ω ⊂ H2 ×R be a nonempty subset. We say that a point p∞ ∈ ∂∞(H2 ×R)
is an asymptotic point of Ω if there is a sequence (pn) of Ω converging to p∞.

The set of asymptotic points of Ω, called the asymptotic boundary of Ω, is
denoted by ∂∞Ω.

(3) Let Ω ⊂ H2 × R be a nonempty subset. The set of asymptotic points at finite
height is called the finite asymptotic boundary and is denoted by ∂f

∞Ω.
The complement ∂∞Ω \ ∂f

∞Ω is called the non finite asymptotic boundary of
Ω.

We say that the finite asymptotic boundary ∂f
∞Ω has bounded vertical height

if

∃t1 > 0, ∂f
∞Ω ⊂ {(ei θ, t) ∈ ∂∞H2 × R, |t| < t1}

The boundary of a surface is defined as usual.

3. Geometric Lemmas

The following result describes, in particular, the local behavior at infinity of a minimal
surface M in H2 × R, whose finite asymptotic boundary is an arc in ∂f

∞M \ ∂∞(∂M),
which is not contained in a vertical line.

Lemma 3.1. Let M be a connected immersed minimal surface in H2 × R. Assume
that:

(1) The finite asymptotic boundary of M is composed of an arc α properly embedded
in ∂∞H2 × R.

(2) There exists an open and simple arc α0 ⊂ α in ∂f
∞M \ ∂∞(∂M) which is not

contained in a vertical line.
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Let p∞ := (x∞, t0) ∈ ∂∞H2 × R, be any point of α0 which does not belong to a vertical
segment contained in α0.
Then, for any ε > 0, there exist a vertical plane Pε and a component P+

ε of (H2×R)\Pε,
such that, setting Sε := M ∩ P+

ε , we have

(1) Sε ⊂ H2 × (t0 − ε, t0 + ε) and ∂Sε ⊂ Pε.

(2) The asymptotic boundary of Sε is a subarc αε of α0 which is not contained in a
vertical line: ∂∞Sε = αε ⊂ α0. Furthermore p∞ ∈ αε and p∞ /∈ ∂∞Pε.

(3) π(αε) = π(∂∞P+
ε ), where π : ∂∞H2 × R → ∂∞H2 is the first projection.

(4) Assume that M is not contained in the slice H2×{t0}. Then for any ε > 0 there
exists ε0 < ε such that for any ε′ < ε0, P

+
ε′ is strictly contained in P+

ε . Hence
Sε′ is strictly contained in Sε. Furthermore

∩
ε>0 P

+
ε = ∅ and ∂∞Sε = ∂f

∞Sε.

Proof. In the following we identify H2 × {0} with H2.
Let p∞ = (x∞, t0) ∈ α0 be a point as in the statement.
Let y0 ∈ H2 be a fixed point. We denote by γ+

0 ⊂ H2, the geodesic ray issuing from y0
and with asymptotic boundary x∞.
For any ρ > 0 we denote by Πρ ⊂ H2 × R the geodesic vertical plane intersecting the
ray γ+

0 orthogonally at point yρ such that dH2(y0, yρ) = ρ. Let Π+
ρ be the component of

(H2×R)\Πρ which contains x∞ in its asymptotic boundary, thus we have x∞ ∈ ∂∞Π+
ρ

and x∞ /∈ ∂∞Πρ.

For any ρ > 0 we denote by βρ ⊂ α0 the connected component of α0∩∂∞Π+
ρ containing

p∞: p∞ ∈ βρ ⊂ α0 ∩ ∂∞Π+
ρ .

Let π : ∂∞H2 × R → ∂∞H2 be the first projection. Recalling that α0 is properly
embedded, it follows from [28, Theorem 2.1] that there exists ρ0 > 0 such that for any
ρ ⩾ ρ0 then π(βρ) is an arc and

for any z∞ ∈ π(βρ) its inverse image by π in βρ is either a single point

or a vertical segment.
(1)

We can also assume that ρ0 is large enough so that M ∩ Πρ0 ̸= ∅.
Denoting by p+ρ , p

−
ρ ∈ ∂∞Πρ the two endpoints of βρ, we have π(p

+
ρ ) ̸= π(p−ρ ). Therefore

we get π(βρ) = π(∂∞Π+
ρ ) if ρ ⩾ ρ0.

Observe that, by a continuity argument, for any ε > 0 there is ρε > ρ0 such that for
any ρ > ρε we have βρ ⊂ ∂∞H2 × [t0 − ε, t0 + ε].
Furthermore, since the finite asymptotic boundary of M is a properly embedded arc,
if ε > 0 is small enough we have

βρ = ∂f
∞M ∩ ∂∞Π+

ρ ∩
(
∂∞H2 × [t0 − ε, t0 + ε]

)
, (2)

for any ρ ⩾ ρε.
For any ρ > ρ0, we denote byMρ the union of the connected componentsM ′ of M∩ Π+

ρ

such that its finite asymptotic boundary meets βρ, that is ∂
f
∞M ′ ∩ βρ ̸= ∅. Therefore

we have
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• Mρ ⊂ Π+
ρ ,

• ∂f
∞Mρ = βρ

• Mρ2 ⊂ Mρ1 if ρ0 < ρ1 < ρ2.

We claim that there exists ρ′(ε) > ρε such that

Mρ′(ε) ⊂ H2 × (t0 − ε, t0 + ε).

Indeed, otherwise there would exist a strictly increasing sequence (ρn) such that

• ρn > ρε for any n and ρn → +∞,
• for any n, Mρn intersects

(
H2 × {t0 + ε}

)
∩ Π+

ρn , or
(
H2 × {t0 − ε}

)
∩ Π+

ρn , at
some point (yn, t0 ± ε).

Observe that by construction we have yn → x∞. Letting n going to +∞ we obtain
that the asymptotic point (x∞, t0±ε) belongs to the finite asymptotic boundary of M ,
which gives a contradiction with (1) and (2), with ρ = ρε, and the assumption that p∞
does not belong to a vertical segment contained in α0.
Now we set

Pε := Πρ′(ε), Sε := Mρ′(ε), and αε := βρ′(ε),

We have just seen that

• Sε ⊂ H2 × (t0 − ε, t0 + ε),
• ∂f

∞Sε = αε,
• π(αε) = π(P+

ε ),

therefore we have ∂∞Sε = αε. Since p∞ does not belong to the asymptotic boundary
of ∂M , we can choose ρε so large that for any ρ > ρε we have

∂M ∩ Π+
ρ ∩

(
H2 × (t0 − ε, t0 + ε)

)
= ∅.

Therefore we get that ∂Sε ∩ P+
ε = ∅ and then ∂Sε ⊂ Pε. This proves Assertions 1-3.

Now we suppose that M is not contained in H2 × {t0}.
Let ε > 0 be such that Assertion (4) does not hold. Then there exists a strictly
decreasing positive sequence (εn) such that εn → 0 and P+

εn is not contained in P+
ε .

Recall that, for any n, we have P+
εn = Π+

ρn for some ρn > 0. Terefore, if P+
εn is not

contained in P+
ε we obtain that P+

ε is contained in P+
εn , for any n. Thus Sε ⊂ Sεn ,

and consequently Sε ⊂ H2 × [t0 − εn, t0 + εn] for any n. Letting n going to +∞ we get
Sε ⊂ H2 × {t0}. By the analytic continuation property, we get that M ⊂ H2 × {t0},
which leads to a contradiction.
Notice that the same argument shows that, if M is not contained in H2 × {t0}, P+

ε

goes to infinity as ε goes to zero, that is ρ′(ε) → +∞ if ε → 0. Therefore we get that∩
ε>0 P

+
ε = ∅. This accomplishes the proof of the Lemma. □

In our context, it is natural to expect that the area of a minimal surface M in H2 ×R
is infinite. More precisely, we derive the following result.
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Lemma 3.2. Let M be a minimal surface immersed into H2 × R. Assume that the
finite asymptotic boundary of the boundary of M is not equal to the finite asymptotic
boundary of the boundary of M , that is ∂f

∞(∂M) ̸= ∂f
∞M . Then M has infinite area.

Proof. By assumption there exists a finite asymptotic point p∞ of M which is not an
asymptotic point of the boundary of M : p ∈ ∂f

∞M \ ∂f
∞(∂M).

Let (pn) be a sequence of points of M which converges to p∞, see Definition 2.2. Let
δ > 0 be a fixed real number. Then, since p∞ is not an asymptotic boundary point of
∂M , there exists n0 ∈ N such that dM(pn, ∂M) > 2δ for any n ⩾ n0, where dM means
the intrinsic distance on M .

For each n, let D(pn, δ) ⊂ M be the geodesic disc on M centered at pn and with radius
δ. Then for any n ⩾ n0 we have D(pn, δ) ∩ ∂M = ∅.
From the one hand, up to extracting a subsequence, we can assume that there exists
n1 ∈ N, n1 > n0, such that D(pn, δ) ∩D(pm, δ) = ∅ for any m,n ⩾ n1.
In an other hand, a result of K. Frensel [8, Theorem 3 and Remark 4] states that there
exists a fixed real number α > 0 such that Area (D(pn, δ)) > α for any n ⩾ n1. We
conclude that M has infinite area. □
Remark 3.1. The assumption on the asymptotic boundary in Lemma 3.2 is crucial
as we can see from the following examples.

(1) A geodesic triangle inH2 with one, or more, vertices in the asymptotic boundary
of H2 has finite area [29, Lemme 2.5.23 and Théorème. 2.5.24]. We observe that
the asymptotic boundary of the triangle is equal to the asymptotic boundary
of its boundary.

(2) We construct a domain in H2 with finite area, or equivalently finite total cur-
vature, and whose asymptotic boundary is the whole ∂∞H2.

Consider the Poincaré disc model of H2. For any ρ > 0 we denote by Cρ ⊂ H2

the circle centered at 0 with radius ρ.
Let (ρn) be a strictly increasing sequence of positive real numbers such that

ρn → +∞. Now we consider another sequence of positive real numbers (ρ′n),
ρ′n > ρn, such that, calling An the open annulus bounded by the circles Cρn and
Cρ′n , we have:

• the closed annuli An are mutually disjoint,
• Area (An) <

1
n2 for any n ∈ N∗.

Let y0 ∈ H2, y0 ̸= 0, be any point on the imaginary axis such that its hyperbolic
distance to 0 is lesser that ρ1/2. We call T the open geodesic triangle with
vertices 0, y0 and 1, observe that this last vertex is the unique vertex of T
belonging to the asymptotic boundary of H2.

Then we set U := T ∪
∪

n⩾1 An. By construction U is a domain of H2

satisfying:
• Area (U) is finite, (since Area (T ) is finite [29, Lemme 2.5.23]).
• ∂∞U = ∂∞H2 and also ∂∞(∂U) = ∂∞H2. In particular the asymptotic
boundary of U is equal to the asymptotic boundary of its boundary.
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Observe that the domain U is infinitely connected. We can modify slightly
U in order to obtain a simply connected domain. For that we consider a fixed
point x0 ∈ H2, x0 ̸= 0, on the real axis such that its hyperbolic distance to 0 is
lesser that ρ1/2. We call Σ+ (resp. Σ−) the closed geodesic triangle in H2 with
vertices 0, x0 and i (resp. 0, x0 and −i). We set

Ω := T ∪
( ∪
k⩾1

A2k \ Σ+
)
∪
( ∪
k⩾1

A2k−1 \ Σ−).
We have by construction Ω ⊂ U , therefore Ω has finite area. Furthermore:

• Ω is a simply connected domain,
• ∂∞Ω = ∂∞H2 and also ∂∞(∂Ω) = ∂∞H2. In particular the asymptotic
boundary of Ω is equal to the asymptotic boundary of its boundary.

(3) Now we construct many non planar examples of minimal surfaces M with finite
area and finite total curvature, and whose asymptotic boundary is the same as
the asymptotic boundary of its boundary, more precisely ∂f

∞(∂M) = ∂f
∞M .

We consider a Jordan curve Γ ⊂ ∂∞H2 × R which is the vertical graph of a
C1 function over ∂∞H2. Then we resolve the Dirichlet problem for the minimal
equation over H2, see [20, Theorem 4] or [28, Remark 4-(2)]. We obtain a
complete minimal surface S which is a vertical graph over H2 and such that
∂∞S = ∂f

∞S = Γ.

For any part O ⊂ H2 we denote by Õ ⊂ S the corresponding part of S which
is a graph over O. Now we proceed as in the example (2) before, we use the
same notations.

We choose the positive sequences (ρn) and (ρ′n) such that:
• the closed annuli An are mutually disjoint,

• Area (Ãn) <
1
n2 .

Consider the triangle T ⊂ H2 (with vertices 0, y0 and 1). Let n3 be the third
component of the Gauss map of S. In the Main Theorem 1.1 it is proved that
for any p∞ ∈ ∂∞H2 we have |n3(p)| → 1 as p → p∞, p ∈ H2. Furthermore a
computation shows that

Area(T̃ ) =

∫
T

1

|n3|
dA

where dA is the area element of H2. Since T has finite area and since n3(p) → 1

when p → 1, we get that Area (T̃ ) is finite. Finally we set

M := T̃ ∪
( ∪
k⩾1

Ã2k \ Σ̃+
)
∪
( ∪
k⩾1

Ã2k−1 \ Σ̃−).
By construction we have:

• M ⊂ H2 × R is a connected and simply connected minimal surface,
• Area (M) is finite,
• ∂∞M = Γ = ∂∞(∂M).
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Since S is a vertical graph, S is stable. We deduce from [25, Main Theorem]
that the second fundamental form of S is bounded and thus S has bounded
extrinsic curvature. Since the sectional curvatures of H2 × R are bounded, S
has also bounded Gaussian curvature (see also Formula (3) below).

Finally, since M has finite area and bounded Gaussian curvature, M has
finite total curvature as desired.

4. Proof of the Main Theorem

Proof of the Main Theorem. Observe that, taking into account the proof of Lemma
3.2, if M is contained in a slice H2 × {t0} then there is nothing to prove. Thus from
now we assume that M is not contained in a slice.
We recall the Gauss equation of the immersion (see [14, Lemma 4]):

K = Kext − n2
3, (3)

where K is the Gaussian curvature and Kext is the extrinsic curvature.
Since M is a minimal surface, we have K ⩽ −n2

3.

By assumption, the finite asymptotic boundary of M is an arc α, and there exists a
simple arc α0 ⊂ ∂f

∞M \ ∂∞(∂M), α0 ⊂ α, which is not contained in a vertical line. Let
p∞ := (x∞, t0) ∈ α0 as in the statement.
For any ε > 0 we consider the minimal surface Sε ⊂ M given by Lemma 3.1.

Claim For any real number c ∈ (0, 1), there exists ε > 0 such that |n3(p)| > c for any
p ∈ Sε. Consequently,

|n3(p)| → 1, if p → p∞, p ∈ M. (4)

Let us assume momentarily that the Claim holds.
Using the Claim above and the Gauss equation (3), we have∫

M

K dA ⩽
∫
Sε

K dA ⩽ −c2Area(Sε).

By combining with Lemma 3.2, we deduce therefore thatM has infinite total curvature,
as desired. Thus it remains to prove the Claim.

Proof of the Claim.
Assume, by contradiction, that the Claim does not hold. Then, there exists a fixed
number c ∈ (0, 1) such that for any n ∈ N∗ there is a point pn ∈ S1/n satisfying

|n3(pn)| ⩽ c (5)

It follows from Lemma 3.1-(4) (or from its proof), that pn → p∞ as n → ∞, see
Definition 2.2.
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Let n0 ∈ N∗ be a positive integer. We have pn ∈ S 1
n0

for any integer n ⩾ n0 large

enough. Therefore, up to extracting a subsequence, we can assume that for any n ∈ N∗,
n > n0, we have dM(pn, ∂S 1

n0

) > 1, where dM is the intrinsic distance on M .

From now on we consider the Poincaré disc model of H2. Letting pn := (xn, tn) ∈
H2 × R, for any n > n0 we denote by Tn the hyperbolic translation on H2 along the
geodesic passing through xn and 0, such that Tn(xn) = 0. We also denote by Tn the
horizontal translation of H2 × R induced by this isometry of H2.

Now we proceed as in the proof of [31, Theorem 2.5].

Observe that for any n > n0 the translated surface Tn

(
S 1

n0

)
is stable and oriented. We

deduce from [25, Main Theorem] that, far away from the boundary, we have uniform

a priori upper estimates of the norm of the second fundamental form of Tn

(
S 1

n0

)
.

We consider H2 × R as an open set of Euclidean space R3. We deduce from [25,
Proposition 2.3] and from [31, Proposition A.1], that there exists a real number δ > 0,

which does not depend on n nor on n0, such that for any n > n0, a part Σn of Tn

(
S 1

n0

)
is the Euclidean graph of a function u defined on the disc centered at point Tn(pn) with
Euclidean radius δ in the tangent plane of Σn at Tn(pn). Furthermore, the norm of the
Euclidean gradient of the function u is bounded above by 1.

As a matter of fact, from the discussion after the proof of [3, Lemma 2.4], we get the
following.

Fact: for any r ∈ (0, 1) there exists δ(r) ∈ (0, δ) such that the norm of the gradient

of the function u is bounded above by r on the disc of Euclidean radius δ(r)
(6)

Observe that we can use [3, Lemma 2.4] since we have a priori estimates for the norm of
the Euclidean second fundamental form. Those estimates follow from [31, Proposition
A.1].

Observe that, since dM

(
Tn(pn), ∂Tn

(
S 1

n0

))
> 1 for any n > n0 > 0, the constant δ

can be chosen so that Σn ∩ ∂Tn

(
S 1

n0

)
= ∅.

Let νn be the unitary normal along Tn

(
S 1

n0

)
in the Euclidean metric. We denote by νn,3

the vertical component of νn. Recall that |n3(pn)| ⩽ c for any n > n0 > 0. Comparing
the product metric of H2 × R with the Euclidean metric, it can be shown that there
exists c′ ∈ (0, 1), which does not depend on n nor on n0, such that |νn,3(T (pn))| < c′

for any n > n0 > 0, (see the formula of the unit normal vector field of a vertical graph
in the proof of [30, Proposition 3.2]).

This implies that the tangent planes of Σn at points T (pn) have Euclidean slope
bounded from below uniformly (with respect to n > n0).
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By Lemma 3.1, S 1
n0

⊂ H2×(t0− 1
n0
, t0+

1
n0
), thus the same occurs for any Σn. We infer

therefore a contradiction with the fact (6) above since then, for n0 large enough and
n > n0, the surface Σn would intersect H2 × {t0 ± 1

n0
}. This concludes the proof. □

Remark 4.1. As a matter of fact, in Theorem 1.1 the stability assumption is only
used to ensure a priori estimates for the second fundamental form of M . We think that
stability is a hypothesis simpler to handle than bounded second fundamental form
since, for example, any vertical or horizontal minimal graph is stable.

Remark 4.2. Given a bounded function g on ∂∞H2×{0}, continuous except perhaps
at a finite set of points S, there exists a minimal entire extension u of g [28, Corollary
4.1, Remark 4-(2)]. We remark that the problem of Dirichlet at infinity (g is continuous)
was solved by B. Nelli and H. Rosenberg [20], [21].
The Main Theorem 1.1 ensures that these entire graphs have infinite total curvature.
However, the fact that all non trivial (g ̸≡ cst) such entire graphs have infinite total cur-
vature, follows directly from Huber theorem [15, Theorem 15], see also [32, Théorème
2. 4. 10].
In fact, on the one hand, a complete simply connected minimal surface immersed into
H2 × R of finite total curvature is conformally equivalent to C. On the other hand, it
is well-known that the height function of a minimal surface M conformally immersed
into H2 × R is a harmonic function on M, see for instance [27, Proposition 7]. As
there is no non constant bounded harmonic function over C, the finite total curvature
assumption leads to a contradiction.

Corollary 4.1. Let M be a minimal graph in H2 × R such that its finite asymptotic
boundary is a graph over an arc of ∂∞H2 × {0} and is different from the asymptotic
boundary of ∂M . Then M has infinite total curvature.
Furthermore, for any interior point p∞ of ∂f

∞M such that p∞ /∈ ∂f
∞(∂M), we have

|n3(p)| → 1 if p → p∞, p ∈ M .

Corollary 4.2. Let M be an oriented stable minimal surface immersed into H2×R with
compact boundary (e.g. a minimal graph with compact boundary), whose asymptotic
boundary is a (continuous) graph over the whole ∂∞H2 × {0}. Then M has infinite
total curvature.
Furthermore, if p∞ ∈ ∂∞M , we have |n3(p)| → 1 if p → p∞, p ∈ M .

Remark 4.3. By Corollary 4.2, any minimal graph with compact boundary whose
asymptotic boundary is a graph over ∂∞H2×{0} has infinite (intrinsic) total curvature.
We refer to [28, Theorem 5.1] for an existence result of such graphs, when the boundary
is a Jordan curve C ⊂ H2 × {0} satisfying an “exterior circle of radius ρ condition”.
So, all such graphs have infinite total curvature.
In the particular case of the end of a catenoid, the result of Corollary 4.2 follows from
an explicit computation carry out in [1, Proof of the Proposition 3.3].
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5. Some examples of infinite total curvature minimal surfaces in
H2 × R and their asymptotic boundary

Next we exhibit complete and non-complete minimal surfaces M generated by vertical
graphs, pointing out some geometric properties. All the examples have infinite total
curvature. For this purpose we choose the Poincaré disc model of hyperbolic plane.

Example 5.1 (Main Example). In this example we construct a minimal graph such
that in a domain whose asymptotic boundary is a vertical segment the total curvature
is finite, but any neighborhood of another part of the asymptotic boundary has infinite
total curvature by the Main Theorem 1.1.
Let θ0 ∈ (0, π/2) be a fixed number. Let γ ⊂ H2 be the geodesic with asymptotic
boundary {1, eiθ0}.
Let U ⊂ H2 be the domain whose boundary is the union of the geodesic rays [0, 1)
and [0, i) with the geodesic γ, whose asymptotic boundary is the asymptotic arc γ∞ :=
{eiθ, θ0 ⩽ θ ⩽ π/2} of ∂∞H2 with the point 1.
Let A > π be a real number to be chosen later. We consider the Dirichlet problem (P )
on U with boundary data

• 0 on the geodesic rays [0, 1) and [0, i),
• −A on the asymptotic arc γ∞,
• +∞ on the geodesic γ.

Using [28, Theorem 4.1] and the minimal surface M1 described in [28, proposition 2.1
(2)], as in [28, Example 4.1] or as in [30, Theorem 5.1 (n=2)], we can solve the Dirichlet
problem (P ) above and find a solution g : U → R whose finite asymptotic boundary
of the graph, M , is(

{i} × [−A, 0]
)
∪
(
γ∞ × {−A}

)
∪
(
{eiθ0} × [−A,+∞)

)
∪
(
{1} × [0,+∞)

)
and the non finite asymptotic boundary of M is(

γ × {+∞}
)
∪
(
{1, eiθ0} × {+∞}

)
.

We claim that the following phenomena hold.

Claim 1. Let p∞, q∞ be points in γ∞ such that p∞, q∞ ̸= eiθ0 , i. Let α ⊂ H2 be the
geodesic whose asymptotic boundary is {p∞, q∞}. We call U1 ⊂ H2 the component of
H2 \α whose asymptotic boundary is the subarc [p∞, q∞] of γ∞. We have U1 ⊂ U . Let
S1 ⊂ M be the graph of g restrited to U1.
Then it follows from Corollary 4.1 that S1 has infinite total curvature.

Furthermore, we have |n3(q)| → 1 if q → γ∞ \ {eiθ0 , i}, q ∈ U1.

Claim 2. Let S2 ⊂ M be a domain such that its asymptotic boundary is a compact

arc of
(
{1} × [0,+∞)

)
. Then it can be showed that S2 has finite total curvature.
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The proof of Claim (2) is rather long so we divide it in the statement and the proof of
the following facts.

(1) Let V ⊂ U be a subdomain such that its asymptotic boundary is constituted of
zero, one or two points of ∂∞U . If g is constant along the boundary of V , then
g is constant on V , which leads to a contradiction.

To prove this fact we use the maximum principle and the family of complete
minimal surfaces Md, d > 1, described in [28, Proposition 2.1-(1)] and in the
proof of [22, Theorem 3.2].

(2) The function g has no critical points on U .
Indeed, if g would have a critical point p ∈ U , with g(p) = c > −A, then in a

neighborhhod of p, the level set g−1({c}) is constituted of at least four analytic
arcs issuing from p. Observe that any level set of g cannot have end points
in U . Observe also that the asymptotic boundary of the level set g−1({c}) is
included in {1, eiθ0 , i}. Therefore, continuing any of the analytic arcs issuing
from p, we obtain a domain V as in item (1), which leads to a contradiction.

(3) For any real number c ∈ (−A,+∞), the level curve g−1({c}) is constituted of
an unique simple divergent curve in U and its asymptotic boundary is contained
in {1, eiθ0 , i}.

To proof this assertion, we first study the different possible cases of the level
set g−1({0}). Then for each one of those cases we apply the items (1) and (2).

(4) Using the reflection principle along the two geodesic rays starting from the orig-
ine and whose asymptotic boundary are {1} and {i} respectively, we obtain a

complete minimal surface M̃ ⊂ H2 × R which is a graph. Hence M̃ is stable
and from [25, Main Theorem] we obtain global upper estimates for the norm of
the second fundamental form of M . Observe that those upper estimates do not
depend on A.

We denote by (0, 1) the open geodesic ray starting at 0 whose asymptotic
boundary is 1. We denote by R the reflection in H2 × R with respect to the
geodesic ray (0, 1) and we set M∗ := M ∪ (0, 1)∪R(M). Then M∗ is a minimal
surface which is a graph over the domain U1 := U ∪ (0, 1) ∪R(U) of D.

(5) For any ρ > 0 we set Zρ = {ξ ∈ U1, dH2(ξ, γ) < ρ}. Then, for any c ∈ (0, 1)
there exists ρc > 0 such that |n3(ξ)| < c, for any ξ ∈ Zρc. Furthermore the
number ρc does not depend on A.

Indeed, if the assertion is not true, there would exist a sequence (pn) in U1

such that
• dH2(pn, γ) → 0,
• |n3(pn)| ⩾ c for any n.

Let ξ0 ∈ γ be any fixed point and set D1 := {ξ ∈ U, dH2(ξ, ξ0) < 1}.
Observe that for any n large enough we can use a translation Tn along the

geodesic γ to take pn to a point Tn(pn) in the domain D1. By construction we
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have that dH2(Tn(pn), γ) → 0. Using the global upper estimates for the norm
of the second fundamental form of M , we can proceed as in the proof of the
Claim in Theorem 1.1 to reach a contradiction. Since those upper estimates do
not depend on A, we obtain also that the number ρc does not depend on A.

(6) Let c ∈ (0, 1) be a fixed number and let ρc > 0 be the positive real number given
in item (5). We call α ∈ U the geodesic whose asymptotic boundary is {i, eiθ0}.
We denote by MdA, dA > 1, the surface of the family Md, described in [28,
Proposition 2.1-(1)] and in the proof of [22, Theorem 3.2], such that

• the height of MdA is A,
• MdA is symmetric with respect to the slice H2 × {0},
• for any t ∈ (−A

2
, A
2
) the intersection MdA ∩

(
H2 × {t}

)
is an equidistant

curve of the geodesic α.
Then, we have M ∩MdA = ∅. Consequently, we have M ∩ (MdA + (0, 0, t)) = ∅
for any t ⩾ 0.

Observe that, using the notations of [28, Proposition 2.1-(1)] we have A =
2H(dA). Moreover the asymptotic boundary of MdA is(

{i, eiθ0} ×
[
− A

2
,
A

2

])
∪
(
γ∞ ×

{
− A

2
,
A

2

})
.

where γ∞ := {eiθ, θ0 ⩽ θ ⩽ π/2} ⊂ ∂∞H2.
Let θ1 ∈ (θ0, π/2) be a fixed number and let β ⊂ H2 be the geodesic whose

asymptotic boundary is {−eiθ1 , eiθ1}.
To prove the first assertion we consider the hyperbolic translation along the

geodesic β and proceed as in [22, Theorem 3.2]. The second assertion is a
consequence of the first one.

(7) Let δ0 ⊂ H2 be the geodesic ray issuing from 0 and with asymptotic boundary
{eiθ0}. For any r > 0 we denote by Qr the vertical geodesic plane intersecting
orthogonally δ0 at distance r from 0. Let Q+

r ⊂ H2 × R be the component of
(H2 × R) \Qr containing eiθ0 in its asymptotic boundary.

Fix c ∈ (0, 1) and let ρc > 0 as in (5).
Then, if A is large enough, there exists r > 0 so that(

M ∩Q+
r

)
∩ {t ⩾ 0} ⊂ Zρc × [0,+∞). (7)

The proof of the assertion is based upon the following observation.
Since ρc > 0 does not depend on A, observe that for A > 0 large enough we

haveMdA∩
(
Zρc×[0,+∞)

)
̸= ∅. For such a number A, using the last affirmation

of item (6) certainly we can find a number r > 0 large enough satisfying (7).

Before going on with the proof of Claim 2, we need to recall some facts derived
from [12], [14] and [31].
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Let X : D → H2 ×R be a conformal parametrization of M . We set as in [31]
X = (F, h), thus F : (D, geuc) → H2 is a harmonic map and h : D → R is a
harmonic function, where geuc is the Euclidean metric.

Since g has no critical point on U , we have |n3| ̸= 1 along M . Therefore we
can define a real function ω on D by the relation: tanhω = n3.

We consider also the function ϕ on D defined by ϕ := (σ ◦ F )FzF z, where σ
is the conformal factor of the hyperbolic metric of H2. Since F is a harmonic
map, ϕ is a holomorphic function.

The metric induced on D by the immersion X is

ds2 = 4 cosh2(ω) |ϕ| |dz|2.
Moreover we have ϕ(z) = −(hz(z))

2, [27, Proposition 1]. Now we define a
holomorphic function W on D setting

W (z) =

∫ √
ϕ(z) dz,

where the square root of ϕ is chosen so that

h = 2 ImW (z) (8)

(8) The function W is a univalent map, hence W is a holomorphic diffeomorphism

between D and the open subset Ω̃ := W (D) of C.
It follows from item (3) that for any c ∈ (−A,+∞), the level curve h−1({c})

is constituted of a unique simple divergent curve in D. We deduce from item (2)
that h has no critical point. Consequently the conjugate function ∗h is strictly
monotonous along any level curve of h. Combining this with Formula (8) we
conclude that W is an univalent map.

Now we define the function ω̃ on Ω̃ setting

ω̃ := ω ◦W−1. (9)

We know from [12, Formula (12)] that the function ω̃ satisfies

∆ω̃ = 2 sinh 2ω̃, (10)

where ∆ is the Laplacian for the Euclidean metric.

We consider also the new conformal parametrization X̃ : Ω̃ → H2 × R of M

given by X̃ = X ◦W−1. Denoting by w the coordinate on Ω̃, the induced metric

on Ω̃ reads as

ds̃2 = 4 cosh2 ω̃(w) |dw|2, (11)

We define also the function W0 : U → Ω̃ ⊂ C setting W0 := W ◦ (Π ◦ X)−1,
where Π : H2×R → H2 is the first projection. As a matter of fact, W0 is nothing
but the function W read on U , in particular W0 is an open map. Observe also
that by means of the reflections with respect to the geodesic rays (0, 1) and
(0, i) issuing from 0 with asymptotic boundary {1} and {i} respectively, the



TOTAL CURVATURE OF MINIMAL SURFACES 17

map W0 can be extended to a larger open set Û ⊂ D containing U and the
open geodesic rays, and this extended map is still an open map.

Observe also that g = 2 ImW0.
Since g = h ◦ (Π ◦ X)−1, we define the “conjugate function” ∗g setting

∗g := ∗h ◦ (Π ◦ X)−1. Since g has no critical point on U , we observe that
∗g is strictly monotonous on any level curve of g. From the relation (8) we get
that ∗g = −2ReW0.

(9) The level curve L0 := g−1({0}) cannot be a simple curve with asymptotic bound-
ary the set {1, eiθ0}. Consequently, the level curve L0 must have one of the
following behaviors.

• ∂∞L0 = {eiθ0 , i},
• ∂∞L0 = {eiθ0} and L0 has an end point on [0, 1) ∪ (0, i).
Let us assume, by contradiction, that ∂∞L0 = {1, eiθ0}. Let p0 ∈ L0 be a fixed

point. We denote by L+
0 and L−

0 the components of L0 \ {p} with asymptotic
boundary 1 and eiθ0 respectively.

Let c ∈ (0, 1), ρc > 0 fixed as in (5) and (6) so that |n3(ξ)| < c for any
ξ ∈ Zρc .

We deduce from item (7) that, up to extracting a compact part, we can
assume that L+

0 ⊂ Zρc and L−
0 ⊂ Zρc .

Since the graph of L+
0 has infinite length in M , then (11) implies that the

curve W0(L
+
0 ) ⊂ Ω̃ must have infinite length as well, for the metric ds̃2.

As |n3| < c on Zρc , we get that the function ω̃ is bounded on Zρc . Thus, the

curve W0(L
+
0 ) ⊂ Ω̃ ⊂ C must have infinite Euclidean length. We deduce that

ReW0(ξ) → ±∞, if ξ → 1, ξ ∈ L0.

Without loss of generality, we can assume that ReW0(ξ) → +∞ when ξ → 1,
ξ ∈ L0.

In the same way, and using the fact that ReW0 is strictly monotonous on
any level curve of g, we get that

ReW0(ξ) → −∞, if ξ → eiθ0 , ξ ∈ L0.

Consequently the image of the level curve L0, W0(L0), is the whole real axis in
C, that is W0(L0) = R ⊂ C. We get a contradiction as follows.

Note that g can be extended across the geodesic ray (0, 1) by means of the
reflection principle. Note also that the critical points of the extended map, if
any, are isolated.

Let p1 ∈ (0, i) be a fixed point in the geodesic ray which is not a critical
point of g. Thus W0 is a local diffeomorphism near p1. Let O1 be an open
neighborhood of p1 such that W0 is one-to-one on O1. Since W0(L0) = R ⊂ C,
there exists p2 ∈ L0 such that W0(p1) = W0(p2). Now let O2 ⊂ U be any open
neighborhood of p2. As W0 is an open map, we get that W0(O1) ∩W0(O2) is
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an open set containing W0(p2), which gives a contradiction with the fact W0 is
one-to-one on U .

(10) Let U+ := {ξ ∈ U, g(ξ) > 0} and let Ω+ := {w ∈ C, Imw > 0}. Then

W0(U
+) = Ω+ ⊂ Ω̃.

Indeed, for any c > 0 we set Lc := g−1({c}). Thus W0(Lc) is contained in
the horizontal line of Ω+ at height 2c, that is W0(Lc) ⊂ {w ∈ C, Imw = 2c},
since g = 2 ImW0.

With the same arguments used for item (9), we can prove that W0(Lc) is the

whole line {w ∈ C, Imw = 2c}. We conclude that W0(U
+) = Ω+ ⊂ Ω̃.

(11) Let p0 ∈ (0, 1) be any fixed point of the geodesic ray (0, 1), such that u0 :=
W0(p0) > 0. We consider the subset Ω1 := {w ∈ Ω+, Rew > u0}. Let S2 ⊂ M

such that S2 = X̃(Ω1), (see the discussion after the item (8)). Then, S2 has
finite total curvature.

Since X̃ : (Ω̃, ds̃2) → H2 × R is an isometric immersion, it is equivalent to
prove that Ω1 has finite total curvature with respect to the metric ds̃2.

For any C > 0, we consider the square R(C) ⊂ Ω1 with horizontal sides
H0(C) and H1(C) and vertical sides V0(C) and V1(C) defined by

• H0(C) is the horizontal segment with end points u0 and u0 + C,
• H1(C) is the horizontal segment with end points u0 + iC and u0 +C + iC,
• V0(C) is the vertical segment with end points u0 and u0 + iC,
• V1(C) is the vertical segment with end points u0 + C and u0 + C + iC,
The Gauss-Bonnet theorem applied to the square R(C) gives∫

R(C)

K dA = −
∫
∂R(C)

kg ds, (12)

where dA is the area element of (Ω̃, ds̃2), K is the Gaussian curvature, kg is
the geodesic curvature along ∂R(C) parametrized by the arc length s. Hence it
suffices to show that the right hand-side integral in (12) is bounded if C → +∞.

We have∫
∂R(C)

kg ds =

∫
H0(C)

kg ds+

∫
H1(C)

kg ds+

∫
V0(C)

kg ds+

∫
V1(C)

kg ds.

Since the geodesic ray (0, 1) is a geodesic of M , we get that H0(C) is a geodesic
of S for any C > 0.Thus ∫

H0(C)

kg ds = 0

for any C > 0. We are going to prove that the integral on V0(C) is bounded
when C → +∞.

We choose the following parametrization of V0(C),

γ(t) = u0 + i tC, t ∈ [0, 1].
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Let w = u+ iv be the coordinates on Ω̃. We deduce from the expression of the
metric ds̃2 (see Formula (11)) and from [17, Formula (42.8)], that the geodesic
curvature of the curve γ is given by

kg(γ(t)) = ± sinh ω̃

2 cosh2 ω̃

∂ω̃

∂u

(
γ(t)

)
. (13)

Let Θ ⊂ C be any domain on which the function ω̃ is defined and satisfies the
equation (10). For any w ∈ Θ we denote by d(w, ∂Θ) the Euclidean distance
between w and ∂Θ. It is shown in the proof of [12, Proposition 2.3] that there
exists a positive constant δ such that for any w ∈ Θ with d(w, ∂Θ) > 2 we have

|∇ω̃|(w) < δe−d(w,∂Θ),

where ∇ means the Euclidean gradient.
Hence, choosing Θ = Ω+ we get

|∇ω̃|(w) < δe− Imw (14)

for any w ∈ Ω+ such that Imw > 2. For any C > 3 we have∫
V0(C)

kg ds = 2

∫ 1

0

kg(γ(t)) cosh ω̃(γ(t)) |γ′(t)| dt =

2

∫ 3/C

0

kg(γ(t)) cosh ω̃(γ(t)) |γ′(t)| dt+ 2

∫ 1

3/C

kg(γ(t)) cosh ω̃(γ(t)) |γ′(t)| dt.

From the one hand, since V0(C) is a smooth curve, there exists a constant
number a > 0 such that

2

∫ 3/C

0

|kg(γ(t))| cosh ω̃(γ(t)) |γ′(t)| dt < a,

for any C > 4. On the other hand, from the formulae (13) and (14) we get
for any t > 3/C

2|kg(γ(t))| cosh ω̃(γ(t)) ⩽ |∇ω̃|(γ(t)) < δe−tC .

Therefore

2

∫ 1

3/C

|kg(γ(t))| cosh ω̃(γ(t)) |γ′(t)| dt ⩽ 2δC

∫ 1

3/C

e−tC dt

⩽ 2δC
(e−3 − e−C)

C
⩽ 2δ(e−3 − e−C)

⩽ 2δe−3.

This proves that the integral
∫
V0(C)

kg ds is bounded when C → +∞.

Choosing again Θ = Ω+, we can prove in the same way that
∫
H1(C)

kg ds → 0

when C → +∞.
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Finally, recall that the minimal surfaceM can be extended across the geodesic
ray (0, 1) by means of the reflection principle. Therefore the function ω̃ can be
extended to the domain Θ := {z ∈ C, Re(z) > u0}. Consequently we can prove
that

∫
V1(C)

kg ds → 0 when C → +∞.

We conclude that S2 has finite total curvature and Claim 2 is proved.

The following peculiar examples are obtained by applying the reflection principle on
suitable minimal graphs.

Example 5.2. M is non-complete, properly embedded and its asymptotic boundary is
the union of a discrete set in ∂∞H2 × R, with

• either the whole (H2 ∪ ∂∞H2)× {−∞,+∞},
• or a finite subset of ∂∞H2 ×{−∞,+∞} and

∪n
i=1 γi ×{−∞,+∞}, where γi ⊂

H2 is a complete geodesic, i = 1, . . . , n.

To obtain such a surface we consider, for θ ∈ (0, π/2) the geodesic triangle T with
vertices 0, 1 and eiθ. Let c > 0 be a positive real number. Let γ ⊂ H2 be the geodesic
with asymptotic boundary the points 1 and eiθ.
Let f : γ → R be a continuous and one to one function, such that f(ξ) → 0 if ξ → eiθ

and f(ξ) → c if ξ → 1.
We consider the Dirichlet problem for the minimal surface equation on int(T ) taking
the boundary data

− c on the geodesic ray (0, 1),

− 0 on the geodesic ray (0, eiθ),

− f on γ.

We deduce from [28, Theorem 4.1] that there exists a solution u to this problem. Thus
the graph S of u is a minimal surface whose boundary contains the geodesic rays
(0, 1) × {c} and (0, eiθ) × {0}, the vertical segment {(0, t) ∈ H2 × R, 0 ⩽ t ⩽ c} and
the graph of f on γ. Now we perform the reflections of S with respect to the geodesic
rays (0, 1), (0, eiθ), the vertical geodesic {0} × R and the new geodesic rays appearing
in this process.
In this way we get a non complete and properly embedded minimal surface M invariant
by a discrete group of screw-motions. The finite asymptotic boundary is a discrete set
of H2 × R
To describe the non finite asymptotic boundary of M we consider two cases.

• If the angle θ/π is irrational then the non finite asymptotic boundary is the
whole (H2 ∪ ∂∞H2)× {−∞,+∞}.

• If the angle θ/π is rational then the non finite asymptotic boundary is composed
of a finite subset {±ξ1, . . . ,±ξn} × {−∞,+∞} of ∂∞H2 × {−∞,+∞} and∪n

i=1 γi ×{−∞,+∞}, where γi ⊂ H2 is the complete geodesic with asymptotic
boundary {−ξi, ξi}, i = 1, . . . , n.
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Since S is a vertical graph we deduce from [14, Corollary 5] that K < 0 on S, where
K is the intrinsic Gaussian curvature of S. Therefore S has non zero total curvature.
Observe that M is composed of an infinite number of isometric copies of S. We deduce
that M has infinite total curvature.

Example 5.3. M is complete, properly embedded and its finite asymptotic boundary
consists of the union of two helix type curves. The rest of the asymptotic boundary
consists

• either of the whole (H2 ∪ ∂∞H2)× {−∞,+∞},
• or of a finite subset of ∂∞H2 × {−∞,+∞} and

∪n
i=1 γi × {−∞,+∞}, where

γi ⊂ H2 is a complete geodesic, i = 1, . . . , n.

Let θ ∈ (0, π/2) be a fixed number. We denote by Γθ ⊂ ∂∞H2 the closed arc of ∂∞H2

bounded by 1 and eiθ which does not contain i.
Let Dθ ⊂ H2 be the domain bounded by the geodesic rays (0, 1) and (0, eiθ) and whose
asymptotic boundary is Γθ.
Let f : Γθ → R be a continuous and one to one function, such that f(eiθ) = 0 and and
f(1) = c, where c > 0 is a positive number.
We consider the Dirichlet problem for the minimal surface equation on Dθ taking the
boundary data

− c on the geodesic ray (0, 1),

− 0 on the geodesic ray (0, eiθ),

− f on Γθ.

We deduce from [28, Theorem 4.1] that there exists a solution u to this problem. Thus
the graph S of u is a minimal surface whose boundary contains the geodesic rays (0, 1)
and (0, eiθ) and the vertical segment {(0, t) ∈ H2 × R, 0 ⩽ t ⩽ c}. Since a vertical
graph is stable, we deduce from Theorem 1.1 that S has infinite total curvature.
Now we perform the reflections of S with respect to the vertical geodesic {0} ×R and
with respect to the geodesic rays (0, 1), (0, eiθ) and the new geodesic rays appearing in
this process.
In this way we get a complete and properly embedded minimal surface M invariant by
a discrete group of screw-motions. The finite asymptotic boundary is composed of to
“helix type” curves.
To describe the non finite asymptotic boundary of M we consider two cases.

• If the angle θ/π is irrational then the non finite asymptotic boundary is the
whole (H2 ∪ ∂∞H2)× {−∞,+∞}.

• If the angle θ/π is rational then the non finite asymptotic boundary is composed
of a finite subset {±ξ1, . . . ,±ξn} × {−∞,+∞} of ∂∞H2 × {−∞,+∞} and∪n

i=1 γi ×{−∞,+∞}, where γi ⊂ H2 is the complete geodesic with asymptotic
boundary {−ξi, ξi}, i = 1, . . . , n.

Moreover M has infinite total curvature since S ⊂ M .
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Example 5.4. M is non properly immersed and its asymptotic boundary is an annulus
∂∞H2 × [−a, a], where a > 0.

In order to construct such an example, we proceed as in Example 5.3 above, setting
c = 0, f(1) = a, f(eiθ) = 0 and θ/π is irrational. Observe that this surface is complete
far away from the origin. Furthermore this surface has infinite total curvature for the
same reason as in Example 5.3.

Example 5.5. The asymptotic boundary of M is either ∂∞(H2×R)\(D×{−∞,+∞}),
where D is an open geodesic disc of H2 or the whole asymptotic boundary of H2 × R.
We proceed as in Example 5.2 above, now c ⩾ 0 is a nonnegative constant and f ≡ +∞
on the geodesic γ.
It can be shown, using [28, Theorem 4.1] that this Dirichlet problem has a solution.
We choose θ such that θ/π is irrational.
After performing all reflections, we get a minimal surface M . To describe the surface
M we consider two cases.

• c = 0. In this case M is complete far away from the origin and is non properly
immersed. Its asymptotic boundary is ∂∞(H2 ×R) \ (D × {−∞,+∞}), where
D ⊂ H2 is the open geodesic disc centered at 0 and such that D ∩ γ = ∅ and
D ∩ γ ̸= ∅.

• c > 0. In this case M is complete, properly immersed, and its asymptotic
boundary is the whole asymptotic boundary of H2 × R.

It can be shown as in Example 5.2 that M has infinite total curvature.

Example 5.6. M is complete and dense in H2×R. Therefore its asymptotic boundary
is the whole asymptotic boundary of H2 × R.
We proceed as in Example 5.2 above with the following modifications.

• f ≡ +∞ on the geodesic γ.
• On the geodesic ray (0, eiθ) we consider the constant boundary data 0.
• On the geodesic ray (0, 1) we consider the boundary data g given by

g =


π on (0, 1/3)

1 on (1/3, 2/3)

0 on (2/3, 1)

We choose θ such that θ/π is irrational.
It can be shown, using [28, Theorem 4.1] that this Dirichlet problem has a solution.
The complete minimal surface M obtained by doing all reflections is dense in H2 ×R.
Moreover it can be shown as in Example 5.2 that M has infinite total curvature.

References

[1] P. Bérard and R. Sa Earp, Minimal hypersurfaces in Hn × R, total curvature and index.
Bollettino dell’Unione Matematica Italiana 9 (2016), no. 3, 341–362.



TOTAL CURVATURE OF MINIMAL SURFACES 23

[2] S.-Y. Cheng and J. Tysk, Schrödinger operators and index bounds for minimal submanifolds,
Rocky Mountain J. Math. 24 (1994), no. 3, 977–996.

[3] T.H. Colding, W.P. Minicozzi A course in minimal surfaces, Graduate Studies in Mathe-
matics, 121. American Mathematical Society, Providence, RI, 2011.

[4] P. Collin and H. Rosenberg, Construction of harmonic diffeomorfisms and minimal graphs,
Annals of Mathematics 172 (3) (2010), 1879–1906.

[5] B. Coskunuzer, Minimal surfaces with arbitrary topology in H2×R, arXiv:1404.0214v2, 2014.
[6] I. Fernández and P. Mira. Harmonic Maps and Constant Mean Curvature Surfaces in H2×R,

American Journal of Mathematics 129 (4) ( 2007), 1145–1181.
[7] D. Fisher-Colbrie, On complete minimal surfaces with finite Morse index in three manifolds,

Inventiones Mathematicae 82 (1) (1985), 121–132.
[8] K.R. Frensel, Stable complete surfaces with constant mean curvature, Bulletin of the Brazilian

Mathematical Society 27 (2) (1996), 129–144.
[9] J A. Gálvez, H. Rosenberg, Minimal surfaces and harmonic diffeomorphisms from the com-

plex plane onto certain Hadamard surfaces, American Journal of Mathematics 132 (5) (2010),
1249–1273.

[10] A. Grigor’yan and S.-T. Yau, Isoperimetric properties of higher eigenvalues of elliptic op-
erators, Amer. J. Math. 125 (2003), no. 4, 893–940.

[11] L.Hauswirth and A. Menezes, On doubly periodic minimal surfaces in H2 × R with finite
total curvature in the quotient space, Annali Di Matematica Pura Ed Applicata. First online:
23 August 2015. Doi: 10.1007/s10231-015-0524-9.

[12] L. Hauswirth, B. Nelli, R. Sa Earp and E. Toubiana, A Schoen theorem for minimal
surfaces in H2 × R, Advances in Mathematics 274 (2015) 199–240.

[13] L. Hauswirth and H. Rosenberg, Minimal surfaces of finite total curvature in H2 × R,
Matematica Contemporanea 31 (2006), 65–80.

[14] L. Hauswirth, R. Sa Earp and E. Toubiana, Associate and conjugate minimal immersions
in M × R, Tohoku Mathematical Journal 60 (2) (2008), 267–286.

[15] A. Huber, On subharmonic functions and differential geometry in the large, Comment. Math.
Helv., 32 (1957), 13-72.

[16] B. Kloeckner, R. Mazzeo, On the asymptotic behavior of minimal surfaces in H2 × R, to
appear in Indiana Univ. Math. J. arXiv:1506.02838v1, 2015.

[17] E. Kreyszig, Introduction to Differential Geometry and Riemannian Geometry, Translated
from the German, Mathematical Expositions 16, University of Toronto Press, Toronto, 1968.

[18] F. Martin, M. M. Rodriguez : Minimal planar domains in H2×R, Transactions of the AMS
365 (2013), 6167–6183.

[19] F. Morabito and M. Rodriguez, Saddle towers and minimal k-noids in H2 ×R, Journal of
the Institute of Mathematics of Jussieu 11 (2) (2012), 1–17.

[20] B. Nelli and H. Rosenberg, Minimal Surfaces in H2 × R, Bulletin of the Brazilian Mathe-
matical Society 33 (2002), 263–292.

[21] B. Nelli and H. Rosenberg, Errata Minimal Surfaces in H2 × R, Bulletin of the Brazilian
Mathematical Society, New Series 38 (4) (2007),1–4.

[22] B. Nelli, R. Sa Earp and E. Toubiana, Maximum Principle and Symmetry for Minimal
Hypersurfaces in Hn × R, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze.
Vol. XIV (2015) 1–14.

[23] R. Osserman, A survey on minimal surfaces, Dover Publications, New York, 1986.
[24] J. Plehnert. Constant mean curvature k noids in homogeneous manifolds, Illinois Journal of

Mathematics 58 (1) (2014), 233–249.
[25] H. Rosenberg, R. Souam and E. Toubiana, General curvature estimates for stable H-

surfaces in 3-manifolds and applications, Journal of Differential Geometry 84 (2010), 623–648.



24 R. SA EARP AND E. TOUBIANA

[26] R. Sa Earp, Parabolic and Hyperbolic Screw motion in H2 × R, Journal of the Australian
Mathematical Society 85 (2008), 113–143.

[27] R. Sa Earp and E. Toubiana, Screw motion surfaces in H2 ×R and S2 ×R, Illinois Journal
of Mathematics 49 (2005), 1323–1362.

[28] R. Sa Earp and E. Toubiana, An asymptotic theorem for minimal surfaces and existence
results for minimal graphs in H2 × R, Mathematische Annalen, 342 (2) (2008), 309–331.
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