ON THE STRUCTURE OF CERTAIN WEINGARTEN SURFACES WITH BOUNDARY A CIRCLE

FABIANO GUSTAVO BRAGA BRITO
Mathematics Department
Universidade de São Paulo
01498 - São Paulo, Brasil

RICARDO SA EARP

Mathematics Department
Pontifícia Universidade Católica
22453-900, Rio de Janeiro, Brasil

INTRODUCTION

We study in this paper a certain class of surfaces M in R^{3} satisfying a Weingarten relation of the form

$$
\begin{equation*}
\mathrm{H}=f\left(\mathrm{H}^{2}-K\right) \tag{1}
\end{equation*}
$$

where H is the mean curvature, K is the Gaussian curvature and f is a real smooth function defined on a interval $[-\epsilon, \infty), \epsilon>0$.

Furthermore, we require that f satisfies the inequality

$$
\begin{equation*}
4 t\left(f^{\prime}(t)\right)^{2}<1 \tag{2}
\end{equation*}
$$

We call such a function f, elliptic, when it satisfies (2). The reason for this denomination is that equation (1) and inequality (2) give rise to a fully nonlinear elliptic equation. We call M a special surface when M satisfies $\mathrm{H}=f\left(\mathrm{H}^{2}-K\right)$ for f elliptic. They have been studied by Hopf [8], Hartman and Wintner [7], Chern [5] and Bryant [3]. Here, we extend some results for constant mean curvature surfaces obtained in [2] and [6], when M is topologically a disk. Precisely we prove the following theorems:

Theorem 1:Let M be a disk type special surface immersed in R^{3}. Assume ∂M is a circle S^{1} of radius 1. Suppose f is analytic with $f(0)>0$. Then
a) $f(0) \leq 1$
b) If $f(0)=1, M$ is a halfsphere

Theorem 2: Let M be a disk type special surface embedded in R^{3}. Assume ∂M is a circle S^{1} of radius 1 contained in the horizontal plane $\mathcal{H}=\{z=0\}$. Suppose $f>0$, $f(0)>0$ and M cuts transversely \mathcal{H} along ∂M. Then M is a spherical cap.

We remark that the ellipticity condition (2) on M allow us to apply maximum principle (for special surfaces), and Alexandrov reflection principle techniques as it was applied in [6] and [10],for constant mean curvature surfaces (see Hopf's book [8] for further details). Futhermore, we notice that R.Bryant constructed a global quadratic form Q on a surface M satisfying (1) such that the zeros of Q are the umbilical points of M (see [3]). These facts emphasize the analogy between special surfaces and constant mean curvature surfaces. Now we state and prove the maximum principle for special Weingarten surfaces in R^{3} satisfying (1) and (2) in the form we shall need: If M_{1}, M_{2} are tangent at p, M, on one side of M_{2} near p, both M_{1}, M_{2} satisfying (1) and (2) with respect to the same normal N at p then $M_{1}=M_{2}$ near p. By a standard argument $M_{1}=M_{2}$ everywhere.

INTERIOR MAXIMUM PRINCIPLE

Suppose M_{1}, M_{2} are C^{2} surfaces in R^{3}, which are given as graphs of C^{2} functions $u, v: \Omega \subset R^{2} \rightarrow R$.

Suppose the tangent planes of both M_{1}, M_{2} agree at a point $(x, y, z) ;$ i.e $T_{(x, y, z)} M_{1}=$ $T_{(x, y, z)} M_{2}$ for $z=u(x, y)=v(x, y),(x, y) \in \Omega$.

Let $H\left(N_{1}\right)$ and $H\left(N_{2}\right)$ be the mean curvature functions of u and v with respect to unit normals N_{1} and N_{2} that agree at (x, y, z). Let K_{i} be the Gaussian curvature of $M_{i}, i=1,2$.

Suppose M_{i} satisfy

$$
H\left(N_{i}\right)=f\left(H_{i}^{2}-K_{i}\right), i=1,2
$$

for f satisfying (2).
If $u \leq v$ near (x, y) then $M_{1}=M_{2}$ near (x, y, z), i.e, $u=v$ in a neighbourhood of (x, y).

BOUNDARY MAXIMUM PRINCIPLE

Suppose M_{1}, M_{2} as in the statement of the interior maximum principle with C^{2} boundaries B_{1}, B_{2} given by restrictions of u and v to part of the boundary $\partial \Omega$.

Suppose $T_{(x, y, z)} M_{1}=T_{(x, y, z)} M_{2}$ and $T_{(x, y, z)} B_{1}=T_{(x, y, z)} B_{2}$ for $z=u(x, y)=v(x, y)$, with (x, y, z) in the interior of both B_{1} and B_{2}.

Suppose M_{1}, M_{2} satisfy (1) and (2) with respect the same normal N at (x, y, z).
If $u \leq v$ near (x, y) then $M_{1}=M_{2}$ near (x, y, z), i.e, $u=v$ in a neighbourhood of (x, y).

PROOF OF THE INTERIOR AND BOUNDARY MAXIMUM PRINCIPLE

Clearly, by applying a rigid motion of R^{3} which do not change the geometry of the statements, we may suppose the tangent planes of both M_{1}, M_{2} at (x, y, z) are the horizontal $x y$ plane $P=\{z=0\}$, and the unit normals N_{1}, N_{2} at (x, y, z) are equal to $N=(0,0,1)$.

First, we fix some notations. We denote

$$
\begin{aligned}
p_{1} & =\frac{\partial u}{\partial x}, q_{1}=\frac{\partial u}{\partial y}, p_{2}=\frac{\partial v}{\partial x}, q_{2}=\frac{\partial v}{\partial y} \\
r_{1} & =\frac{\partial^{2} u}{\partial x^{2}}, \tau_{1}=\frac{\partial^{2} u}{\partial y^{2}}, s_{1}=\frac{\partial^{2} u}{\partial x \partial y} \\
r_{2} & =\frac{\partial^{2} v}{\partial x^{2}}, \tau_{2}=\frac{\partial^{2} v}{\partial y^{2}}, s_{2}=\frac{\partial^{2} v}{\partial x \partial y}
\end{aligned}
$$

With this convention the normals N_{1} and N_{2} are given by

$$
N_{i}=\frac{1}{\left(1+p_{i}^{2}+q_{i}^{2}\right)^{\frac{1}{2}}}\left(-p_{i},-q_{i}, 1\right), \quad i=1,2 .
$$

The mean curvature H_{i} and the Gaussian curvature K_{i} are given by

$$
\begin{aligned}
2 H_{i} & =\frac{1}{\left(1+p_{i}^{2}+q_{i}^{2}\right)^{\frac{3}{2}}}\left(\left(1+p_{i}^{2}\right) \tau_{i}-2 p_{i} q_{i} s_{i}+\left(1+q_{i}^{2}\right) r_{i}\right) \\
K_{i} & =\frac{1}{\left(1+p_{i}^{2}+q_{i}^{2}\right)^{2}}\left(r_{i} \tau_{i}-s_{i}^{2}\right)
\end{aligned}
$$

for $i=1,2$.
We may write equation (1) for M_{1} and M_{2} in the following way

$$
\begin{equation*}
F\left(p_{i}, q_{i}, r_{i}, s_{i}, \tau_{i}\right)=H_{i}-f\left(H_{i}^{2}-K_{i}\right)=0 \tag{3}
\end{equation*}
$$

for $i=1,2$, where F is a C^{1} function in the p, q, r, s, τ variables.
We fix $(x, y) \in \Omega$ and we define for $t \in[0,1]$
$\alpha(t)=F\left(t p_{1}+(1-t) p_{2}, t q_{1}+(1-t) q_{2}, t r_{1}+(1-t) r_{2}, t s_{1}+1(1-t) s_{2}, t \tau_{1}+(1-t) \tau_{2}\right)$
Let $w=u-v$.
By applying the mean value theorem, using equation (3) and differentiating equation
(4) we are led to the linearized operator on Ω defined by

$$
\begin{equation*}
L w:=\frac{\partial F}{\partial r}(\xi) \frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial F}{\partial s}(\xi) \frac{\partial^{2} w}{\partial x \partial y}+\frac{\partial F}{\partial \tau}(\xi) \frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial F}{\partial p}(\xi) \frac{\partial w}{\partial x}+\frac{\partial F}{\partial q}(\xi) \frac{\partial w}{\partial y}=0 \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \xi=(p, q, r, s, \tau) \\
& p=c p_{1}+(1-c) p_{2}, q=c q_{1}+(1-c) q_{2} \\
& r=c r_{1}+(1-c) r_{2}, s=c s_{1}+(1-c) s_{2}, \tau=c \tau_{1}+(1-c) \tau_{2}
\end{aligned}
$$

for $0<c(x, y)<1$.
Notice that the principal part of L is given by the symmetric matrix

$$
A=A(p, q, r, s, \tau)=\left[\begin{array}{cc}
\frac{\partial F}{\partial r} & \frac{1}{2} \frac{\partial F}{\partial s} \\
\frac{1}{2} \frac{\partial F}{\partial s} & \frac{\partial F}{\partial \tau}
\end{array}\right]
$$

Computations show that if $p=q=0$, then trace $A=1$ and $\operatorname{det} A=\frac{1}{4}\left(1-4 t\left(f^{\prime}(t)\right)^{2}\right)$, where

$$
\begin{equation*}
t=\left[\frac{\left(1+p^{2}\right) \tau-2 p q s+\left(1+q^{2}\right) r}{2\left(1+p^{2}+q^{2}\right)^{\frac{3}{2}}}\right]^{2}-\frac{1}{\left(1+p^{2}+q^{2}\right)^{2}}\left(r \tau-s^{2}\right) \tag{6}
\end{equation*}
$$

Now, consider in formula (6)

$$
\begin{aligned}
p & =c p_{1}+(1-c) p_{2}, q=c q_{1}+(1-c) q_{2} \\
r & =c r_{1}+(1-c) r_{2}, s=c s_{1}+(1-c) s_{2}, \tau=c \tau_{1}+(1-c) \tau_{2},
\end{aligned}
$$

where $p_{i}, q_{i}, r_{i}, s_{i}, \tau_{i}$ are varying in a neighbourhood of (x, y) and c is varying in the interval $[0,1]$. We see easily that the non negative quantity $t=t(p, q, r, s, \tau)$ is bounded from above. Hence $1-4 t\left(f^{\prime}(t)\right)^{2} \geq \mu>0$ in this neighhourhood (c is varying between 0 and 1), for some positive real number μ. As $p_{i}=q_{i}=0$ at $(x, y), i=1,2$, by continuity we have that in a neighbourhood V of (x, y) the matriz $A(\xi)$ is positive definite. Furthermore, there is a positive real number λ_{0} such that

$$
\frac{\partial F}{\partial r}(\xi) \eta_{1}^{2}+\frac{\partial F}{\partial s}(\xi) \eta_{1} \eta_{2}+\frac{\partial F}{\partial \tau}(\xi) \eta_{2}^{2} \geq \lambda_{0}\left(\eta_{1}^{2}+\eta_{1}^{2}\right)
$$

for any (x, y) in V and any real numbers η_{1}, η_{2}. Consequently, L is a linear second order uniformly elliptic operator with bounded coefficients in a neighbourhood of (x, y). The same conclusion hold if (x, y) is a boundary point as in the hypothesis of the boundary maximum principle statement.

Finally we have in a neighbourhood of (x, y)

$$
\begin{aligned}
L w & =0 \\
w & \leq 0 \quad, \quad w(x, y)=0
\end{aligned}
$$

If (x, y) is a interior point then $w=u-v=0$ in a neighbourhood of (x, y), by applying the interior maximum principle of Hopf.

If (x, y) is a boundary point lying in the interior of a C^{2} portion contained in Ω, then w attaint again a local maximum at (x, y) with $\frac{\partial w}{\partial \nu}(x, y)=0$, where ν is the exterior unit normal to Ω at (x, y). This implies by using the boundary maximum principle of Hopf that $w=0$ in a neighbourhood of (x, y), as desired. We conclude the proof of the maximum principal for special Weingarten surfaces in R^{3}.

We remark that the maximum principle above led to Alexandrov theorem for special Weingarten surfaces. That is, a closed embedded special Weingarten surface M given by equation (1) with respect to a unit global normal N, for f elliptic, is a sphere. Hence, $f(0) \neq 0$ and M is a sphere o f radius $R=\frac{1}{|f(0)|}$.

PROOF OF THEOREM 1

We consider M an immersed smooth special surface in R^{3} and N an unit normal vector field. We denote by $<,>$ the inner product in R^{3} and by ∇ the standard covariant derivative in R^{3}. The mean curvature vector H of M at p is given by $H(p)=\left(\frac{\lambda_{1}(p)+\lambda_{2}(p)}{2}\right) N(p)$ where $\lambda_{1}(p), \lambda_{2}(p)$ are the principal curvatures of M at p (respecting to $\left.N\right)$.

Let us prove assertion a):

Suppose first that there is an umbilical boundary point $p \in \partial M$. Denote by v a unit tangent field along $\partial M=S^{1}$. Then,

$$
\begin{equation*}
f(0)=\mathrm{H}(p)=\left\langle\nabla_{v} v, \quad N\right\rangle_{p}=\leq 1 \tag{1}
\end{equation*}
$$

Suppose now there are no umbilical points on the boundary. Notice that the set U of umbilical points of M is finite. Otherwise M is a spherical cap and $f(0) \leq 1$. This follows from the proof of theorem 3.2, pg. 142 of H.Hopf's book (see [8]), and from the fact that M is compact.

Let $\lambda_{1}, \lambda_{2}: M-U \rightarrow R$ be the principal curvature functions with $\lambda_{1}<\lambda_{2}$ on $M-U$. Let us prove first that ellipticity condition yields

$$
\begin{equation*}
\lambda_{2}>f(0) \tag{2}
\end{equation*}
$$

on $M-U$
Indeed,

$$
\lambda_{2}=\mathrm{H}+\sqrt{\mathrm{H}^{2}-K}=f\left(\mathrm{H}^{2}-K\right)+\sqrt{\mathrm{H}^{2}-K}
$$

and the ellipticity condition

$$
4 t\left(f^{\prime}(t)\right)^{2}<1
$$

assures

$$
g(t)=f(t)+\sqrt{t}
$$

is a monotonic increasing function for $t \geq 0$.
Denote by \mathcal{F}_{2} the principal line distribution on $M-U$ associated to the principal curvature λ_{2}. Clearly, there is a point $p \in \partial M$ where \mathcal{F}_{2} is tangent to ∂M at p, i.e., $T_{p} \partial M=\mathcal{F}_{2}(\mathrm{p})$. If not we would obtain a line foliation of M transverse to ∂M and finite number (possible none) of singularities of negative indices (see [8]), this is impossible since M has disk topological type. Choose then $p \in \partial M$ such that $T_{p} \partial M=\mathcal{F}_{2}(\mathrm{p})$

Clearly

$$
\begin{equation*}
\lambda_{2}(p)=\left\langle\nabla_{v} v, N\right\rangle_{p} \leq 1 \tag{3}
\end{equation*}
$$

by inequalities (1), (2), (3)

$$
f(0) \leq 1
$$

This proves assertion a).

To prove assertion b) notice first that there is an extension for M beyond ∂M satisfying $\mathrm{H}=f\left(\mathrm{H}^{2}-K\right), f$ elliptic and analytic. This is so, because of the boundary regularity for the underlying analytic elliptic partial differential equation (see [4], [11]). If $f(0)=1$ we will show that there are infinitely many umbilical points in ∂M. The resulting nondiscreteness of U will so imply M is totally umbilical (see [8]).

Suppose by absurd ∂M had finitely many umbilical points. Observe that the foliation \mathcal{F}_{2} defined on $M-U$ is transverse to $\partial M-U$. To prove this, suppose $p \in \partial M-U$ is such that $\mathcal{F}_{2}(\mathrm{p})$ is tangent to $\partial M-U$. By equations (2),(3), we derive a contradiction because $f(0)<\lambda_{2}(p) \leq 1$.

Suppose now, there are no umbilical points on the boundary ∂M. This means (by what we have just proved) that \mathcal{F}_{2} is transverse to ∂M. In this case \mathcal{F}_{2} may be seen as a foliation of M with finite number of singularities with negative index (see [8]). This is a contradiction since by our hypothesis M is a topological disk.

For the case where ∂M has a non zero finite number of umbilical points, consider a umbilical point $p \in \partial M$, and let \tilde{M} to be an extension of M beyond the boundary ∂M.

FACT: p is a singularity of \mathcal{F}_{2} with negative index and finite number of separatrices, all of them smooth at p. Moreover, there is at least on separatrix going from p to the interior of M. In other words there is at least one separatrix such that, its interior tangent vector at p, say u, satisfies $\langle u, \eta\rangle>0$, where η is the interior co-normal of M at p. This is a consequence of a straightforward computation using Bryant holomorphic quadratic form (see [3]) that, in a neighbourhood of p, the foliation is diffeomorphically equivalent to the standard foliation

$$
\operatorname{Im} z^{n}(d z)^{2}=0
$$

on the complex z-plane.
Observe now that the foliation \mathcal{F}_{2} on $M-U$ is topologically equivalent to a foliation with finite number of singularities on M. Some of them are interior singularities on M. Others are in the boundary ∂M. Those which are in the boundary have separatices (at least one) coming transversally to ∂M (see figures [1]). In order to see this situation is topologically impossible, we just recall M is a topological disk and use double construction to obtain a foliation of a topological sphere S^{2} with finite number of singularities, all of them with negative index.

This concludes prove of Theorem 1.

Figure 1

PROOF OF THEOREM 2

Suppose without loss of generality that M is locally contained in the upper halfspace $\mathcal{H}^{+}=\{\mathrm{z} \geq 0\}$ in a neighbourhood of ∂M. We also identify ∂M with the unit circle S^{1} centered at the origin of \mathcal{H}.

We first show that boundary roundness determines the behavior of the mean curvature vector H along the boundary (in fact, only convexity of ∂M is required). Precisely we state:

CLAIM 1: Let $p \in \partial M$. Then $\langle H(p), p\rangle<0$

PROOF OF CLAIM 1:

Suppose first that there is a umbilical point $p \in \partial M$. Take a unit vector field v tangent to ∂M. Then umbilicity yields

$$
H(N)=\left\langle\nabla_{v} v, N\right\rangle_{p}
$$

If $N=\frac{H}{|H|}$ then the mean curvature H is positive and $\left\langle\nabla_{v} v, N\right\rangle=|H|>0$. So $\langle-p, H\rangle>0$, as desired, for $\nabla_{v} v=-p$ is the acceleration vector of S^{1}.

For the case where there is no umbilical points on ∂M we recall that the foliation \mathcal{F}_{2} parallel to the line field associated to the bigger principal curvature λ_{2} defined over $M-U$ has to be tangent to $\partial M=S^{1}$ in some point p. Let $p \in \partial M$ be such that $\mathcal{F}_{2}(\mathrm{p})$ is tangent to ∂M. Clearly

$$
\lambda_{2}(p)=\left\langle\nabla{ }_{v} v, \frac{H}{|H|}\right\rangle_{p}>0
$$

Notice that Claim 1 means the following: the orthogonal projection of the mean curvature vector H on \mathcal{H} points into the interior of the planar domain D contained in \mathcal{H} bounded by ∂M. We will denote D by int ∂M.

We now define $M_{1} \subset M$ to be the connected component of $M \cap \mathcal{H}^{+}$which contains ∂M.

CLAIM 2: $M_{1} \cap \mathcal{H} \subset \operatorname{int} \partial \mathcal{M}$
This follows from Claim 1 and from Alexander reflection Principle techniques used exactly in the same way it was used in the proof of Theorem 1 pg. 337 of [6].

Let us denote $C_{f(0)}$ the vertical cylinder on \mathcal{H} over the circle $S_{f(0)}$ of radius $\frac{1}{f(0)}$ centered at the origin.

CLAIM 3: There is a point $p \in \partial M$ such that

$$
\langle N,-p\rangle_{p} \geq f(0)
$$

for $N=\frac{H}{|H|}$.
This means there is a point $p \in \partial M$ where the surface M has bigger (or equal) inclination respect to $x y$ plane than the small spherical cap of radius $\frac{1}{f(0)}$ bounding ∂M.

PROOF OF CLAIM 3 :

Let $p \in \partial M$ be a point of ∂M where $\mathcal{F}_{2}(\mathrm{p})$ is tangent to ∂M at p (see proof of Claim $1)$. Then, at this point p we have

$$
\langle-p, N\rangle_{p}=\left\langle\nabla_{v} v, N\right\rangle_{p}=\lambda_{2}(p) \geq f(0)
$$

CLAIM 4: If $M \cap \operatorname{ext} C_{f(0)}=\phi$ then M is a spherical cap.
Where $\operatorname{ext} C_{f(0)}$ is the exterior of the cylinder $C_{f(0)}$ (i.e. it is the connected region of $R^{3}-C_{f(0)}$ not containing the origin of $\left.\mathcal{H}\right)$.

PROOF OF CLAIM 4:

The proof follows by using Claim 3 and the maximum principle (for special surfaces), comparing M_{1} with a half sphere of radius $\frac{1}{f(0)}$ (see, for instance [1]).

CLAIM 5: If $M_{1} \cap \operatorname{int} \partial M=\phi$ then M is a spherical cap.

PROOF OF CLAIM 5:

First notice, if $M_{1} \cap \operatorname{int} \partial M=\phi$ then, by Claim 2 it follows $M_{1} \cap \mathcal{H}=\partial \mathcal{M}$ and M is globally contained in \mathcal{H}^{+}. Now, using Alexandrov Reflection Principle for planes normal to \mathcal{H}, we conclude M is rotationally symmetric (see, for instance [10]). Therefore, the round boundary is every where parallel to one of the principal curvature directions for M. Now because M is a topological closed disk, we conclude, by the same index reasons as before, that M is totally umbilical. This shows that M is a spherical cap (of radius $\frac{1}{f(0)}$).

We finish the proof of Theorem 2 supposing, by contradiction, that $M_{1} \cap\left(E x t C_{f}(0)\right) \neq$ ϕ and $M_{1} \cap \operatorname{int} \partial M \neq \phi$.

At this point we may suppose M to be globally transverse to \mathcal{H} without loss of generality. Therefore $M \cap \mathcal{H}$ is a finite collection of closed simple curves of \mathcal{H}.

Notice first that under the contradiction hypothesis there should be a curve $\gamma \in$ $M \cap \mathcal{H}-\partial \mathcal{M}$ which is homotopically non trivial curve in $\mathcal{H}-\partial \mathcal{M}$. This follows directely from the extended Graph Lemma for special surfaces (see lemma 3 pg 12, Remark pg 14 and final Remarks in [2]).

Let $\gamma_{L} \in M \cap \mathcal{H}$ be the outermost homotopically non trivial curve in $\mathcal{H}-\partial \mathcal{M}$. Observe that γ_{L} bounds a topological disk $D_{L} \subset M$. Moreover, D_{L} is locally contained in the upper half-space \mathcal{H}^{+}along its boundary γ_{L}. In fact, if the disk D_{L} were locally contained in the lower halfspace \mathcal{H}^{-}we would have a connected component, say C, of $M-(M \cap i n t \partial M)$ such that $C \cap \mathcal{H}$ contains at least two distint closed curves both of them homotopically non trivial in $\mathcal{H}-\partial \mathcal{M}$. This is a consequence of the fact that M_{1} is locally contained in \mathcal{H}^{+}along its boundary together with the hypothesis that the mean curvature vector H never vanishes and the maximum principle. This would lead to a contradiction by applying Alexander Reflection Principle by vertical planes as in [6].

Notice that $D_{L} \cap \mathcal{H}$ is the union of γ_{L} with null homotopic closed curves on $\mathcal{H}-\gamma_{\mathrm{L}}$, and as consequence of the Graph Lemma proved on [2] (see Lemma 3 pgs 12, 13, 14 and Remark pg 14) each curve on $D_{L} \cap \mathcal{H}-\gamma_{\mathrm{L}}$ other than γ_{L} bounds a graph over its Jordan interior. We denote the Jordan interior of γ_{L} in \mathcal{H} by int γ_{L}. Now a standard orientation argument yields (since $H \neq 0$ on M):

$$
D_{L} \cap\left(i n t \gamma_{L}\right)=\phi
$$

So $D_{L} \cup i n t \gamma_{L}$ is embedded (non smooth over γ_{L}) compact surface without boundary. Moreover M_{1} is clearly contained in the closed compact solid S determined by $D_{L} \cup i n t \gamma_{L}=$ ∂S (see figure 2).

Figure 2
Let $M_{1}(\theta), 0 \leq \theta \leq 2 \pi$. be the 1-parameter family of surfaces obtained by rotating $M_{1}=M_{1}(0)$ around an axis z normal to \mathcal{H} and passing by the center of the round circle S_{1} bounding M. Clearly $M_{1}(\theta) \cap D_{L}=\phi$, for every $\theta \in[0,2 \pi]$. Otherwise there would be a first parameter $\theta_{0}>0$ such that $M_{1}\left(\theta_{0}\right)$ would be tangent to $D_{L}-\gamma_{L}$, and contained inside S, contradicting the maximum principle for special surfaces.

Now, let $p \in M_{1}$ be a point of maximum distance of M_{1} to the z-axis, contained in the interior of the solid S. the radius of this circle C_{1} is bigger than $\frac{1}{f(0)}$ because of the hypothesis of contradiction. Also $D_{L} \cap D_{1}=\phi$, where D_{1} is the horizontal disk bounding C_{1}. This is again a consequence of mean curvature orientation and maximum principle.

We now finish the contradiction argument by comparing D_{L} with a sphere of radius $\frac{1}{f(0)}$, which we can actually introduce through the barrier disk D_{1}. This proves Theorem 2.

ACKNOWLEDGMENT

The authores are extremely grateful to Remi Langevin for great aid he provided us concerning the prool of Theorem 1. The first author would like to thank PUC-Rio for the hospitality during the preparation of this paper.

REFERENCES

[1] J.L.Barbosa. Constant Mean Curvature Surfaces with Planar Boundary. Matemática Contemporânea, 1, 3-15 (1991).
[2] F.Brito and R.Sa Earp, Geometric Configurations of Constant Mean Curvature Surfaces with Planar Boundary. An. Acad. Bras. Ci, (1991) 63 (1).
[3] R.Bryant, Complex Analysis and a Class of Weingarten Surfaces. Preprint.
[4] L.Caffarelli, L.Nirenberg and J.Spruck, The Dirichlet Problem for Non-linear Second Order Elliptic Equation S II. Complex Monge-Ampère and Uniformly Elliptic Equations. Comm. Pure Appl. Math. 38, 1985, 209-252.
[5] S-S Chern, On Special W-surfaces. Trans. A.M.S., 783-786, (1955).
[6] R.Earp, F.Brito, W.Meeks and H.Rosenberg. Structure Theorems for Constant Mean Curvature Surfaces Bounded by a Planar Curve. Indiana Univ. Math. J., 40:1, 333-343, (1991).
[7] P.Hartman and W.Wintner. Umbilical Points and W-surfaces. Amer. J.Math., (76) 502-508 (1954).
[8] H.Hopf. Differential Geometry in the Large. Lect. Notes in Math., Springer-Verlag 1000, (1983).
[9] N.Kapouleas. Compact Constant Mean Curvature Surfaces in Euclidean Three-Space. J.Diff. Geom. 33 (1991) 683-715.
[10] W.H.Meeks III. The Topology and Geometry of Embedded Surfaces of Constant Mean Curvature. J. Diff. Geom., 27 539-552, (1988).
[11] C.B.Morrey, On the Analyticity of the Solutions of Analytic Non-linear Elliptic Systems of Partial Differential Equations I,II. Amer. J. of Math. 80 (1958), 198-218, 219-234.

