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INTRODUCTION

We study in this paper a certain class of surfaces M in R3 satisfying a Weingarten
relation of the form

H = f(H2 −K) (1)

where H is the mean curvature, K is the Gaussian curvature and f is a real smooth function
defined on a interval [−ϵ,∞), ϵ > 0.

Furthermore, we require that f satisfies the inequality

4t(f ′(t))2 < 1 (2)

We call such a function f , elliptic, when it satisfies (2). The reason for this denomina-
tion is that equation (1) and inequality (2) give rise to a fully nonlinear elliptic equation.
We call M a special surface when M satisfies H = f(H2 − K) for f elliptic. They have
been studied by Hopf [8], Hartman and Wintner [7], Chern [5] and Bryant [3]. Here, we
extend some results for constant mean curvature surfaces obtained in [2] and [6],when M
is topologically a disk. Precisely we prove the following theorems:

Theorem 1:Let M be a disk type special surface immersed in R3. Assume ∂M is a
circle S1 of radius 1. Suppose f is analytic with f(0) > 0. Then

a) f(0) ≤ 1
b) If f(0) = 1,M is a halfsphere

Theorem 2: Let M be a disk type special surface embedded in R3. Assume ∂M is
a circle S1 of radius 1 contained in the horizontal plane H = {z = 0}. Suppose f > 0,
f(0) > 0 and M cuts transversely H along ∂M . Then M is a spherical cap.

We remark that the ellipticity condition (2) onM allow us to apply maximum principle
(for special surfaces), and Alexandrov reflection principle techniques as it was applied in
[6] and [10],for constant mean curvature surfaces (see Hopf’s book [8] for further details).
Futhermore, we notice that R.Bryant constructed a global quadratic form Q on a surfaceM
satisfying (1) such that the zeros of Q are the umbilical points of M (see [3]). These facts
emphasize the analogy between special surfaces and constant mean curvature surfaces.
Now we state and prove the maximum principle for special Weingarten surfaces in R3

satisfying (1) and (2) in the form we shall need: If M1,M2 are tangent at p,M , on one
side of M2 near p, both M1,M2 satisfying (1) and (2) with respect to the same normal N
at p then M1 = M2 near p. By a standard argument M1 = M2 everywhere.
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INTERIOR MAXIMUM PRINCIPLE

Suppose M1,M2 are C2 surfaces in R3, which are given as graphs of C2 functions
u, v : Ω ⊂ R2 → R.

Suppose the tangent planes of both M1,M2 agree at a point (x, y, z) ; i.e T(x,y,z)M1 =
T(x,y,z)M2 for z = u(x, y) = v(x, y), (x, y) ∈ Ω.

Let H(N1) and H(N2) be the mean curvature functions of u and v with respect to
unit normals N1 and N2 that agree at (x, y, z). Let Ki be the Gaussian curvature of
Mi, i = 1, 2.

Suppose Mi satisfy

H(Ni) = f(H2
i −Ki), i = 1, 2

for f satisfying (2).

If u≤v near (x, y) then M1 = M2 near (x, y, z), i.e, u = v in a neighbourhood of (x, y).

BOUNDARY MAXIMUM PRINCIPLE

SupposeM1,M2 as in the statement of the interior maximum principle with C2 bound-
aries B1, B2 given by restrictions of u and v to part of the boundary ∂Ω.

Suppose T(x,y,z)M1 = T(x,y,z)M2 and T(x,y,z)B1 = T(x,y,z)B2 for z = u(x, y) = v(x, y),
with (x, y, z) in the interior of both B1 and B2.

Suppose M1,M2 satisfy (1) and (2) with respect the same normal N at (x, y, z).

If u≤v near (x, y) then M1 = M2 near (x, y, z), i.e, u = v in a neighbourhood of (x, y).

PROOF OF THE INTERIOR AND BOUNDARY MAXIMUM PRINCIPLE

Clearly, by applying a rigid motion of R3 which do not change the geometry of the
statements, we may suppose the tangent planes of both M1,M2 at (x, y, z) are the hor-
izontal xy plane P = {z = 0}, and the unit normals N1, N2 at (x, y, z) are equal to
N = (0, 0, 1).

First, we fix some notations. We denote

p1 =
∂u

∂x
, q1 =

∂u

∂y
, p2 =

∂v

∂x
, q2 =

∂v

∂y

r1 =
∂2u

∂x2
, τ1 =

∂2u

∂y2
, s1 =

∂2u

∂x∂y

r2 =
∂2v

∂x2
, τ2 =

∂2v

∂y2
, s2 =

∂2v

∂x∂y

With this convention the normals N1 and N2 are given by
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Ni =
1

(1 + p2i + q2i )
1
2

(−pi,−qi, 1), i = 1, 2.

The mean curvature Hi and the Gaussian curvature Ki are given by

2Hi =
1

(1 + p2i + q2i )
3
2

(
(1 + p2i )τi − 2piqisi + (1 + q2i )ri

)
Ki =

1

(1 + p2i + q2i )
2
(riτi − s2i )

for i = 1, 2.

We may write equation (1) for M1 and M2 in the following way

F (pi, qi, ri, si, τi) = Hi − f(H2
i −Ki) = 0 (3)

for i = 1, 2, where F is a C1 function in the p, q, r, s, τ variables.
We fix (x, y) ∈ Ω and we define for t∈[0, 1]

α(t) = F (tp1+(1− t)p2, tq1+(1− t)q2, tr1+(1− t)r2, ts1+1(1− t)s2, tτ1+(1− t)τ2) (4)

Let w = u− v.
By applying the mean value theorem, using equation (3) and differentiating equation

(4) we are led to the linearized operator on Ω defined by

Lw :=
∂F

∂r
(ξ)

∂2w

∂x2
+

∂F

∂s
(ξ)

∂2w

∂x∂y
+

∂F

∂τ
(ξ)

∂2w

∂y2
+

∂F

∂p
(ξ)

∂w

∂x
+

∂F

∂q
(ξ)

∂w

∂y
= 0 (5)

where

ξ = (p, q, r, s, τ),

p = cp1 + (1− c)p2, q = cq1 + (1− c)q2

r = cr1 + (1− c)r2, s = cs1 + (1− c)s2, τ = cτ1 + (1− c)τ2

for 0 < c(x, y) < 1.
Notice that the principal part of L is given by the symmetric matrix

A = A(p, q, r, s, τ) =

[ ∂F

∂r

1

2

∂F

∂s
1

2

∂F

∂s

∂F

∂τ

]
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Computations show that if p = q = 0, then trace A = 1 and det A = 1
4 (1−4t(f ′(t))2),

where

t =

[
(1 + p2)τ − 2pqs+ (1 + q2)r

2(1 + p2 + q2)
3
2

]2
− 1

(1 + p2 + q2)2
(rτ − s2) (6)

Now, consider in formula (6)

p = cp1 + (1− c)p2, q = cq1 + (1− c)q2

r = cr1 + (1− c)r2, s = cs1 + (1− c)s2, τ = cτ1 + (1− c)τ2,

where pi, qi, ri, si, τi are varying in a neighbourhood of (x, y) and c is varying in the interval
[0,1]. We see easily that the non negative quantity t = t(p, q, r, s, τ) is bounded from above.
Hence 1 − 4t(f ′(t))2 ≥ µ > 0 in this neighhourhood ( c is varying between 0 and 1), for
some positive real number µ. As pi = qi = 0 at (x, y), i = 1, 2, by continuity we have that
in a neighbourhood V of (x, y) the matriz A(ξ) is positive definite. Furthermore, there is
a positive real number λ0 such that

∂F

∂r
(ξ)η21 +

∂F

∂s
(ξ)η1η2 +

∂F

∂τ
(ξ)η22 ≥ λ0(η

2
1 + η21)

for any (x, y) in V and any real numbers η1, η2. Consequently, L is a linear second order
uniformly elliptic operator with bounded coefficients in a neighbourhood of (x, y). The
same conclusion hold if (x, y) is a boundary point as in the hypothesis of the boundary
maximum principle statement.

Finally we have in a neighbourhood of (x, y)

Lw = 0

w ≤ 0 , w(x, y) = 0

If (x, y) is a interior point then w = u−v = 0 in a neighbourhood of (x, y), by applying
the interior maximum principle of Hopf.

If (x, y) is a boundary point lying in the interior of a C2 portion contained in Ω, then
w attaint again a local maximum at (x,y) with ∂w

∂ν (x, y) = 0, where ν is the exterior unit
normal to Ω at (x, y). This implies by using the boundary maximum principle of Hopf that
w = 0 in a neighbourhood of (x, y), as desired. We conclude the proof of the maximum
principal for special Weingarten surfaces in R3.

We remark that the maximum principle above led to Alexandrov theorem for special
Weingarten surfaces. That is, a closed embedded special Weingarten surface M given by
equation (1) with respect to a unit global normal N , for f elliptic, is a sphere. Hence,
f(0) ̸= 0 and M is a sphere o f radius R = 1

|f(0)| .
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PROOF OF THEOREM 1

We considerM an immersed smooth special surface in R3 andN an unit normal vector
field. We denote by<,> the inner product in R3and by▽ the standard covariant derivative

in R3. The mean curvature vectorH ofM at p is given byH(p) =
(λ1(p)+λ2(p)

2

)
N(p) where

λ1(p) , λ2(p) are the principal curvatures of M at p (respecting to N).
Let us prove assertion a):

Suppose first that there is an umbilical boundary point p ∈ ∂M . Denote by v a unit
tangent field along ∂M = S1. Then,

f(0) = H(p) = ⟨▽vv, N⟩p =≤ 1 (1)

Suppose now there are no umbilical points on the boundary. Notice that the set U of
umbilical points of M is finite. Otherwise M is a spherical cap and f(0) ≤ 1. This follows
from the proof of theorem 3.2, pg. 142 of H.Hopf’s book (see [8]), and from the fact that
M is compact.

Let λ1, λ2 : M −U → R be the principal curvature functions with λ1 < λ2 on M −U .
Let us prove first that ellipticity condition yields

λ2 > f(0) (2)

on M − U
Indeed,

λ2 = H+
√
H2 −K = f(H2 −K) +

√
H2 −K

and the ellipticity condition
4t(f ′(t))2 < 1

assures
g(t) = f(t) +

√
t

is a monotonic increasing function for t ≥ 0.

Denote by F2 the principal line distribution on M − U associated to the principal
curvature λ2. Clearly, there is a point p ∈ ∂M where F2 is tangent to ∂M at p, i.e.,
Tp∂M = F2(p). If not we would obtain a line foliation of M transverse to ∂M and finite
number (possible none) of singularities of negative indices (see [8]), this is impossible since
M has disk topological type. Choose then p ∈ ∂M such that Tp∂M = F2(p)

Clearly
λ2(p) = ⟨▽vv,N⟩p ≤ 1 (3)

by inequalities (1), (2), (3)
f(0) ≤ 1.

This proves assertion a).
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To prove assertion b) notice first that there is an extension forM beyond ∂M satisfying
H = f(H2 − K), f elliptic and analytic. This is so, because of the boundary regularity
for the underlying analytic elliptic partial differential equation (see [4], [11 ]). If f(0) = 1
we will show that there are infinitely many umbilical points in ∂M . The resulting non-
discreteness of U will so imply M is totally umbilical (see [8] ).

Suppose by absurd ∂M had finitely many umbilical points. Observe that the foliation
F2 defined on M −U is transverse to ∂M −U . To prove this, suppose p ∈ ∂M −U is such
that F2(p) is tangent to ∂M − U . By equations (2),(3),we derive a contradiction because
f(0) < λ2(p) ≤1.

Suppose now, there are no umbilical points on the boundary ∂M . This means (by
what we have just proved) that F2 is transverse to ∂M . In this case F2 may be seen as a
foliation of M with finite number of singularities with negative index (see [8]). This is a
contradiction since by our hypothesis M is a topological disk.

For the case where ∂M has a non zero finite number of umbilical points, consider a
umbilical point p ∈ ∂M , and let M̃ to be an extension of M beyond the boundary ∂M .

FACT:p is a singularity of F2 with negative index and finite number of separatrices,
all of them smooth at p. Moreover, there is at least on separatrix going from p to the
interior of M . In other words there is at least one separatrix such that, its interior tangent
vector at p, say u, satisfies ⟨u, η⟩ > 0, where η is the interior co-normal of M at p. This is
a consequence of a straightforward computation using Bryant holomorphic quadratic form
(see [3] ) that, in a neighbourhood of p, the foliation is diffeomorphically equivalent to the
standard foliation

Imzn(dz)2 = 0

on the complex z-plane.

Observe now that the foliation F2 on M −U is topologically equivalent to a foliation
with finite number of singularities on M . Some of them are interior singularities on M .
Others are in the boundary ∂M . Those which are in the boundary have separatices (at
least one) coming transversally to ∂M (see figures [1]). In order to see this situation is
topologically impossible, we just recall M is a topological disk and use double construction
to obtain a foliation of a topological sphere S2 with finite number of singularities, all of
them with negative index.

This concludes prove of Theorem 1.

6



Figure 1

PROOF OF THEOREM 2

Suppose without loss of generality that M is locally contained in the upper halfspace
H+ = {z ≥ 0} in a neighbourhood of ∂M . We also identify ∂M with the unit circle S1

centered at the origin of H.

We first show that boundary roundness determines the behavior of the mean curvature
vector H along the boundary( in fact , only convexity of ∂M is required). Precisely we
state:

CLAIM 1: Let p ∈ ∂M . Then ⟨H(p), p⟩ < 0

PROOF OF CLAIM 1:

Suppose first that there is a umbilical point p ∈ ∂M . Take a unit vector field v tangent
to ∂M . Then umbilicity yields

H(N) = ⟨▽vv,N⟩p

If N = H
|H| then the mean curvature H is positive and ⟨▽vv,N⟩ = |H| > 0. So ⟨−p,H⟩ > 0,

as desired, for ▽vv = −p is the acceleration vector of S1.
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For the case where there is no umbilical points on ∂M we recall that the foliation F2

parallel to the line field associated to the bigger principal curvature λ2 defined over M −U
has to be tangent to ∂M = S1 in some point p. Let p ∈ ∂M be such that F2(p) is tangent
to ∂M . Clearly

λ2(p) =

⟨
▽vv,

H

|H|

⟩
p

> 0

Notice that Claim 1 means the following: the orthogonal projection of the mean
curvature vector H on H points into the interior of the planar domain D contained in H
bounded by ∂M . We will denote D by int∂M .

We now define M1 ⊂ M to be the connected component of M ∩ H+ which contains
∂M .

CLAIM 2: M1 ∩H ⊂ int∂M

This follows from Claim 1 and from Alexander reflection Principle techniques used
exactly in the same way it was used in the proof of Theorem 1 pg. 337 of [6].

Let us denote Cf(0) the vertical cylinder on H over the circle Sf(0) of radius 1
f(0)

centered at the origin.

CLAIM 3: There is a point p ∈ ∂M such that

⟨N,−p⟩p ≥ f(0)

for N = H
|H| .

This means there is a point p ∈ ∂M where the surface M has bigger (or equal) inclination
respect to xy plane than the small spherical cap of radius 1

f(0) bounding ∂M .

PROOF OF CLAIM 3 :

Let p ∈ ∂M be a point of ∂M where F2(p) is tangent to ∂M at p (see proof of Claim
1). Then, at this point p we have

⟨−p,N⟩p = ⟨▽vv,N⟩p = λ2(p) ≥ f(0)

CLAIM 4: If M ∩ ext Cf(0) = ϕ then M is a spherical cap.

Where extCf(0) is the exterior of the cylinder Cf(0) (i.e. it is the connected region of
R3 − Cf(0) not containing the origin of H).

PROOF OF CLAIM 4:

The proof follows by using Claim 3 and the maximum principle (for special surfaces),
comparing M1 with a half sphere of radius 1

f(0) (see, for instance [1]).

CLAIM 5 : If M1 ∩ int∂M = ϕ then M is a spherical cap.
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PROOF OF CLAIM 5:

First notice, if M1 ∩ int∂M = ϕ then, by Claim 2 it follows M1 ∩H = ∂M and M is
globally contained in H+. Now, using Alexandrov Reflection Principle for planes normal
to H, we conclude M is rotationally symmetric (see, for instance [10]). Therefore, the
round boundary is every where parallel to one of the principal curvature directions for M .
Now because M is a topological closed disk, we conclude, by the same index reasons as
before,that M is totally umbilical. This shows that M is a spherical cap (of radius 1

f(0) ).

We finish the proof of Theorem 2 supposing, by contradiction, thatM1∩(ExtCf (0)) ̸=
ϕ and M1 ∩ int∂M ̸= ϕ.

At this point we may suppose M to be globally transverse to H without loss of
generality. Therefore M ∩H is a finite collection of closed simple curves of H.

Notice first that under the contradiction hypothesis there should be a curve γ ∈
M ∩H− ∂M which is homotopically non trivial curve in H− ∂M. This follows directely
from the extended Graph Lemma for special surfaces (see lemma 3 pg 12, Remark pg 14
and final Remarks in [2]).

Let γL ∈ M∩H be the outermost homotopically non trivial curve in H−∂M. Observe
that γL bounds a topological disk DL ⊂ M . Moreover, DL is locally contained in the upper
half-space H+ along its boundary γL. In fact, if the disk DL were locally contained in the
lower halfspace H− we would have a connected component, say C, of M − (M ∩ int∂M)
such that C ∩ H contains at least two distint closed curves both of them homotopically
non trivial in H − ∂M. This is a consequence of the fact that M1 is locally contained in
H+ along its boundary together with the hypothesis that the mean curvature vector H
never vanishes and the maximum principle. This would lead to a contradiction by applying
Alexander Reflection Principle by vertical planes as in [6].

Notice that DL ∩H is the union of γL with null homotopic closed curves on H− γL,
and as consequence of the Graph Lemma proved on [2] (see Lemma 3 pgs 12, 13, 14 and
Remark pg 14) each curve on DL ∩H− γL other than γL bounds a graph over its Jordan
interior. We denote the Jordan interior of γL in H by intγL. Now a standard orientation
argument yields (since H ̸= 0 on M):

DL ∩ (intγL) = ϕ

So DL∪ intγL is embedded (non smooth over γL) compact surface without boundary.
MoreoverM1 is clearly contained in the closed compact solid S determined byDL∪intγL =
∂S (see figure 2).
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Figure 2

Let M1(θ), 0 ≤ θ ≤ 2π. be the 1-parameter family of surfaces obtained by rotating
M1 = M1(0) around an axis z normal to H and passing by the center of the round circle
S1 bounding M . Clearly M1(θ)∩DL = ϕ, for every θ ∈ [0, 2π]. Otherwise there would be
a first parameter θ0 > 0 such that M1(θ0) would be tangent to DL − γL, and contained
inside S, contradicting the maximum principle for special surfaces.

Now, let p ∈ M1 be a point of maximum distance of M1 to the z-axis, contained in
the interior of the solid S. the radius of this circle C1 is bigger than 1

f(0) because of the

hypothesis of contradiction. Also DL ∩D1 = ϕ, where D1 is the horizontal disk bounding
C1. This is again a consequence of mean curvature orientation and maximum principle.

We now finish the contradiction argument by comparing DL with a sphere of radius
1

f(0) , which we can actually introduce through the barrier disk D1. This proves Theorem
2.
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