A SCHOEN THEOREM FOR MINIMAL SURFACES IN H? x R
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ABSTRACT. In this paper we prove that a complete minimal surface immersed in H? x R,
with finite total curvature and two ends, each one asymptotic to a vertical geodesic plane,
must be a horizontal catenoid. Moreover, we give a geometric description of minimal ends
of finite total curvature in H? x R. We also prove that a minimal complete end F with
finite total curvature is properly immersed and that the Gaussian curvature of F is locally
bounded in terms of the geodesic distance to its boundary.

1. INTRODUCTION

In the early eighties, R. Schoen [22] proved a beautiful theorem about minimal surfaces in
Euclidean space. Namely, a complete and connected minimal surface immersed in R3 with
two embedded ends of finite total curvature is a catenoid.

In his article, R. Schoen described the structure of finite total curvature ends minimally
embedded in R3, relying on the results of A. Huber [10] and R. Osserman [16] about the
Weierstrass representation of such ends.

At the beginning of this century, the discovery of a generalized Hopf differential by U.
Abresch and H. Rosenberg [1] stimulated the study of minimal surfaces in three-dimensional
homogeneous manifolds. Many new embedded and complete minimal surfaces have been
found in H? x R. In particular J. Pyo [17] and F. Morabito and M. Rodriguez [14] have
constructed, independently, a family of minimal embedded annuli with finite total curvature.
Each end of such annuli is asymptotic to a vertical geodesic plane. Such surface is called a
horizontal catenoid, see Figure 1.

In this article we prove the following theorem.

Main Theorem. A complete and connected minimal surface immersed in H? x R with
nonzero finite total curvature and two ends, each one asymptotic to a vertical geodesic plane,
s a horizontal catenoid.

Following the same spirit of Schoen’s work, we describe the full geometry of minimal ends of
finite total curvature in H? x R and we give an interpretation of it in terms of closed polygonal
curves (see Definition 2.4 and Proposition 2.4). The study of such ends was first developed
by the first author and H. Rosenberg in [9].

We recall that in R3, there are only two kinds of embedded minimal ends with finite total
curvature: such an end is necessarily asymptotic to a catenoid (catenoidal end) or to a
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FIGURE 1. A horizontal catenoid in H? x R (courtesy of the referee)

plane (planar end). It is worthwhile to notice that in H? x R there are many more such
ends. Namely, in the Poincaré disk model of the hyperbolic plane, consider the domain D
with boundary the ideal polygon I' with vertices the 2n points €'t e OscH?, k=1,...,2n,
n > 2. Then, P. Collin and H. Rosenberg have proved in [3, Theorem 1] a Jenkins-Serrin type
result: there exists a minimal vertical graph over D taking the asymptotic values +oo and
—oo alternatively on the sides of I'. Those examples show that there exist infinitely many
minimal embedded ends with finite total curvature in H? x R.

We observe that each one of those examples is properly embedded, has finite total curvature
and one end. If M is a properly embedded minimal surface in H? x R with finite total
curvature and two ends, it is not known if each end must be asymptotic to a vertical totally
geodesic plane. For example, is it possible to connect two disjoint minimal vertical graphs as
above, with a vertical neck of a catenoid?

The technical tools developped in order to prove the Main Theorem, allow us to prove two
further results. A minimal complete end with finite total curvature is properly immersed
(Theorem 2.2), and on such an end, say E, the Gaussian curvature is locally bounded in
terms of the geodesic distance to the boundary of E (Theorem 2.3).

The paper is organized as follows.

In Section 2, we study the geometry of minimal ends of finite total curvature. The main
geometric property is that horizontal sections of finite total curvature ends converge towards
a horizontal geodesic. In Section 3, we prove the Main Theorem. In the Appendix, we study
the geometry of curves with bounded curvature in the hyperbolic plane.

Acknowledgements. The second and the fourth authors wish to thank Departamento de
Matemdtica da PUC-Rio for the kind hospitality. The second and third author wish to thank
Laboratoire Géométrie et Dynamique de l'Institut de Mathématiques de Jussieu for the kind
hospitality.
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2. MINIMAL ENDS WITH FINITE TOTAL CURVATURE IN H2 x R

In this section we give the geometrical structure of a finite total curvature end. We rely
on the complex analysis involved in the theory of minimal surfaces [8], [9], [20] and on the
theory of harmonic maps developed by Z. Han, L. Tan, A. Treiberg and T. Wan [7] and Y.
N. Minsky in [13].

Let M be a Riemann surface and let X = (F,h) : M — H? x R be a conformal and minimal
immersion. The map F : M — H? is harmonic and h is a harmonic function on M. Let z be
a local conformal coordinate on M and let ds? = o%(u) |du|? be the hyperbolic metric on H?
in the model of the unit disk. We set

Q(F) := (00 F)*F,F,d2* = ¢(2)d2?,
then Q(F') is a quadratic holomorphic differential globally defined on M, known as the
quadratic Hopf differential associated to F.

Since we consider conformal immersion we have
(00 FYFyf? 4+ h2 = (0 0 F)2|Fy[2 + h2

(00 F)X(Fy, Fy)]> + h3 = 0.

Therefore we have (h,)?(dz)? = —Q(F) (see [20, Proposition 1]). Then Q(F) has two square
roots globally defined on M. We denote by v/¢ dz the square root of Q(F) so that

h= —2Re/i\/g$dz = 2Im/\/g$dz.

The metric induced on M by the immersion X is
2 2 22
ds® = (70 F) (|Fzy+ypg\) |z,

From a result by A. Huber [10, Theorem 15|, we deduce that a minimal end E of finite total
curvature is parabolic, so that it can be parametrized by U := {2 € C | |z| > 1}.

Let X = (F,h) : U — H? x R be a conformal and complete parametrization of the end
E = X(U). As it is shown in [9], the conformal structure of the end is given by the following
Theorem which relies the complex analysis involved in the theory of minimal surfaces [8], [9],
[20], on the theory of harmonic maps developed by Z. Han, L. Tan, A. Treiberg and T. Wan
[7] and by Y. N. Minsky in [13].

Theorem [9]. Let X := (F,h) : M — H? x R with finite total curvature. Then

(1) M is conformally M — {p1,...pn} a Riemann surface punctured in a finite number of
points.

(2) Q is holomorphic on M and extends meromorphically to each puncture.

(3) The third coordinate of the unit normal vector ns tends to zero uniformly at each
puncture.

(4) The total curvature is a multiple of 2w, namely

/ (—KdA) =2m(2 29— 2k — Y _my),
M i=1
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where my; s defined in Definition 2.1 below.

This theorem contains informations on the geometrical structure of a finite total curvature
end at infinity.

By the previous Theorem, ¢(z) extends meromorphically to the puncture z = oco. Thus we
can write ¢ in the following form

0(z) = (3. +P(2)’, 1)

k>1
where P is a polynomial function. If we choose v/¢ = 37~ 5 + P(z), then

_2Im/ k>1—+P( 2))d-.

Definition 2.1. Let m > 0 be the degree of P. We will say that F is an end of degree m
with respect to the parametrization X.

Since the height function is well defined on U, the real part of a_; is zero. Let 8 € R such
that a_1 = if.

Lemma 2.1. The polynomial function P is not identically zero.

Proof. Assume by contradiction that P = 0. If a_; = 0 we obtain that

[ 19214 < o,
U

and it is shown in [9] that the minimal end E would have finite area. From [5] (Theorem
3 and Remark 4) we deduce that for any p € E and for any real number pu < dg(p,0F),
we have Area(B(p,p)) > mu?, where B(p, p) is the geodesic disk in E centered at p, with
radius p. Considering a suitable diverging sequence of points (p,) in E, we deduce that F
has infinite area. This gives a contradiction.

Assume now that a_q # 0. Since a_1 = iﬁ, we obtain (up to an additive constant)
—QIm/ dZ—QBIOg\zH—o( ),
k=1

where o(1) is a function depending of z and o(1) — 0 when |z| — 0.

For R > 1, let Ag = {R <|2| < R?}. Thus, X(Ag) is a compact and minimal annulus
immersed in H? xR, whose boundary has two connected components. For R large enough, the
vertical distance between those two boundary components is larger than 27, while the family
of the catenoids stays in a slab of height smaller than 7 [15, Proposition 5.1]. Therefore, we
can compare X (Agr) with the catenoids and obtain a contradiction by the maximum principle

since the height of X(Ag) is greater that 27. This concludes the proof. q.e.d.

Let F be an end of degree m. Up to a change of variable, we can assume that the coefficient
of the leading term of P is one. Then, for suitable complex number ay, ..., am—1, one has

P(z)=2" 4+ am 12" L+ +ag and /o =2"(1+0(1)). (2)

For any R > 1, we set Ugr := {# € C | |2| > R}, Sp := {2z € C | |2| = R} = 0Ug and

ER = X(UR)
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We set
W(z) ::/\/qﬁ(z)dz:/(zcllf+a0+---+zm)dz,
E>1
so that h(z) = 2Im W (z). If 5 = 0, the function W is well defined on U. If 5 # 0, the
function W is only locally defined and has a real period equal to —273. We denote by 6 € R
a determination of the argument of z € U, therefore

1 |Z’m+1 )
ih(z) =ImW(z) = Blog|z| + p—— (sin(m +1)8 + o(1)) (3)
and, locally
m+1
ReW(z) = —p0 + ‘:”J—i- 7 (cos(m +1)8 + o(1)). (4)

THE IMAGE OF W AND THE LEVEL SETS OF Im W

Definition 2.2. (1) For any R > 1, a semi-complete curve in Ug is the image of a map
¢ : [0, +o00[ — Ug such that |c(t)] o oo
— 00
(2) Let ¢ : [0, +00[ — Ug be a semi-complete curve and let 6y be a real number. We say that
the image of ¢ has the ray {re®, r > 0} as asymptotic direction, if 6(t) == 0o, where 0(t)
—00

is the determination of the argument of ¢(t) in [fg — 7,00 + 7.
From formula (3) above, by a continuity argument we deduce the following facts.

Lemma 2.2. (1) There exists Ry > 1 so that, for k =0,...,2m + 1 and for any R > Ry,
the function Im W is strictly monotonous along the pairwise disjoint arcs
km s < (2) < km . s }
- arg(z .
m+1 10m+1) -8 m+1 " 10(m+1)
(2) For any fized C' € R one has
o If (zn) is a sequence of complex numbers such that |z,| — oo and ImW (z,) = C,
then sin ((m + 1) arg z,,) — 0.
o There exists 1(C') > Ro such that, for any R > r(C), there are exactly 2m + 2
points Re'*, k = 0,...,2m + 1, on the circle Sg verifying Im W (Re'%) = C and
Re% € Ap(R). Moreover, we have 0y, m miﬂw.
e For any R > r(C), the set UsN{Im W (z) = C'} is composed of 2m +2 semi-complete
-k
curves Hy(C,R), k= 0,...,2m+1. Moreover Hi(C, R) has the ray {re'm+1" r > 0}
as asymptotic direction.

Let k =0,...,2m + 1. We take C' = 0 in Lemma 2.2 and define Hy(R) := Hy(0,R), Ry :=

Ak(R) = {Z € Sg,

r(0) > Ry. Moreover set ay, := mk—il Then, we deduce the following result.
Corollary 2.1. For any R > Ry, the level set Ugr N {Im W (z) = 0} is composed of 2m + 2
semi-complete curves Hi(R), k = 0,...,2m + 1, having the following properties (see Figure

2(a)).
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e Fach curve Hp(R) has a unique boundary point, it belongs to the open arc Ap(R).

e Fach curve Hi(R) has the ray {reiml%l, r > 0} as asymptotic direction.
o Fach curve Hi(R) is contained in the truncated sector Ap(R) defined as follows

™

m

Ag(R) == {|z| > R and oy, — 0m D) < arg(z) < ag + m}

H(R) HR)
H(R)
H(R)
R -

H(R) H{R) L, -

(a) The curves Hi(R) (b) The curves L} and L}

FIGURE 2. The curves Hy(R), L; and L} for m =2

Let us state some consequences of the properties of the harmonic function Im W.
Let Cp > 0 be a real number such that Cyp > max{|Im W (z)|, z € Sg,}. Let Ry be a real
number satisfying Re > r(Cp),r(—Cy), R1, where r(Cp),r(—Cp) and R; = r(0) are as in
Lemma 2.2. Note that the set Up, N {ImW(z) = Cp}, is composed of m + 1 proper and
complete curves without boundary L, ..., L} (see Figure ?7?).
For each j = 0,...,m, the level curve L;r is contained in the domain of C which does not
contain 0 and which is bounded by Hg;(R1), H2j+1(R1) and an arc of Sg, contained in the
arc {z € Sg, | agj — m <argz < agjy1 + m}
In the same way, the set Up, N {Im W (z) = —Cp} is composed of m + 1 proper and complete
curves without boundary L, ..., L,,. Each level curve Lj_ is contained in the domain of C
which does not contain 0 and which is bounded by Haj11(R1), Hajy2(R1) and an arc of Sg,
contained in the arc {z € Sg, | agjy1 — m < argz < agjta + m}, were we set
Hopmio(R1) := Ho(R1).
For each level curve L;.t, we denote by L’f, the connected component of C\ L;-t which does
not contain the circle Sg, .
For each kK =0,...,2m + 1 we define the open set 2 setting:

Ly U LT UAR(Ry)  if k is even,
Q=4 27 2 s (5)
Ly, ULy, UAL(Ry) if kis odd,
2 2
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(a) k even (b) k odd

FIGURE 3. The domains €2 for m = 2

where we set L~ := L, (see Figure 3).

By construction, we have that each ) is a simply connected domain and, setting U :=
Uii”ar 10, we have U r, C U C Up,. Since € is simply connected, we can define a
continuous determination of the argument of z in € such that

T

ch {’Z‘ >R1 and Of—1 — m},

U < arg(z) < +
S E—— arglz (6
10(m+1) ~™® A

(recall that a_q := —7/(m + 1) and a2 := 27).

We summarize the above construction as follows.

Lemma 2.3. Let C be a real number, then the following facts hold.
(1) If C > Cy then
o the level set {ImW(z) = C}

) 18 composed of m + 1 proper and complete curves
without boundary Lo(C), ...

nuU
L, (C) satisfying L;(C) C E;r and, therefore, L;(C) C
Q25 N 2541, 7 =0,...,m.
e the level set {Im W (z) = —C'} NU is composed of m + 1 proper and complete curves
without boundary Lo(—C), ..., L (=C) satisfying L;(—C) C L} and, therefore, L;j(—C) C
92j+1 N QQj+2, j=0,....,m, where Qoo := .
(2) If —Cp < C < Cy then the level set {ImW(z) = C} NU is composed of 2m + 2 proper
curves Hp(C) C Qp, k = 0,...,2m + 1, satisfying the same properties as the level curves
Hi(R2) in Corollary 2.1, with R = Rs.

Proposition 2.1. Fork =0,...,2m+1, the restriction of W to Qy, is a well defined complex
function, denoted by Wy. Furthermore, Wy, : Q0 — C is one-to-one and defines a conformal
diffeomorphism from Qi onto a simply connected domain Q := Wi(Q) in the w complex
plane.



Proof. Since ) is a simply connected domain which does not contain the origin, the function
W is well defined on €.

Let 21,22 € Qi be such that Wy(z1) = Wg(22). We deduce from Lemma 2.3 that for any
C € R, the level set {Im Wy(z) = C} has a unique connected component in €. Therefore,

z1 and 2y belong to the same level curve L C €. Since W/ (z) = \/¢(z) and ¢ does not
vanish on U, we deduce that the function Re W is strictly monotonous on L. We conclude
that z1 = 29 as desired. q.e.d.

In the w-complex plane the domains ﬁk, k=0,...,2m + 1, defined in Proposition 2.1, have
a nice structure, that will be crucial in the following.

Corollary 2.2. Let k be an even number, k = 2j. Then, ﬁk 1 the complementary of a
horizontal half-strip. The non horizontal component of aﬁk is a compact arc that is the
image by Wy of the boundary arc of Q in Ap(R2) joining Lj+ and L;_,. Thus, Im W s
strictly monotonous along such non horizontal component and Rew is bounded from above
by a real number aj, for any w € 8, (see Figure 4(a)).

If k is an odd number, then (NZk has a similar description, except that on the half-strip the
real part of w is now bounded from below, i.e. for some real number by we have Rew > by
for any w € 9Qy, (see Figure 4(b)).

We get a proof of Corollary 2.2 by invoking Lemma 2.3.
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(a) k even / (b) k odd

FIGURE 4. The domains Qk

By the equalities in (2), we can take Rs in (5) large enough so that

1 m m
Slel™ < VB < 214 (©
when |z| > Ry. With this choice, we can prove the following result.

Lemma 2.4. There is a real constant ¢c; > 0 such that, for any z satisfying |z| > 2Ra, there
exists k € {0,...,2m + 1} such that

2 €8y and dy(z,00) > c1 2|,
where dg stands for the distance on Qi with respect to the ¢-metric given by |¢(z)| |dz|>.

Proof. First assume that m > 1. Let z € U such that |z| > 2R2. We choose the determination
of the argument of z in the interval [0, 27[.
8



F1GURE 5. The domains ﬁk for m = 2 and k even

Recall that ap = m+1 —1,...,2m 4 2. There exists a unique k£ € {0,...,2m + 1}
such that either (o + ak+1)/2 < argz < g1 or o < argz < (o + agy1)/2. Without loss
of generality, we can assume that the latter occurs. Therefore z € €.

For any kK =0,---,2m + 1, we define the following rays:
Dy 1= {peilesn T/ 0040) > Ry

Ry}

» P2
{pez Qg 1Jr7r/10(m+1))7 p >

By assumption, z belongs to the subdomain Qk of Qi bounded by Dy, D; and the arc I'(R»)
of Sg, corresponding to ay_1 + 7/10(m + 1) < 0 < a1 — 7/10(m + 1) (see Figure 5).
Then, we have

de (2, 00) = min {dy(z, D), dg(z,Dy), dg(z,T(Rs))}.

Let 7 : [0,1] — Q4 be any smooth arc satisfying v(0) = z, v(1) € Dy, and |y(t)| > Rz for any
t € [0,1]. Denoting by Ly () the length of v for the ¢-metric and using (6), we have:

1
- / VIS W ()] dt > / O™ ()] de > / Iy (1) dt,

so that Lg(y) > (1/2)R5'L(y), where L(v) is the Euclidean length of . Since
A7 /10(m + 1) < a1 — 7/10(m + 1) —arg z < 97 /10(m + 1) < 7/2,
we get

L(vy) > d(z, D) > sin <10(4)> |z

where d(z, Dy) stands for the Euclidean distance between z and Dy. From the last inequality,
we deduce

dy(z, Dy) > %gnsm (10(4)> E (7)
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Let now « : [0, 1] — € be any smooth arc satisfying v(0) = z, v(1) € D}, and |y(t)| > Ry for
any t € [0,1]. In the same way, we can show that
m Rm
Ly(v) = 72[/(7) > 72d(Z7D;c)'
Since 97/10(m + 1) < argz — ag—1 — 7/10(m + 1) < 147/10(m + 1) we obtain
o , 147 m
S - 22y 8
10(m+1))’sm(10(m—|—1))} > ®)
0,1] — Q4 be any smooth arc satisfying v(0) = z, |y(1)| = Rz and |y(t)| > Ra
[. As before we have

dy (2, D) = min { sin (

Finally, let ~ : |
for any t € [0, 1

m Rm
L) > "2 L(3) > "2 (J2] - Ra).
Since |z| > 2Ry we get
Rm
ol ) > 22| )

Using estimates (7), (8) and (9), we are done in the case m > 1.

Now we consider the case m = 0. Then, there are only two domains: g, {21, and we have
apg =0, ap =7 and as = 2.
Let z € U such that |z| > 2Rs. For some k € {0, 1}, we have either (o + a11)/2 < argz <
i1 or ap < argz < (ag + ags1)/2. Without loss of generality, we can assume that the
former occurs and that k = 0, that is: 7/2 < argz < m and, therefore, z € Q.
We set

D= {pem/107 P> RQ}, D = {pe—i7r/107 p > R2}
We have d(z,D) >|z|/2 and d(z,D’) > d(z,D). Moreover, it can be shown in the same
way as in the case m > 1, that dg(z, Sr,) >|z|/4. We obtain that dg(z,9Q) >|z|/4, which
concludes the proof. q.e.d.

Remark 2.1. For k =0,...,2m+ 1, the map Wy : Q) — (le is a conformal diffeomorphism.
Since W/ (2) = \/¢(z), W}, is an isometry when €2, is equipped with the ¢-metric |¢(z)] |dz|*
and €U, is equipped with the Euclidean metric |dw|?.

We denote by Zj : ﬁk — Q. the inverse function of Wy.

THE IMAGE OF THE LEVEL SETS OF Im W BY THE HARMONIC MAP F

Let N := (n1,n2,n3) be the unit normal vector field along the end E such that (X, X,, N)
has the positive orientation. We get from [20, Proposition 4] that ng = =12 e define

[P+ Pz
a function (possibly with poles) w on U setting [8, Formula 14 ]
n3 = tanhw. (10)
For kK =0,...,2m+ 1, we denote the restriction of w to i by wg. The function wy, : SN)k — R

is defined by setting @ (w) := (wy o Zg)(w) for any w € €U,
The induced metric ds? on U reads as
ds® = 4 cosh?(w) |¢| |dz|?, (11)
10



see [8, Equation 14].

Remark 2.2. Since ¢ has no zero on U, the function w has no pole and the tangent plane of
E is never horizontal. This means that the end E is transversal to any slice H? x {t}. Thus,
the intersection of F¥ with any slice is composed of analytic curves.

Let us denote by A, (resp. A,) the laplacian restricted to € (resp. (Zk) fork=0,...,2m+
1, with respect to the Euclidean metric |dz|? (resp. |dw|?). Since A,wy, = 2sinh(2wy) |6(2)]
(see [8, Equation 13]), we deduce

Aw&k =2 Sinh(%ak). (12)

For any w € ﬁk we denote by di(w) the Euclidean distance between w and the boundary of
Q.

The following estimate (13) can be found in [9] (see also [13, Lemma 3.3)).

Proposition 2.2. There exists a constant Ko > 0 such that for k =0,...,2m + 1 and for
any w € Q. with di(w) > 1, we have

Ky

0 —dg (w)
coshd ) < 2o, (13)

Wi (w)| <

Consequently, the tangent planes to the end become vertical at infinity.

The last assertion is a consequence of the estimate (13), Lemma 2.4, and Remark 2.1.
We recall that the energy density of the harmonic function F' with respect to the metric
|¢(2)||dz|? on U and the hyperbolic metric on H? is the real function defined on U by

(00 F)*(2)

“2) = 5]

(1= +|F=?)

Then one has
|FL| | |F5

e(z) =
ST R TN

where the first equality follows from the definition of ¢ and the second equality follows from
the definition of w. Observe that e?” = %

For k=0,...,2m + 1 we denote by ﬁk the harmonic map fk =FolZ: ﬁk - HZ2.

Recall that the relation between the coordinate z in £ and the coordinate w in  is w = W(2)
andNCCl% = 1/v/¢ o Z. The energy density ¢ of F with respect to the Euclidean metric |dw|?

on € and the hyperbolic metric on H? is defined on Q by

= 2 cosh 2w.

e(w) := (o 0 F)*(w)(|Ful*+|Fal®)

As before, we have

~ F Fg ~
e(w) = t—w’ + L—w‘ = 2 cosh 2w.

|F| [ Ful

Thus e(w) = e(z), if z = Z(w).
11



Definition 2.3. Let x : U — R be defined as follows: for any zp € U, k(zo) is the geodesic
curvature in H? (with respect to the normal orientation induced by the unit normal vector
field N on E) of the connected component of F({ImW = Im W (zy)}) passing through the
point F(zp).
For any k = 0,...,2m + 1, let & : ©; — R be defined by setting #(wo) = r(z0), where
wo = W(Z())

As a consequence of Remark 2.2, we have that the function s is analytic

Lemma 2.5. Fiz a number k € {0,...2m + 1} and consider the simply connected domain
Qi defined in (5). Then, setting w = u + iv on S, the pullback by the harmonic map
Fy : Qp — H? of the hyperbolic metric o2(€)|d¢|? is given by

E} (02(£)|d§|2) = 4 cosh? &y, du® + 4sinh? &y, dv?. (14)
Moreover, for any horizontal coordinate curve ¥ := {v = const} in Qk, the absolute value of

the geodesic curvature k of the curve ﬁk(ﬁ) in H? is given by

L 0%, (15)

[R(w)l = 2coshay | v

for any w € 7.
Proof. A straightforward computation shows that
i (0*(€)dedE) = ¢(2)dz? + (2)dz” + e(z) |¢(2)|dzdz.
Since dw = /¢(z)dz and dw = 1/ ¢(2)dz, in the coordinate w = u + iv, we have
Fy (0%(€)dedE) = (€ + 2)du® + (€ — 2)dv? = 4 cosh? Ty, du® 4 4sinh? Ty dv?.
Then equality (14) is proved. N
Now, let wy € 7 and assume wy(wp) # 0. Then, by (14), the pullback by Fj, of the hyperbolic
metric is a regular metric in a neighborhood of wy in €2;. Consequently, the geodesic curvature
of Fi(7) at wy is given by
1 1 1

0
~ _ 2 h2 ~
Fi(wo) 2 4 cosh?® 3y, 2| sinh wy| 81)( cosh™ @y (wo)

1 1 sinhwy 0wy,

~ " 2coshwy | sinhay| Ov (o),

(see [11, Formula (42.8)]). Therefore, the proof is finished in the case wy(wg) # 0.

Assume now that wi(wg) = 0. If Wy vanishes identically in a neighborhood of wy, then the
tangent plane of the minimal end E is always vertical in a open neighborhood of X (Zk (wo)).
This means that such a neighborhood is contained in a vertical cylinder in H? x R. Since F
is minimal, the vertical cylinder is a part of a vertical geodesic plane and, by analyticity, the
whole end F is contained in the geodesic plane. Consequently the curve Fi(7) is a part of a
geodesic of H? and formula (15) is trivially satisfied.

If Wy, is not identically zero in a neighborhood of wy, then there exists a sequence (wp,)pen-
in ), converging to wy such that &y, (wy,) # 0 for any n > 0. Since formula (15) holds at any

point w,, and |k| is a continuous function, then (15) holds also at wp. q.e.d.
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The following Proposition is crucial in order to understand the geometry of the horizontal
sections.

Proposition 2.3. Let zg € U and let k(zp) be the geodesic curvature of the level curve
F{ImW(z) =ImW(z9)}) C H2. We set R3 = max{2Ry,2/c1}, where c¢; > 0 is the constant
gwen by Lemma 2.4. Then, there exists a constant ca > 0 such that, for any zo € Ug,, we

have

|k (20)] < cpe™tl#ol,

Proof. Let zgp € U be any point such that |zg| > Rs. It follows from Lemma 2.4 that there
exists k € {0,...,2m + 1} such that

2o € Q, and  dy(20,08%) > c1z0].

Setting wg := W(zg) € ﬁk, we get di(wp) := dk(wo,ﬁﬁk) = dy(20,0Q), where dj, denotes
the Euclidean distance in Q. Therefore, we obtain dy(wg) > 2, since cl\zo| > c1R3 > 2.

Let D be the unit disk in the w- complex plane, centered at wp, thus DcC Qk For any w € D
we denote by d(w) the Euclidean distance between w and dD. Recall that the function &y,

satisfies Equation (12) on Q. We restrict &y, to D and we apply the interior a-prior: gradient
estimate for the Poisson Equation [6, Theorem 3.9], then

sup (d(w)|Vag|) < Ki( sup|wy| + 2sup d?(w)]| sinh 2wk|),
D D D
for some constant K7 > 0, where V means the Euclidean gradient.
Since d(wp) =1 and d(w) < 1 for any w € D, we get

| V@] (wg) < Kl(sgp|@k| + 2511p| sinh 2o~Jk\)
D D

Moreover, since dy(w) > di(wo) — 1 for any w € D, we deduce from Proposition 2.2 that
~ Ky
<
n (W)l S e wo) = 1

for any w € D. Using the inequality cosh(t — 1) > % for any ¢ € R we obtain
|Va| (wo) < Ki(10Kge™ (0) 4+ 25inh(20Koe = (0))).

The function 2 +— SBBZ is strictly increasing for £ > 0. As dj(wp) > 2, then we obtain that

sinh(20Kge~%(0)) < e2sinh(20Kge~2) e~%(w0)  This proves that there exists a constant
0 > 0 such that
V@] (wo) < & e=d(wo) (16)

for any wq € Q. such that dr(wo) > 2. From formula (15) and from the previous computa-
tions, setting ¢y := §/2, we conclude that

|7 (wo)| < cpe™ (w0,

As k(20) = R(wo) and dy(wo) := dg(20,0%) > c1|20] by Lemma 2.4, this completes the proof.
q.e.d.

In view of Lemma 2.3, let us sum up some notations previously established in the sequence
of Corollary 2.1. For any C € R and for K =0,...,2m+ 1, Hy(C,R) C U C U, denotes the
13



semi-complete level curve of the function Im W whose asymptotic direction is {re?®*, r > 0},
where o, = km/(m + 1). That is
Im W (z) = C for any z € Hi(C, R) and argz T> ak, z€ Hi(C,R).
Z|—00

For any C' > Cy, we denote by L;(C) (resp. L;(—=C)), j =0,...,m, the proper and complete
level curves given by {ImW = C} (resp. {ImW = —C?}). We have, for any R, Hy;(C,R) U
H2j+1(0, R) C Lj(C) and H2j+1(—0, R)U H2j+2(—0, R) C Lj(—C), j =0,...,m, where
H2m+2(—(], R) = Ho(—C, R)

The notion of convergence in the C' topology in the next Theorem is given in the statement
of Definition 4.1.

Theorem 2.1. (1) For any C € R, let r(C) be defined as in Lemma 2.2. Then, for any
C €R, for any k € {0,...,2m+1} and R > r(C), the level curve F(Hy(C, R)) C H?
is a proper semi-complete curve which has no limit point in H? and with a unique
asymptotic point in OsH2.

(2) For any C1,Co € R and for any k € {0,...,2m + 1}, the level curves F(Hy(C1, R)),
F(Hp(Co, R)) C H? are asymptotic. More precisely, for any e > 0 there is a compact
subset K C H? such that for any C between C1 and Cy the level curve F(Hy(C, R))\ K
remains in a e-neighborhood of F(Hy(C1,R)) \ K .

Consequently, F(Hy(C1,R)) and F(Hi(C2, R)) have the same asymptotic point

0 € 8OOH2.

(3) Fork=0,...,2m+1, the asymptotic points 0y, and 011 are distinct, (02m+2 == 6p).

(4) Let j €{0,...,m}.

e When C — +oo, then the proper and complete level curves F(L;(C)) C H?
converge for the C' topology to the geodesic in H? with asymptotic boundary
{025,02j41}.

e When C' — +oo, then the proper and complete level curves F(L;(—C)) C H?
converge for the C' topology to the geodesic in H? with asymptotic boundary
{02541, 02542}, (B2mr2 := 0o).

Proof. Assertion (1) is a straightforward consequence of the curvature estimates given in
Proposition 2.3, together with Proposition 4.1.

Let us prove Assertion (2). Let k € {0,...,2m + 1}. By Lemma 2.3, for any R > r(C;),
we have Hy(C;, R) C Q, i = 1,2. From formula (4) we deduce that Re W (z) —— 400,

|z| =00

z € Hi(Ci, R) (resp. —o0) if k is an even (resp. odd) number, i = 1, 2.
Assume now that k is even (the argument is analogous in the other case). Then, by the
geometry of the sets Q = W () (see Corollary 2.2), setting p, := u + iCy and ¢, :=
u + iCo, for any real number v > 0 large enough, we have p, € W(Hk(C'l)) C Qf and
Qu € W(Hk(Cg)) C Q. Moreover, setting 7, := {(1 — t)py + tqu, 0 < ¢t < 1}, we have
Yu C Q. _
Let us set py, = Zk(Pu), qu = Zr(qu) and v, = Zx(Ju), where Zy : Qi — Q. is the inverse
function of W restricted to €2 as defined in Remark 2.1. Thus, we have:

® 0y = {Pu, @}, Pu € Hr(C1, R) and qy, € Hi(C2, R).

e ReW(z) = u, for any z € .

14



The distance between Fj(p,) and Fi(q,) in H? is smaller than the length of Fj(7y,) which,

by construction, is equal to the length of Fj (7).
We need to prove the following Claim.

Claim. Let v C v, be an open arc along which the restriction of w to . vanishes. Then,
Fy(v) € H? is reduced to a single point.

Indeed, let ¢ : ]0,1[ = v C 7, be a smooth parametrization of . Since Re W (¢(t)) = u for

0 <t <1, setting w = W(z) and differentiating with respect to t, we get % % + (d%’) (%) =

0. Moreover, as wy(c(t)) = 0 we have |F,| =|Fs| along 7. Recall that ¥ = /§ and
¢ = (00 F)?F,F,. Combining those relations, we obtain that F, % + Fx (%) = 0. Then

4(Foc)(t) =0, which proves the Claim.

Since the function w is real analytic, its restriction to the analytic arc v, vanishes identically
or has a finite number of zeroes. Consequently, the length of F(,) in H? is equal to the
length of 7, with respect to the pseudo-metric (14) on Q. denoted by Li(3). Corollary 2.2
yields that for any w € 7, and for u large enough we have

di(w) = dyy(w,0) > u — ax,
where, as usual, dj, is the Euclidean metric on ﬁk We have

die (Fi(pu)s Fi(qu)) = digz (Fi(Bu), Fi(@a)) < Lusz (Fi(u)) = Li(u)
where dpz (resp. Lye) is the distance (resp. the length) in the hyperbolic metric.
As Re W = u along 7,, we obtain

1
Li(Ga) = 2/Cy — 02|/ | sinh &, (7 ()| dt
0

Ky

< 2sinh | ————
S <cosh(u—ak)

>|Cl - C’2|a

where the inequality comes from formula (13). Hence, we have
digz (Fis(pu); Fie(qu)) = 0 when u — +o0.
This completes the proof of Assertion (2).

Let us prove Assertion (3). Assume, for instance, that 8y = 61. Then, for any C' > Cj, there
exists a complete level curve Lo(C) C Qq such that F(Lo(C)) C H? is a proper and complete
curve with 0, F(Lo(C)) = {6p}. We deduce from Proposition 2.3 and formula (3) that for
C large enough, the absolute value of the geodesic curvature of F(Lo(C)) C H? is smaller
than 1/4. Let I' C H? be any complete geodesic such that 8y € 0, I'. Then, we obtain a
contradiction with the maximum principle, comparing F'(Lo(C)) with the family of complete
curves 7,, p € I', orthogonal to I' at p, with constant curvature 1/2, and such that 6y belongs
to the asymptotic boundary of the mean convex component of H? \ v,. This completes the
proof of Assertion (3).

Assertion (4) is a straightforward consequence of Assertion (3), Propositions 2.3 and 4.2.
q.e.d.

Remark 2.3. (1) We deduce from Theorem 2.1 that the asymptotic boundary of F(U) is
composed of exactly 2m + 2 points, counting with multiplicity. In particular, if m = 0 then
O0so F'(U) has exactly two distinct points.
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(2) Observe that the 2m + 2 asymptotic points 6y, . . ., Oam+1 of F(U) need not to be distinct.
They even not need to be well ordered as we can see in some examples found by J. Pyo and
M. Rodriguez [18].

We can construct artificial examples for which the asymptotic points are not distinct: just
consider the covering maps ¢, : U — U, n > 2, defined by 1,,(z) = 2", and the minimal ends
Xp:=Xov,:U—H?xR.

We will give an alternative geometric interpretation of Theorem 2.1 in terms of polygonal
curves. In order to to this, we need some definitions.

The asymptotic boundary 9. (H? x R) is topologically equivalent to the following open cylin-
der joint with two closed disks:

C={S'x(-1,1)}UuD(+1)UD(-1)
where D(—1) = {u € C;|u] < 1} x {-1} and D(+1) = {u € C;lu| < 1} x {+1}. We
identify int(D(+1)) and int(D(—1)) with the hyperbolic plane. Let t : (—1,+1) — R be a
homeomorphism. For any y € (—1,1), we identify S' x {y} with the asymptotic boundary of
H2 x {t(y)}. The sets int(D(+1)) and int(D(—1)) represent the closure of vertical geodesics
{p} xR, p € H2.

Definition 2.4. We say that P is a closed polygonal curve if it is a closed curve contained
in C, that is union of a finite number of hyperbolic geodesics in int(D(+1)) and int(D(+1)),
jointed by vertical segment in S' x (—1, 1), joint with their endpoints.

Notice that the closed polygonal curve P may happen to be not embedded and some of its
sides may have multiplicity greater than one.
Now, we give the promised alternative interpretation of Theorem 2.1.

Proposition 2.4. Let X := (F,h) : U — H? xR be a properly immersed finite total curvature
end E = X (U), then O E can be identified with a closed polygonal curve P in C, where:

e A geodesic y41 of P contained in D(+1) means that the end E contains a topological
half plane which is asymptotic to v41 X Ry when h tends to +o0.

e A geodesic y_1 of P contained in D(—1) means that the end E contains a topological
half plane which is asymptotic to y_1 x R_ when h tends to —oo.

o A wertical segment {p} x (—=1,+1) of P means that p x R belongs to the asymptotic
boundary of E.

An interesting problem is to determine the correspondence between the space of closed polyg-
onal curve P and the set of finite total curvature ends. We would like to understand the
relation between the geometry of the end and the geometry of P.

We remark that embedded ends can be only observed when P is an embedded polygonal
curve. Properties of P can be derived from its projection mw(P) on a horizontal hyperbolic
plane:
7P — H? x {0}.

M. Rodriguez and J. Pyo has constructed an interesting example of a properly embedded
minimal surface in H? x R. The example is simply connected so that it has only one end. The
polygonal curve P associated to the end is embedded with non embedded projection (P).
The end has finite total curvature, contains a vertical geodesic {p} x R, and it is not a graph.

Let us state some results that have an independent interest in this theory.
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Theorem 2.2. Let be a complete minimal end with finite total curvature. Then, E is properly
immersed.

Proof. Let m € N be the degree of the end E (see Definition 2.1). Let (p,) be a sequence
in U such that |p,| = 4+00. We want to show that (X (p,)) is not a bounded sequence in
H? x R. Up to choose a subsequence, we can assume that there is k € {0,---,2m + 1} such
that, for any n, we have p,, € Q. Recall that h(z) = 2Im W (z) for any z in U.

If h(pn) — oo we are done.

Assume that the sequence (h(p,)) of real number is bounded. Thus, up to considering a
subsequence, there exists a real number C; such that h(p,) — Ci1. We set S(Cy) := {z €
Qi | h(z) = C1}. Thus, S(Ch) is either a complete curve or a semi-complete curve. As in the
proof of Theorem 2.1, we can construct a sequence (g,) in £ such that

VneN, ¢, €S5(C1) and dgz(F(pn), F(gn)) — 0.

Since F(S(C1)) has no limit point in H? and has an asymptotic point ps, € 9-oH? (see (1)
in Theorem 2.1), we get that F(g,) — poo and consequently F(p,) — poo. Therefore, the
sequence X (py,) is not bounded, which concludes the proof. q.e.d.

Theorem 2.3. Let X := (F,h) : U — E C H? x R be a minimal, complete end with finite
total curvature. Then, there exists a constant c3 such that, for any p € E, we have

K (p)| < cze” P ®OF), (17)

where Kg denotes the intrinsic Gauss curvature and dg(-,0F) stands for the intrinsic dis-
tance on I.

Proof. Let m € N be the degree of the end F with respect to the parametrization X. We
consider the open sets Qp C U, k = 0,--- ,2m + 1, as defined in (5) and the real number
R3 > 1 given in Proposition 2.3. In this proof we will use the notations previously established
for the function W =Im [ \/¢(z) dz, Qx = W (), and Zj, : Q, — Q.

Let p € E and let z € U such that X(z) = p. Assume first that |z| > Rs. Therefore, by
Lemma 2.4, there exists k € {0,...,2m + 1} such that z € Q4 and dy(z,0Q) > c1]z]|. We
set w = W (z), so that w € €. We deduce from formula (11) that the metric ds? induced on
ﬁk by the minimal immersion X:=Xo Zy, Qk — H? x R is given by

ds? = 4 cosh? @y, (w) |dw|?.
Therefore, we obtain

tanhw, | - 1
Kp(p) = Kgp(w) = ———5—

— g — ———— |V

4 cosh® Ty, "7 4cosh? W Vel
It follows from the proof of Proposition 2.3 that di(w) > 2. Now, by a straightforward
computation, using formulas (12), (13) and (16) (where § = 2¢3), we obtain

K. (w)] < cge 2 (W),

for some constant ¢z > 0 which does not depend on w. Observe that
dp(p,0E) = dp(X (w),0E) > dp(X(w), X (0Q%)) = dz, (w, 0,).

From the comparison of the metric d;, with the Euclidean metric, we infer

d (w,0Q) > 2di(w).
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Formula (17) follows by the previous inequalities for |z| > R3, i.e. outside a compact subset
of the end E. Finally, it suffices to observe that the continuous function p — |Kg(p)| e¢=@®0F)
is bounded on any compact subset of E. q.e.d.

Remark 2.4. A straightforward consequence of Theorem 2.3 is the following: for any com-
plete and connected minimal surface ¥ C H? x R with finite total curvature, and for any
po € X, there exists a constant ¢4 = ¢4(po, 2) such that for any p € ¥ we have

|Kx(p)| < ca e~ d=(p:po)

Lemma 2.6. Let X := (F,h): U — E C H? x R be a complete minimal end with finite total
curvature. Let m € N, be the degree of the end E.

For any k € {0,...,2m — 1}, there exists a compact subset K C C such that the restricted
minimal and conformal immersion X = (F,h) : Qx \ K — H? x R is an embedding.

Proof. To simplify the notations we give the proof for k = 1.
Recall that the immersion X is proper, Theorem 2.2, and that h = 2Im W. Therefore we
deduce from Lemma 2.3 and Proposition 2.3 that there exists a real number C; > Cy with
the property that for any C' > C1, the level set {ImW(z) = C} (resp. {ImW(z) = —C})
in Q; consists of a complete curve L(C') (resp. L(—C)) such that the geodesic curvature of
F(L(C)) (resp. F(L(—C))) in H? is smaller than 1/4 in absolute value.
Consequently for any C satisfying C' > C4, we get that F/(L(C)) and F(L(—C)) are complete
and embedded curves in H2. We deduce from Theorem 2.1 that there exist 0, 61,62 € 0, H?,
with 6y # 61, 61 # 6, and such that

OF(L(C)) = {00,601} and  9uF(L(~C)) = {01, 05}.
Considering the height function h, we deduce that the restriction of X to the nonconnected
subset of ©; bounded by L(C;) U L(—C) is an embedding.
Let € > 0. We deduce from (the proof of) Theorem 2.1 - (2), that there exist at € L(C}),
a~ € L(—C4) and a compact arc v; C Q1, joining at and ¢~ and verifying

e ReW is constant along ~;.

e Im IV is strictly monotonous along ;.

e Denoting by L1(Cy) (resp. Li(—C1) the component of L(Cy) \ {a™} (resp. L(—C1)\
{a~}) with asymptotic direction the ray {re'm+1}, then F(Li(Cy)) remains in a -
neighborhood of F/(L1(—C1)) in H? (and also F/(L;(—C1)) remains in a e-neighborhood
of F(L1(C1))). Therefore we have 05 F (L1(C1)) = Ooc F'(L1(—C1)) = 01 (say).

e For any C' € [-C1, (], denoting by H;(C) C € the semi-complete level curve
{ImW(z) = C} Ny issue from v; and with asymptotic direction the ray {reZmLH},
then F(H,(C)) C H? remains in a e-neighborhood of both F(L1(C})) and F(Li(—C1)).

We deduce that the restriction of X to the connected component of €2; bounded by 7v; and
a part of L(C1) U L(—C4) and containing L;(C1) U L1(—C1) is an embedding.
Recall that L := {Im W (2) = Co} Ny (resp. Ly := {ImW(z) = —Cy} N ) is a complete
curve and that 0o F(LY) = {00,01} and - F (Ly ) = {61,062}
We deduce again from (the proof of) Theorem 2.1 - (2), that there exist by € Ly, by €
L(—C4), a compact arc 2 C € joining by and b] verifying

e Re W is constant along vs.

e Im W is strictly monotonous along ~s.
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e Denoting by (L )2 (resp. Lo(—Ci) the component of Ly \ {b,} (resp. L(—-Cp)\
{b7}) with asymptotic direction the ray {reimziil}, then F((Lg )2) remains in a e-
neighborhood of F(Ly(—C1)) in H? (and also F'(La(—C1)) remains in a e-neighborhood
of F((Lg)2))-

e For any C € [-C4,—C)], denoting by H2(C) C Q) the semi-complete level curve

- 27
{ImW(2) = C} Ny issue from 5 and with asymptotic direction the ray {re'm+1},
then F(Hy(C)) C H? remains in a e-neighborhood of both F((Ly )2) and F(La(—Ch)).

Since Ox F(La(—C1)) = 02 and 0o F(L1(—C1)) = 01 # 02, we may assume that the points
at,a”,b and by above are chosen so that the curves F(Li(—C1)) and F(Lg(—Ch)) are far
away from each other.

Consequently, for any C' € [—Cy, —Cy], we have F(H2(C)) N F(H1(C)) = (. We deduce that
the restriction of X to the subset of £2; bounded by (L )2, 72, a compact part of L(—C1), 11
and a part of L(C1), and containing Lo(—C1) (and Li(—C1)) is an embedding.

In the same way, there exist df € L, df € L(C}), and a compact arc 79 C € joining
dg and df, such that the restriction of X to the non bounded connected subset V7 of
with boundary 9 U~1 U~ a part of Lj U Ly and a compact part of L(Cy) U L(—C}), is an
embedding. By construction, Q1 \ V7 is a compact part of ;. q.e.d.

3. COMPLETE MINIMAL SURFACES IN H? x R WITH FINITE TOTAL CURVATURE

The aim of this section is to prove the Main Theorem stated in the Introduction. The proof
makes essential use of the geometric properties of the horizontal sections of a finite total
curvature end, that were established in Section 2.

In the following, H? x {0} will be identified with H?2.

Definition 3.1. Let X := (F,h) : U — E C H? x R be a conformal and complete minimal
annular end, where U := {|z| > 1}, and let v C H? be a geodesic.

We say that the end X (U) C H? x R is asymptotic to the vertical geodesic plane v x R if,
for any real number C with |C| large enough, E N {t = C} is a complete curve of H? x {C}
and if, for any € > 0, there exists a compact subset K C U such that the distance between
any point of X (U \ K) and v x R is smaller than ¢.

Lemma 3.1. Let X := (F,h): U — H? x R be a conformal and complete minimal annular
end asymptotic to a vertical geodesic plane. Let m € N be the degree of the end E := X (U)
with respect to the parametrization X (see Definition 2.1).

Then E is embedded (up to a compact part). Furthermore, up to a compact part, there
exists a covering map w : U — U with degree m + 1, and a conformal minimal immersion
Y : U — H? x R such that:

e X =Yom,
e Y is an embedding,
e the degree of the end E with respect to the parametrisation Y is 0.

Therefore, up to choose a new parametrization, we can assume that such an end has degree
Z€r0

Proof. We consider the open sets Q C U, k=0, --,2m+ 1, as defined in (5). With the aid
of Lemma 2.6, up to remove a compact part of U, we may assume that the restriction of X

to each € is an embedding.
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On one hand, we know that there exists C; > 0 such that for any C > Cj the level set
{h(z) = C} is composed of (m + 1) complete curves Ly(C), ..., Lyp4+1(C) with L;j(C) C Qo;,
3 =0,...,m, see Lemma 2.3.

On the other hand, since the end E is asymptotic to a vertical geodesic plane, there exists
Cy > 0 such that for any C' > Cy the intersection E N {t = C'} is composed of a complete
curve.

Consequently, for any C > C7 4+ Cs we have that
X (Lo(C)) = X(L1(C)) = -+ = X (Ls1 ().

By making vary C in |Cy + Cq, 00|, we obtain that X (), X(Q2),..., X(Qa,) agree on an
open set. We deduce with the analytic continuation principle that, up to a compact part, we
have X(Qo) = X(QQ) == X(ng)

For analogous reasons, since we have also L;(C) C Qgj41, 7 = 0,...,m, we obtain that
X () =X(Q3) == X(Qomm+1) up to a compact part.

Thus, up to remove a compact part of U and F, we can assume that X : U — F is a covering
map with degree m + 1.

For any z1,29 € U we set 21 ~ z9 if X(21) = X(z2). Then the canonical projection 7 : U —
U/~, is a covering map with degree m + 1. For any p € U/~, we set Y (p) = X(z) for any
z € U veritying 7(z) = p, by construction Y (p) does not depend on the choice of such a z.
Observe that U/~ is homeomorphic to an annulus. Since Y is a conformal and minimal
immersion with finite total curvature, we deduce that U/~ is conformally equivalent to U.
Thus we may assume that U/~= U and Y : U — E C H? x R is a complete and minimal
immersion with finite total curvature. We deduce from Lemma 2.6 that Y is an embedding.

By construction, for any C' > 0 large enough, Y~ }({t = C}) is composed of a unique and
complete curve, namely w(Lg(C)), for any k € {0,...,m + 1}. Consequently, if n € N
denotes the degree of the end E with respect to the parametrization Y, since Y1 ({t = C})
is composed of n + 1 complete and disjoint curves, we deduce that n = 0. Thus the degree of
the end E with respect to the parametrization Y is zero, this completes the proof. q.e.d.

Definition 3.2. Let v C H? be a geodesic. We say that a nonempty set S C H?> x R is a
horizontal graph with respect to the geodesic ~, if for any equidistant line 4 of v and for any
t € R, the curve 7 x {t} intersects S at most at one point.

Remark 3.1. We notice that a different notion of horizontal graph appears in [19], in order
to treat different kinds of problems about minimal surfaces in H? x R.

Proposition 3.1. Let v, and 5 be two distintc geodesics in H? with a common asymptotic
point. Then, there is no complete, connected, immersed minimal surface with finite total
curvature and two ends, one being asymptotic to y1 X R and the other asymptotic to v3 x R.

Proof. (see Figure 6). We set 071 = {0, Poo} and 95Y2 = {boo, Poo }, 80 that ps is the
common asymptotic point of v; and v3. We denote by =, the geodesic such that v is the
reflection of ~9 across 7y, we then have po, € J-71. We denote by vy the geodesic such that
0000 = { @00, boo }. Observe that vy meets v, orthogonally at some point pg € 79N~y . For any
s > 0 we denote by ps the point in the half geodesic [po, pso[ C 1 such that dgz(po,ps) = s.
For any s > 0 let v, be the geodesic orthogonal to v, at ps. We set P := v X R.

Assume by contradiction that there exists a complete and connected minimal surface > with
finite total curvature and two ends, one asymptotic to 71 X R and the other asymptotic to
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FIGURE 6

~v2 x R. By a result from A. Huber [10, Theorems 13 and 15|, such a surface is parametrized
by a Riemann surface M conformally equivalent to a compact Riemann surface M punctured
at two points z1, 20, M ~ M \ {21,22}. We denote by X = (F,h) : M — ¥ C H? x R the
minimal and conformal immersion. Thus, F' : M — H? is a harmonic map and h: M — R is
a harmonic function.

We want to show that X is a horizontal graph with respect to ~ |, afterwards we will derive
a contradiction to conclude that such a surface does not exist.

For any s > 0, we denote by P, the component of (H? x R) \ Ps containing {pp} x R and
we denote by P the other component. Thus {po} X R C s P;". For any s > 0 we set
Y, :=XNP;, X :=3XNP; and we denote by 3;* the reflection of X7 across the vertical
geodesic plane F.

For any p > 0, we denote by L}, (resp. L%) the equidistant line of v, with distance p,
intersecting 71 (resp. 72). We denote by C, the domain of H? x R bounded by (L; U L%) x R
and we set @, := (H? x R) \ C,. Thus, {asc} X R, {boo} x R C 059, for any p > 0. Since
each end of ¥ is asymptotic to one of the vertical planes v; x R, i = 1,2, for any s > 0 there
exists ps > 0, large enough, such that ¥ N Q, C P .

Following Lemma 3.1 it can be assumed that each end has degree zero with respect to a
suitable parametrization. Therefore, we deduce from Lemma 2.3 that for s > 0 small enough,
for each end E and for any real number ¢, the level set E N (H? x {¢t}) N P, has only one non
bounded component. As a consequence of Propositions 2.3 and 4.3, we have that if s > 0 is
small enough, then for any ¢ € R, the level set X7 N (H2 x {t}) is a horizontal graph with
respect to the geodesic v. Consequently, there exists s; > 0 such that ¥ is a horizontal
graph with respect to v, and X;* NEF =0 for any 0 < s < s7.

We set
I'={c>0|X;*N} =0, forany 0 < s < o}.

In order to ensure that ¥ is a horizontal graph, we must show that I = [0, +o0].
The set I is nonempty because [0, s1] C I.
We set so = supl. If s9 = +0o0 we are done. Assume that so # +o0o. By a continuity
argument we have X _* N E;Z = (), so that sy € I.
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Recall that one end of ¥ is asymptotic to 71 X R and the other end is asymptotic to 72 x R.
Moreover, from Lemma 2.3, formula (3) and Proposition 2.3, it follows that, for any ¢ > 0,
there exists to > 0 such that for any t > tg, the intersection ¥ N (H? x {t}) is composed of
two complete curves, ¢} and c, verifying

OooCt = {000, Poo }, OoCh = {boo, Do} and sutp|/-$(q)| <e i=1,2,

G

where r denotes the geodesic curvature. From Proposition 4.2 we deduce that that c! is
Cl-close to v;, i = 1,2, if ¢ is small enough. Analogously ¥ N (H? x {—t}) is composed of two
complete curves, cft and ¢y b Cl-close to v and 7o respectively.

Claim 1. There exist to > 0 and m > 0 such that X, ., N (H? x {|t| > to}) is a horizontal
graph with respect to the geodesic v1 and (337, N Z;;er) N (H? x {|t] > to}) = 0.

We set pt = ¢} N Ps,. Observe that the (nonoriented) angle between ¢ and the equidistant
line to vy, passing through p} is close to the angle between the same equidistant line and 7; at
the common point. Hence, there is o € (0,7/2) such that, if ¢y is large enough, this angle is
larger than « for any ¢ > to, and the same is true for the analogous angles defined for P, Nc},
Ps, Necyt and Ps, N ey ', Therefore, there exists 71 > 0 such that Yy OV (HZ X {[t] > to})
is a horizontal graph with respect to v, and (337, N¥5 ., ) N (H? x {|t| > to}) = 0. Then
the claim is proved.

Claim 2. There exists 12 > 0 such that X, ., N (H? x {|t| < to}) is a horizontal graph with

respect to the geodesic v1 and (X7, N3, ) N (H? x {|t] <to}) = 0.
Observe first that, at any point of ¥ N Ps,, the equidistant line to v, passing through this
point is not tangent to . Indeed, suppose that at some point p € ¥ N P;, the equidistant
line to v, passing through p is tangent to 3. Thus ¥ is orthogonal to Ps, at p and, therefore,
¥, and X, are tangent at the point p of their common boundary. Since X *NX =0, the
boundary maximum principle would imply that ¥_* = E;. This gives a contradiction, since
the asymptotic boundary of ¥ is not symmetric with respect to any vertical geodesic plane
P;.

Therefore, since (X N Ps,) N {|t| < to} is compact, there is § € (0,7/2) such that the nonori-
ented angle between the equidistant lines to v, and ¥ at any point of (3N Py, ) N{|t| < to} is
larger than 3. By a compactness argument again, there is 7o > 0 such that ¥ +n20(H2 x{|t] <

to}) is a horizontal graph and (X7, N Z;;er) N (H? x {|t| < to}) = 0. This proves the
claim.

We set n = min{n;,n2}. From Claims 1 and 2, we get that so + 7 € I. This gives a
contradiction with the maximality of so. Therefore, I = [0, +oco[ and ¥ is a horizontal graph
with respect to v, .

Now we can conclude the proof.

Let Q(F) be the quadratic Hopf differential associated to F. We know that Q(F) is holo-
morphic on M and has a pole at the ends 21,29 € M. Let us denote by my,ms € N the
degrees of the ends of ¥ with respect to the parametrization X. Therefore, one end is a pole
of order 2m + 4 of Q(F') and the other end is a pole of order 2mgy + 4 of Q(F). According
to the Riemann relation for Q(F'), we have that

Pole(Q(F)) — Zero(Q(F)) = 2x(3),



thus Zero(Q(F)) = Pole(Q(F)) — 2x(M) = 2(m1 + m2) + 8 —2x(M) > 4. Consequently,
there exists 29 € M which is a zero of Q(F). Since Q(F) = ¢(z)dz%, we deduce from (11)
that zp is a pole of w and then, the tangent plane of ¥ at X (zp) is horizontal (see formula
(10)).

Let s’ > 0 such that X (z) € Py. We get a contradiction by the boundary maximum principle
since, on one hand X" N Ej, = () (since X is a horizontal graph with respect to v, ) but on
the other hand X" and E:, are tangent at their common boundary point X (zp). q.e.d.

Proposition 3.2. Let v; and v be two distinct geodesics in H? intersecting at some point.
Let ¥ C H? x R be a complete immersed minimal surface with finite total curvature and two
ends, one being asymptotic to v1 X R and the other asymptotic to v X R.

Then we have ¥ = (y1 X R) U (y2 X R) and, consequently, ¥ has zero total curvature.

Proof. We set {w} := v1 N 2. We denote by a and 3 the two geodesics passing through w
such that the reflection of 1 across « is 72 and the reflection of v; across 8 is 2. Thus, «
intersects [ orthogonally at w (see Figure 7).

FIGURE 7. w =y N~y =0.

We choose an orientation on o and . For any s € R, we denote by ps (resp. ¢s) the point of
a (resp. ) whose signed distance to w is s, observe that gy = pg = w. Furthermore, for any
s € R, we denote by Ps (resp. Qs) the vertical geodesic plane passing through ps (resp. ¢s)
and orthogonal to the geodesic « (resp. ), note that Py = 5 x R and Qp = a x R.

We set P(;r = Us>0 Ps, By = Us>o P, QS_ = Us>0 Qs and Qa = Us>0 @s-

Assume that there exists a complete minimal surface 3 with finite total curvature and two
ends, one being asymptotic to 1 X R and the other being asymptotic to 72 x R.

Using the Alexandrov reflection principle with respect to the vertical planes Ps, s € R, we
can show, as in the proof of Proposition 3.1, that X is symmetric with respect to Py, and

that > N POJr is a horizontal graph with respect to the geodesic o and so is ¥ N F;". In the

same way, we can show that 3 is symmetric with respect to (Jg, and that 3N Qar and XNQy
are both horizontal graphs with respect to the geodesic .

We deduce that ¥ is transversal to both Py and QQg. Therefore the intersections ¥ N Py and
YN Qo are analytic sets.

Now we proceed as in the proof of [22, Theorem 3, Case 1].
We set L := PyN Qo = {w} x R. Since ¥ N P;" and ¥ N P, are horizontal graphs with

respect to a, the self intersection set S of ¥ is contained in Fy. By the same argument, we
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have S C g, so that S C L. Since an end of ¥ is asymptotic to y; X R and the other end is
asymptotic to 72 X R, we have S # (). By the analyticity of the sets ¥ N Py and ¥ N Qq, we
get that S = L. Moreover, since ¥ N PO+ and ¥ N Py are horizontal graphs with respect to
a, we deduce that ¥ N Qo = L. Analogously, ¥ N Py = L. Therefore, ¥\ L consists of four
connected components Y;, i = 1,--- ,4 with:

ElcPJﬁQg, ZQCPS_QQJ, Y3 C Py NnQ, and E4CPO_HQ8L.

Denoting by o the rotation about the vertical geodesic L with angle 7, the reflection principle
shows that o(31) = X3, so that ¥/ := ¥ UX3U L is a smooth and complete minimal surface
embedded in H? x R. Up to a change of numbering, we can assume that ¥’ is asymptotic to
1 x R. Therefore it can be shown using the Alexandrov reflection principle that ¥/ = 41 x R.
In the same way, it can be shown that s U 34 U L = 79 x R. Therefore, we get that
Y = (71 x R) U (72 x R), which concludes the proof. q.e.d.

Now we can restate the Main Theorem, announced in the Introduction, in the following way.

Theorem 3.1. Let ¥ be a complete, connected minimal surface immersed in H? x R with
finite nonzero total curvature and two ends. Assume that each end is asymptotic to a vertical
geodesic plane v; X R, where each v;, i = 1,2, is a geodesic.

Then, we have y1Ny2 = 0, Osoy1 NOsoy2 = 0. Furthermore, X is a properly embedded annulus
and is a horizontal catenoid.

In order to prove Theorem 3.1 we fix some notations and prove some lemmas.

Notations. Let 1,7 C H? be two geodesics satisfying
1Ny =0 and Owxy1NOxy2 =0. (18)

We denote by 79 C H? the geodesic orthogonal to both v, and 75. We set p1 = v, Ny and
P2 = 2 Nyo. We call pg the middle point of the segment of vg between p; and ps. We denote
by I' € H? the geodesic passing through py and orthogonal to g (see Figure 8).

FIGURE 8

In the following lemmas the surface 3 satisfies the hypothesis of Theorem 3.1.
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Lemma 3.2. Suppose that v1 and 7y are geodesics satisfying the properties in (18). Then,
the surface ¥ is symmetric with respect to the vertical geodesic plane v9 x R and the closure
of each component of ¥\ (7o X R) is a horizontal graph with respect to I.

Proof. We choose an orientation on I'. For any s € R, we denote by ¢ the unique point in
I' whose signed distance to pg is s, thus go = po. For any s € R, we denote by 7, C H? the
geodesic orthogonal to I and passing through ¢s. Observe that 79 = .

For any s € R, we set Qs := 75 X R. Moreover, for any s # 0, we denote by Q the component
of (H? x R) \ Qs containing {po} x R and by Q; the other component. For any s # 0 we set
Y, =XNQ;, X :=XNQ; and we denote by 3, * the reflection of X7 across the vertical
geodesic plane ;.

As in the proof of Proposition 3.1 (Claim 1 and Claim 2), we can show that for any s # 0,
¥, is a horizontal graph with respect to I' and that X;* N3+ = 0.

Then, passing to the limit for s — 0 from both sides, we conclude that ¥ is symmetric with
respect to 79 X R and that each component of ¥\ (79 x R) is a horizontal graph with respect
to I g.e.d.

Remark 3.2. It follows from the proof of Lemma 3.2 that the tangent plane at any point of
Y\ (70 X R) is never horizontal.

Lemma 3.3. Suppose that v1 and 7y, are geodesics satisfying the properties in (18). Then,
the surface ¥ is symmetric with respect to the vertical geodesic plane I' X R and the closure
of each component of X\ (I' x R) is a horizontal graph with respect to vy. Furthermore ¥ is
embedded.

Proof. Let d > 0 be the distance between py and p;, thus we have d = dg2(po,p1) =
dg2(po, p2). For any s € [0,d] we denote by ps € 7o the unique point between py and
p1, whose distance to pg is s. Thus pg = pg and pg = p1.

We denote by I'y € H? the geodesic orthogonal to 7 and passing through pg, thus I'y = ;.
We set P, := I'y x R. For any s € [0,d] we denote by P; the connected component of
(H? x R) \ Ps containing {p1} x R and by P;" the other component. We set ¥; := X N P,
and X7 := ¥ N P, Furthermore, ¥;* denotes the reflection of X across Ps. We give to the
geodesic g the orientation going from p; to ps.

We will say that X;* < 31 if ¥;* remains under X} with respect to the orientation of 7.
As in the proof of Proposition 3.1, it can be shown that there exists € > 0 such that for any

s € [d—e,d[, X7 is a horizontal graph with respect to 9. Therefore, for any s € [d —e/2,d|,
we have X7* < XF.
We set

I={se[0,d|Z* <X} for any r €]d — s,d[}.
We have I # (), since €/2 € I. We set sg := sup I, we want to prove that sy = d.

Assume that sp # d. By continuity we get that ¥ * < Z;’B. On the other hand we have
Y #F Ejo, since the asymptotic boundaries of those two parts are not equal. Observe that
0¥ " = X N Py, is compact and the boundary maximum principle shows that 3 is never
orthogonal to Py, along their intersection. We deduce that there exists €; > 0 such that
d_so—e, 18 a horizontal graph with respect to yo and X < X for any r €]d — so — £1, d],
which gives a contradiction with the maximality of syp. We deduce that sy = d and then
— +
<Xy
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Using the same arguments coming from the other side, that is from py to pg, we can show that
Y¢* > ;. We conclude that ¥ * = ¥, that is ¥ is symmetric with respect to Py =T' x R,
as desired.

The proof that ¥ is embedded can be established in the same way as in [22, Theorem 2].
q.e.d.

Remark 3.3. In [12, Proposition 2.4], F. Martin, R. Mazzeo and M. Rodriguez have given
an independent proof of Lemmas 3.2 and 3.3.

Lemma 3.4. Suppose that 1 and v2 are geodesic satisfying the properties in (18). Then, the
surface ¥ is symmetric with respect to some slice H? x {to} and the closure each component
of 2\ (H? x {to}) is a vertical graph.

Proof. From Lemma 3.3 we know that: 3 is embedded, each component of ¥\ (I' x R) is
a horizontal graph with respect to 79 and that ¥ is symmetric with respect to the geodesic
vertical plane I' x R.

We first deduce that ¥ is transversal to I' x R, then that X is actually orthogonal to I' x R.
Therefore the intersection C := ¥ N (I" x R) is composed of a finite number of Jordan curves.
Since each component of ¥\ (79 x R) is a horizontal graph with respect to I' (see Lemma
3.2), we get that the interiors of the Jordan curves of C are pairwise disjoint.

For i = 1,2, we call ¥; the component of 3\ (I x R) which is asymptotic to the vertical plane
7; x R. For any t € R, we set II; := H? x {t}. Let t; € R be such that 9%, N II; = ) for any
t > t; and 931 NI, # 0. Such a t; exists since 9%; = C is compact.

For any t € R we set: II;7 := H? x {s | s > t}, I} := H? x {s | s < t}, Eit:ElﬁH?',
Y1, =YX NI and we denote by Zﬁ the reflection of Zit across II;. Moreover, Eff > X

means that Eff stays above X7 .

Claim 1. For any t > t1 we have Ei: > X, Consequently, Eitl s a vertical graph.

Indeed, for ¢ > t; we know from Lemma 3.3 that the intersection ¥; NII; is a complete curve,
that is a horizontal graph with respect to 79 and whose asymptotic boundary is 971 X {t}.
For any s € R we denote by T the horizontal translation along g of signed length s in the
direction going from ps to p;.

Suppose that ETI does not remain above Eit. Then, for € > 0 small enough, the translated
TE(ZfZ) does not remain above X ,. Observe that 8OOT€(ZEK) N 0x¥7; = (0. Moreover,
6Ts(2f:) NXi, = (), for any s > 0, since X1 is a horizontal graph with respect to ~vy. We
deduce that, for ¢ > 0 small enough, the part of X7, which remains above TE(EII ) has

compact closure. Therefore, there exists s; > 0 such that T S(Ef: )N Eit = () for any s > s1
and Ty, (X1F) N X7, # 0. This means that Ty, (X]7) and X, are tangent at some point and
one surface remains in one side of the other, which gives a contradiction with the maximum
principle and proves the claim.

Claim 2. For any € > 0 small enough, we have ZI;—E > El,trS'

For any s € R, let T be the horizontal translation defined as in Claim 1. Since the closure
of ¥ is a horizontal graph with respect to vy, we have Ts (C) N 31 = @ for any s > 0.
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Furthermore, since the whole surface ¥ is symmetric with respect to I' x R we have that
Ts (C)NEy =0 for any s # 0. Let D C I" x R be the bounded subset with boundary C. Since
¥ is connected, we have Ts(D) N'Y = ) for any s # 0.

Let € > 0 such that C;/*_ > C; __, where Cttfa etc. are obviously defined. Then, using an
argument, analogous to that of Claim 1, considering translations T, it can be shown that
Zi’:;_g > 21—,t1—a' This proves Claim 2.

Now we can conclude the proof.

Since C is composed of a finite number of Jordan curves, there exists a component, say C,
and a real number ty < t; satisfying fo > Xy, for any t > o, such that at least one of the
following properties occurs:

(1) C’;g* > Cy, and C;g* is tangent to C;  at some interior point.
(2) C’;g* > Cy, and C;g* and O, are tangent along their common boundary.

Recall that ¥ is orthogonal to I' x R along C, since C = XN (I" x R) and ¥ is symmetric with
respect to I' x R.

Thus, in the first case, applying the boundary maximum principle to the surfaces Effa and
Y1 4,» We conclude that Effo = ¥, and then Ejo* =X .

In the second case we apply the boundary maximum principle to the surfaces Z;;* and X
in order to infer E;g* =Y

Consequently, the surface X is symmetric with respect to the horizontal plane IT;, = H? x {t¢},
as desired. q.e.d.

Remark 3.4. It follows from the proof of Lemma 3.4 that the tangent plane at any point of
¥\ (H? x {to}) is never vertical.

Proof of Theorem 3.1. The maximum principle shows that v, # 79, since 3 is not a vertical
plane. We know from Proposition 3.1 that Osy1 N Osey2 = @ and from Proposition 3.2 that
v1 N2 = 0. Thus, the geodesics v and 9 satisfy the properties (18). Therefore we deduce
from Lemma 3.3 that ¥ is embedded.

Furthermore, we deduce from Lemmas 3.2, 3.3 and 3.4 that 3 is symmetric with respect to
the vertical planes 79 x R and I' x R and also with respect to the slice ITg := H? x {0} (up
to a vertical translation).

We call Sy the reflection across the slice Iy, St the reflection across the vertical plane I' x R
and S, the reflection across the vertical plane v x R.

For any real number s # 0, we denote by I'y the equidistant line to I' with distance equal to
|s|, which intersects vy between py and p; (resp. po and pg) if s > 0 (resp. s < 0). We set
I'g=T. For any s € R, we set Ps :=1'g x R.

We define 7 := ¥ N (H2x]0, +00[). Since ©F is a vertical graph, the tangent plane is never
vertical along 1. Consequently X intersects any P, transversally. Since each component
of X1\ (70 X R) is a horizontal graph with respect to I and since ¥ is symmetric with respect
to Iy and v9 X R, we deduce that for any s € R the intersection ¥ N Ps consists of a Jordan
curve. Therefore, ¥ is homeomorphic to an annulus. Since ¥ has finite total curvature, we
get that ¥ is conformally parametrized by C* := C\ {0}.
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Let X : C* — ¥ C H? x R be a conformal parametrization of ¥. Since ¥ is embedded we
may assume that X is an embedding. We deduce from Lemma 3.1 that each end of ¥ has
degree zero.

The symmetry St corresponds to a anticonformal diffeomorphism sp: CU {oco} — C U {oo}
satisfying sp(0) = oo and sp(oco) = 0. Since the set of fixed points of Sr in ¥ is a Jordan
curve, the set of fixed points of sr is a circle ¢p. Up to a conformal change of coordinates, we
can assume that cp C C is the unit circle centered at the origin. Thus, we get sp(z) = 1/Z
for any z € C*.

Then, we denote by s, : CU{oco} — CU{oo} the anticonformal diffeomorphism corresponding
to S,,. The set of fixed points of s, in C* is a straight line L., passing to and punctured at
the origin. Up to a rotation we can assume that L, = {Rez = 0}. Thus, we have s,,(z) = —%
for any z € C.

At last, let us call sp: CU{oo} — CU {oo} the anticonformal diffeomorphism corresponding
to Sp. The set of fixed points of sg in C* is a straight line L passing and punctured at the
origin. Since we have (Sp0.S,,) 0 (SpoSy,) = Id on X, we must have (sg05,,)0(s9058,,) = Id
on C*. Thus, L must be orthogonal to L, and we get L = {Imz = 0}. Then, we have
s0(z) = Z for any z € C.

We call P the component of (H? xR)\ (I' xR) containing v; x R and we set 5+ := STN R
Finally, we call ¥ any of the two components of X7\ (79 x R). Thus, we recover the whole
surface X by applying the symmetries So, Sr and S, to the closure of ¥y.

We can assume that ¥ is parametrized by the subset

Up:={z€C]|l|z] >1, Rez <0, Imz > 0}.

Since Xy is simply connected, we can consider its conjugate ¥ which is a minimal surface in
H? x R uniquely defined up to an ambient isometry.

From now on, for any object = relative to Xy we denote by z* the corresponding object
relative to the conjugate surface ¥5. Thus, X* := (F*,h*) : Uy — X5 C H? x R is a
conformal parametrization of 2.

Observe that the boundary of 3 is composed of three arcs:

(1) A semi-complete curve by C (79 X R) with boundary point g.
(2) A compact arc by C (I' x R) with boundary ¢ and g.
(3) A semi-complete curve by C IIy with boundary point q.

In order to visualize the following discussion we consider the model of the unit disk for H?
(see Figure 9).

Up to an isometry we can assume that ¢* = 0 € H?.

Since b; is contained in a vertical plane, its conjugate b] must be a horizontal half-geodesic
issue from 0 (see [4, end of Section 4.1]). We can assume that 0,0} = {i}.

Moreover, since b is contained in a vertical plane, its conjugate b5 must be a compact geodesic
arc orthogonal to b7 with endpoints ¢* and 0. Finally, since b3 is contained in a horizontal
plane, its conjugate b5 must be a vertical half-geodesic issue from ¢*. We can assume that
b =q¢* x {t > 0}.

We denote by C' C H? the geodesic passing through ¢*, having i in its asymptotic boundary
and we denote by Cp the half-geodesic of C issue from ¢* verifying 0,,Co = {i} We call D
the domain of H? bounded by b, b5 and Cy such that 9,.D = {i}.

In order to prove that ¥ is a horizontal catenoid, it is enough to prove that X is a vertical

graph over D, with infinite data on Cjp and zero data on the two sides b} and b3 (see [17]).
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FIGURE 9

We call o the reflection in H? x R across the vertical geodesic containing b3.
Since ¥ is parametrized by Uy, the interior of fé Uo(X) is parametrized by

ﬁozz{zEC\|z\>1, Rez < 0}.

We recall that ¢* = —¢, h* = —2Re W, since h = 2Im W and h* is the harmonic conjugate
of h. Thus W* = —iW. We may suppose that h* = 0 on b] U b5. We are able to study the
behavior of F* and h* on (,70 in the same way as we did for ' and h in Section 2. Recall that
m = 0 for the end of ¥ parametrized by {|z| > 1}.

Since the interior of Yo U Sp(Xg) is a horizontal graph with respect to I', we get that the
tangent plane along it is never horizontal. Thus we get ¢ % 0 on Uy, and since (h.)? = —9,
we get also that h, # 0 on (70. Therefore h is strictly monotonous along any level curve of
h*. Also, since h =0on L™ := {Imz =0} N ﬁg, we get that h* is strictly monotonous and
unbounded along L.

We deduce that for any p > 0, the level set {h* = u} is composed of a unique complete curve
L, C ﬁoz a part of L, has the ray {ri, » > 0} as asymptotic direction and the other part
has the ray {ri, » < 0} as asymptotic direction. Furthermore L, intersects L™ at a unique
point. We deduce also that for any u < 0, the level set {h* = u} is empty.

Since h is strictly monotonous along any curve L,, we deduce that W™ is one-to-one on [70.
The results established in Theorem 2.1 yields that the curves F*(L,) in H? converge to the
geodesic C' when p — +00. We deduce that 9..X¢ C {i} x R.

Let us call B; the geodesic containing b}, ¢ = 1, 2.

Claim 1. We have £ C D x R.
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By construction, B; and Bs meet orthogonally at the origin and Bs is the geodesic with
asymptotic points (—1,0), (1,0). For s > 0, we call Q; C H? x R the vertical plane orthogonal
to By at (s,0) and we call Q5 the component of (H? x R)\ Qs which does not contain D x R.
Recall that 00X§ C {i} x R. Moreover, if (z,) is a sequence in Uy such that h*(z,) = +oo,
then we have dpp (F*(zn), C’) — 0. Consequently, for any s > 0, the intersection ¥§ N Qy is
either empty or have compact closure. Assume the latter is true. In this case, we find s such
that XN Q5 = 0. Then, we start to decrease s. By the maximum principle, we can decrease
s till 0 and obtain that ¥ N Q; = 0 for any s > 0. Therefore, ¥ remains in the component
of (H? x R) \ (B; x R) containing D x R.

By the same reasoning as above we can prove that X remains in the component of (H? x
R) \ (B2 x R) containing D x R and also X} remains in the component of (H? x R) \ (C' x R)
containing D x R. We conclude that 35 C D x R.

Claim 2. We have F*(Uy) C D. Furthermore, the map F* : Uy — D is proper.

Let Pr : H? x R — H? be the projection on the first component. Since F* = Pr o X* we
deduce from Claim 1 that F*(Up) C D.

We must prove that for any compact set K C D, (F*)~!(K) is a compact subset of Up. In
order to prove it, it is enough to show that for any sequence (z,) in (F*)7!(K), there is a
subsequence of (z,) converging in (F*)~!(K).

Since K is far from the geodesic C, the height function is bounded on K. Therefore, there
exists a constant p > 0 such that (F*)~}(K) remains in the subset of Uy bounded by the
level set L, and the half-axis {iy | y > 0}. Let (z,) be a sequence in (F*)7!(K). Suppose
that (2,,) is not bounded. Therefore, there exists a subsequence (z,(,)) of (z,) such that
|2p(m)| = +00. As in the proof of Theorem 2.1 (Assertion 2), we can show that there exists
a sequence (iyy) such that y, — +oo and dyz (F*(2p(n)), F*(iyn)) — 0. But this is absurd
since we have, by construction, F*(z,(,)) € K and F*(iy,) — i € sH?.

Thus (z,) is a bounded sequence of Uy. Therefore, since Uy C C, we can extract a subsequence
(2p(n)) converging to some point z € Ug. We want to show that z € (F*)~!(K).

Observe that F™* maps the boundary of Uy onto the boundary of D, and moreover dy2 (K ) OD) >
0, since K is a compact subset of D. Therefore, we deduce that z € Uy. Since F* is continu-
ous and K is compact, we obtain F*(z) € K, from which we get z € (F*)~!(K). Therefore
F*: Uy — D is a proper map, as desired.

Claim 3. We have F*(Uy) =D and Xj is a vertical graph over D.

We know from Claim 2 that F*(Uy) C D. Therefore, it suffices to prove that F*(Up) is a

closed and open subset of D.

It is known that nj = £ng (see [8, Remark 9]). On the other hand, since ¥, is a vertical

graph, we have nz # 0 along Xg. We deduce that the tangent plane is never vertical along

Y5 and that the map F* : Uy — D C H? is a local smooth diffeomorphism. Then, F* is an

open map. As Uy is open, we get that F*(Up) is an open subset of D.

Now we prove that F*(Up) is also a closed subset of D.

Let (g,) be a sequence in F*(Uy) converging to some point ¢ € D. We want to prove that

q€eF *(Uo)

We set K := {q} U{gn, n € N}, then K is a compact subset of D. From Claim 2 we deduce

that (F*)~}(K) is a compact subset of Uy. For any n € N there exists z, € (F*)"}(K)

such that F*(z,) = q,. Therefore, we can extract a subsequence (zw(n)) which converges to
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some z € (F*)"}(K) C Up. Since F* is continuous we obtain F*(zy,)) — F*(z), that is
Qp(n)y — F(2). We deduce that ¢ = F*(2) and then q € F*(Uy), therefore F*(Up) is a closed
subset of D. Consequently we get F*(Uy) = D.

Hence, the map F* : Uy — D is a local smooth diffeomorphism. Moreover F* is proper and
surjective. We deduce that it is a covering map. Since D is connected and simply connected
and Uy is connected, we deduce that F* is a global diffeomorphism from Uy onto D, that is
¥ is a vertical graph over D, as desired.

Since hx* is strictly monotonous and non bounded along L™, we obtain that Y is a vertical
graph over D with infinite data on Cy and zero data on b] and b3, this concludes the proof.
q.e.d.

4. APPENDIX. BASIC GEOMETRY IN H?2

In this section, we establish some background material about C?-curves in H? whose absolute
value of geodesic curvature is strictly smaller than one. We observe that the condition on the
curvature implies that such a curve is embedded, see for example [21, Proposition 2.6.32].

Proposition 4.1. Let ¢ : [0, +oo] — H? be a regular C*-curve with infinite length. Let x(t)
be the geodesic curvature of ¢ at the point c(t). Assume that |k(c(t))| < k < 1, for anyt > 0,
and that c is one-to-one.

Then, the curve C := ¢([0, +oo[) has no limit point in H?, and the asymptotic boundary of C
consists of only one point {poc} = 05C.

Proof. 1If k =0 then C' is a part of a geodesic and the assertions are obvious. Therefore we
assume that 0 < k < 1.

Claim 1. C has no limit point in H2.

Indeed, assume by contradiction that there exists p € H? and a sequence of positive numbers
(tn) such that ¢, — 400 and py, := ¢(t,,) = p when n — oo.
Assume first that there exists a point ¢ € C, ¢ = c(tp) for some ty > 0, such that C is
orthogonal at ¢ to the geodesic passing through ¢ and p. Let H, C H? be the horocycle
through ¢, tangent to the curve C, such that p belongs to the convex component of H? \ H,.
Recall that |x(c(t))| < 1 and the absolute value of the curvature of the horocycles is 1. Thus,
the maximum principle for curves, see [21, Theorem 2.6.27], ensures that Cy := ¢([to, +00[)
belongs to the non convex component of H? \ H, and then, p cannot not be in the closure of
C.
Hence we infer that the function ¢ — dg2(c(t),p) is strictly decreasing.
For ¢ > 0 we denote by a(t) € [0,n], the nonoriented angle at c(t) between the tangent
vector ¢/(t) and the geodesic segment [c(t),p]. Since the function t — dyz(c(t),p) is strictly
decreasing we have «a(t) € [0,7/2] for any ¢ > 0.
Actually, we have a(t) — 0 as t — +oo. Indeed, assume by contradiction that there exist
a sequence (t,), and a real number oy €]0,7/2[, such that ¢, — +oo and «(t,) — ap. For
any n € N, we denote by v, the geodesic of H? through c(t,) tangent to C. Let us denote
by H, C H? n € N, the horocycle through c(t,) tangent to the curve C and contained in
the same component of H? \ v, as p. Therefore, for n large enough, the point c(t,) is very
close to p and the angle a(t) is very close to a. This would imply, for n large enough, that p
belongs to the convex component of H? \ H, and this would give again a contradiction with
the maximum principle for curves. Therefore we get that a(t) — 0 as t — +oo.
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To conclude the argument, we choose for H? the model of the unit disk equipped with the
metric gp = A%(2) |dz|?, where A(z) = 2/(1—|z|?). We can assume that p = 0 and that C is
parametrized by arclength.

In polar coordinates we have c(t) = (r(t) cos8(t),r(t)sinf(t)) where r(t) =|c(t)] > 0 and
0(t) € R. We set 0, := (cos#,sinf). Since a(t) — 0, we have

(d(t); Or)p
’87“’]]])

where the scalar product and the norm are considered with respect to the metric gp. From
which we get that A(c(¢))r’(t) — —1. Using that ¢(t) — p = 0 for ¢ — oo, we obtain
A(c(t)) — 2 for t — oo, therefore r/(t) — —1/2 and then r(t) - —o0 as t — +oo. This is a
contradiction and this concludes the proof of the claim.

— -1,

Since C' has infinite length and has no limit point in H?, we deduce that its asymptotic
boundary is not empty. Let po € J5C be an asymptotic point of C.

Claim 2. p., is the unique asymptotic point of C.

Let I' C H? be a complete curve with constant curvature k such that ps, & Ol and peo
belongs to the asymptotic boundary of the convex component of H? \ T

Let v C H? be a geodesic intersecting I' such that ps, € Osy. For any s € R, let 'y be the
translated copy of I" along v at distance |s|, towards ps if s > 0, and in the opposite direction
otherwise. We denote by I'f the convex component of H? \ I'. Thus, we have 'y = I and
Poo € O I's for any s > 0. Observe that Ng>00-0'F = {poo}-

If we assume that for any s > 0, there exists ts > 0 such that c([ts, +oo[) C T's, then we
deduce that po, is the unique asymptotic point of C, as desired. Therefore, we are left with
the proof of the assumption above.

Suppose by contradiction that there exists > 0 such that for any ¢ > 0 the curve ¢([t, +o0])

is not entirely contained in I';". Therefore, there is an arc C; C C such that 9C; C I, and
C1 NI} = 0, that is C; stays outside I',)". Note that C; is a compact arc with boundary
on I'y,. Considering the curves 'y, for s going from r to —oo, we get a real number p < r
such that C; C F;r and C7 and I', are tangent at some interior point of C. This gives a
contradiction by the maximum principle, keeping in mind the hypothesis about the curvature
of C and ', and the fact that Cy belongs to the closure of the convex component of H? \ T',,.
This concludes the proof . g.e.d.

Definition 4.1. (1) Let (p,) be a sequence in H? converging to some point p € H2. Let
v € T,H? and v, € T, H? be non zero vectors. Assuming that p, # p, we denote by
¢, the geodesic passing through p and p,, and by T;, the translation along ¢, such
that T,,(p) = pn. If p,, = p, we set T;, = Id. Let a, € [0, 7] be the non-oriented angle
between v,, and T}, (v).

We say that the sequence (vy,) converges to v (denoted shortly by v, — v) if a;, — 0
and |vp gz = |v|mg2.
(2) Let v be a geodesic in H? and (7,,) be a sequence of complete and regular C'-curves
in H2. We say that the sequence (,) converges to ~y in the C' topology if:
(a) For any € > 0, there is ng € N such that for any n > ng the curve =, stays in the
region of H? bounded by the two equidistant lines of v with distance e from .
32



(b) Let p € «y, and let (p,), pn € Y, be any sequence converging to p. Let v, € T), vn
be a unit tangent vector of ,, at p,,. If the sequence v,, converges to a unit vector
v E TPHQ, then v € Ty, that is v is tangent to «y at p.

Proposition 4.2. Let v C H? be a geodesic . Let () be a sequence of complete and reqular
C?-curves such that:

® OooYn = Oy for any n € N.
o sup,c., {|ky, (@)} — 0, where K, (q) is the geodesic curvature of ~, at point

q € Yn-
Then, the sequence (7,) converges to v in the C topology.

Proof. Let us prove (2a) of Definition 4.1.
Let € > 0 and let ng € N such that for any n > ng we have

tanhe > sup {|x,(q)|}-
qEYn
Denote by L! and L2 the two equidistant lines of v with distance ¢ from . It suffices to
show that, for any n > ng, the curve 7, belongs to the convex component of both H? \ L!
and H? \ L2. We prove that fact for L. := L!. The proof for L? is analogous.

Let 7' be any geodesic of H? different from =, intersecting 7. Let p., € O H? be the
asymptotic point of 4" which stays in the asymptotic boundary of the non convex component
of H?\ L.. Consider the translations along +', towards p’_. Assume by contradiction that for
any ng there exists n > ng such that v, does not belong to the convex component of H?\ L..
There exists a translated copy L. of L. such that:

e [ intersects the curve 7, at one point g,.
e L and 7, are tangent at gy.
e 7, belongs to the closure of the convex component of H? \ L..

Since the geodesic curvature of L. is tanhe (with respect to the normal direction pointing
towards the convex component of H? \ L.) and since tanhe > SUP,er, {|K+,(q)|}, we obtain
a contradiction with the maximum principle. This completes the proof of (2a).

Now, we prove (2b) of Definition 4.1.

By contradiction, assume that the unit vector v € T, sz is not tangent to .

Let € > 0 and let L C H? be one of the two complete curves passing through p, tangent to

v whose absolute value of the geodesic curvature is tanhe. Since v is not tangent to =, if €

is small enough, then the curve L separates the two points of the asymptotic boundary of ~,

Say Poo and ¢uo.

As in the Definition 4.1, we denote by ¢, the geodesic passing through p and p,. Let T,

be the hyperbolic translation along ¢, such that T,,(p) = p,. Let R, be the rotation in H?

around p, such that R, (7,(v)) = v,. Therefore, L, := (R, o T,)(L) is a complete curve

through p,, tangent to -, at p,, with constant (absolute value) curvature equal to tanhe. If

n is large enough then the curve L,, separates p., and ¢, since this is true for L.

Observe that, if n is large enough, we have sup,c.,, {]/i%(q)|} < tanhe. Consequently, using

the maximum principle for curves in the same way as before, we can show that -, entirely

belongs to the closure of one of the two components of H2\ L,,. But this gives a contradiction

with the assumption that OseYn = sy = {Poo, ¢oo }- We conclude that v is tangent to -y, as

desired. q.e.d.
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Remark 4.1. We can extend Definition 4.1 to any dimensional hyperbolic space H", n > 2.
Moreover, we can prove in the same way as in Proposition 4.2, that if II C H" is a geodesic
hyperplane and if (II,,) is a sequence of complete and regular C?-hypersurfaces of H" such
that 0Il, = Ooll for any n and sup,en, {|Hn(q)|} — 0, where Hy(q) denotes the mean
curvature of II,, at ¢, then the sequence (II,,) converges C! to II.

Proposition 4.3. Let v C H? be a geodesic and let poo € OsoH? such that pes € Ose1-
For any p > 0, let L, be the equidistant line to v1 whose distance to 1 1s p, such that ps
belongs to the asymptotic boundary of the non convex component of H? \ L,.
Let 0 < k < 1 and let c : [0,00] — H? be a reqular C%-curve such that 0sc(]0,00]) = {poot
and such that |k(c(t))| < k for any t > 0. Set py = max{dy2 (c(0),71), tanh ™! (k)}.
Then, for any p > po, one has the following facts.
(1) The equidistant line L, cuts the curve c([0,00[) at a unique point. Therefore, there
exists to > 0 such that the curve c([to, o0|) is a horizontal graph with respect to ;.
(2) The equidistant line L, is transversal to ¢([0, 0o]).

Proof. Let p > po and let C' = c([O,oo[). Since 0xC' = pwo, the equidistant line L, must
intersect the curve C' at least at one point. Assume by contradiction that L, cut C in at
least two points. By construction, c(0) belongs to the convex component of H? \ L,. Let
p1 € L, N C be the first intersection point from ¢(0). The boundary maximum principle for
curves shows that the curves L, and C are not tangent at p;. Let po € L, N C be the first
intersection point after p;. Thus, the whole arc of C' between p; and po belongs to the non
convex component of H? \ L,. Now we obtain a contradiction with the maximum principle
in the following way.

Let p', € OxH? be a point in the asymptotic boundary of the convex component of H? \
L, Let~yC H? be the geodesic such that dsy = {Poo, P’ }. Considering the hyperbolic
translations along v towards p.,, we obtain a translated copy L; of L, such that:

° L;, intersects the arc of C' between p; and ps at one point q.

° L;) and the arc of C' between p; and po are tangent at q.

e The arc of C between p; and ps belongs to the closure of the convex component of

2 /
H=\ L,

Since the geodesic curvature of L’p is tanh p (with respect to the normal direction pointing
towards the convex component of H?\ L)) and since tanh p > k > sup,cc{|x(C)|}, we obtain
a contradiction with the maximum principle. So Assertion (1) is proved.

Now we prove Assertion (2).

Suppose, by contradiction, that for some p > pg, the equidistant line L, is tangent to the
curve C at some point p;. Recall that the curvature of L, is strictly greater, in absolute
value, than the curvature of C'. We deduce from the maximum principle that an open arc of
C, containing p;, remains in the non convex component of H? \ L,.

We set C7 = c(]po,oo[). Then, the first part of the proof shows that the curve Cy \ {p1}
remains in the non convex component of H? \ L,. Therefore, for € > 0 small enough, the
equidistant line L, . intersects the curve C' at least at two different points near p;, giving a
contradiction with assertion (1). q.e.d.
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