Minimal graphs in $\mathbb{H}^n \times \mathbb{R}$ and \mathbb{R}^{n+1}

Ricardo Sá Earp

Pontifícia Universidade Católica do Rio de Janeiro

Joint work with Eric Toubiana, Univ. Paris VII

Universidade... 2010
Our goal:
Our goal:

We consider **vertical graphs** in $\mathbb{H}^n \times \mathbb{R}$. That is a set $G = \{(x, u(x)) \in \mathbb{H}^n \times \mathbb{R}, x \in \Omega\}$, where $\Omega \subset \mathbb{H}^n \times \{0\}$ is a domain. We call $t = u(x)$ the **height function**.
Our goal:
We consider vertical graphs in $\mathbb{H}^n \times \mathbb{R}$. That is a set
$G = \{(x, u(x)) \in \mathbb{H}^n \times \mathbb{R}, x \in \Omega\}$, where $\Omega \subset \mathbb{H}^n \times \{0\}$ is a domain. We call $t = u(x)$ the height function. The minimal equation is given by

$$\mathcal{M}(u) := \text{div}_{\mathbb{H}} \left(\frac{\nabla_{\mathbb{H}} u}{W_{\mathbb{H}} u} \right) = 0$$
Our goal:

We consider vertical graphs in $\mathbb{H}^n \times R$. That is a set $G = \{(x, u(x)) \in \mathbb{H}^n \times R, x \in \Omega\}$, where $\Omega \subset \mathbb{H}^n \times \{0\}$ is a domain. We call $t = u(x)$ the height function. The minimal equation is given by

$$\mathcal{M}(u) := \div_{\mathbb{H}} \left(\frac{\nabla_{\mathbb{H}} u}{W_{\mathbb{H}} u} \right) = 0$$

Let us consider the upper half-space model of hyperbolic space: $\mathbb{H}^n = \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_n > 0\}$. Then the height function u satisfies the following equation

$$\sum_{i=1}^{n} \left(1 + x_n^2 \left(u_{x_1}^2 + \cdots + \widehat{u_{x_i}^2} + \cdots + u_{x_n}^2 \right) \right) u_{x_i x_i}$$

$$+ \frac{(2 - n) \left(1 + x_n^2 \left(u_{x_1}^2 + \cdots + u_{x_n}^2 \right) \right)}{x_n} u_{x_n} - 2 x_n^2 \sum_{i < k} u_{x_i} u_{x_k} u_{x_i x_k}$$

$$- x_n u_{x_n} \left(u_{x_1}^2 + \cdots + u_{x_n}^2 \right) = 0 \quad \text{(Minimal equation)}$$
Our goal:

We consider vertical graphs in $\mathbb{H}^n \times \mathbb{R}$. That is a set

$G = \{(x, u(x)) \in \mathbb{H}^n \times \mathbb{R}, x \in \Omega\}$, where $\Omega \subset \mathbb{H}^n \times \{0\}$ is a domain. We call $t = u(x)$ the height function. The minimal equation is given by

$$M(u) := \text{div}_H \left(\frac{\nabla_H u}{W_H u} \right) = 0$$

Let us consider the upper half-space model of hyperbolic space:

$\mathbb{H}^n = \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_n > 0\}$. Then the height function u satisfies the following equation

$$\sum_{i=1}^{n} \left(1 + x_n^2 (u_{x_1}^2 + \cdots + \hat{u}_{x_i}^2 + \cdots + u_{x_n}^2) \right) u_{x_i x_i}$$

$$+ \frac{(2 - n)(1 + x_n^2 (u_{x_1}^2 + \cdots + u_{x_n}^2))}{x_n} u_x - 2x_n^2 \sum_{i<k} u_x u_{x_k} u_{x_i x_k}$$

$$- x_n u_{x_n} (u_{x_1}^2 + \cdots + u_{x_n}^2) = 0 \quad \text{(Minimal equation)}$$

We wish to provide geometric barriers for the Dirichlet problem.
Minimal models in $\mathbb{H}^n \times \mathbb{R}$ (joint work with P. Bérard ($n \geq 3$))
Minimal models in $\mathbb{H}^n \times \mathbb{R}$ (joint work with P. Bérard ($n \geq 3$))

- Catenoids in $\mathbb{H}^n \times \mathbb{R}$.
Minimal models in $\mathbb{H}^n \times \mathbb{R}$ (joint work with P. Bérard ($n \geq 3$))

- Catenoids in $\mathbb{H}^n \times \mathbb{R}$. The catenoids give geometric barriers to some exterior Dirichlet problem.
Minimal models in $\mathbb{H}^n \times \mathbb{R}$ (joint work with P. Bérard ($n \geq 3$))

- Catenoids in $\mathbb{H}^n \times \mathbb{R}$. The catenoids give geometric barriers to some exterior Dirichlet problem.

- The 1-parameter family of hypersurfaces \mathcal{M}_d, $d > 0$ invariant by hyperbolic translations.
Minimal models in $\mathbb{H}^n \times \mathbb{R}$ (joint work with P. Bérard ($n \geq 3$))

- **Catenoids in $\mathbb{H}^n \times \mathbb{R}$**. The catenoids give geometric barriers to some exterior Dirichlet problem.

- The 1-parameter family of hypersurfaces \mathcal{M}_d, $d > 0$ invariant by hyperbolic translations.
 - \mathcal{M}_d, $d < 1$. If $d < 1$ then \mathcal{M}_d is an entire (stable) vertical graph with finite vertical height.

 Its asymptotic boundary consists of a homologically non-trivial $(n - 1)$-sphere in $\partial_{\infty} \mathbb{H}^n \times \mathbb{R}$.
Minimal models in $\mathbb{H}^n \times \mathbb{R}$ (joint work with P. Bérard ($n \geq 3$))

- Catenoids in $\mathbb{H}^n \times \mathbb{R}$. The catenoids give geometric barriers to some exterior Dirichlet problem.

- The 1-parameter family of hypersurfaces \mathcal{M}_d, $d > 0$ invariant by hyperbolic translations.
 - \mathcal{M}_d, $d < 1$. If $d < 1$ then \mathcal{M}_d is an entire (stable) vertical graph with finite vertical height. Its asymptotic boundary consists of a homologically non-trivial $(n-1)$-sphere in $\partial_{\infty} \mathbb{H}^n \times \mathbb{R}$.
 - \mathcal{M}_d, $d > 1$. \mathcal{M}_d consists of the union of two symmetric vertical graphs over the exterior of an equidistant hypersurface in the slice $\mathbb{H}^n \times \{0\}$. Furthermore \mathcal{M}_d is a horizontal graph, and hence it is stable.
Minimal models in $\mathbb{H}^n \times \mathbb{R}$ (joint work with P. Bérard ($n \geq 3$))

- Catenoids in $\mathbb{H}^n \times \mathbb{R}$. The catenoids give geometric barriers to some exterior Dirichlet problem.

- The 1-parameter family of hypersurfaces \mathcal{M}_d, $d > 0$ invariant by hyperbolic translations.
 - \mathcal{M}_d, $d < 1$. If $d < 1$ then \mathcal{M}_d is an entire (stable) vertical graph with finite vertical height.
 Its asymptotic boundary consists of a homologically non-trivial $(n - 1)$-sphere in $\partial_\infty \mathbb{H}^n \times \mathbb{R}$.
 - \mathcal{M}_d, $d > 1$. \mathcal{M}_d consists of the union of two symmetric vertical graphs over the exterior of an equidistant hypersurface in the slice $\mathbb{H}^n \times \{0\}$. Furthermore \mathcal{M}_d is a horizontal graph, and hence it is stable.
 The asymptotic boundary of \mathcal{M}_d is topologically an $(n - 1)$-sphere that is homologically trivial in $\partial_\infty \mathbb{H}^n \times \mathbb{R}$. More precisely, the asymptotic boundary consists of the union of two copies of an hemisphere $S_{+}^{n-1} \times \{0\}$ of $\partial_\infty \mathbb{H}^n \times \{0\}$ in parallel slices $t = \pm T(a)$, glued with the finite cylinder $\partial S_{+}^{n-1} \times [-T(a), T(a)]$, where $d =: \cosh^{n-1}(a)$.
The vertical height of M_d, $d > 1$ is $2T(a)$. The height of the family \mathcal{M}_d is a decreasing function in d and varies from infinity (when $d \to 1$) to $\pi/(n-1)$ (when $d \to \infty$). It is therefore bounded from below by $\pi/(n-1)$, the upper bound of the heights of the family of catenoids.
The vertical height of M_d, $d > 1$ is $2T(a)$. The height of the family \mathcal{M}_d is a decreasing function in d and varies from infinity (when $d \to 1$) to $\pi/(n-1)$ (when $d \to \infty$). It is therefore bounded from below by $\pi/(n-1)$, the upper bound of the heights of the family of catenoids.

The hypersurface \mathcal{M}_d, $d > 1$, gives a barrier at a finite strictly convex point.
The vertical height of M_d, $d > 1$ is $2T(a)$. The height of the family \mathcal{M}_d is a decreasing function in d and varies from infinity (when $d \to 1$) to $\pi/(n - 1)$ (when $d \to \infty$). It is therefore bounded from below by $\pi/(n - 1)$, the upper bound of the heights of the family of catenoids.

The hypersurface \mathcal{M}_d, $d > 1$, gives a barrier at a finite strictly convex point.

\mathcal{M}_1 consists of a complete (stable, non-entire) vertical graph over a half-space in $\mathbb{H}^n \times \{0\}$, bounded by a totally geodesic hyperplane P. It takes infinite boundary value data on P and constant asymptotic boundary value data.
The vertical height of M_d, $d > 1$ is $2T(a)$. The height of the family \mathcal{M}_d is a decreasing function in d and varies from infinity (when $d \to 1$) to $\pi/(n - 1)$ (when $d \to \infty$). It is therefore bounded from below by $\pi/(n - 1)$, the upper bound of the heights of the family of catenoids.

The hypersurface \mathcal{M}_d, $d > 1$, gives a barrier at a finite strictly convex point.

\mathcal{M}_1 consists of a complete (stable, non-entire) vertical graph over a half-space in $\mathbb{H}^n \times \{0\}$, bounded by a totally geodesic hyperplane P. It takes infinite boundary value data on P and constant asymptotic boundary value data.

The asymptotic boundary of \mathcal{M}_1 is the union of a spherical cap S of $\partial_{\infty} \mathbb{H}^n \times \{c\}$ with a half-vertical cylinder over ∂S.
The vertical height of M_d, $d > 1$ is $2T(a)$. The height of the family \mathcal{M}_d is a decreasing function in d and varies from infinity (when $d \to 1$) to $\pi/(n-1)$ (when $d \to \infty$). It is therefore bounded from below by $\pi/(n-1)$, the upper bound of the heights of the family of catenoids.

The hypersurface \mathcal{M}_d, $d > 1$, gives a barrier at a finite strictly convex point.

\mathcal{M}_1 consists of a complete (stable, non-entire) vertical graph over a half-space in $\mathbb{H}^n \times \{0\}$, bounded by a totally geodesic hyperplane P. It takes infinite boundary value data on P and constant asymptotic boundary value data.

The asymptotic boundary of \mathcal{M}_1 is the union of a spherical cap S of $\partial_{\infty} \mathbb{H}^n \times \{c\}$ with a half-vertical cylinder over ∂S.

The hypersurface \mathcal{M}_1 gives a barrier at an asymptotic point.
The vertical height of M_d, $d > 1$ is $2T(a)$. The height of the family \mathcal{M}_d is a decreasing function in d and varies from infinity (when $d \to 1$) to $\pi/(n-1)$ (when $d \to \infty$). It is therefore bounded from below by $\pi/(n-1)$, the upper bound of the heights of the family of catenoids.

The hypersurface \mathcal{M}_d, $d > 1$, gives a barrier at a finite strictly convex point.

\mathcal{M}_1 consists of a complete (stable, non-entire) vertical graph over a half-space in $\mathbb{H}^n \times \{0\}$, bounded by a totally geodesic hyperplane P. It takes infinite boundary value data on P and constant asymptotic boundary value data.

The asymptotic boundary of \mathcal{M}_1 is the union of a spherical cap S of $\partial_{\infty} \mathbb{H}^n \times \{c\}$ with a half-vertical cylinder over ∂S.

The hypersurface \mathcal{M}_1 gives a barrier at an asymptotic point and it will be useful to construct a Scherk type hypersurface.
The vertical height of M_d, $d > 1$ is $2T(a)$. The height of the family \mathcal{M}_d is a decreasing function in d and varies from infinity (when $d \to 1$) to $\pi/(n - 1)$ (when $d \to \infty$). It is therefore bounded from below by $\pi/(n - 1)$, the upper bound of the heights of the family of catenoids.

The hypersurface \mathcal{M}_d, $d > 1$, gives a barrier at a finite strictly convex point.

\mathcal{M}_1 consists of a complete (stable, non-entire) vertical graph over a half-space in $\mathbb{H}^n \times \{0\}$, bounded by a totally geodesic hyperplane P. It takes infinite boundary value data on P and constant asymptotic boundary value data.

The asymptotic boundary of \mathcal{M}_1 is the union of a spherical cap S of $\partial_\infty \mathbb{H}^n \times \{c\}$ with a half-vertical cylinder over ∂S.

The hypersurface \mathcal{M}_1 gives a barrier at an asymptotic point and it will be useful to construct a Scherk type hypersurface. The Scherk type hypersurface gives a barrier at a finite convex point.
Our Problem:

Let $g : \partial \Omega \cup \partial_{\infty} \Omega \to \mathbb{R}$ be a bounded function. We consider the **Dirichlet problem**, say problem (P), for the vertical minimal hypersurface equation taking at any point of $\partial \Omega \cup \partial_{\infty} \Omega$ prescribed boundary (finite and asymptotic) value data g. More precisely,
Our Problem:

Let $g : \partial \Omega \cup \partial_\infty \Omega \to \mathbb{R}$ be a bounded function. We consider the Dirichlet problem, say problem (P), for the vertical minimal hypersurface equation taking at any point of $\partial \Omega \cup \partial_\infty \Omega$ prescribed boundary (finite and asymptotic) value data g. More precisely,

$$
\begin{cases}
 u \in C^2(\Omega) \text{ and } \mathcal{M}(u) = 0 \text{ in } \Omega, \\
 \text{for any } p \in \partial \Omega \cup \partial_\infty \Omega \text{ where } g \text{ is continuous, } u \text{ extends continuously at } p \text{ setting } u(p) = g(p).
\end{cases}
$$
Now, let $u : \Omega \cup \partial \Omega \to \mathbb{R}$ be a continuous function. Let $U \subset \Omega$ be a closed round ball in \mathbb{H}^n. We then define the continuous function $M_U(u)$ on $\Omega \cup \partial \Omega$ by:

$$M_U(u)(x) = \begin{cases}
 u(x) & \text{if } x \in \Omega \cup \partial \Omega \setminus U \\
 \tilde{u}(x) & \text{if } x \in U
\end{cases} \quad (0.1)$$

where \tilde{u} is the minimal extension of $u|_{\partial U}$ on \overline{U}.
Now, let $u : \Omega \cup \partial \Omega \to \mathbb{R}$ be a continuous function. Let $U \subset \Omega$ be a closed round ball in \mathbb{H}^n. We then define the continuous function $M_U(u)$ on $\Omega \cup \partial \Omega$ by:

$$M_U(u)(x) \begin{cases} u(x) & \text{if } x \in \Omega \cup \partial \Omega \setminus U \\ \tilde{u}(x) & \text{if } x \in U \end{cases}$$

where \tilde{u} is the minimal extension of $u|_{\partial U}$ on \overline{U}.

We say that u is a subsolution (resp. supersolution) of (P) if:

i) For any closed round ball $U \subset \Omega$ we have $u \leq M_U(u)$ (resp. $u \geq M_U(u)$).

ii) $u|_{\partial \Omega} \leq g$ (resp. $u|_{\partial \Omega} \geq g$).

iii) We have $\limsup_{q \to p} u(q) \leq g(p)$ (resp. $\liminf_{q \to p} u(q) \geq g(p)$) for any $p \in \partial_{\infty} \Omega$.

Theorem (Perron process)

Let $\Omega \subset H^n$ be a domain and let $g : \partial \Omega \cup \partial_{\infty} \Omega \to \mathbb{R}$ be a bounded function. Let ϕ be a bounded supersolution of the Dirichlet problem (P), for example the constant function $\phi \equiv \sup g$.

Set $S_\phi = \{ \varphi, \text{ subsolution of } (P), \varphi \leq \phi \}$. We define for each $x \in \Omega$

$$u(x) = \sup_{\varphi \in S_\phi} \varphi(x).$$

(Observe that $S_\phi \neq \emptyset$ since the constant function $\varphi \equiv \inf g$ belongs to S_ϕ.)

We have the following:
Theorem (Perron process)

Let $\Omega \subset \mathbb{H}^n$ be a domain and let
$g : \partial \Omega \cup \partial_{\infty} \Omega \to \mathbb{R}$ be a bounded function. Let ϕ be a bounded
supersolution of the Dirichlet problem (P), for example the constant
function $\phi \equiv \sup g$.
Set $S_\phi = \{ \varphi, \text{ subsolution of } (P), \varphi \leq \phi \}$. We define for each $x \in \Omega$

$$u(x) = \sup_{\varphi \in S_\phi} \varphi(x).$$

(Observe that $S_\phi \neq \emptyset$ since the constant function $\varphi \equiv \inf g$ belongs to S_ϕ.)

We have the following:

1. The function u is C^2 on Ω and satisfies the vertical minimal
equation.
1. Let $p \in \partial_{\infty} \Omega$ be an asymptotic boundary point where g is continuous. Then p admits a barrier and therefore u extends continuously at p setting $u(p) = g(p)$;
1. Let $p \in \partial_\infty \Omega$ be an **asymptotic boundary point** where g is continuous. Then p admits a **barrier** and therefore u extends continuously at p setting $u(p) = g(p)$; that is, if (q_m) is a sequence in \mathbb{H}^n such that $q_m \to p$, then $u(q_m) \to g(p)$.
Minimal graphs in $\mathbb{H}^n \times \mathbb{R}$ and \mathbb{R}^{n+1}

1. Let $p \in \partial_\infty \Omega$ be an asymptotic boundary point where g is continuous. Then p admits a barrier and therefore u extends continuously at p setting $u(p) = g(p)$; that is, if (q_m) is a sequence in \mathbb{H}^n such that $q_m \to p$, then $u(q_m) \to g(p)$. In particular, if g is continuous on $\partial_\infty \Omega$ then the asymptotic boundary of the graph of u is the restriction of the graph of g to $\partial_\infty \Omega$.

2. If $\partial \Omega$ is C^0 strictly convex at p then u extends continuously at p setting $u(p) = g(p)$.
Scherk type minimal hypersurfaces in $H^n \times \mathbb{R}$

Definition (Special rotational domain)

Let $\gamma, L \subset H^n$ be two complete geodesic lines with L orthogonal to γ at some point $B \in \gamma \cap L$. Using the half-space model for H^n, we can assume that γ is the vertical geodesic such that $\partial_{\infty} \gamma = \{0, \infty\}$. We call $P \subset H^n$ the geodesic two-plane containing L and γ. We choose $A_0 \in (0, B) \subset \gamma$ and $A_1 \in L \setminus \gamma$ and we denote by $\alpha \subset P$ the euclidean segment joining A_0 and A_1. Therefore the hypersurface Σ generated by rotating α with respect to γ has the following properties.

1. $\text{int}(\Sigma)$ is smooth except at point A_0.

2. Σ is strictly convex in hyperbolic meaning and convex in euclidean meaning.

3. $\text{int}(\Sigma) \setminus \{A_0\}$ is transversal to the Killing field generated by the translations along γ.
Consequently Σ lies in the mean convex side of the domain of \mathbb{H}^n whose boundary is the hyperbolic cylinder with axis γ and passing through A_1. Let us call $\Pi \subset \mathbb{H}^n$ the geodesic hyperplane orthogonal to γ and passing through B. Observe that the boundary of Σ is a $n - 2$ dimensional geodesic sphere of Π centered at B.
Consequently Σ lies in the mean convex side of the domain of \mathbb{H}^n whose boundary is the hyperbolic cylinder with axis γ and passing through A_1. Let us call $\Pi \subset \mathbb{H}^n$ the geodesic hyperplane orthogonal to γ and passing through B. Observe that the boundary of Σ is a $n-2$ dimensional geodesic sphere of Π centered at B.

We denote by $U_\Sigma \subset \Pi$ the open geodesic ball centered at B whose boundary is the boundary of Σ. We call $M_\Sigma \subset \mathbb{H}^n$ the closed domain whose boundary is $U_\Sigma \cup \Sigma$. Observe that ∂M_Σ is strictly convex at any point of Σ and convex at any point of U_Σ. Such a domain will be called a special rotational domain.
Theorem (Rotational Scherk hypersurface)

Let $\mathcal{M}_\Sigma \subset \mathbb{H}^n$ be a special rotational domain. There is a unique solution v of the vertical minimal equation in $\text{int}(\mathcal{M}_\Sigma)$ which extends continuously to $\text{int}(\Sigma)$, taking prescribed zero boundary value data and taking boundary value ∞ for any approach to U_Σ.
Theorem (Rotational Scherk hypersurface)

Let $\mathcal{M}_\Sigma \subset \mathbb{H}^n$ be a special rotational domain. There is a unique solution v of the vertical minimal equation in $\text{int}(\mathcal{M}_\Sigma)$ which extends continuously to $\text{int}(\Sigma)$, taking prescribed zero boundary value data and taking boundary value ∞ for any approach to U_Σ. More precisely, the following Dirichlet problem (P) admits a unique solution v_∞.

$$
\begin{aligned}
(P) & \begin{cases}
\mathcal{M}(u) = 0 \text{ in } \text{int}(\mathcal{M}_\Sigma), \\
u = 0 \text{ on } \text{int}(\Sigma), \\
u = +\infty \text{ on } U_\Sigma, \\
u \in C^2(\text{int}(\mathcal{M}_\Sigma)) \cap C^0(\mathcal{M}_\Sigma \setminus \overline{U_\Sigma}).
\end{cases}
\end{aligned}
$$

We call the graph of v in $\mathbb{H}^n \times \mathbb{R}$ a rotational Scherk hypersurface.
Proof
First, we will prove the existence part of the Theorem. We consider the family of functions ν_t, $t > 0$. Recall that $\Pi \subset \mathbb{H}^n$ is the totally geodesic hyperplane containing U_Σ. We consider a suitable copy of M_1 as barrier as follows: choose M_1 such that M_1 is a graph of a function u_1 whose domain is the component of $\mathbb{H}^n \setminus \Pi$ that contains M_Σ, with u_1 taking boundary value data $+\infty$ on Π and taking zero asymptotic boundary value data. By applying maximum principle we have that $u_1(p) > \nu_t(p)$ for all $p \in M_\Sigma$ and all $t > 0$.
Proof

First, we will prove the existence part of the Theorem. We consider the family of functions v_t, $t > 0$. Recall that $\Pi \subset \mathbb{H}^n$ is the totally geodesic hyperplane containing U_Σ. We consider a suitable copy of M_1 as barrier as follows: choose M_1 such that M_1 is a graph of a function u_1 whose domain is the component of $\mathbb{H}^n \setminus \Pi$ that contains M_Σ, with u_1 taking boundary value data $+\infty$ on Π and taking zero asymptotic boundary value data. By applying maximum principle we have that $u_1(p) > v_t(p)$ for all $p \in M_\Sigma$ and all $t > 0$.

Using compactness principle we obtain that a subsequence of the family converges uniformly on any compact subsets of int(M_Σ) to a solution v_∞ of the minimal equation. Since the family is strictly increasing v_∞ takes the value $+\infty$ on U_Σ. That is, for any sequence (q_k) in int(M_Σ) converging to some point of U_Σ we have $v_\infty(q_k) \to +\infty$.

Let $p \in \text{int}(\Sigma)$, since ∂M_Σ is C^0 strictly convex at p, the hypersurfaces $M_d, d < 1$, provide a barrier at p. Consequently ν_∞ extends continuously at p setting $\nu_\infty(p) = 0$. Therefore ν_∞ is a solution of the Dirichlet problem (P).
Let $p \in \text{int}(\Sigma)$, since ∂M_Σ is C^0 strictly convex at p, the hypersurfaces M_d, $d < 1$, provide a barrier at p. Consequently ν_∞ extends continuously at p setting $\nu_\infty(p) = 0$. Therefore ν_∞ is a solution of the Dirichlet problem (P).

The proof of uniqueness of ν_∞ proceeds in the same way as the proof of the monotonicity of the family $\{\nu_t\}$. This completes the proof of the Theorem.
Theorem (Barrier at a C^0 convex point)

Let $\Omega \subset \mathbb{H}^n$ be a domain and let $p_0 \in \partial \Omega$ be a boundary point where Ω is C^0 convex. Then for any bounded data $g : \partial \Omega \cup \partial_\infty \Omega \rightarrow \mathbb{R}$ continuous at p_0, the family of rotational Scherk hypersurfaces provides a barrier at p_0 for the Dirichlet problem (P). In particular, in Theorem 1-(2) the assumption C^0 strictly convex can be replaced by C^0 convex.
Theorem (Barrier at a C^0 convex point)

Let $\Omega \subset \mathbb{H}^n$ be a domain and let $p_0 \in \partial \Omega$ be a boundary point where Ω is C^0 convex. Then for any bounded data $g : \partial \Omega \cup \partial_{\infty} \Omega \to \mathbb{R}$ continuous at p_0, the family of rotational Scherk hypersurfaces provides a barrier at p_0 for the Dirichlet problem (P). In particular, in Theorem 1-(2) the assumption C^0 strictly convex can be replaced by C^0 convex.

Proof. We will prove that the rotational Scherk hypersurfaces with $-\infty$ boundary data on the boundary part U_{Σ} provide an upper barrier at p_0. For the lower barrier the construction is similar.
Let \mathcal{M}_Σ be a special rotational domain. Let ω be the height function of the rotational Scherk hypersurface S taking $-\infty$ boundary data on U_Σ and 0 boundary data on the interior of Σ.

Claim 1. ω is decreasing along the oriented geodesic segment $[A_0, B] \subset \gamma$ (going from A_0 to B).

Claim 2. Let D be any point on the open geodesic segment (A_0, B), and let $\beta \subset \mathcal{M}_\Sigma$ be a geodesic segment issuing from D, ending at some point $C \in \text{int}(\Sigma)$ and orthogonal to $[A_0, B]$ at D.

Then ω is increasing along $\beta = [D, C]$, oriented from D to C.

We first prove the theorem assuming that the two claims hold.
Let \mathcal{M}_Σ be a special rotational domain. Let ω be the height function of the rotational Scherk hypersurface S taking $-\infty$ boundary data on U_Σ and 0 boundary data on the interior of Σ.

Claim 1. ω is decreasing along the oriented geodesic segment $[A_0, B] \subset \gamma$ (going from A_0 to B).
Let \mathcal{M}_Σ be a special rotational domain. Let ω be the height function of the rotational Scherk hypersurface S taking $-\infty$ boundary data on U_Σ and 0 boundary data on the interior of Σ.

Claim 1. ω is decreasing along the oriented geodesic segment $[A_0, B] \subset \gamma$ (going from A_0 to B).

Claim 2. Let D be any point on the open geodesic segment (A_0, B), and let $\beta \subset \mathcal{M}_\Sigma$ be a geodesic segment issuing from D, ending at some point $C \in \text{int}(\Sigma)$ and orthogonal to $[A_0, B]$ at D.
Let \mathcal{M}_Σ be a special rotational domain. Let ω be the height function of the rotational Scherk hypersurface S taking $-\infty$ boundary data on U_Σ and 0 boundary data on the interior of Σ.

Claim 1. ω is decreasing along the oriented geodesic segment $[A_0, B] \subset \gamma$ (going from A_0 to B).

Claim 2. Let D be any point on the open geodesic segment (A_0, B), and let $\beta \subset \mathcal{M}_\Sigma$ be a geodesic segment issuing from D, ending at some point $C \in \text{int}(\Sigma)$ and orthogonal to $[A_0, B]$ at D.

Then ω is increasing along $\beta = [D, C]$, oriented from D to C.

We first prove the theorem assuming that the two claims hold.
Let $D \in (A_0, B)$ and let $\Pi_D \subset \mathbb{H}^n$ be the geodesic hyperplane through D orthogonal to the geodesic segment $[A_0, B]$. Let \mathcal{M}_Σ^\pm be the connected component of $\mathcal{M}_\Sigma \setminus \Pi_D$ containing the point A_0. Let q be any point belonging to the closure of \mathcal{M}_Σ^\pm. The claims ensure that $\omega(q) \geq \omega(D)$.
Let $D \in (A_0, B)$ and let $\Pi_D \subset \mathbb{H}^n$ be the geodesic hyperplane through D orthogonal to the geodesic segment $[A_0, B]$. Let \mathcal{M}_Σ^+ be the connected component of $\mathcal{M}_\Sigma \setminus \Pi_D$ containing the point A_0. Let q be any point belonging to the closure of \mathcal{M}_Σ^+. The claims ensure that $\omega(q) \geq \omega(D)$.

Let $p_0 \in \partial \Omega$ be a C^0 convex point and let g be a bounded data continuous at p_0. Let $M > 0$ be any positive real number. It suffices to show that for any $k \in \mathbb{N}^*$ there is an open neighborhood N_k of p_0 in \mathbb{H}^n and a function ω_k^+ in $C^2(N_k \cap \Omega) \cap C^0(\overline{N_k \cap \Omega})$ such that

i) $\omega_k^+(x)|_{\partial \Omega \cap N_k} \geq g(x)$ and $\omega_k^+(x)|_{\partial N_k \cap \Omega} \geq M$,

ii) $\mathcal{M}(\omega_k^+) = 0$ in $N_k \cap \Omega$,

iii) $\omega_k^+(p_0) = g(p_0) + 1/k$.
By continuity there exists $\varepsilon > 0$ such that for any $p \in \partial \Omega$ with $\text{dist}(p, p_0) < \varepsilon$ we have $g(p) < g(p_0) + 1/k$.
By continuity there exists $\varepsilon > 0$ such that for any $p \in \partial \Omega$ with $\text{dist}(p, p_0) < \varepsilon$ we have $g(p) < g(p_0) + 1/k$.

By assumption there exist a geodesic hyperplane Π_{p_0} through p_0 and an open neighborhood $\mathcal{W} \subset \Pi_{p_0}$ of p_0 such that $\mathcal{W} \cap \Omega = \emptyset$. We set $\Omega_{\varepsilon} = \{p \in \Omega \mid \text{dist}(p_0, p) < \varepsilon\}$. Up to choosing ε small enough, we can assume that Ω_{ε} is entirely contained in a component of $\mathbb{H}^n \setminus \Pi_{p_0}$. Let γ be the geodesic through p_0 orthogonal to Π_{p_0}.

By continuity there exists \(\varepsilon > 0 \) such that for any \(p \in \partial \Omega \) with \(\text{dist}(p, p_0) < \varepsilon \) we have \(g(p) < g(p_0) + 1/k \).

By assumption there exist a geodesic hyperplane \(\Pi_{p_0} \) through \(p_0 \) and an open neighborhood \(W \subset \Pi_{p_0} \) of \(p_0 \) such that \(W \cap \Omega = \emptyset \). We set \(\Omega_\varepsilon = \{ p \in \Omega \mid \text{dist}(p_0, p) < \varepsilon \} \). Up to choosing \(\varepsilon \) small enough, we can assume that \(\Omega_\varepsilon \) is entirely contained in a component of \(\mathbb{H}^n \setminus \Pi_{p_0} \). Let \(\gamma \) be the geodesic through \(p_0 \) orthogonal to \(\Pi_{p_0} \).

We choose a special rotational domain \(\mathcal{M}_\Sigma \) such that:

- the hyperplane \(\Pi \) is orthogonal to \(\gamma \), (recall that \(U_\Sigma \subset \Pi \))
- the diameter of \(\mathcal{M}_\Sigma \) is lesser than \(\varepsilon/4 \),
- \(\overline{\Omega} \cap U_\Sigma = \emptyset \),
- \(A_0 \in \gamma, \text{dist}(p_0, A_0) < \varepsilon/8 \) and \(A_0 \) belongs to the same component of \(\mathbb{H}^n \setminus \Pi_{p_0} \) than \(\Omega_\varepsilon \).
Let $M' > \max\{M, g(p_0) + 1/k\}$. We consider the rotational Scherk hypersurface (graph of ω) taking M' boundary value data on the interior of Σ and $-\infty$ on U_Σ.

By continuity, there exists a point $p_1 \in \gamma$ where $\omega(p_1) = g(p_0) + 1/k$. Up to a horizontal translation along γ sending p_1 to p_0, we may assume that $\omega(p_0) = g(p_0) + 1/k$.

Then we set $N_k = \text{int}(M_\Sigma) \cap \Omega$ and $\omega_k^+ = \omega|_{N_k}$, the restriction of ω to N_k. Therefore we have $\omega_k^+(x)|_{\partial N_k \cap \Omega} = M' \geq M$, furthermore Claim 1 and Claim 2 show that $\omega_k^+(x)|_{\partial \Omega \cap N_k} \geq g(p_0) + 1/k \geq g(x)$, as desired.
Theorem (Dirichlet problem for the minimal equation in $\mathbb{H}^n \times \mathbb{R}$ on a C^0 bounded convex domain taking continuous boundary data)

Let Ω be a C^0 bounded convex domain and let $g : \partial \Omega \to \mathbb{R}$ be a continuous function.
Then, g admits a unique continuous extension $u : \Omega \cup \partial \Omega \to \mathbb{R}$ satisfying the vertical minimal hypersurface equation on Ω.
Theorem (Dirichlet problem for the minimal equation in $\mathbb{H}^n \times \mathbb{R}$ on a C^0 bounded convex domain taking continuous boundary data)

Let Ω be a C^0 bounded convex domain and let $g : \partial \Omega \to \mathbb{R}$ be a continuous function. Then, g admits a unique continuous extension $u : \Omega \cup \partial \Omega \to \mathbb{R}$ satisfying the vertical minimal hypersurface equation on Ω.

Proof.

The proof is a consequence of the Perron process and the construction of barriers at any convex point of a C^0 domain, using rotational Scherk hypersurfaces. Uniqueness follows from the maximum principle. □
Theorem (Dirichlet problem for the minimal equation in $\mathbb{H}^n \times \mathbb{R}$ on a C^0 convex domain taking continuous finite and asymptotic boundary data)

Let $\Omega \subset \mathbb{H}^n$ be a C^0 convex domain and let $g : \partial\Omega \cup \partial\infty \Omega \to \mathbb{R}$ be a continuous function.
Then g admits a unique continuous extension $u : \Omega \cup \partial\Omega \cup \partial\infty \Omega \to \mathbb{R}$ satisfying the vertical minimal hypersurface equation on Ω.
Theorem (Dirichlet problem for the minimal equation in $\mathbb{H}^n \times \mathbb{R}$ on a C^0 convex domain taking continuous finite and asymptotic boundary data)

Let $\Omega \subset \mathbb{H}^n$ be a C^0 convex domain and let $g : \partial \Omega \cup \partial_{\infty} \Omega \rightarrow \mathbb{R}$ be a continuous function. Then g admits a unique continuous extension $u : \Omega \cup \partial \Omega \cup \partial_{\infty} \Omega \rightarrow \mathbb{R}$ satisfying the vertical minimal hypersurface equation on Ω.

Proof.
Notice that working in the ball model of hyperbolic space, we have that g is a continuous function on a compact set, hence g is bounded. Therefore there exist supersolutions and subsolutions for the Dirichlet problem. The proof is a consequence of the Perron process and the constructions of barriers, using the rotational Scherk hypersurfaces at any point of $\partial \Omega$, and using M_1 at any point of $\partial_{\infty} \Omega$. Uniqueness follows from the maximum principle.
Definition (Independent points and admissible polyhedra)

1. We say that \(n + 1 \) points \(A_0, \ldots, A_n \) in \(\mathbb{H}^n \) are independent if there is no geodesic hyperplane containing these points. If \(A_0, \ldots, A_n \) in \(\mathbb{H}^n \) are independent then we remark that any choice of \(n \) points among them determines a unique geodesic hyperplane of \(\mathbb{H}^n \).
Definition (Independent points and admissible polyhedra)

1. We say that $n + 1$ points A_0, \ldots, A_n in \mathbb{H}^n are independent if there is no geodesic hyperplane containing these points. If A_0, \ldots, A_n in \mathbb{H}^n are independent then we remark that any choice of n points among them determines a unique geodesic hyperplane of \mathbb{H}^n.

2. Let A_0, \ldots, A_n be $n + 1$ independent points in \mathbb{H}^n. We call Π_i the geodesic hyperplane containing these points excepted A_i, $i = 0, \ldots, n$ and we call Π_i^+ the closed half-space bounded by Π_i and containing A_i. Then the intersection of these half-spaces is a polyhedron \mathcal{P}: the convex closure of A_0, \ldots, A_n. The boundary of \mathcal{P} consists of $n + 1$ closed faces $F_i \subset \Pi_i$, the face F_i contains in its boundary all the points A_0, \ldots, A_n excepted A_i. We call such a polyhedron an admissible polyhedron.
Theorem (First Scherk type hypersurface in $\mathbb{H}^n \times \mathbb{R}$)

Let \mathcal{P} be an admissible convex polyhedron. There is a unique solution v_∞ of the minimal equation in $\text{int}(\mathcal{P})$ extending continuously up to $\partial \mathcal{P} \setminus F_0$, taking prescribed zero boundary value data on $F_1 \setminus \partial F_0, \ldots, F_n \setminus \partial F_0$ and prescribed boundary value ∞ for any approach to $\text{int}(F_0)$. More precisely, we prove existence and uniqueness of the following Dirichlet problem (P_∞):
Theorem (First Scherk type hypersurface in $\mathbb{H}^n \times \mathbb{R}$)

Let \mathcal{P} be an admissible convex polyhedron. There is a unique solution v_∞ of the minimal equation in $\text{int}(\mathcal{P})$ extending continuously up to $\partial \mathcal{P} \setminus F_0$, taking prescribed zero boundary value data on $F_1 \setminus \partial F_0, \ldots, F_n \setminus \partial F_0$ and prescribed boundary value ∞ for any approach to $\text{int}(F_0)$. More precisely, we prove existence and uniqueness of the following Dirichlet problem (P_∞):

\[
(P_\infty) \begin{cases}
M(u) = 0 \text{ in } \text{int}(\mathcal{P}), \\
u = 0 \text{ on } F_j \setminus \partial F_0, j = 1, \ldots, n, \\
u = \infty \text{ on } \text{int}(F_0), \\
u \in C^2(\text{int}(\mathcal{P})) \cap C^0(\mathcal{P} \setminus F_0).
\end{cases}
\]
Proof.
We may use the rotational Scherk hypersurfaces as barrier. Therefore, we obtain for any $t \in \mathbb{R}$ a solution v_t of the vertical minimal equation in $\text{int}(P)$ which extends continuously to $\partial P \setminus \partial F_0$, taking prescribed zero boundary value data on $\partial P \setminus F_0$ and prescribed boundary value t on $\text{int}(F_0)$. Now letting $t \to \infty$ we have that a subsequence of the family $\{v_t\}$ converges to a solution as desired, taking into account that the rotational Scherk hypersurfaces give a barrier at any point of P.

The uniqueness is obtained as in the proof of the monotonicity of the family $\{v_t\}$ in the previous Proposition.
Theorem (Second Scherk type hypersurface in $\mathbb{H}^n \times \mathbb{R}$)

For any $k \in \mathbb{N}$, $k \geq 2$, there exists a family of polyhedron \mathcal{P}_k with $2^{n-1}k$ faces and a solution w_k of the vertical minimal equation in $\text{int} \, \mathcal{P}_k$ taking alternatively infinite values $+\infty$ and $-\infty$ on adjacent faces of \mathcal{P}_k. Moreover, the polyhedron \mathcal{P}_k can be chosen to be convex and can also be chosen to be non convex.
Proof. Let us fix a point A_0 in \mathbb{H}^n. Let \(\{e_1, \ldots, e_n\} \) be a positively oriented orthornormal basis of $T_{A_0} \mathbb{H}^n$. For $k \geq 2$ we set \(u := \sin(\pi/k)e_1 + \cos(\pi/k)e_2 \). Let $\gamma_j^+, j = 2, \ldots, n$ and γ_u^+ be the oriented half geodesics issuing from A_0 and tangent to e_2, \ldots, e_n and to u, respectively. Now we choose an interior point A_1 on γ_u^+ and an interior point A_j on γ_j^+, $j = 2, \ldots, n$. Therefore, A_0, A_1, \ldots, A_n are independent points of \mathbb{H}^n. Let \tilde{P} be the polyhedron determined by these points. The faces are denoted by F_0, \ldots, F_n, with the convention that the face F_j does not contain the vertex A_j, $j = 0, \ldots, n$. Let Π_i the totally geodesic hyperplane containing the face F_i. Observe that:

1. F_1 and F_2 make an interior angle equal to π/k.
2. $F_j \perp F_1, F_j \perp F_2, j = 3, \ldots, n$.
3. $F_j \perp F_k, j, k = 3, \ldots, n (j \neq k)$.
Therefore, the reflections in \mathbb{H}^n with respect to the geodesic hyperplanes Π_1 and Π_2 leave the other geodesic hyperplanes $\Pi_j, j = 3, \ldots, n$ globally invariant. The first step of the construction of the polyhedron \mathcal{P}_k is the following: Doing reflection about F_2 we obtain another polyhedron with faces F_1^* (the symmetric of F_1 about F_2), and faces \tilde{F}_j containing F_j, $\tilde{F}_j \subset \Pi_j, j = 3, \ldots, n$. Notice that in the process the face F_2 disappears and the interior angle between the faces F_1 and F_1^* is $2\pi/k$. Furthermore, the reflection of F_0 about F_2 generates another face F_0^1.

Continuing this process doing reflections with respect to F_1^* and so on, we obtain a new polyhedron \mathcal{P}^+ with faces $\hat{F}_j \subset \Pi_j, j = 3, \ldots, n$, \hat{F}_j containing \tilde{F}_j, and $2k$ faces issuing from the successive reflections of F_0. Notice that both faces F_1 and F_2 disappear at the end of the process, that is \mathcal{P}^+ does not contain any face in the hyperplane Π_1 or Π_2.
Next, let us perform the reflections about Π_3. Doing this the face F_3 disappears and we get a new polyhedron with $2 \cdot 2k$ faces issuing from F_0 and a face in each Π_j, $j = 4, \ldots, n$. Each such face contains \hat{F}_j, $j = 4, \ldots, n$. Continuing this process doing reflections on Π_4, \ldots, Π_n we finally get a polyhedron \mathcal{P}_k with $2^{n-1} \cdot k$ faces, each one issuing from F_0.
Now we discuss the convexity of \mathcal{P}_k. Let $P \subset \mathbb{H}^n$ be the geodesic two-plane containing the points A_0, A_1 and A_2. Let $\Gamma \subset P$ be the geodesic polygon obtained by the reflection of the segment $[A_0, A_1]$ with respect to $[A_0, A_2]$ and so on. Thus Γ is a polygon with $2k$ sides and $2k$ vertices, among them A_1 and A_2, and A_0 is an interior point of Γ. Then, the polyhedron \mathcal{P}_k is convex if, and only if, the polygon Γ is convex too. For example, if $d(A_0, A_1) = d(A_0, A_2)$ we get that Γ is a regular polygon and then is convex. On the other hand, if $d(A_0, A_1)$ is much bigger than $d(A_0, A_2)$ then Γ is non convex.

Now, considering the polyhedron $\overline{\mathcal{P}}_0$ of the beginning, we are able to solve the Dirichlet problem of the minimal equation taking $+\infty$ value data on F_0 and zero value data on $F_j \setminus F_0$, $j = 1, \ldots, n$. Using the reflection principle on the faces, in each step of the preceding process, we obtain at the end of the process a solution of the minimal equation on $\text{int} \mathcal{P}_k$, taking alternatively infinite values $+\infty$ and $-\infty$ on adjacent faces of \mathcal{P}_k, as desired. This accomplishes the proof of the theorem.
Now we discuss the convexity of \mathcal{P}_k. Let $P \subset \mathbb{H}^n$ be the geodesic two-plane containing the points A_0, A_1 and A_2. Let $\Gamma \subset P$ be the geodesic polygon obtained by the reflection of the segment $[A_0, A_1]$ with respect to $[A_0, A_2]$ and so on. Thus Γ is a polygon with $2k$ sides and $2k$ vertices, among them A_1 and A_2, and A_0 is an interior point of Γ. Then, the polyhedron \mathcal{P}_k is convex if, and only if, the polygon Γ is convex too.

For example, if $d(A_0, A_1) = d(A_0, A_2)$ we get that Γ is a regular polygon and then is convex. On the other hand, if $d(A_0, A_1)$ is much bigger than $d(A_0, A_2)$ then Γ is non convex.

Now, considering the polyhedron $\tilde{\mathcal{P}}$ of the beginning, we are able to solve the Dirichlet problem of the minimal equation taking $+\infty$ value data on F_0 and zero value data on $F_j \setminus F_0$, $j = 1, \ldots, n$. Using the reflection principle on the faces, in each step of the preceding process, we obtain at the end of the process a solution of the minimal equation on $\text{int} \, \mathcal{P}_k$, taking alternatively infinite values $+\infty$ and $-\infty$ on adjacent faces of \mathcal{P}_k, as desired. This accomplishes the proof of the theorem.
Theorem
Let $\Omega \subset \mathbb{H}^n$ be an admissible unbounded domain. Let $g : \partial \Omega \cup \partial_\infty \Omega \to \mathbb{R}$ be a continuous function taking zero boundary value data on $\partial \Omega$. Let $\Gamma_\infty \subset \partial_\infty \mathbb{H}^n \times \mathbb{R}$ be the graph of g restricted to $\partial_\infty \Omega$. If the height function t of Γ_∞ satisfies $-f(\rho_\Omega) \leq t \leq f(\rho_\Omega)$, then there exists a vertical minimal graph over Ω with finite boundary $\partial \Omega$ and asymptotic boundary Γ_∞.
Theorem

Let $\Omega \subset \mathbb{H}^n$ be an admissible unbounded domain. Let $g : \partial \Omega \cup \partial_\infty \Omega \rightarrow \mathbb{R}$ be a continuous function taking zero boundary value data on $\partial \Omega$. Let $\Gamma_\infty \subset \partial_\infty \mathbb{H}^n \times \mathbb{R}$ be the graph of g restricted to $\partial_\infty \Omega$. If the height function t of Γ_∞ satisfies $-f(\rho_\Omega) \leq t \leq f(\rho_\Omega)$, then there exists a vertical minimal graph over Ω with finite boundary $\partial \Omega$ and asymptotic boundary Γ_∞.

Furthermore, there is no such minimal graph, if $\partial \Omega$ is compact and the height function t of Γ_∞ satisfies $|t| > \pi/(2n-2)$.
Theorem

Let $\Omega \subset \mathbb{H}^n$ be an E-admissible unbounded domain. Let $g : \partial \Omega \cup \partial_\infty \Omega \to \mathbb{R}$ be a continuous function taking zero boundary value data on $\partial \Omega$. Let $\Gamma_\infty \subset \partial_\infty \mathbb{H}^n \times \mathbb{R}$ be the graph of g restricted to $\partial_\infty \Omega$. If the height function t of Γ_∞ satisfies $-H(r_\Omega) \leq t \leq H(r_\Omega)$, then there exists a vertical minimal graph over Ω with finite boundary $\partial \Omega$ and asymptotic boundary Γ_∞.
Minimal graphs in \mathbb{R}^{n+1}

Theorem (Second Scherk type hypersurface in \mathbb{R}^{n+1})

For any $k \in \mathbb{N}$, $k \geq 2$, there exists a family of polyhedron P_k with $2^{n-1}k$ faces and a solution w_k of the vertical minimal equation in $\text{int} \ P_k$ taking alternatively infinite values $+\infty$ and $-\infty$ on adjacent faces of P_k. Moreover, the polyhedron P_k can be chosen to be convex and can also be chosen to be non convex.
Theorem (Second Scherk type hypersurface in \(\mathbb{R}^{n+1} \))

For any \(k \in \mathbb{N}, k \geq 2 \), there exists a family of polyhedron \(\mathcal{P}_k \) with \(2^{n-1}k \) faces and a solution \(w_k \) of the vertical minimal equation in \(\text{int} \mathcal{P}_k \) taking alternatively infinite values \(+\infty \) and \(-\infty \) on adjacent faces of \(\mathcal{P}_k \).
Moreover, the polyhedron \(\mathcal{P}_k \) can be chosen to be convex and can also be chosen to be non convex.

Remark

When the ambient space is \(\mathbb{R}^4 \) with the aid of the Theorem we have a solution of the minimal equation in the interior of an octahedron in \(\mathbb{R}^3 \) taking alternatively infinite values \(+\infty \) and \(-\infty \) on adjacent faces.
Definition (Barriers)

We consider the Dirichlet problem \((P)\). Let \(p \in \partial \Omega \cup \partial_\infty \Omega\) be a boundary point where \(g\) is continuous.

1. • Assume first that \(p \in \partial \Omega\). Suppose that for any \(M > 0\) and for any \(k \in \mathbb{N}\) there is an open neighborhood \(\mathcal{N}_k\) of \(p\) in \(\mathbb{H}^n\) and a function \(\omega_k^+(\text{resp. } \omega_k^-)\) in \(C^2(\mathcal{N}_k \cap \Omega) \cap C^0(\overline{\mathcal{N}_k \cap \Omega})\) such that

 i) \(\omega_k^+(x)|_{\partial \Omega \cap \overline{\mathcal{N}_k}} \geq g(x)\) and \(\omega_k^+(x)|_{\partial \mathcal{N}_k \cap \Omega} \geq M\)
 (resp. \(\omega_k^-(x)|_{\partial \Omega \cap \overline{\mathcal{N}_k}} \leq g(x)\) and \(\omega_k^-(x)|_{\partial \mathcal{N}_k \cap \Omega} \leq -M\)).

 ii) \(M(\omega_k^+) \leq 0\) (resp. \(M(\omega_k^-) \geq 0\)) in \(\mathcal{N}_k \cap \Omega\).

 iii) \(\lim_{k \to +\infty} \omega_k^+(p) = g(p)\) (resp. \(\lim_{k \to +\infty} \omega_k^-(p) = g(p)\)).

• If \(p \in \partial_\infty \Omega\), then we choose for \(\mathcal{N}_k\) an open set of \(\mathbb{H}^n\) containing a half-space with \(p\) in its asymptotic boundary. We recall that a half-space is a connected component of \(\mathbb{H}^n \setminus \Pi\) for any geodesic hyperplane \(\Pi\). Then the functions \(\omega_k^+\) and \(\omega_k^-\) are in \(C^2(\mathcal{N}_k \cap \Omega) \cap C^0(\overline{\mathcal{N}_k \cap \Omega})\) and satisfy:
i) $\omega_k^+(x)|_{\partial_\Omega \cap \overline{\mathcal{N}_k}} \geq g(x)$ and $\omega_k^+(x)|_{\partial_{\mathcal{N}_k} \cap \Omega} \geq M$
(resp. $\omega_k^-(x)|_{\partial_\Omega \cap \overline{\mathcal{N}_k}} \leq g(x)$ and $\omega_k^-(x)|_{\partial_{\mathcal{N}_k} \cap \Omega} \leq -M$).

ii) For any $x \in \partial_\infty (\Omega \cap \mathcal{N}_k)$ we have $\liminf_{y \to x} \omega_k^+(y) \geq g(x)$ (for $y \in \mathcal{N}_k \cap \Omega$) (resp. $\limsup_{y \to x} \omega_k^-(y) \geq g(x)$).

iii) $\mathcal{M}(\omega_k^+) \leq 0$ (resp. $\mathcal{M}(\omega_k^-) \geq 0$) in $\mathcal{N}_k \cap \Omega$.

iv) $\lim_{k \to +\infty} \left(\liminf_{q \to p} \omega_k^+(q) \right) = g(p)$ and
$\lim_{k \to +\infty} \left(\limsup_{q \to p} \omega_k^-(q) \right) = g(p)$.

2. Suppose that $p \in \partial \Omega$ and that there exists a supersolution ϕ (resp. a subsolution η) in $C^2(\Omega) \cap C^0(\overline{\Omega})$ such that $\phi(p) = g(p)$ (resp. $\eta(p) = g(p)$).
In both cases 1 or 2 we say that p admits an upper barrier ($\omega_k^+, k \in \mathbb{N}$ or ϕ) (resp. lower barrier $\omega_k^-, k \in \mathbb{N}$ or η) for the problem (P). If p admits an upper and a lower barrier we say more shortly that p admits a barrier.