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INTRODUCTION

In this paper we shall review some recent results on the new theory
of special surfaces in R3. Our approach is geometrical (non variational) in
nature (see [1],[6],[7],[8]). We shall show that the main global structure of
constant mean curvature surfaces hold for a more general class of special
surfaces satisfying a certain Weingarten relation. This has been studied by
Hopf [5], Chern [3], Bryant [2], Hartman and Wintner [4]. More recently
by Braga Brito, Rosenberg and the authors (see the references above).

We shall consider surfaces M immersed in R3, which are oriented by
a unit normal vector field N and whose mean curvature H = H(N) and
Gaussian curvature K, satisfying a Weingarten relation of the form

H = f(H2 −K) (1)

where f is a C1 function defined in the interval [0,+∞]. From now on,
we will only consider functions that verify the relation:

4t(f ′(t))2 < 1, (2)

for t ∈ [0,+∞). We say that f is elliptic. We call such a surface M
special if H, K satisfy (1) for f elliptic.
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We shall establish that, if there is a plane in the class of M,
i.e. f(0) = 0, then the theory is “minimal type” (see [7]).
Otherwise, if there is a sphere in the class of M , i.e. f(0) ̸= 0, then
the theory is constant (non zero) mean curvature type (see [8]). In both
cases, ellipticity ensures that M satisfies a maximum principle (see [6]).
This allows us to apply Alexandrov reflection principle techniques (see [1],
[6]). For instance, by using elementary geometrical arguments and by ap-
plying ellipticity (relation (2)) it is not hard to show that the following basic
statements hold.

Basic Statements for a Special Minimal Type Surface
(f(0) = 0):

a) The Gaussian curvature K of M is non positive;
b) The zeros of K are isolated;
c) M is contained inside the convex hull of the boundary;
d) If M is complete with zero Gaussian curvature, i.e. K ≡ 0, then M is

a plane.

Basic Statements for a Special Constant (non zero) Mean Cur-
vature Type Surface (f(0) ̸= 0):

a) Alexandrov’s theorem hold: If M is closed (compact without boundary)
and embedded then M is a round sphere;

b) Hopf’s theorem hold: If M is closed immersed with genus zero then M
is a round sphere (here, ellipticity is not required, see [2]);

c) If M is complete with zero Gaussian curvature then M is a right cylin-
der;

d) If M is embedded, and if the boundary ∂M is a round circle contained
in a plane H, such that M ∩H = ∂M then M is a round sphere.

In order to illustrate our main point, we will discuss the following
example: We consider a parallel surface to M defined by Mt = M + tN
(N is the unit normal vector field). It is a classical fact that if M has
constant mean curvature H equal to 1

2a then the parallel surface Mt to M
at a distance t = a has constant Gaussian curvature 1

a2 . Clearly Mt has
singularities where the Gaussian curvature K of M is zero. More generally
we remark that, if H is a positive constant, it is easy to show that Mt

satisfies a linear relation
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2aHt +Kt = b (3)

where a > 0, b ≥ 0(b = 0 if H = 0), for t small enough. We call
such an Mt aM(a, b) surface (see[6]). Precisely, if H is constant and if the
Gaussian curvature of M is bounded from below (K >> −∞) then Mt is
immersed for t sufficiently small (it is sufficient to prove 1−2tH+t2K ̸= 0).
A straightforward computation shows that an arbitrarily M(a, b) surface is
special for a > 0, b ≥ 0: just take f(t) = −a +

√
a2 + b+ t. Notice that H

is never zero on M(a, b).

Moreover, notice that if Mt(a, b) is a parallel surface to a M(a, b)
surface (t small enough) with a > 0 and b ≥ 0, then Mt still has the
same structure preserving the minimal type if b = 0 and the constant
(non zero) mean curvature type if b ̸= 0. Indeed, Mt = M(at, bt) where
at = (a− bt)/(1− t2b+ 2ta) and bt = b/(1− t2b+ 2ta).

On the other hand, we claim that giving an arbitrarily M(a, b) surface
with positive mean curvature H, a > 0, b ≥ 0, there is a 1-parameter family
of immersed special parallel surfaces Mt(a, b), τ ≤ t < 0, τ chosen later, in
such a way that Mτ has constant mean curvature: Mτ is minimal if and
only if b = 0. For the proof of the claim, we proceed as follows:

Suppose b > 0 (if b = 0, see [6]). We will prove that 1−2tH+ t2K > 0.
Setting

α =
2a

b
, β =

1

b

we may assume that M satisfies αH+ βK = 1. Let

τ =
α−

√
α2 + 4β

2

Then Mτ (a, b) has constant mean curvature

Hτ =
1√

α2 + 4β
.

Also, it is clear that if K(p) > 0, p ∈ M , then 1 − 2tH + t2K > 0
at p, for t ≤ 0. So then, assume K ≤ 0: a simple compulation shows that
α(1−2tH+t2K) =

√
α2 + 4β+Kt(2β+αt). Then, to accomplish the proof
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of the above claim, notice that the last expression is positive for τ ≤ t ≤ 0,
since 2β + αt > 0 if t ≥ τ .

To conclude this elementary discussion, we emphasize one non elemen-
tary implication: ifM is a properly embeddedM(a, b) surface (a > 0, b ≥ 0)
then each of its annular ends converges exponentially to a parallel end of a
Delaunay end (see [6]).

Now, we point out that we need a certain operator Lf to develop the
theory of constant mean type special surface. In fact the study of Lf is
useful to guarantee apriori height estimates. This yields extended Meeks
theory (see[6]). We define Lf by

Lf =
1− 2ff ′

2
△+f ′L

where △ is the Laplacian operator, L = div(T▽), T = 2HI − A (A is
the shape operator of M . See [6]).

Notice that ellipticity of Lf is equivalent to equation (2), if f ′ ̸= 0 then
we may consider the normalized operator LF = F △+L, where

F =
1

2f ′ − f.

Setting F = cf + a one obtains

f(t) = −
a+

√
a2 + (c+ 1)(t+ b)

c+ 1

as a positive solution.

Hence, a surface M with positive mean curvature H, satisfying

cH2 + 2aH+K = b (4),

a > 0, b > 0, c ≥ 0 is a special surface (see[6]).

In the next two sections, we shall give a list of statements (without
proofs), concerning the classification and application of rotationally sym-
metric special surfaces. In particular, we shall see that deforming the unique
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cylinder satisfying equation (4) with a, b, c > 0 one may figure out a 1-
parameter family of Delaunay type surface (see theorem 1 in section 2 con-
sidering −f instead of f in the above formulae).

Finally, we give a selected number of open question at the end of each
section.

1. Minimal type special surfaces in R3 (see[7] for proofs and
further details)

Theorem 1: Existence of Special Cateroids

Let f be an elliptic function with f(0) = 0 and let τ > 0 be a real
number that verifies

1

τ
< lim

t→+∞
(t− f(t2))

Then there is a unique complete rotational symmetric special surface Mτ

such that its generating curve is a graph of a C2 convex, strictly positive
function y = y(x), which attains a minimum at 0 and is symmetric respect
to the y axis, i.e., y verifies:

y > 0, y(0) = τ, y′(0) = 0, y′′ > 0 and y(x) = y(−x).

Remark 1: One may show that the condition

1

τ
< lim

t→+∞
(t− f(t2))

required by Theorem 1 is necessary for our purpose (see [7]).

Theorem 2: The geometry of special catenoids.

Let f be a C2 elliptic function near 0 with f(0) = 0. Let M be a
rotational symmetric surface given by Theorem 1.

Then the x coordinate over M is a propre function.

Remark 2: The differentiability hypothesis for f in Theorem
2 is necessary, a counter example may be constructed considering
f α(t) = α

√
t, t ≥ 0, 0 < α < 1 (see [7]).
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We remark that if f is non negative with f(0) = 0 and
limt→+∞(t − f(t2)) = +∞ then there is a 1-parameter family Mτ , τ > 0,
of special catenoids converging to a vertical plane as τ → 0 (see [7]). This
yields the following generalization of the well-known “Halfspace Theorem”
for minimal type special surfaces.

Theorem 3: “Halfspace Theorem”

Let f be a elliptic non negative (f ≥ 0) function. Assume f is C2 in a
neighborhood of the origin. Suppose f verifies

f(0) = 0, lim
t→+∞

(t− f(t2)) = +∞

If M is a complete connected properly immersed special surface (re-
spect to f) contained inside a halfspace of R3, then M is a plane.

Theorem 4: Classification of Rotational Symmetric Minimal
Type Special Surfaces.

a) Given a elliptic function f , then a complete rotational minimal type
special surface M is equal to a special catenoid Mτ obtained by
Theorem 1.

b) Assume f is non negative (f ≥ 0) and assume
limt→+∞(t − f(t2) = +∞.Then a non planar rotational minimal
type special surface S is part of a special catenoid Mτ obtained by
Theorem 1.

Remark 3: Notice that if f(0) = 0 and if

lim
t→+∞

(t− f(t2)) ̸= +∞

then there is special surfaces M which are C2 on M − ∂M and C1 up
to the boundary ∂M , such that the Gaussian curvature K(p) converges to
−∞ as p → ∂M (see[7]).

Finally, we point out that there is examples (see[7]) of special catenoids
having real catenoid ends and a piece of real Delaunay surface (nodoid).
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Selected Open Questions:

1. Is there a minimal type theory for complete minimal type special sur-
faces with finite total curvature? Is there an analogous Bernstein and
Schoen Theorems?

2. Is there a variational approach for minimal type special surfaces?

2. Constant (non zero) mean curvature type special surfaces
(See [6], [8] for proofs and further details).

Theorem 1: Existence of special onduloids .

Let f be an elliptic function satisfying

f(0) < 0 and lim
t→−∞

(t− f(t2)) < 0

Let τ > 0 be a real number verifying:

1

τ
< lim

t→+∞
(t− f(t2))and

−1

2τ
− f

(( 1

2τ

)2)
< 0.

Then there is a unique complete rotational symmetric embedded special
surface such that its generating curve γτ is a graph of a C2 function y =
y(x) which attains a minimum at 0. Furthermore Mτ is analogous to the
embedded Delaunay surface. More precisely, there is a real number Tτ > 0
such that

a) ∀x ∈ R, yτ (x + Tτ ) = yτ (x).

b) γτ is symmetric with respect to the vertical lines {x = 0} and {x = Tτ

2 }.
c) Between 0 and Tτ

2 ,γτ is strictly increasing with a maximum Rτ at Tτ

2 .

d) Between 0 and Tτ

2 ,γτ has a unique inflexion point xτ .

e) The inflexion point xτ and the maximum RT verify

0 < yτ (xτ ) < r, r < Rτ <
−1

f(0)

where r is the radius of the unique special cylinder.
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Theorem 2: Classification of Special Onduloids.

Let f be an elliptic function and let M be a rotational complete em-
bedded constant (non zero) mean curvature type special surface. If M is
non compact then M is a special onduloid given by Theorem 1.

The above theorem together with Theorem 3.3 in [6], yield the following
consequence:

Corollary 1: A characterization of special ondoloids.

Let f be a elliptic function verifying

f ≥ λ > 0

f ′(1− 2ff ′) ≥ 0

Let M be a properly embedded special surface with two annulus end.
Then M is a special ondoloid given by Theorem 1.

The interested lector will find in [8] others results concerning the clas-
sification, geometrical characterization and application of special ondoloids.
Moreover, we remark that if limt→−∞(t−f(t2)) = 0 then there is rotational
special surfaces analogous to rotational constant (positive) Gauss curvature
surfaces.

To conclude, we state briefly the following theorem concerning special
nodoids which are analogous to Delaunay’s nodoids (see [8] for details):

Theorem 3: Existence of special nodoids.

Let f be a elliptic function verifying

f(0) > 0 and lim
t→+∞

(t− f(t2)) = +∞

Let τ > 0 be a real number verifying
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1

τ
< lim

t→+∞
(t− f(t2))

then there is a unique complete rotational symmetric non embedded
special surface Nτ .

Selected Open Questions

1. Is there a Kapouleas theory for special surfaces?
2. Is there a Korevaar, Kusner and Solomon theory for special surfaces

(see [6])?
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