Symmetry of properly embedded special Weingarten surfaces in $\mathbf{H}^{\mathbf{3}}$

Ricardo SA EARP*

Departamento de Matemática
Pontifícia Universidade Católica
Rua Marquês de São Vicente, 225
22453-900 Gávea RIO DE JANEIRO
E-mail: earp@mat.puc-rio.br
BRESIL

Eric TOUBIANA*
Département de Mathématiques
Université Paris VII
2, Place Jussieu
75251 PARIS - Cedex 05
E-mail: toubiana@math.jussieu.fr
FRANCE

Abstract: In this paper we prove some existence and uniqueness results about special Weingarten surfaces in hyperbolic space.

1. Introduction

In this paper we consider C^{2} surfaces M in $\mathbf{H}^{\mathbf{3}}$ oriented by a global unit normal field N whose mean curvature H and extrinsic Gaussian curvature K_{e}, satisfy a Weingarten relation of the form:

$$
\begin{equation*}
H=f\left(H^{2}-K_{e}\right) \tag{1}
\end{equation*}
$$

We shall require that f is a C^{1} function defined on $[0,+\infty[$, satisfying:

$$
\begin{equation*}
\forall t \in\left[0,+\infty\left[, 4 t f^{\prime 2}(t)<1\right.\right. \tag{2}
\end{equation*}
$$

We will say that f is elliptic if f satisfies inequality (2). If M satisfies relation (1) for f elliptic, we will call M either a special Weingarten surface or a f-surface. In euclidean space they have been studied by Hopf [10], Hartman and Wintner [9], Chern [5]. More recently, there has been main progress, as much in euclidean case as in hyperbolic case, done by Bryant [4], Braga Brito [3], Rosenberg [15]. In section 2 we will briefly describe this and we will develop some fundamental basis of the theory. Both authors have constructed a family of embedded (and immersed) complete rotational Weingarten surfaces in $\mathbf{R}^{\mathbf{3}}$. They have also proved uniqueness of such surfaces (see [16], [17] and [18]).

An interesting question in this subject is whether or not a f-surface inherits the symmetries of its boundary: When $f=H$ (constant) and $|H| \leq 1$, Nelli and Rosenberg [14] solved the boundary value problem for compact embedded surfaces and spherical boundary. The sharp related theorem for M immersed was proved by Barbosa and the first author in [2]. Here, we shall generalize Rosenberg and Nelli's result (cited above) for f-surfaces when $f^{2} \leq 1$.

[^0]In [1], it is stated that when the boundary consists of two circles invariant by a 1parameter group of rotations of \mathbf{H}^{3}, then stability implies the surface is also invariant by rotations. Barbosa and the first author have asked if the assumption of stability could be exchanged by embeddedness [1]. In this direction, we are able to obtain the following result: Assume $\partial M=C_{1} \cup C_{2}$, where C_{1} and C_{2} are circles of same radius. Suppose that ∂M is invariant by a rotation. Then there is a positive real number d_{0}, such that if $|H|=1$ and $\operatorname{dist}\left(C_{1}, C_{2}\right) \geq 2 d_{0}, M$ is a piece of a Catenoid Cousin. In fact, we prove an analogous result for a wider class of f-surfaces (see Theorem 1 , section 3).

We notice that symmetry results proved by several authors concerning H-surfaces whose asymptotic boundary consists of a point, a circle or the union of two circles [6], [7], [13], are valid for f-surfaces, since the maximum principle still holds (see section 2). On the other hand, others characterizations of f-surfaces with boundary a circle, proved in [3] when the ambient space is euclidean space, are also stated in section 2.

Finally, we will give existence and uniqueness results of rotational f-surfaces in section 4 , under further hypothesis on f. Moreover, we will prove that the geometric behaviour of such surfaces is the same as the related well-known rotational H-surfaces in $\mathbf{H}^{\mathbf{3}}$ (see Theorem 2 and 3).

2. Some basic properties: the structure of principal lines and the maximum principle. Immediate consequences and generalizations.

In this section we shall establish some basic properties of special Weingarten surfaces. We will state some results of Bryant's theory [4] on the structure of the principal line distribution and we will write-down the maximum principle. We will point out that one can apply Alexandrov techniques to obtain immediate consequences generalizing well-known results for the case $H=$ cst .

2.1. Principal lines distribuition (R.Bryant's theory)

Let M be an immersed special Weingarten surface satisfying (1) with respect to a global unit normal field N.

In a pioneer paper R.Bryant had an amazing idea to construct a new metric $d s^{2}$ by means of the function f given in the Weingarten relation (1) to obtain constant mean curvature type results, as follows:
Proposition 1 ([4])
Let z be an isothermal coordinate of the Bryant's metric $d s^{2}$ in U. If $d s^{2}=\lambda^{2}|d z|^{2}$ then the function $\phi(z)=\lambda^{2}(z)\left(\frac{l-n}{2}-i m\right)$ is holomorphic, where l, m, and n are the coefficients of the second fundamental form with respect to a local oriented orthonormal frame field. Furthermore, the holomorphic quadratic form $\Phi(z)=\phi(z)(d z)^{2}$ is defined globally on M.

Proposition 2 ([4])

Either M is totally umbilic or else the umbilic locus consists entirely of isolated points of strictly negative index.

We remark that when f is analytic Proposition 2 follows from the proof of theorem 3.2 , pg 142, of Hopf's famous book (see [10]). Notice that z_{0} is an umbilic point of M if and only if $\phi\left(z_{0}\right)=0$. Thus, in a neighborhood of $z_{0}=0$ the holomorphic quadratic form is $z^{n}(d z)^{2}$, hence the index at z_{0} is $\frac{-n}{2}$.

We emphasize that R. Bryant proved (in view of Propositions 1, 2) the following generalization of Hopf's theorem: A closed genus zero special Weingarten surface satisfying (1) is a round sphere.

Remark 1

We can derive from Bryant's construction and straightforward computations that the principal line distribution is given by $\operatorname{Im} \Phi=0$.

2.2 Maximum principle

In this section we will establish interior and boundary maximum principle for special Weingarten surfaces in hyperbolic space. We shall apply maximum principle in subsequent sections to derive several uniqueness and symmetry results.

Lemma 1 (Interior maximum principle)

Suppose M_{1}, M_{2} are C^{2} surfaces in \mathbf{H}^{3} which are given locally as graphs of C^{2} functions u, v. Suppose the tangent planes of both M_{1}, M_{2} agree at a point p.

Let $H\left(N_{1}\right)$ and $H\left(N_{2}\right)$ be the mean curvature functions of u and v with respect to unit normals N_{1} and N_{2} that agree at p. Let K_{i} be the extrinsic Gaussian curvature of $M_{i}, i=1,2$. Suppose M_{i} satisfy

$$
H\left(N_{i}\right)=f\left(H_{i}^{2}-K_{i}\right), i=1,2
$$

for f elliptic.
Consequently, if $u \leq v$ near p then $M_{1}=M_{2}$ near p.

Lemma 2 (Boundary maximum principle)

Consider M_{1}, M_{2} as in the statement of the interior maximum principle with C^{2} boundaries B_{1}, B_{2} given by restritions of u and v.

Suppose $T_{p} M_{1}=T_{p} M_{2}$ and $T_{p} B_{1}=T_{p} B_{2}$ with p in the interior of both B_{1} and B_{2}.
Suppose M_{1}, M_{2} satisfy (1) and (2) with respect to the same normal N at p.
Then if $u \leq v$ near p we have $M_{1}=M_{2}$ near p.
The analogous statement in euclidean space is proved in [3], so we omit the proof here.

2.3. Immediate consequences

In this paragraph we will derive some applications extending known results of the constant mean curvature theory.

Proposition: Alexandrov theorem for special Weingarten surfaces in hyperbolic space.
If M is a closed embedded special Weingarten surface in \mathbf{H}^{3} satisfying (1) for f elliptic then M is a sphere.

The proof makes use of Alexandrov reflection principle, with totally geodesic hyperbolic planes in the place of ordinary planes in the Euclidean case. For Alexandrov techniques the reader is referred to [3], [13] and [15].

The Alexandrov reflection principle is a beautiful and fundamental tool for several nice theorems in the constant mean curvature surfaces theory. It provides several analogous results for special Weingarten surfaces. At this point, we will make use of the unit ball model for the hyperbolic space \mathbf{H}^{3}. Thus, $\overline{\mathbf{H}^{3}}$ will denote the closed unit ball and $S^{2}(\infty)$ will denote the unit sphere. We will recall some basic definitions given in [7]. Let M be an embedded surface in \mathbf{H}^{3}. We will denote $\partial_{\infty} M$ the intersection of the closure of M with $S^{2}(\infty)$, and we will call $\partial_{\infty} M$ the asymptotic boundary of M. We will say M is C^{2} - regular at infinity if $\bar{M} \subset \overline{\mathbf{H}^{3}}$ is a C^{2} surface with boundary in $\overline{\mathbf{H}^{3}}$, and $\partial_{\infty} M$ is a C^{2} curve of $S^{2}(\infty)$.

Now we set up the following symmetry statements: Let M be a connected complete properly embedded surface in \mathbf{H}^{3}. Suppose M is a special Weingarten surface satisfying (1) for f elliptic. Assume M is $C^{2}-$ regular at infinity. Then
(1) If the asymptotic boundary is one point then M is a horosphere.
(2) If the asymptotic boundary is one circle then M is a geodesic plane or a equidistant surface.
(3) If the asymptotic boundary is the union of two disjoint circles then M is a surface of revolution.

The proof is an application of Alexandrov principle as in the constant mean curvature case, so we omit the proof here. Let us give the references of the above statements in the case $H=$ cst. If $H=0$ and M is immersed, statement 3 was proved by Levitt and Rosenberg [13]. Statements 1 and 2 was derived by Do Carmo and Lawson [6], while statement 3 for $H=c s t \neq 0$ was deduced by Do Carmo, Gomes and Thorbergsson [7].

Another amazing symmetry result for $H=c s t$, is the Hsiang theorem which implies that if M is cylindrically bounded, complete and embedded then M has rotational symmetry [11]. We now assert the following: Let M be a connected properly embedded complete special Weingarten surface in \mathbf{H}^{3} satisfying (1) for f elliptic. If M is cylindrically bounded then M is a surface of revolution.

The proof is similar to the constant mean curvature case.

3. Symmetry arising from the boundary

Is this section we shall establish several symmetry results for special Weingarten surfaces arising from the symmetry of the boundary. Some of them are not known even in the constant mean curvature case. Others are generalizations of well-know results for $H=c s t$ or simple extensions of results obtained recently in euclidean space.

Let C_{1}, C_{2} be two circles in \mathbf{H}^{3} with same radius. Suppose $C_{1} \cup C_{2}$ is invariant by a rotation. That is, C_{1}, C_{2} are on a same cylinder C. We will denote by $\operatorname{int}(C)$ the component of $\mathbf{H}^{3}-C$ containing the axis of C. The distance $d\left(C_{1}, C_{2}\right)$ between C_{1} and C_{2} is the distance between the "parallel" geodesic planes determined by C_{1} and C_{2}.

It is well-known (see [11]) that if $C_{1} \cup C_{2}$ is the boundary of a minimal surface of revolution then $d\left(C_{1}, C_{2}\right) \leq 2 d_{0}$, where d_{0} is the maximum value of the function $x\left(y_{0}\right)$, given by:

$$
x\left(y_{0}\right)=\int_{y_{0}}^{+\infty} \frac{\sinh y_{0} \cosh y_{0}}{\cosh y} \sqrt{\frac{1}{\sinh ^{2} y \cosh ^{2} y-\sinh ^{2} y_{0} \cosh ^{2} y_{0}}} d y .
$$

Clearly, the above function is bounded and numerical computations shows that $d_{0} \approx 0.5$ (The above formula follows from the first integral of the second order differential equation satisfied by the generating curve [11]).

From now on, we will denote by d_{0} the positive real number defined above.
We shall need the following lemma:

Lemma 3

Let M be a compact connected embedded special Weingarten surface in $\mathbf{H}^{\mathbf{3}}$ satisfying (1) for f elliptic. Assume ∂M is the union of two distint circles C_{1}, C_{2} lying in a cylinder C of axis γ. Then if $M \subset \overline{\operatorname{int}(C)}$ and $M \cap C=\partial M, M$ has a plane of symmetry.

Moreover, if f does not change sign and if $d\left(C_{1}, C_{2}\right) \geq 2 d_{0}$ then M lies between the parallel planes containing C_{1} and C_{2}.

Proof

We denote by P the plane of symmetry of $C_{1} \cup C_{2}$, that is the plane such that C_{1} is the symmetric image of C_{2} with respect to P. We will prove P is a plane of symmetry of M as follows: We start by moving P along γ by doing hyperbolic translations. This movement gives rise to a 1-parameter family $\left\{P_{t}\right\}$ of geodesic planes starting from $P=P_{0}$ and cutting ortogonally γ. We may choose a parameter t such that t is the oriented distance between P_{t} and P. We claim that our assumptions in the first statement allow us to apply Alexandrov reflection, by the means of the family $\left\{P_{t}\right\}$, to conclude M inherits the symmetry of ∂M : Actually, to explain how to do this, we will denote by $M_{t}{ }^{*}$ the reflection on P_{t} for $t \neq 0$ of the components of $M-P_{t}$ lying in the connected component of $\mathbf{H}^{3}-P_{t}$ not containing P. We begin the standard procedure by moving P until P_{t} is disjoint of M, i.e $P_{t} \cap M=\emptyset$. Then moving back P_{t} towards P, doing Alexandrov reflection during this movement, we find a first point of contact between M and $M_{t}{ }^{*}$. Since C is invariant by reflection on P_{t} then, if by absurd $P_{t} \neq P$, this first point of contact cannot occurs at a boundary point of ∂M, because $\partial M \subset C$ and $M \cap C=\partial M$. So, if $t \neq 0$ we get a tangent point of contact, both M and $M_{t}{ }^{*}$ have the correct orientation at this point. We arrive to a contradiction for the maximum principle yields $P_{t}, t \neq 0$, is a plane of symmetry of M. Then $P_{t}=P$, that is P is a plane of symmetry of M, as required.

To prove the second statement we will proceed as follows: Let $P_{d_{1}}$ and $P_{-d_{1}}, d_{1} \geq d_{0}$, be the geodesic planes passing through C_{1} and C_{2}. We will denote by \mathcal{H} the region bounded by $P_{d_{1}}$ and $P_{-d_{1}}$. Also we will denote by P_{t}^{+}the connected component of $\mathbf{H}^{3}-P_{t}$ not containing P. Under those conventions, notice that $M \cup\left(P_{d_{1}}^{+} \cap C\right) \cup\left(P_{-d_{1}}^{+} \cap C\right)$ is the boundary of a region V in $\mathbf{H}^{3} ; V$ is contained in $\overline{\operatorname{int}(C)}, \partial V$ is not smooth over ∂M. Note that, since f does not change sign, either the mean curvature vector \vec{H} of M is pointing into the interior of V or else \vec{H} is pointing towards the exterior of V. We claim \vec{H} is an
inward pointing normal vector. Indeed, set $p=\gamma \cap P$ and let $\alpha \subset P$ be a geodesic line cutting γ orthogonally at p. Let $\left\{\zeta_{t}\right\}$ be the 1-parameter family of minimal surfaces of revolution with axis γ and generating curve c_{t} such that α is the symmetry line of c_{t} and $t=d\left(\zeta_{t}, \gamma\right)$. Note that, as $d\left(C_{1}, C_{2}\right) \geq 2 d_{0}$, the family $\left\{\zeta_{t}\right\}$ is inside \mathcal{H}. To prove the claim, we move ζ_{t} coming from the infinity towards M making $t \rightarrow 0$ to reach a first interior point of contact. By the comparison principle \vec{H} is pointing into V, as required. To conclude the proof, if $M \cap \operatorname{ext}(\mathcal{H}) \neq \emptyset$, one derives a contradiction by the same argument as in the preceding paragraph, making use of the family $\left\{P_{t}\right\}$ coming from the infinity towards $\partial \mathcal{H}$.

We remark that there always exists an umbilic surface in the class of any Weingarten surface satisfying (1) for f elliptic: If $f(0)=0$ any geodesic plane is in the class. If $f^{2}(0)=1$, any horosphere is in the class. If $f^{2}(0)<1$ any equidistant surface with mean curvature $f(0)$ is in the class. If $f^{2}(0)>1$ any sphere of radius ρ with coth $\rho=|f(0)|$ is in the same class of M.

Theorem 1

Let M be a connected properly embedded special Weingarten surface in \mathbf{H}^{3} satisfying (1) for f elliptic. Assume $\partial M \neq \emptyset$. Suppose $f^{2} \leq 1$, we have the following:
(1) Let us suppose that $\partial_{\infty} M=\emptyset$. If ∂M is a circle, then M is totally umbilic.
(2) Let us assume that M is compact and ∂M is the union of two circles C_{1}, C_{2} of same radius with $C_{1} \cup C_{2}$ invariant by a rotation. If we suppose that $d\left(C_{1}, C_{2}\right) \geq 2 d_{0}$, $|f(0)|=1$, and f does not change sign, then M is part of a complete embedded special surface of revolution. Furthermore, the generating curve attains one and only one global minimum and each end is asymptotically umbilic in the sense of Theorem 2, section 4.

Proof of Statement 1

We suppose $\partial_{\infty} M=\emptyset$, and then M is compact:
Let P be the geodesic plane in \mathbf{H}^{3} containing ∂M. We consider the halfspace model $\mathbf{H}^{\mathbf{3}}=\{(x, y, z), z>0\}$. Without loss of generality, we can suppose $P=\{x=0\}$. Let H_{0} and $H_{0}{ }^{*}$ be the unique horospheres in $\mathbf{H}^{\mathbf{3}}$ such that $H_{0} \cap P=H_{0}{ }^{*} \cap P=\partial M$. Denote by $D_{0}, D_{0}{ }^{*}$,
$D_{0} \subset H_{0}, D_{0}{ }^{*} \subset H_{0}{ }^{*}$ the geodesic disks with boundary ∂M. It follows from [2] that M is inside the region of \mathbf{H}^{3} with boundary $D_{0} \cup D_{0}{ }^{*}$. Now, we claim M is contained in one side of P. Indeed, if $f(0)=0$, then maximum principle shows M is the geodesic disk $D \subset P$ whose boundary is equal to ∂M. Now, if $f(0) \neq 0$, we will arrive to a contradition by the following argument: Take the family $\{S\}$ of umbilic surfaces contained in $\mathbf{H}^{\mathbf{3}}-P$ which is in the same classe of M, i.e $H=f(0)$, by choosing an appropriate normal field N. We require further the mean curvature vector of each surface S is pointing into the region of $\mathbf{H}^{\mathbf{3}}-S$ not containing P (this makes sense since $f(0) \neq 0$). Now it is clear that if $M \cap\{x<0\} \neq \emptyset$ and $M \cap\{x>0\} \neq \emptyset$, we may make a comparison of M with a member S of the family in a suitable way to obtain a contradiction by the maximum principle. This proves the previous claim and we conclude M is in one side of P. Finally,
standard Alexandrov principle using the family of geodesic planes ortogonal to P, allow us to conclude M inherits the symmetry of ∂M, i.e M is invariant by a 1-parameter group of rotations. Clearly, the curvature lines are meridians and parallels. Note that either M is totally umbilic or else the singularities of the lines of curvature are isolated, by Bryant's theorem (see Proposition 2). Also note that the only possible singularities of the lines of curvatures are the points on the rotation axis, and there the singularity has non negative index. Consequently M is totally umbilic.

Proof of Statement 2

Let C be the cylinder with axis γ containing $C_{1} \cup C_{2}$. Let $\left\{C_{t}\right\}, t \geq 0$ be the 1-parameter family of cylinder of same axis γ with $C_{0}=C$ and $t=d\left(C_{t}, \gamma\right)$. We assert that $M \subset \overline{\operatorname{int}(C)}$ and $M \cap C=\partial M$. Indeed, if this is not the case, then as $t \rightarrow+\infty$ one may find a "last" cylinder $C_{t_{1}}$ such that $C_{t_{1}} \cap M \neq \emptyset$ and $C_{t} \cap M=\emptyset$, for $t>t_{1}$. If $M \cap\left(\mathbf{H}^{3}-\overline{\operatorname{int}(C)}\right) \neq \emptyset$ then $t_{1}>0$, hence we get a contradiction with the standard comparison principle (because the mean curvature of M is not greater than 1). For the same reasons, $M \cap C=\partial M$. It can be inferred from a straightforward application of Alexandrov principle and Lemma 3 that M is a surface of revolution whose generating curve attains a local minimum. Suppose without loss of generality that γ is the z-axis (in upper halfspace model). Assume C_{1}, C_{2} belong to the horospheres $\Theta_{z_{1}}=\left\{z=z_{1}\right\}$ and $\Theta_{z_{2}}=\left\{z=z_{2}\right\}$, respectively, with $z_{1}<z_{2}$. Consider the 1-parameter family of horospheres $\Theta_{t}=\{z=t\}$ for $t>z_{2}$. Recall that we may move this family along γ by making use of hyperbolic translations. Now, doing $t \downarrow z_{2}$ coming from the infinity towards M it follows from the maximum principle and from the proof of Lemma 3 that M is entirely contained inside the region $\left\{z \leq z_{2}\right\}$ of $\mathbf{H}^{\mathbf{3}}$. By taking into account again Lemma 3, one may conclude M is still inside the region $\left\{z \geq z_{1}\right\}$. Finally, doing Alexandrov reflection in the same way as explained in 2.3., on may derive our previous claim, as desired. Recall that it follows from the proof of Lemma 3 that \vec{H} is an inward pointing normal vector. Thus we have $H=f \leq 0$ on M with respect to the outward normal orientation. Therefore we are able to apply Theorem 2, section 4 , to conclude that the generating curve attains one and only one global minimum since $f(0)=-1$. Furthermore in Theorem 2, section 4 , it is proved that each end of M is asymptotically umbilic. This concludes the proof of Theorem 1.

Remark 2

Statement 1 of Theorem 1 when $H=c s t, H^{2} \leq 1$ is obtained in [14], the sharp result (assuming M immersed) is succeeded in [2]. The general situation for $H=c s t, H^{2}>1$, as in the euclidean case, is still not known. Partial results was obtained in [2].

The following corollary is immediate:

Corollary 1

Let M be a compact embedded surface in \mathbf{H}^{3} with constant mean curvature 1. Suppose ∂M is the union of two circles C_{1}, C_{2} of same radius with $C_{1} \cup C_{2}$ invariant by a rotation.

If $d\left(C_{1}, C_{2}\right) \geq 2 d_{0}$ then M is a piece of a Catenoid Cousin.

Proposition 3

Let M be a compact embedded special Weingarten surface in $\mathbf{H}^{\mathbf{3}}$ satistying (1) for f elliptic. Assume there exists a cylinder C such that $\partial M \subset C$ and such that $M \subset \overline{\operatorname{int}(C)}$. Suppose f satisfies, $f<0, f(t)+\sqrt{t+1}$ is an increasing function for $t \geq 0$ and $f(c)+\sqrt{c+1}=0$, where $H=-\sqrt{c+1}$ is the mean curvature of C with respect to the outward normal orientation (that is C is f-special, see Remark 4).

Then if ∂M is the union of two circles C_{1}, C_{2} invariant by the group of rotations of C, and if $d\left(C_{1}, C_{2}\right) \geq 2 d_{0}, M$ is part of a complete embedded periodic special surface of revolution.

Proof

Let us consider the half-space model of $\mathbf{H}^{\mathbf{3}}$. First, notice that our assumptions give C is the unique cylinder in the same class of M, i.e C satisfies the Weingarten relation (1). Thus, ellipticity yields $M \cap C=\partial M$. Since our hypothesis imply $f(0)<-1$, we may use the spheres of the same class than M, above M, to show as in Theorem 1 that M lies between the parallel euclidean planes containing C_{1} and C_{2} respectively (which are hyperbolic horospheres, denoted by $\Theta_{z_{1}}$ and $\Theta_{z_{2}}$ in the proof of Theorem 1). So we may apply Lemma 3 and the maximum principle to derive as in statement 2 of Theorem 1, that M is invariant by the group of rotations keeping C invariant. Furthermore since Lemma 3 shows that M has a plane of symmetry we deduce that the graph generating M has a local minimum. With Remark 6, section 4, we conclude M is part of a complete embedded periodic special surface of revolution.

To conclude this section we shall figure out a characterization of geodesic disks of spheres proved by Braga Brito and the first author in [3], when the ambient space is euclidean space. The proof is the same in both euclidean and hyperbolic space. So, we will omit it here: Let M be an immersed disk type special Weingarten surface in \mathbf{H}^{3} satisfying (1) for f elliptic. Assume ∂M is a circle of radius ρ. Suppose f is analytic with $f(0)>0$. Then
a) $f(0) \leq \operatorname{coth} \rho$
b) If $f(0)=\operatorname{coth} \rho, M$ is a half sphere.

Remark 3

There is another characterization with same statement and proof in both euclidean and hyperbolic space derived in [3]: If M is a disk type embedded special Weingarten surface in $\mathbf{H}^{\mathbf{3}}$ satisfying (1) for f elliptic, if ∂M is a circle of radius ρ, if f is positive $f>0$, and if M cuts transversely, along ∂M, the geodesic plane P containing ∂M, then M is a geodesic disk of a sphere.

4. Rotational special Weingarten surfaces. Existence and Uniqueness.

In this section, we are interested on special Weingarten surfaces of revolution in the hyperbolic space \mathbf{H}^{3}. We choose the model of the 3 -ball, hence our surfaces are generated by a curve of the 2 -hyperbolic disc $\mathbf{D}=\left\{(u, v) \in \mathbf{R}^{2} / u^{2}+v^{2}<1\right\}$. We choose the following coordinates $(x, y), x, y \in \mathbf{R}$, of \mathbf{D} : Let $p \in \mathbf{D}$, let γ be the unique geodesic passing by p and orthogonal to the horizontal geodesic $\{v=0\}$. Let q be the intersection between the two geodesics. Then x is equal to the oriented hyperbolic distance between q and 0 and y is the oriented hyperbolic lenght of γ between p and q. This means that $x \geq 0$ (resp. $y \geq 0$) if and only if $u \geq 0$ (resp. $v \geq 0$), where (u, v) are the euclidean coordinates of p. Note that the coordinate curves $\{x=c s t\}$ are the geodesics orthogonal to the u-axis and $\left\{y=y_{0}\right\}$ are the equidistant-curves of the u-axis, namely the arcs of circles passing through the points $(-1,0)$ and $(1,0)$ making angle α with $\partial \mathbf{D}$ such that $\cos (\alpha)=\tanh \left(\mathrm{y}_{0}\right)$. It is well-know that the metric of \mathbf{D} with (x, y)-coordinates is:

$$
d s^{2}=\cosh ^{2}(\mathrm{y}) \mathrm{dx}^{2}+\mathrm{dy}^{2} .
$$

Now, let $\gamma \subset \mathbf{D}$ be a curve and let us call M the revolution surface generated by γ, where the revolution axis is always the x-axis (which is also the u-axis). Suppose that γ is the graph of a positive C^{2} function $y=y(x)$. We call outward normal orientation on M the orientation given on γ by the unit normal field pointing toward the direction of increasing y. Straightforward computations show that principal curvatures of M with respect to the outward normal orientation are:

$$
\lambda_{1}(x)=\frac{y^{"} \cosh (\mathrm{y})-2 \sinh (\mathrm{y}) \mathrm{y}^{\prime 2}-\sinh (\mathrm{y}) \cosh ^{2}(\mathrm{y})}{\left(\cosh ^{2}(\mathrm{y})+\mathrm{y}^{\prime 2}\right)^{3 / 2}}, \quad \lambda_{2}(x)=-\frac{\cosh ^{2}(\mathrm{y})}{\sinh (\mathrm{y})\left(\cosh ^{2}(\mathrm{y})+\mathrm{y}^{\prime 2}\right)^{1 / 2}} .
$$

Note that $\lambda_{1}(x)$ is the hyperbolic curvature of γ as a planar curve. From now on we always will assume that f is an elliptic function (see equation 2). Let M be a surface of \mathbf{H}^{3} and let N be a normal unit field over M. Recall that M is a f-surface (with respect to N) if and only if the principal curvatures of M satisfy the relation (see equation 1):

$$
\frac{\lambda_{1}+\lambda_{2}}{2}(N)=f\left(\left[\frac{\lambda_{1}-\lambda_{2}}{2}\right]^{2}\right) .
$$

Recall that for every elliptic function f any totally umbilic hypersurfaces with mean curvature $f(0)$ are f-surfaces. Namely: if $|f(0)|>1$ they are the compact spheres of hyperbolic radius r with $\operatorname{coth}(r)=|f(0)|$ and if $|f(0)| \leq 1$ they are the intersections of spheres with the 3 -ball which intersect the boundary $\partial \mathbf{H}^{3}$ with angle α such that $\cos (\alpha)=f(0)$.

Now, let M be a surface of revolution of $\mathbf{H}^{\mathbf{3}}$ and let γ be the plane curve generating M. Let us assume that γ is the graph of a positive C^{2} function y. Then M is a f-surface if and only if f satisfies the relation $F\left(y, y^{\prime}, y^{\prime \prime}\right)=0$, where:

$$
\begin{aligned}
F\left(y, y^{\prime}, y^{\prime \prime}\right) & =\frac{y^{\prime \prime} \cosh (\mathrm{y}) \sinh (\mathrm{y})-\left(2 \sinh ^{2}(\mathrm{y})+\cosh ^{2}(\mathrm{y})\right) \mathrm{y}^{\prime 2}-\cosh ^{2}(\mathrm{y})\left(\sinh ^{2}(\mathrm{y})+\cosh ^{2}(\mathrm{y})\right)}{2 \sinh (\mathrm{y})\left(\cosh ^{2}(\mathrm{y})+\mathrm{y}^{\prime 2}\right)^{3 / 2}} \\
& -f\left(\left[\frac{y^{\prime \prime} \cosh (\mathrm{y}) \sinh (\mathrm{y})+\left(1-\sinh ^{2}(\mathrm{y})\right) \mathrm{y}^{\prime 2}+\cosh ^{2}(\mathrm{y})}{2 \sinh (\mathrm{y})\left(\cosh ^{2}(\mathrm{y})+\mathrm{y}^{\prime 2}\right)^{3 / 2}}\right]^{2}\right) .
\end{aligned}
$$

From the ellipticity of f, we deduce that $\frac{\partial F}{\partial y^{\prime \prime}}>0$, so F is a strictly increasing function of the third variable.

Proposition 4

Let f be an elliptic function. Then there exists a f-surface of revolution, possibly non complete, if and only if f satisfies the following condition:

$$
\lim _{t \rightarrow+\infty}\left(t-f\left(t^{2}\right)\right)>0 .
$$

Proof

Suppose there exists a f-surface of revolution M. We can assume that part of M is generated by the graph of a strictly positive function $y(x)$. It follows that there exists real numbers $y_{0}>0, y_{0}^{\prime}$ and $y_{0}^{\prime \prime}$ such that $F\left(y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right)=0$. But this is equivalent to

$$
t-f\left(t^{2}\right)=\frac{\cosh ^{2}\left(\mathrm{y}_{0}\right)}{\sinh \left(\mathrm{y}_{0}\right)\left(\cosh ^{2}\left(\mathrm{y}_{0}\right)+\mathrm{y}_{0}^{\prime 2}\right)^{1 / 2}}
$$

where

$$
t=\frac{y_{0}^{\prime \prime} \cosh \left(\mathrm{y}_{0}\right) \sinh \left(\mathrm{y}_{0}\right)+\left(1-\sinh ^{2}\left(\mathrm{y}_{0}\right)\right) \mathrm{y}_{0}^{\prime 2}+\cosh ^{2}\left(\mathrm{y}_{0}\right)}{2 \sinh \left(\mathrm{y}_{0}\right)\left(\cosh ^{2}\left(\mathrm{y}_{0}\right)+\mathrm{y}_{0}^{\prime 2}\right)^{3 / 2}} .
$$

As f is elliptic we know that $\left(t-f\left(t^{2}\right)\right)$ is a strictly increasing function. Whence

$$
\lim _{t \rightarrow+\infty}\left(t-f\left(t^{2}\right)\right)>\frac{\cosh ^{2}\left(\mathrm{y}_{0}\right)}{\sinh \left(\mathrm{y}_{0}\right)\left(\cosh ^{2}\left(\mathrm{y}_{0}\right)+\mathrm{y}_{0}^{\prime 2}\right)^{1 / 2}}
$$

thereby, $\lim _{t \rightarrow+\infty}\left(t-f\left(t^{2}\right)\right)>0$.
Conversely, assume that $\lim _{t \rightarrow+\infty}\left(t-f\left(t^{2}\right)\right)>0$. Note that we have $\lim _{t \rightarrow-\infty}\left(t-f\left(t^{2}\right)\right)<\lim _{t \rightarrow+\infty}\left(t-f\left(t^{2}\right)\right)$. Clearly, there exist strictly positive real numbers $y_{0}, y_{0}^{\prime}>0$ such that

$$
\lim _{t \rightarrow-\infty}\left(t-f\left(t^{2}\right)\right)<\frac{\cosh ^{2}\left(\mathrm{y}_{0}\right)}{\sinh \left(\mathrm{y}_{0}\right)\left(\cosh ^{2}\left(\mathrm{y}_{0}\right)+\mathrm{y}_{0}^{\prime 2}\right)^{1 / 2}}<\lim _{t \rightarrow+\infty}\left(t-f\left(t^{2}\right)\right)
$$

On the other hand, $F\left(y_{0}, y_{0}^{\prime},.\right)$ is an increasing function. Therefore, we conclude from the ellipticity that

$$
\lim _{s \rightarrow-\infty} F\left(y_{0}, y_{0}^{\prime}, s\right)<0 \quad \text { and } \quad \lim _{s \rightarrow+\infty} F\left(y_{0}, y_{0}^{\prime}, s\right)>0
$$

This allows to conclude that there exists a real number $y_{0}^{\prime \prime}$ such that $F\left(y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right)=0$. Then, using the implicit function theorem we can prove that there exists a real C^{1} function h defined on a neighborhood of $\left(y_{0}, y_{0}^{\prime}\right)$ satisfying:

$$
F\left(y, y^{\prime}, y^{\prime \prime}\right)=0 \Leftrightarrow y^{\prime \prime}=h\left(y, y^{\prime}\right), \quad \text { and } \quad h\left(y_{0}, y_{0}^{\prime}\right)=y_{0}^{\prime \prime}
$$

Now Picard's theorem shows that there exists an unique function $y(x)$ satisfying the last ODE with the initial conditions $y(0)=y_{0}$ and $y^{\prime}(0)=y_{0}^{\prime}$. Clearly, the graph of this function generates a f-surface as desired.

From now on, we only consider the outward normal orientation for a graph of \mathbf{D} and we will always suppose that $f(0) \leq 0$. For later use, we shall state the following lemmas.

Lemma 4

Let f be an elliptic function and let y be a C^{2} real function whose graph γ generates a f-surface M. Suppose that $y^{\prime}\left(x_{0}\right)=0$ for a real number x_{0}. Then γ is symmetric with respect to the geodesic orthogonal to γ at point $\left(x_{0}, y\left(x_{0}\right)\right)$ (hence M is symmetric with respect to the totally geodesic hyperplane of \mathbf{H}^{3} orthogonal to \mathbf{D} which contains this geodesic).

Proof

Observe that the functions y and $z(x)=y\left(2 x_{0}-x\right)$ satisfy the same second order differential equation with the same initial conditions at x_{0}, since $y\left(x_{0}\right)=z\left(x_{0}\right)$ and $y^{\prime}\left(x_{0}\right)=0=z^{\prime}\left(x_{0}\right)$. Actually (1) can be write locally in the form $y^{\prime \prime}=h\left(y, y^{\prime}\right)$, see the proof of Proposition 4. So we have $y=z$.

Lemma 5

Let f be an elliptic function and let y be a C^{2} real function whose graph γ generates a f-surface M. Suppose that M has an umbilic point. Then M is totally umbilic.

Proof

This is a direct consequence of Proposition 2, section 2. If M admits an umbilic point outside the revolution axis then M have at least a circle of umbilic point. Since Proposition 2 , section 2 , shows that M is totally umbilic or umbilic points are isolated we conclude in this case that M is totally umbilic. If the umbilic point stays on the x-axis, note that the index of this umbilic point (if it is isolated) is +1 , but the Proposition 2, section 2, shows that this index should be negative. We also conclude that M is totally umbilic.

We remark that we can give a direct proof of Lemma 5. For this, it suffices to show that there is a C^{2} curve tangent to γ at the umbilic point generating a totally umbilic surface with constant mean curvature $f(0)$ with respect to outward normal orientation.

Lemma 6

Let f be an elliptic function and let y be a C^{2} positive monotonous function whose graph generates a non-totally umbilic f-surface M of \mathbf{H}^{3}. Then we have:

$$
\lambda_{2}^{\prime}=y^{\prime} \operatorname{coth}(y)\left(\lambda_{1}-\lambda_{2}\right) .
$$

Consequently, the principal curvatures of M also are monotonous and λ_{1} is increasing if and only if λ_{2} is decreasing.

Proof

A simple computation shows that the principal curvatures of M satisfy the formula in the statement. Then, Lemma 5 shows that λ_{2} is a monotonous function. Moreover, by differentiating the relation (1) we obtain:

$$
\lambda_{1}^{\prime}+\lambda_{2}^{\prime}=\left(\lambda_{1}^{\prime}-\lambda_{2}^{\prime}\right) \cdot\left(\lambda_{1}-\lambda_{2}\right) \cdot f^{\prime}\left(\left[\frac{\lambda_{1}-\lambda_{2}}{2}\right]^{2}\right)
$$

Using ellipticity of f we infer:

$$
\left|\lambda_{1}^{\prime}+\lambda_{2}^{\prime}\right|<\left|\lambda_{1}^{\prime}-\lambda_{2}^{\prime}\right|
$$

which achieves the proof.
Now, recall that a cylinder of \mathbf{H}^{3} is a complete surface of revolution generated by the graph of a constant function $y(x)=\tau>0$, which will be noted C_{τ}. Note that the principal curvatures of C_{τ} are $\lambda_{1}=-\tanh (\tau)$ and $\lambda_{2}=-\operatorname{coth}(\tau)$. Then, if f is an elliptic function the cylinder C_{τ} is a f-surface if and only if:

$$
\frac{\tanh (\tau)+\operatorname{coth}(\tau)}{2}+f\left(\left[\frac{\tanh (\tau)-\operatorname{coth}(\tau)}{2}\right]^{2}\right)=0
$$

Proposition 5

Let f be an elliptic function with $f^{\prime} \geq 0$. Then there exists a f-special cylinder if and only if $f(0)<-1$. Furthermore, this cylinder is unique.

Proof

As f is elliptic the function $t+f\left(t^{2}\right)$ is increasing. Moreover, as f is increasing the function

$$
g(t)=\frac{\tanh (\mathrm{t})+\operatorname{coth}(\mathrm{t})}{2}+f\left(\left[\frac{\tanh (\mathrm{t})-\operatorname{coth}(\mathrm{t})}{2}\right]^{2}\right)
$$

is decreasing. Let us assume first that $f(0)<-1$. Note that $\lim _{t \rightarrow+\infty} g(t)=1+f(0)<0$ and $\lim _{t \rightarrow 0} g(t)=\lim _{t \rightarrow+\infty}\left(t+f\left(t^{2}\right)\right)=+\infty$. So, there exists an unique positive real number τ satisfying $g(\tau)=0$, i.e there exists an unique f-special cylinder.

Conversely, suppose there exists a f-special cylinder C_{τ}. Consequently $g(\tau)=0$ and we deduce (as f is increasing):

$$
f(0) \leq-\frac{\tanh (\tau)+\operatorname{coth}(\tau)}{2}<-1 .
$$

As before we may conclude that C_{τ} is the unique f-special cylinder.

Remark 4

Note that in the euclidean case ellipticity of f ensures uniqueness of f-special cylinder (see [16]). In the hyperbolic case, if we do not assume f increasing, it may exist many and
even infinitely many f-special cylinders. To see this, set $X=X(t)=\left[\frac{\tanh (\mathrm{t})-\operatorname{coth}(\mathrm{t})}{2}\right]^{2}$. We have then $g(t)=h(X)=\sqrt{X+1}+f(X)$ with $X \in[0,+\infty[$. Observe that each zero of h gives a f-special cylinder. Moreover, we can write h as an integral:

$$
h(X)=\int_{0}^{X}\left(f^{\prime}(t)+\frac{1}{2 \sqrt{t+1}}\right) d t+f(0)+1
$$

Then

$$
h(X)=0 \Leftrightarrow \int_{0}^{X}\left(f^{\prime}(t)+\frac{1}{2 \sqrt{t+1}}\right) d t=-(f(0)+1)
$$

Now observe that the last integral is the (oriented) aire of the finite plane region limited by the graph of the two functions $f^{\prime}(t)$ and $-\frac{1}{2 \sqrt{t+1}}$ for t between 0 and X. Also f elliptic means only that the graph of f^{\prime} stays between the graph of the two functions $\frac{1}{2 \sqrt{t}}$ and $-\frac{1}{2 \sqrt{t}}$. So it is not difficult to find elliptic functions f such that the associated function h has as many (and even infinitely many) zeros we want. Finally, observe that the weaker condition $f^{\prime}(t) \geq-\frac{1}{2 \sqrt{t+1}}$ ensures uniqueness of f-special cylinder, since the function h is increasing.

Theorem 2

Let f be an elliptic function with $f(0) \leq 0$ and $\lim _{t \rightarrow+\infty}\left(t+f\left(t^{2}\right)\right)>0$. Let $\tau>0$ be a positive real number satisfying:

$$
\begin{gathered}
\frac{\tanh (\tau)+\operatorname{coth}(\tau)}{2}+f\left(\left[\frac{\tanh (\tau)-\operatorname{coth}(\tau)}{2}\right]^{2}\right)>0 \\
\operatorname{coth}(\tau)<\lim _{t \rightarrow+\infty}\left(t-f\left(t^{2}\right)\right)
\end{gathered}
$$

Then there exists a unique complete curve γ_{τ} which is the graph of a C^{2} function $y_{\tau}(x)$, admitting a minimum at $(0, \tau)$, symmetric with respect to the y-axis and generating a complete embedded f-surface of revolution M_{τ}.

Moreover if $f^{\prime} \geq 0$ the curve γ_{τ} has the following behaviour.

1) If $-1<f(0) \leq 0, y_{\tau}$ is defined on an open interval $]-x_{\tau}, x_{\tau}\left[\right.$, with $0<x_{\tau}<+\infty$, y is increasing on $\left[0, x_{\tau}\left[\right.\right.$ and satisfies $\lim _{x \rightarrow x_{\tau}} y_{\tau}=+\infty$. Also γ_{τ} has a limit direction tangent and makes an angle $\theta \in] 0, \pi / 2]$ with $\partial \mathbf{D}$ such that $\cos (\theta)=|f(0)|$ (see figure 1). Furthermore both of principal curvatures of M_{τ} go to $f(0)$ when x goes to $\pm x_{\tau}$. Consequently M_{τ} is asymptotically umbilic.
2) If $f(0)=-1, y_{\tau}$ is defined on $]-\infty,+\infty\left[, y_{\tau}\right.$ is increasing on $[0,+\infty[$ and satisfies $\lim _{x \rightarrow \infty} y_{\tau}=+\infty$. Also γ_{τ} has a limit tangent direction and is tangent to $\partial \mathbf{D}$ (see figure 2). Furthermore both of principal curvatures of M_{τ} go to -1 when x goes to $\pm \infty$. It follows that M_{τ} is asymptotically umbilic.
3) If $f(0)<-1, y_{\tau}$ is defined on $]-\infty,+\infty[$ and is periodic (see figure 3).

In the same way, if $-1 \leq f \leq 0$ (without suppose $f^{\prime} \geq 0$) then cases 1) and 2) still hold.

figure 1
figure 2

figure 3

Remark 5

(a) Note that in each case γ_{τ} has the same geometrical behaviour than the curve generating a complete embedded surface of \mathbf{H}^{3} with constant mean curvature $f(0)$.
(b) We deduce that if $-1<f(0) \leq 0$ and $f^{\prime} \geq 0$ (or $-1 \leq f \leq 0$) each end of the f-surfaces given by Theorem 2 is C^{1} asymptotic to an end of a totally umbilic surface of \mathbf{H}^{3} with constant mean curvature $f(0)$.

Proof of Theorem 2

We have seen that the graph of a positive function y_{τ} generates a f-surface if and only if $F\left(y_{\tau}, y_{\tau}^{\prime}, y_{\tau}^{\prime \prime}\right)=0$. Also, f elliptic implies that F is strictly increasing with respect to $y_{\tau}^{\prime \prime}$.

A computation shows that

$$
F(\tau, 0,0)=-\frac{\tanh (\tau)+\operatorname{coth}(\tau)}{2}-f\left(\left[\frac{\tanh (\tau)-\operatorname{coth}(\tau)}{2}\right]^{2}\right)<0
$$

and

$$
\lim _{t \rightarrow+\infty} F(\tau, 0, t)=\lim _{t \rightarrow+\infty}\left(t-f\left(t^{2}\right)\right)-\operatorname{coth}(\tau)>0
$$

Therefore, we derive that there is an unique positive real number $y_{0}^{\prime \prime}>0$ satisfying $F\left(\tau, 0, y_{0} "\right)=0$. Now, the implicit function theorem shows that there exists a C^{1} real function h defined in a neighborhood of ($\tau, 0$) satisfying:

$$
F\left(y_{\tau}, y_{\tau}^{\prime}, y_{\tau}^{\prime \prime}\right)=0 \Leftrightarrow y_{\tau}^{\prime \prime}=h\left(y_{\tau}, y_{\tau}^{\prime}\right), \quad \text { and } \quad h(\tau, 0)=y_{0}^{\prime \prime} .
$$

Furthermore, Picard's theorem shows that the above differential equation has an unique solution y_{τ} satisfying $y_{\tau}(0)=\tau$ and $y_{\tau}^{\prime}(0)=0$. Lemma 4 shows that $y_{\tau}(-x)=y_{\tau}(x)$, so we may suppose y_{τ} is defined on an interval $]-x_{1}, x_{1}$ [. If $x_{1}=+\infty$ we are done, so suppose $0<x_{1}<+\infty$. Note that $y_{\tau}^{\prime}(x)>0$ for $x>0$ near of 0 . If y_{τ}^{\prime} had another zero after $0, y_{\tau}$ would have another symmetry but then y_{τ} would be a periodic function and its graph, γ_{τ} would be complete as we wish. So suppose that $y_{\tau}^{\prime}(x)>0$ for $x>0$, subsequently $y_{\tau}(x)$ has a positive limit y_{1} as x goes to x_{1}. If $y_{1}=+\infty$ the graph γ_{τ} is complete, so suppose that $0<y_{1}<+\infty$.

Observe that $\lambda_{2}(0)=-\operatorname{coth}(\tau)$ and $\lambda_{1}(0)=\frac{y_{0}^{\prime \prime}}{\cosh ^{2}(\tau)}-\tanh (\tau)$, thereby, $\lambda_{2}(0)<\lambda_{1}(0)$. Since the f-surface generated by γ_{τ} is not totally umbilic, Lemma 5 shows that $\lambda_{2}(x)<\lambda_{1}(x)$ for every x. Moreover, Lemma 6 says that $\lambda_{2}(x)$ is strictly increasing and $\lambda_{1}(x)$ is strictly decreasing on $\left[0, x_{1}\left[\right.\right.$, so they have finite limit when x goes to x_{1}, hence y_{τ}^{\prime} has a positive limit y_{1}^{\prime}.

Note also that, as f is elliptic, the function

$$
G\left(\lambda_{1}, \lambda_{2}\right)=\frac{\lambda_{1}+\lambda_{2}}{2}-f\left(\left[\frac{\lambda_{1}-\lambda_{2}}{2}\right]^{2}\right)
$$

is strictly increasing with respect to λ_{1} and λ_{2} and $G(f(0), f(0))=0$. We get from this and from the above observations that $\lambda_{2}(x)<f(0)<\lambda_{1}(x)$. If $f(0)<0$ the first inequality shows that $y_{1}^{\prime}<+\infty$. If $f(0)=0$ we also have $y_{1}^{\prime}<+\infty$ for, in the contrary, the graph γ_{τ} would be tangent and into one side of the geodesic $\left\{x=x_{1}\right\}$. However, those two curves generate two f-surfaces of revolution. This last situation gives a contradiction with the maximum principle with boundary.

Thus in all cases we have $y_{1}^{\prime}<+\infty$ and as λ_{1} has a finite limit we derive that $y_{\tau}^{\prime \prime}$ also has a finite limit $y_{1}^{\prime \prime}$. As F is a continuous function we have $F\left(y_{1}, y_{1}^{\prime}, y_{1}^{\prime \prime}\right)=0$. So using the implicit function theorem as above we can extend y_{τ} beyond x_{1}. Repeting this argument we see that we obtain a complete symmetric curve γ_{τ} generating a f-surface, which is the graph of a C^{2} function y_{τ} defined on $]-x_{\tau}, x_{\tau}\left[, 0<x_{\tau} \leq+\infty\right.$, as claimed. This completes the proof of the first assertion.

Proof of Statement (3)

Now let us assume $f^{\prime} \geq 0$. Suppose first $f(0)<-1$. Note that in this case, we have $x_{\tau}=+\infty$. Otherwise, we could find a f-special sphere with mean curvature $f(0)$ tangent and on one side of M_{τ}, which gives a contradiction with the maximum principle. Then y_{τ} is defined for all real number $x \in \mathbf{R}$. Now we are going to show that y_{τ} is periodic. In the contrary, assume that y_{τ} is an increasing function on $[0,+\infty[$ and consequently has a positive limit $c>0$ when x goes to $+\infty$. The last argument with f-special spheres shows that $c \neq+\infty$. Hence, $0<c<+\infty$. Recall that λ_{2} is strictly increasing and λ_{1} is strictly decreasing and that $\lambda_{2}(x)<f(0)<\lambda_{1}(x)$. Hence, λ_{2} has a strictly negative limit and we deduce that $y_{\tau}^{\prime}(x) \rightarrow 0$. Furthermore, since λ_{1} has a finite limit we get that $y_{\tau}^{\prime \prime}$ also has a limit. Then $y_{\tau}^{\prime \prime}(x) \rightarrow 0$. It follows that:

$$
\lim _{x \rightarrow+\infty} \lambda_{1}=-\tanh (c), \quad \lim _{x \rightarrow+\infty} \lambda_{2}=-\operatorname{coth}(c) .
$$

We conclude that the cylinder C_{c} is a f-surface. Observe that, until now, we did not use the hypothesis $f^{\prime} \geq 0$. As f is increasing we know that the function

$$
g(t)=\frac{\tanh (\mathrm{t})+\operatorname{coth}(\mathrm{t})}{2}+f\left(\left[\frac{\tanh (\mathrm{t})-\operatorname{coth}(\mathrm{t})}{2}\right]^{2}\right)
$$

is decreasing. Consequently, $t<c$ implies $-f\left(\left[\frac{\tanh (\mathrm{t})-\operatorname{coth}(\mathrm{t})}{2}\right]^{2}\right)<\frac{\tanh (\mathrm{t})+\operatorname{coth}(\mathrm{t})}{2}$. Also let us note that the above observations about the principal curvatures show that $\lambda_{1}-\lambda_{2}$ is a decreasing function for $x>0$. We deduce that $\left[\frac{\lambda_{1}-\lambda_{2}}{2}\right]^{2}$ is also a decreasing function. Then, for every $x>0$ we have $\left[\frac{\lambda_{1}-\lambda_{2}}{2}\right]^{2}>\left[\frac{\tanh (\mathrm{c})-\operatorname{coth}(\mathrm{c})}{2}\right]^{2}$, from which we derive:

$$
-f\left(\left[\frac{\lambda_{1}-\lambda_{2}}{2}\right]^{2}\right)<\sqrt{\left[\frac{\lambda_{1}-\lambda_{2}}{2}\right]^{2}+1}
$$

for $x>0$, since $\frac{\tanh (\mathrm{t})+\operatorname{coth}(\mathrm{t})}{2}=\sqrt{\left[\frac{\tanh (\mathrm{t})-\operatorname{coth}(\mathrm{t})}{2}\right]^{2}+1}$. The last inequality implies $0<\frac{\lambda_{1}+\lambda_{2}}{2}+\sqrt{\left[\frac{\lambda_{1}-\lambda_{2}}{2}\right]^{2}+1}$. A computation shows that this is equivalent, for x big enough, to $\lambda_{1} \cdot \lambda_{2}<1$. Substituting in the last inequality λ_{1} and λ_{2} by their expression in function of y_{τ} and doing further simplifications we get for x big enough:

$$
\begin{equation*}
0<y_{\tau}^{\prime \prime} \cosh ^{3}\left(\mathrm{y}_{\tau}\right)+\mathrm{y}_{\tau}^{\prime 4} \sinh \left(\mathrm{y}_{\tau}\right) \tag{*}
\end{equation*}
$$

On the other hand, note that $y_{\tau}^{\prime}(x) \cosh \left(\mathrm{y}_{\tau}(\mathrm{x})\right)>0$ for every $x>0$, moreover

$$
y_{\tau}^{\prime}(0) \cosh \left(\mathrm{y}_{\tau}(0)\right)=0 \quad \text { and } \quad \lim _{\mathrm{x} \rightarrow+\infty} \mathrm{y}_{\tau}^{\prime}(\mathrm{x}) \cosh \left(\mathrm{y}_{\tau}(\mathrm{x})\right)=0 .
$$

From the above, we derive that there is a sequence $x_{n}>0$, with $\lim _{n \rightarrow+\infty} x_{n}=+\infty$, such that:

$$
\left(y_{\tau}^{\prime} \cosh \left(\mathrm{y}_{\tau}\right)\right)^{\prime}\left(\mathrm{x}_{\mathrm{n}}\right)<0 .
$$

This means $\left(y_{\tau}^{\prime \prime} \cosh \left(\mathrm{y}_{\tau}\right)\right)\left(\mathrm{x}_{\mathrm{n}}\right)<-\left(\mathrm{y}_{\tau}^{\prime}{ }^{2} \sinh \left(\mathrm{y}_{\tau}\right)\right)\left(\mathrm{x}_{\mathrm{n}}\right)$. Then, for every n :

$$
\left(y_{\tau}^{\prime \prime} \cosh ^{3}\left(\mathrm{y}_{\tau}\right)+\mathrm{y}_{\tau}^{\prime 4} \sinh \left(\mathrm{y}_{\tau}\right)\right)\left(\mathrm{x}_{\mathrm{n}}\right)<\left(\sinh \left(\mathrm{y}_{\tau}\right) \mathrm{y}_{\tau}^{\prime 2}\left(\mathrm{y}_{\tau}^{\prime 2}-\cosh ^{2}\left(\mathrm{y}_{\tau}\right)\right)\left(\mathrm{x}_{\mathrm{n}}\right)<0\right.
$$

the last inequality is true for n big enough. But this gives a contradiction with (*). We conclude that y_{τ} has to be periodic, as desired.

For the remaining cases, $-1 \leq f(0) \leq 0$ we need to consider the angle $\sigma \in]-\pi / 2, \pi / 2[$ between γ_{τ} and the coordinate curves $\{y=c s t\}$. Notice that the orientation chosen is such that $\cos \sigma=\frac{\cosh (\mathrm{y})}{\left(\cosh ^{2}(\mathrm{y})+\mathrm{y}^{\prime 2}\right)^{1 / 2}}$. It follows that

$$
\lambda_{2}(x)=\frac{-\cos \sigma}{\tanh (\mathrm{y})}
$$

Proof of Statement (2)

Let us suppose now that $f(0)=-1$ (and $f^{\prime} \geq 0$). Therefore $x_{\tau}=+\infty$ or equivalently y_{τ} is defined on $]-\infty,+\infty$ [. For in the other case, using the family of horocycles issue from the point $(u, v)=(1,0)$ in $\partial \mathbf{D}$, we may reach a tangent point between γ_{τ} and one of those horocycles with γ_{τ} on one side of the horocycle. But those two curves generate two f-surfaces, so it would give a contradiction with the maximum principle. Observe also that if $\lim _{x \rightarrow+\infty} y_{\tau}(x)=c<+\infty$, the cylinder C_{c} should be a f-surface. This gives a contradiction since the mean curvature of C_{c} is strictly less than -1 (with respect to the exterior normal orientation) and $f \geq-1$ for f is increasing and $f(0)=-1$. So this allows to conclude that $\lim _{x \rightarrow+\infty} y_{\tau}(x)=+\infty$. As $\lambda_{2}(x)$ is a strictly increasing function and bounded from above by -1 we deduce that $\lim _{x \rightarrow+\infty} \lambda_{2}=\lim _{x \rightarrow+\infty}-\cos \sigma \leq-1$; hence we have $\lim _{x \rightarrow+\infty} \cos \sigma=1$. This means that γ_{τ} is tangent to $\partial \mathbf{D}$ when x goes to $\pm \infty$.
We also have that $\lim _{x \rightarrow+\infty} \lambda_{2}=-1$. As the function $G\left(\lambda_{1}, \lambda_{2}\right)=\frac{\lambda_{1}+\lambda_{2}}{2}-f\left(\left[\frac{\lambda_{1}-\lambda_{2}}{2}\right]^{2}\right)$ is increasing with respect to λ_{1} and λ_{2} with $G(f(0), f(0))=0$ we also deduce that $\lim _{x \rightarrow+\infty} \lambda_{1}=-1$. We conclude that M_{τ} is asymptotically umbilic.

Proof of Statement (1)

Let us assume $-1<f(0) \leq 0$ (and $f^{\prime} \geq 0$). Let us consider the family of umbilic f-surfaces of $\mathbf{H}^{\mathbf{3}}$ invariant by rotation about the y-axis. Namely this is the family of pieces of sphere making angle $\alpha \in] 0, \pi / 2]$ with $\partial \mathbf{H}^{3}$ such that $\cos (\alpha)=-f(0)$ and each spherical piece stands above the totally geodesic plane with the same boundary. Suppose that $x_{\tau}=+\infty$. Assume first that $\lim _{x \rightarrow+\infty} y_{\tau}(x)=+\infty$. Then we could find one of the previous spherical piece tangent and above M_{τ}, which gives a contradiction with the maximum principle. If $\lim _{x \rightarrow+\infty} y_{\tau}(x)=c$ with $c<+\infty$ we would conclude as before that the cylinder C_{c} is a f-surface. But any cylinder has mean curvature strictly less than -1 (with respect to the outward orientation) and f is bigger than -1 . So we deduce that $x_{\tau}<+\infty$. As we know that γ_{τ} is a complete curve we have $\lim _{x \rightarrow x_{\tau}} y_{\tau}=+\infty$. As before, as λ_{2} has a finite limit at x_{τ}, we conclude that $\cos \sigma$ also has a limit at x_{τ}. Let us call σ_{τ} the limit angle. This means that γ_{τ} has a limit tangent direction and that the angle between γ_{τ} and $\partial \mathbf{D}$ is σ_{τ}.

Using the family of umbilic f-surfaces (with respect to the outward normal orientation) invariant by rotation about the x-axis, the maximum principle shows that $\sigma_{\tau} \leq$ α. Moreover, using the first family of umbilic f-surface (namely, invariant by rotation about the y-axis), the maximum principle shows that $\sigma_{\tau} \geq \alpha$. We obtain that $\sigma_{\tau}=\alpha$, hence $\cos \left(\sigma_{\tau}\right)=-f(0)$. As λ_{2} goes to $-\cos \left(\sigma_{\tau}\right)$ when x goes to x_{τ} we deduce that $\lim _{x \rightarrow x_{\tau}} \lambda_{2}=f(0)$. The same argument as in the case $f(0)=-1$ shows that we also have $\lim _{x \rightarrow x_{\tau}} \lambda_{1}=f(0)$. Thereby, M_{τ} is again asymptotically umbilic.

Finally, assume that $-1 \leq f \leq 0$. Observe that in this case there is no f-special cylinder since the mean curvature of any cylinder is strictly less than -1 . Therefore, we can follow the same proof as before for the cases $f(0)=-1$ and $-1<f(0) \leq 0$. This achieves the proof of Theorem 2.

Remark 6

(a) It is easy to show that if a plane curve which attains a minimum $(0, \tau), \tau>0$, generates a f-surface of revolution M then τ satisfies the conditions of Theorem 2 (so our hypothesis are necessary). Therefore, the proof of the first part of Theorem 2 also shows that M can be extended as a complete embedded f-surface of revolution. Namely, M is part of one surface M_{τ} given by Theorem 2 .
(b) In the case $f(0)<-1$, for the geometrical description of γ_{τ}, note that we only used the fact that g is a decreasing function. It follows that we only need the hypothesis $f^{\prime}(t)>\frac{-1}{2 \sqrt{ } t+1}$ to show γ_{τ} is periodic.

In order to prove uniqueness of f-surfaces given by Theorem 2 , we shall need the following lemma.

Lemma 7

Let f be an elliptic function with $f^{\prime} \geq 0$. Let $y=y(x)$ be a C^{2} decreasing and strictly positive function defined on an interval $] x_{0},+\infty[$. Then the surface of revolution M generated by the graph of $y(x)$ is not a f-surface.

Proof

Let us label c the limit of y : $c=\lim _{x \rightarrow+\infty} y(x)$. We have $0 \leq c<+\infty$. Let us suppose that M is a f-surface. Observe that Lemma 6 implies that principal curvatures of M are monotonous functions and that λ_{1} is increasing if and only if λ_{2} is decreasing.

Let us first suppose $c=0$. Therefore y^{\prime} has not $-\infty$ as limit when x goes to $+\infty$. We deduce that $\lim _{x \rightarrow+\infty} \lambda_{2}=-\infty$. It follows that λ_{2} is decreasing, so $\lim _{x \rightarrow+\infty}\left(\lambda_{2}-\lambda_{1}\right)=-\infty$. Note that $-\lambda_{1}=\frac{\lambda_{2}-\lambda_{1}}{2}-f\left(\left[\frac{\lambda_{2}-\lambda_{1}}{2}\right]^{2}\right)$. Then

$$
\lim _{x \rightarrow+\infty} \lambda_{1}=\lim _{t \rightarrow+\infty}\left(t+f\left(t^{2}\right)\right)
$$

As f is increasing it follows that $\lim _{x \rightarrow+\infty} \lambda_{1}(x)=+\infty$. Consequently the expression of λ_{1} in terms of y implies that $\lim _{x \rightarrow+\infty} y^{\prime \prime}(x)=+\infty$. But the last fact yields a contradiction for y^{\prime} is negative. Hence, $c \neq 0$.

Let us assume now that $c>0$. As $\lim _{x \rightarrow+\infty} y^{\prime} \neq-\infty$ and λ_{2} has a limit we conclude that y^{\prime} has a finite limit and then $\lim _{x \rightarrow+\infty} y^{\prime}=0$. Similarly, we can show that
$\lim _{x \rightarrow+\infty} y^{\prime \prime}(x)=0$. It follows that:

$$
\lim _{x \rightarrow+\infty} \lambda_{1}(x)=-\tanh (\mathrm{c}), \quad \lim _{\mathrm{x} \rightarrow+\infty} \lambda_{2}(\mathrm{x})=-\operatorname{coth}(\mathrm{c}) .
$$

Consequently, we have $\lambda_{1}(x)>\lambda_{2}(x)$ and Lemma 6 shows that λ_{2} is decreasing and $\lambda_{1}(x)$ is increasing. Hence $\left[\lambda_{1}(x)-\lambda_{2}(x)\right]^{2}$ is an increasing function and we get $\left[\lambda_{1}(x)-\lambda_{2}(x)\right]^{2}<[\tanh (c)-\operatorname{coth}(\mathrm{c})]^{2}$. As f is increasing we have

$$
f\left(\left[\frac{\lambda_{1}(x)-\lambda_{2}(x)}{2}\right]^{2}\right)<f\left(\left[\frac{\tanh (\mathrm{c})-\operatorname{coth}(\mathrm{c})}{2}\right]^{2}\right)
$$

On the other hand, an argument of continuity shows that the cylinder C_{c} is a f-surface. This allows to conclude that:

$$
\frac{\lambda_{1}(x)+\lambda_{2}(x)}{2}<\frac{-\tanh (\mathrm{c})-\operatorname{coth}(\mathrm{c})}{2} .
$$

Whence, the mean curvature of M is smaller than the mean curvature of C_{c}, with respect to the outward normal orientation. But it is well-know (see [8] and [11]) that for every $H<-1$ there exists a family of complete embedded Delaunay type surfaces of revolution with constant mean curvature H. This means that those surfaces are periodic and vary continuously. Now, it is also well-know (see [12] Lemma 6.4 or [15] Corollary 4.1.1) that doing a little perturbation of C_{c} in this family, we can get a surface with same constant mean curvature than C_{c} which is tangent and stays under M. As the mean curvature of M is smaller this gives a contradiction with the usual maximum principle (that is the maximum principle concerning the mean curvature). Thus M cannot be a f-surface.

Remark 7

Observe that Lemma 7 remains true if we replace the hypothesis $f^{\prime} \geq 0$ by the assumption $|f| \leq 1$. Indeed we would have again $\lim _{t \rightarrow+\infty}\left(t+f\left(t^{2}\right)\right)=+\infty$, so this eliminates the case $c=0$ (keeping same notations of the proof). Observe also that, in this case, the mean curvature of any f-surface is always bigger than -1 and smaller than 1 . Then there is no f-special cylinder. This eliminates the case $c>0$.

Let M be a complete embedded non-compact surface of revolution in $\mathbf{H}^{\mathbf{3}}$ which does not intersects the axis of rotation (x-axis). Hence, $\mathbf{H}^{\mathbf{3}}-M$ has two connected components, one of them contains the x axis. Then we call exterior normal orientation the unit normal field along M pointing toward the component which does not contain the x-axis. Observe that this definition coincides with the outward normal orientation in case where M is generated by a graph.

Theorem 3

Let f be an elliptic function satisfying one of the two following conditions:
(1) $f^{\prime} \geq 0$ and $f(0) \leq 0$.
(2) $-1 \leq f \leq 0$.

Let M be a complete and embedded f-surface of revolution non-totally umbilic.

Then M is one of the surfaces given by Theorem 2.

Proof

Let us assume first that f satisfies conditions (1).
Let $\gamma \subset \mathbf{D}$ be the curve generating M. Observe that if γ intersects the x-axis then, for regularity, this intersection must be orthogonal. But this point would be an umbilic point. Hence, as M is not a totally umbilic surface, Lemma 5 shows this situation is impossible. So we can suppose that γ stays in the part $\{y>0\}$ of \mathbf{D}.

Let us prove that γ is a graph. In the other case, γ should have a vertical point p (this means the tangent of γ at p is vertical). Let us call γ^{-}the component of $\gamma-p$ which begins under p. Up to a symmetry, we can suppose that a neighborhood of γ^{-}near p stays in the region $\{x \geq x(p)\}$. Observe that the y-coordinate of γ^{-}is decreasing near p. Suppose that γ^{-}has an horizontal point (this means a point where the tangent is horizontal) and let q be the first one. Lemma 4 implies that γ is symmetric with respect to the vertical geodesic $\{x=x(q)\}$ and then q is a local minimum. Observe that, if γ^{-}had another horizontal point, then the next such point after q would be a local maximum. Hence γ should be a periodic curve (see Lemma 4) and q a global minimum for γ. This implies that the exterior normal orientation of $\gamma($ or M) at q is pointing in the direction of the increasing y. But then near q the curve γ is a graph with q as minimum. As γ generates a f-surface M, the proof of Theorem 2 shows that M should be one of the surfaces given there (see Remark 6 -(a)). But this is absurd since no surfaces given by Theorem 2 is generated by a curve which admits vertical point. So γ^{-}has no other horizontal point after q. Hence we deduce that q is a global minimum for γ which is absurd as we have seen before. It follows that γ^{-}cannot have horizontal point after p.

Now if γ^{-}where a graph, this graph should be decreasing and defined on the interval $] x(p),+\infty[$ (as γ is complete). But Lemma 7 shows this is not possible. Then, we conclude γ^{-}is not a graph. This allows to deduce that γ^{-}has another vertical point after p. Let p^{\prime} be the first one. Note hence that γ^{-}is a decreasing graph between p and p^{\prime}. Combining this with Lemma 6 we derive that λ_{2} is strictly monotonous between those two vertical points. Now as $y(p), y\left(p^{\prime}\right)>0$ we have $\lambda_{2}(p)=\lambda_{2}\left(p^{\prime}\right)=0$ which gives a contradiction.

Thus γ is a complete graph. If γ had not horizontal points then, up to a symmetry, we could assume that γ is a decreasing graph defined on an interval $] x_{0},+\infty\left[,-\infty \leq x_{0}\right.$. But Lemma 7 shows this is impossible. If γ had an unique horizontal point, γ should be symmetric (see Lemma 4), then this point should be a global maximum or minimum. Lemma 7 shows that this point cannot be a global maximum. We derive that γ admits a global minimum, hence M is one of the surfaces given by Theorem 2 (see Remark 6-(a)). At last, if γ has many horizontal points, Lemma 4 shows that γ is periodic and then admits a global minimum, which conclude the proof in the first case.

In the second case the proof is analogous since the principal tool, Lemma 7, again is true in this new context, see Remark 7.

Remark 8

In the euclidean case we do not need to assume $f(0) \leq 0$. This is induced by the other hypothesis stated in Theorem 3, see [16]. In the hyperbolic case we must assume this hypothesis since J.Gomes [8] has showed existence of embedded complete surface
of revolution in $\mathbf{H}^{\mathbf{3}}$ with constant and strictly positive mean curvature (with respect to exterior normal orientation).

References

[1] J. L. Barbosa, R. Sa Earp. New results on prescribed mean curvature hypersurfaces in Space Forms. An Acad. Bras. Ci., 67, 1,1-5, (1995).
[2] J. L. Barbosa, R. Sa Earp. Prescribed mean curvature hypersurfaces in $H^{n+1}(-1)$ with convex planar boundary I. Geom. Dedicata, 71, 61-74, (1998).
[3] F.G. Braga Brito, R. Sa Earp. On the Structure of certain Weingarten surfaces with boundary a circle. An. Fac. Sci. Toulouse, VI, No 2, 243-255, (1997).
[4] R. Bryant. Complex analysis and a class of Weingarten surfaces. Preprint.
[5] S.S. Chern. On special W-surface. Trans. A.M.S., 783-786, (1955).
[6] M.P. Do Carmo, H.B. Lawson Jr. On Alexandrov - Bernstein theorems in hyperbolic space. Duke Math. J., 50, No. 4, (1983).
[7] M.P. Do Carmo, J.M. Gomes, G. Thorbergsson. The influence of the boundary behaviour on hypersurfaces with constant mean curvature in H^{n+1}. Comm. Math. Helvitici, 61, 429-491, (1986).
[8] J.M. Gomes. Sobre hirpersuperfícies com curvatura média constante no espaço hiperbólico. Tese de doutorado. IMPA, (1985).
[9] P. Hartman, W. Wintner. Umbilical points and W-surfaces. Amer. J. Math., 76, 502-508, (1954).
[10] H. Hopf. Differential geometry in the large. Lecture Notes in Math., Springer-Verlag 1000, (1983).
[11] W.Y. Hsiang. On generalization of theorems of A. D. Alexandrov and C. Delaunay on hypersurfaces of constant mean curvature. Duke Math. J., 49, No.3, (1982).
[12] N.J. Korevaar, R. Kusner, W.H. Meeks III, B. Solomon. Constant mean curvature surfaces in hyperbolic Space. Amer. J. Math., 114, 1-143, (1992).
[13] G. Levitt, H. Rosenberg. Symmetry of constant mean curvature hypersurfaces in hyperbolic space. Duke Math. J., 52, No. 1, (1985).
[14] B. Nelli, H. Rosenberg. Some remarks on embedded hypersurfaces in Hyperbolic Space of constant mean curvature and spherical boundary. Ann. Glob. An. and Geom., 13, 23-30, (1995).
[15] H. Rosenberg, R. Sa Earp. The geometry of properly embedded special surfaces in \mathbf{R}^{3}, e.g., surfaces satisfying $a H+b K=1$, where a and b are positive. Duke Math. J., 73, No. 2, (1994).
[16] R. Sa Earp et E. Toubiana. A note on special surfaces in \mathbf{R}^{3}. Mat. Contemp., 4, 108-118, (1993).
[17] R. Sa Earp et E. Toubiana. Sur les surfaces de Weingarten spéciales de type minimal. Bol. Soc. Bras. Mat., 26, No. 2, 129-148, (1995).
[18] R. Sa Earp et E. Toubiana. Classification des surfaces de type Delaunay et applications. To appear in Amer. J. Math.

[^0]: * Both authors were partially supported by CNPq and FAPERJ, Brazil.

