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Abstract. In this paper, we study the maximal stable domains on minimal
and constant mean curvature 1 catenoids in hyperbolic space. We in partic-
ular investigate whether half-vertical catenoids are maximal stable domains
(Lindelöf’s property). Our motivations come from Lindelöf’s 1870 paper on
catenoids in Euclidean space.

1. Introduction

In [8], L. Lindelöf determines which domains of revolution on the catenoid C in
R3 are stable. More precisely, he gives the following geometric construction, see
Figure 1. Take any point A on the generating catenary C = {(x, z) ∈ R2 | x =
cosh(z)}. Draw the tangent to C at the point A and let I be the intersection point
of the tangent with the axis {x = 0}. From I, draw the second tangent to C.
It touches C at the point B. Lindelöf’s result states that the compact connected
arc AB generates a stable-unstable domain on the catenoid C (see definitions in
Section 2). As a consequence, the upper-half of the catenoid, C ∩ {z > 0}, is a
maximal stable domain among domains invariant under rotations. We will refer to
this property as Lindelöf’s property.

In [2], we prove that minimal catenoids in Hn×R do not satisfy Lindelöf’s prop-
erty (Theorem 3.5, Assertion 2). In this paper, we consider minimal and embed-
ded constant mean curvature 1 catenoids in H3. The global picture is as follows.
Catenoid-cousins in H3, as their minimal counterparts in R3, satisfy Lindelöf’s
property (Theorem 4.16). This is not surprising in view of the local correspondence
between minimal surfaces in R3 and surfaces with constant mean curvature 1 in H3.
One may also observe that the Jacobi operators look the same, namely −∆−|A0|2,
where A0 is the second fundamental form for catenoids or its traceless analog for
catenoid-cousins. On the other-hand, catenoids in H3 divide into two families, a
family of stable catenoids which foliate the space, and a family of index 1 catenoids
which intersect each other and have an envelope; the hyperbolic catenoids do not
satisfy Lindelöf’s property (Theorem 4.7, Proposition 4.8). We finally point out
that among the examples we have studied, the hypersurfaces which do not satisfy
Lindelöf’s property are precisely those which are vertically bounded.
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2. Preliminaries

Let M2 # M̂3 be an orientable minimal or constant mean curvature surface in
an oriented Riemannian manifold (M̂, ĝ). Let NM be a unit normal field along M
and let AM be the second fundamental form with respect to NM . Let R̂ic be the
Ricci curvature of M̂ . The second variation of the volume functional gives rise to
the Jacobi operator (or stability operator) JM of M , see [6],

(2.1) JM := −∆M −
(|AM |2 + R̂ic(NM )

)
,

where ∆M is the non-positive Laplacian on M for the induced metric.
Given a relatively compact regular domain Ω on the surface M , we let Ind(Ω)

denote the number of negative eigenvalues of JM for the Dirichlet problem in Ω. The
index ofM is defined to be the supremum Ind(M) := sup{Ind(Ω) | Ω b M} ≤ +∞,
taken over all relatively compact regular domains. Let λ1(Ω) be the least eigenvalue
of the operator JM with Dirichlet boundary conditions in Ω. We call a relatively
compact regular domain Ω, stable, if λ1(Ω) > 0; unstable, if λ1(Ω) < 0; stable-
unstable, if λ1(Ω) = 0. More generally, we say that a domain Ω is stable if any
relatively compact subdomain is stable.
Properties 2.1. We recall the following properties.

(1) Let Ω be a stable-unstable relatively compact domain. Then, any smaller
domain is stable while any larger domain is unstable (monotonicity property
of the Dirichlet eigenvalues).

(2) We refer to the solutions of the equation JM (u) = 0 as Jacobi fields on
M . Let Xa : Mn # (M̂n+1, ĝ) be a one-parameter family of oriented
immersions, with constant mean curvature Ha, with variation field Va =
∂Xa
∂a and unit normal Na. If Ha does not depend on a, then, the function
ĝ(Va, Na) is a Jacobi field on M ([1], Theorem 2.7).

(3) Let Ω be a relatively compact domain on a minimal or constant mean cur-
vature manifold M . If there exists a positive function u on Ω such that
JM (u) ≥ 0, then Ω is stable ([5], Theorem 1).

3. Catenoids in R3

In this section, we briefly recall Lindelöf’s results for Euclidean catenoids. We
consider the family of catenoids given by the parametrization

X(a, t, θ) =
(
a cosh( t

a
) cos θ, a cosh( t

a
) sin θ, t

)
, t ∈ R, a > 0,

and in particular the catenoid C given by a = 1. Let N(t, θ) be the unit normal to
C, pointing towards the axis. According to Properties 2.1, the functions

(3.1)
{
v(t) = tanh(t) = 〈 ∂∂z , N(t, θ)〉, and
e(t) = 1− t tanh(t) = −〈∂Xa∂a (1, t, θ), N(t, θ)〉,

are Jacobi fields on C.
Theorem 3.1. Let ξ0 be the positive zero of the function e(t) = 1− t tanh(t).

(1) The domain D(−ξ0, ξ0) = X(1, ]−ξ0, ξ0[, [0, 2π]) is a stable-unstable domain
on the catenoid C.
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(2) The domain D(0,∞) = X(1, ]0,∞[, [0, 2π]) is a maximal stable rotation
invariant domain on C. More precisely, given any α > 0, there exists some
β(α) > 0 such that the domain D(α, β(α)

)
= X(1, ] − α, β(α)[, [0, 2π]) is

stable-unstable, see Figure 1.
(3) The catenoid C = X(1, ]−∞,∞[, [0, 2π]) has index 1.

Sketch of the proof of Theorem 3.1. Assertion 1. Use the Jacobi field e(t).
Assertion 2. The Jacobi field v(t) is positive in D(0,∞). It follows that this domain
is stable (Properties 2.1). Take any α > 0. The function e(α, t) defined by

(3.2) e(α, t) = v(α)e(t) + e(α)v(t).

is a Jacobi field and satisfies e(α,−α) = 0. Since e(α,±∞) = −∞ and ∂e
∂t (α,−α) 6=

0, the function e(α, ·) must have another zero β(α) 6= −α. Observe now that the
function e(α, ·) cannot have two negative zeroes or two positive zeroes because the
upper and lower half-catenoids C ∩ {z >< 0} are stable. Hence e(α, ·) has exactly one
negative zero −α, and one positive zero β(α). It follows that the domain D(α, β(α)

)
is stable-unstable. It also follows that D(0,∞) is a maximal stable domain among
rotation invariant domains. Assertion 3. It follows from Assertion 1 that the index
of C is at least 1. The horizontal half-catenoid C ∩ {x > 0} is stable. This implies
that an eigenfunction of the Jacobi operator associated with a negative eigenvalue
must be invariant by rotations (see [2], Theorem 3.5 or [12]). Use Assertion 1 to
conclude that there is only one negative eigenvalue. ¤

B

A’
A

B’

I’

I

Figure 1. Catenaries, n ≥ 2 and n ≥ 3

Remarks.
(1) Using the function e(α, t) defined by (3.2), one can recover Lindelöf’s tan-

gent construction, see Figure 1.
(2) The function e(α, ·) is a Jacobi field arising from the variation of the one-

parameter family of catenaries passing through the point (cosh(α),−α).
(3) It turns out that the above proof and tangent construction work for n-

dimensional catenoids in Rn+1 as well. When n ≥ 3, these catenoids have
index 1 ([12, 3]) and bounded height. The tangent construction ([3]) shows
that they do not satisfy Lindelöf’s property, see Figure 1.
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4. Catenoids and catenoid cousins in H3

In the sequel, we use subscripts to denote the derivative with respect to a given
variable. For example, if y0(a, s) is a function of the variables a and s, then
y0,a(a, s) = ∂

∂ay(a, s) and y0,s(a, s) = ∂
∂sy(a, s).

4.1. Preliminaries. We work in the half-space model for the hyperbolic space,
H3
{x1,x2,x3} = {(x1, x2, x3) ∈ R3 | x3 > 0}, gh = x−2

3
(
dx2

1 + dx2
2 + dx2

3
)
.

In the hyperbolic plane H2
{x1,x3} = {(x1, x3) ∈ R2 | x3 > 0}, we consider the

Fermi coordinates (u, v) associated with the geodesic s→ (0, es). They are defined
by R2 3 (u, v) → (

x1 = ev tanh(u), x3 = ev/ cosh(u)
)
. Given a function f , we

consider the curve t → (t, f(t)) in the {u, v}-plane and the associated rotation
surface F : M # H3

{x1,x2,x3},

F (t, θ) =
(
ef(t) tanh(t)ωθ ,

ef(t)

cosh(t)

)
,

where we write ωθ = (cos θ, sin θ) for short.

The principal directions of curvature are the tangents to the generating curve
and to the horizontal circle. Using [10] Theorem 2.6.18, we easily compute the
respective principal curvatures





kg(t) = ftt(t) cosh(t) + 2ft(t) sinh(t) + f3
t (t) cosh2(t) sinh(t)

(
1 + cosh2(t)f2

t (t)
)3/2 ,

kc(t) = ft(t) cosh2(t)
sinh(t)

(
1 + cosh2(t)f2

t (t)
)1/2 ,

and the mean curvature

(4.1) H(t) sinh(2t) = d

dt

ft(t) sinh(t) cosh2(t)
(
1 + cosh2(t)f2

t (t)
)1/2

of the immersion F . Integrating Equation (4.1) when H = 0 or H = 1 in the
next sections, we will find graphs, ϕ(a, t) = (t, λ(a, t)), t ≥ a, in the plane H2

{u,v}.
They extend by symmetry with respect to the u-axis as smooth curves with an
arc-length parametrization of the form Φ(a, s) =

(
y(a, s),Λ(a, s)

)
, where y(a, s) is

a smooth even function of s and Λ(a, s) a smooth odd function of s, such that
Λ(a, s) = λ

(
a, y(a, s)

)
for s ≥ 0.

The corresponding constant mean curvature rotation surfaces in H3 are given by
the parametrizations

(4.2) Y (a, s, θ) =
(
eΛ(a,s) tanh(y(a, s))ωθ ,

eΛ(a,s)

cosh(y(a, s))

)
.

The Killing field associated with the hyperbolic translations along the vertical
geodesic t 7→ (0, 0, et) in H3

{x1,x2,x3} is just the position vector. The vertical Jacobi
field is the function vY (a, s) = gh(Y,NY ), where NY is the unit normal vector to
the immersion Y . The following results are straightforward.

Property 4.1. The vertical Jacobi field vY (a, s) = gh(Y,NY ) is an odd function
of s given by vY (a, s) = cosh(y(a, s))ys(a, s).
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Property 4.2. The variation Jacobi field eY (a, s) is an even function of s given
by eY (a, s) = gh(Ya, NY ) = cosh(y(a, s))

(
Λays − Λsya

)
.

4.2. Minimal catenoids in H3. When H = 0, Equation (4.1) yields the solutions
curves {C0,a}a>0,

(4.3) λ0(a, t) = sinh(2a)
∫ t

a

dτ

cosh(τ)
(

sinh2(2τ)− sinh2(2a)
)1/2

which are defined for t ≥ a (here, the lower index 0 refers to the value of H).
Notice that this parametrization only covers a half-catenary and that we work up
to a v-translation in H2

{u,v}, i.e. up to a hyperbolic translation with respect to the
vertical geodesic in H2

{x1,x3}. The arc-length parameter along the curve is given by

(4.4)
{

S0(a, t) =
∫ t
a

sinh(2τ)
(

cosh2(2τ)− cosh2(2a)
)−1/2

dτ,
cosh(2a) cosh

(
2S0(a, t)

)
= cosh(2t), t ≥ a.

Proposition 4.3. For s ∈ R, define the functions y0(a, s) and Λ0(a, s) by the
formulas

(4.5)





y0(a, s) = a+
∫ s

0

cosh(2a) sinh(2t)
(

cosh2(2a) cosh2(2t)− 1
)1/2 dt, and

Λ0(a, s) =
√

2 sinh(2a)
∫ s

0

(
cosh(2a) cosh(2t)− 1

)1/2
(

cosh2(2a) cosh2(2t)− 1
) dt.

(1) The function y0 is an even function of s, and Λ0 an odd function of s.
(2) For s ≥ 0, the function y0(a, ·) is the inverse function of the function

S0(a, ·). In particular, cosh
(
2y0(a, s)

)
= cosh(2a) cosh(2s).

(3) For s ≥ 0, we have Λ0(a, s) = λ0(a, y0(a, s)).
(4) For s ∈ R, the functions s 7→ (

y0(a, s),Λ0(a, s)
)
are arc-length parametri-

zations of the family of catenaries {C0,a}a>0.

Proof. The proof is straightforward. ¤

For later reference, we introduce the function
(4.6) J0(a, t) = sinh(2a)(cosh(2a) cosh(2t) + 1)−1(cosh(2a) cosh(2t)− 1)−1/2,

so that Λ0(a, s) =
√

2
∫ s

0 J0(a, t) dt. We compute ∂J0
∂a (a, t) and find,

(4.7)





I0(a, t) = ∂J0
∂a

(a, t) = n(cosh(2a), cosh(2t))
d(cosh(2a), cosh(2t)) , where

n(A, T ) = A(3−A2)T 2 + (A2 − 1)T − 2A,
d(A, T ) = (AT + 1)2(AT − 1)3/2.

We note that n(A, T ) is a polynomial of degree 2 in T .

Lemma 4.4. Let a1 > 0 be such that cosh2(2a1) = 11+8
√

2
7 ≈ 3.1876, i.e. a1 ≈

0.5915. For a ≥ a1 and for all t, we have n(cosh(2a), cosh(2t)) ≤ 0.

To the above family {C0,a}a>0 of catenaries corresponds a family {C0,a}a>0 of
catenoids in H3 with the arc-length parametrization Y0(a, s, θ),

(4.8) Y0(a, s, θ) =
(
eΛ0 tanh(y0)ωθ , eΛ0/ cosh(y0)

)
,
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where the functions Λ0(a, s) and y0(a, s) are given by Proposition 4.3.

Catenoids in H3 have been considered in [9, 4] and more recently in [11]. As
pointed out by these authors, among the family {C0,a} of catenoids in H3, there are
stable and index one catenoids. We now give a precise analysis of this phenomenon
and we also consider Lindelöf’s property for these catenoids.

4.2.1. Jacobi fields on C0,a. We introduce Jacobi fields on C0,a, having Properties
4.1 and 4.2 in mind. The variation Jacobi field e0(a, s) is given by

e0(a, s) = −gh(Y0,a(a, s, θ), N0(a, s, θ)) = − cosh(y0)
(
Λ0,ay0,s − Λ0,sy0,a

)
.

We have

(4.9)
e0(a, s) = sinh2(2a) cosh(2s)

(
cosh2(2a) cosh2(2s)− 1

)−1

− cosh(2a) sinh(2s)
(

cosh(2a) cosh(2s)− 1
)1/2

∫ s

0
I0(a, t) dt,

where I0(a, t) is defined by (4.7). The vertical Jacobi field v0(a, s) is defined by

(4.10) v0(a, s) =
√

2 cosh(y0)y0,s = cosh(2a) sinh(2s)
(

cosh(2a) cosh(2s)− 1
)1/2 .

Define
(4.11) f0(a, s) = sinh2(2a) cosh(2s)

(
cosh2(2a) cosh2(2s)− 1

)−1

an even function of s which goes to 0 at infinity. In view of Equations (4.9), (4.10)
and (4.11), we have the relations

(4.12) e0(a, s) = f0(a, s)− v0(a, s)
∫ s

0
I0(a, t) dt.

Observe that the integral

(4.13) E0(a) :=
∫ ∞

0
I0(a, t) dt

exists for all values of a.

4.2.2. Stable domains on C0,a. We can now investigate the stability properties of
the catenoids C0,a in H3.

Lemma 4.5. The half-catenoids D0,a,± = Y0(a,R•±, [0, 2π]) are stable. As a conse-
quence, a Jacobi field w(a, s), which only depends on the radial variable s on C0,a,
can have at most one zero on R•+ and on R•−.

Proof. Use Property 2.1 (3) and the fact that v0(a, s) is a Jacobi field which only
vanishes at s = 0. ¤

Lemma 4.6. The catenoid C0,a has index at most 1.

Proof. The fact that the index of Ca is at most 1 has been proved by [11] using
the same method as in [12]. Alternatively, one could use Jacobi fields associated
to geodesics orthogonal to the axis of the catenoids to prove that half-catenoids
Y0(a,R, ]ϕ,ϕ + π[) are stable and to show that negative eigenvalues of the Jacobi
operator JC0,a on domains of revolution are necessarily associated with eigenfunc-
tions depending only on the parameter s, see [2], Theorem 3.5. ¤
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We can now state the main theorem of this section. Recall that the number
E0(a) is defined by (4.13) and that the Jacobi fields v0(a, s) and e0(a, s) are given
respectively by (4.10) and (4.9), with the relation (4.12).

Theorem 4.7. Let {C0,a}a>0 be the family of catenoids in H3 given by (4.8).
(1) The index of the catenoid C0,a depends on the value of the integral E0(a)

defined by (4.13). More precisely, if E0(a) ≤ 0 then the catenoid C0,a is
stable, if E0(a) > 0, then the catenoid C0,a has index 1.

(2) When C0,a has index 1, there exists a positive number z(a) such that the
domain D0,z(a) = Y0(a, ]− z(a), z(a)[, [0, 2π]) is stable-unstable.

(3) When C0,a has index 1, there exists some `(a), 0 < `(a) < z(a), such that
D0,`(a) = Y0(a, ] − `(a),∞[, [0, 2π]) is a maximal stable, rotation invariant
domain.

(4) The catenoids {C0,a}a>0 do not satisfy Lindelöf’s property.
(5) There exist two numbers 0 < a2 < a1 such that for all a > a1, the catenoids
C0,a are stable, and for all a < a2, the catenoids C0,a have index 1.

Proof. Assertion 1. As stated in Lemma 4.5, the function e0(a, s) can have at most
one zero on ]0,∞[ and at most one zero on ] −∞, 0[. Observe that the function
e0(a, s) is even and that e0(a, 0) = 1. To determine whether e0 has a zero, it suffices
to look at its behaviour at infinity. If E0(a) > 0, the function e0(a, s) tends to −∞
at infinity so that it has exactly two symmetric zeroes in R. This implies that the
index of C0,a is at least 1. Using Lemma 4.6, we conclude that C0,a has index 1. If
E0(a) < 0, the function e0(a, s) tends to +∞ at infinity so that it is always positive
and the catenoid C0,a is stable. Assume now that E0(a) = 0. We then have the
relation

e0(a, s) = f0(a, s) + v0(a, s)
∫ ∞
s

I0(a, t) dt.

Using Equation (4.7), we see that I0(a, t) is positive for t large enough provided
that cosh2(2a) ≤ 3. In that case, it follows that e0(a, s) is positive at infinity and
hence that C0,a is stable. If E0(a) = 0 and cosh2(2a) > 3, we need to look at the
behaviour of e0(a, s) at infinity more precisely. When s tends to +∞, we have

f0(a, s) ∼ 2 tanh2(2a)e−2s, v0(a, s) ∼
√

cosh(2a)
2 es, and

∫ ∞
s

I0(a, t) dt ∼ 23/2(3− cosh2(2a))
3 cosh5/2(2a)

e−3s.

It follows that e0(a, s) ∼ 4
3e
−2s is positive at infinity and hence that C0,a is stable.

Assertion 2. Saying that C0,a has index 1 is equivalent to saying that E0(a) > 0
and hence that e0 has two symmetric zeroes. Assertion 3. Given any α > 0, we
introduce the Jacobi field e0(a, α, s),

(4.14) e0(a, α, s) = v0(a, α)e0(a, s) + e0(a, α)v0(a, s).

This Jacobi field vanishes at s = −α < 0 so that it cannot vanish elsewhere in
]−∞, 0[ and can at most vanish once in ]0,∞[. Using Equations (4.14) and (4.12),
we can write

e0(a, α, s) = v0(a, α)f0(a, s) + v0(a, s)
[
e0(a, α)− v0(a, α)

∫ s

0
I0(a, t) dt

]
.
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We have e0(a, α,−α) = 0 and e0(a, α, 0) = v0(a, α) > 0 so that e0(a, α, ·) van-
ishes in ]0,∞[ if and only if e0(a, α) − v0(a, α)E0(a) < 0 (recall that E0(a) =∫∞

0 I0(a, t) dt). If C0,a is stable, then clearly e0(a, α, ·) cannot vanish twice in R.
Assume that C0,a has index 1 or, equivalently, that E0(a) > 0. In that case,
e0(a, ·) has exactly one positive zero z(a). (i) For α > z(a), e0(a, α) < 0 so that
e0(a, α) − v0(a, α)E0(a) < 0 and e0(a, α, ·) has a positive zero β (which must sat-
isfy β < z(a)). (ii) For α = z(a), e0(a, α, s) = v0(a, α)e0(a, s) has two zeroes
±z(a). (iii) For 0 < α < z(a), we can argue as follows. Consider the Jacobi field
w(a, t) = e0(a, t) − E0(a)v0(a, t). At t = 0, we have w(a, 0) = 1 and at t = z(a),
we have w(a, z(a)) < 0 because e0(a, z(a)) = 0, E0(a) > 0 and v0(a, z(a)) > 0.
It follows that w(a, t) has a unique zero in ]0, z(a)[ and hence that there exists a
value `(a) > 0 such that D0,`(a) = Y0(a, ] − `(a),∞[, [0, 2π]) is a maximal stable
rotation invariant domain. Assertion 4. This follows immediately from the previ-
ous assertion. Assertion 5. The first part of the Assertion follows from Lemma 4.4
which implies that e(a, s) never vanishes when a > a1. To prove the second part
of Assertion 3, we can either use the fact that E0(a) tends to +∞ when a tends
to zero from above or use the criteria given in [4] (Corollary 5.13, p. 708) or [11]
(Corollary 4.2). ¤

We have the following geometric interpretation of Theorem 4.7.

Figure 2. Foliating Figure 3. Intersecting

Proposition 4.8. Geometric interpretation.
(1) Let S be an open interval on which E0 < 0 (hence the catenoid C0,a is stable

for all a ∈ S). For a ∈ S, the catenaries C0,a locally foliate the hyperbolic
plane H2

{x1,x3}, see Figure 2 (half-catenaries).
(2) Let U be an open interval on which E0 > 0 (hence the catenoid C0,a has

index 1 for all a ∈ U). For a, b ∈ U , the catenaries C0,a and C0,b intersect
exactly at two points in H2

{x1,x3} and the family {C0,a}a∈U has an envelope.
Furthermore, the points at which C0,a touches the envelope correspond to
the stable-unstable domain D0,z(a), see Figure 3 (half-catenaries).

Proof. Define the v-height function of the catenoid C0,a in H2
{u,v} by

(4.15) V0(a) = lim
t→∞

λ0(a, t) = lim
s→∞

Λ0(a, s).



LINDELÖF’S THEOREM FOR HYPERBOLIC CATENOIDS 9

Lemma 4.9. Let a2 > a1 > 0 be two values of the parameter a. The catenaries
C0,a1 and C0,a2 intersect at most at two symmetric points and they do so if and
only if V0(a2) > V0(a1).

Proof. To prove the Lemma, consider the difference w(t) := λ0(a2, t)−λ0(a1, t) for
t ≥ a2 > a1. A straightforward computation shows that this function increases from
the negative value −λ0(a1, a2) (achieved for t = a2) to V0(a2)−V0(a1) (the limit at
t =∞). It follows that w has at most one zero and does so if and only if V0(a2)−
V0(a1) > 0. The Proposition follows from the fact that V0(a) =

√
2
∫∞

0 J0(a, t) dt
and that V ′0(a) =

√
2E0(a) where E0(a) is defined by (4.13). ¤

Observation 1. One can also define the x-height function of the catenoid C0,a by
X0(a) = lims→∞ eΛ0(a,s) tanh(y0(a, s)) = e

√
2
∫∞

0
J0(a,t) dt, where J0(a, t) is defined

by (4.6). Then, the critical points of X0(a) correspond to the zeroes of the function
E0(a).

Observation 2. We point out that Theorem 4.7, Assertion 1, provides a criterion
(the sign of E0(a)) to determine whether the catenoid C0,a has index 0 or 1 whereas
[9, 4, 11] only give sufficient conditions to insure that the index is 0 or 1. Numer-
ical computations show that the following result holds (see [3] and the graphs in
Figures 4 and 5).
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Figure 4. Graph of E0(a)
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Figure 5. Graph of X0(a)

Proposition 4.10. The function E0(a) has exactly one zero a0 ≈ 0.4955 on ]0,∞[
which is also the unique critical point of the x-height function X0(a). It is positive
for a < a0 and negative for a > a0.

4.3. Catenoid cousins in H3.

4.3.1. Basic formulas. We now consider catenoid cousins, i.e. rotation surfaces
with constant mean curvature 1 in H3(−1). In this case, the mean curvature equa-
tion (4.1) reads

(4.16) sinh(2t) = d

dt

ft(t) sinh(t) cosh2(t)
(
1 + cosh2(t)f2

t (t)
)1/2 ,
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which yields
ft(t) sinh(t) cosh2(t)
(
1 + cosh2(t)f2

t (t)
)1/2 = 1

2 cosh(2t)− d,

for some constant d ∈ R. For a solution to exist, d needs to be positive so that we
may assume that 2d = e−2a for some a ∈ R and we obtain

(4.17) ft =
ea
(

cosh(2t)− e−2a)
√

2 cosh(t)
√

cosh(2t)− cosh(2a)
, t ≥ |a|.

I We now limit ourselves to the embedded case and assume that a > 0. J
Equation (4.17) yields embedded catenary cousins {C1,a}a>0, given by

(4.18) λ1(a, t) =
∫ t

a

ea
(

cosh(2τ)− e−2a)
√

2 cosh(τ)
√

cosh(2τ)− cosh(2a)
dτ, for t ≥ a,

where the lower index 1 refers to H = 1. Notice that the function λ1 describes the
upper halves of catenary-like curves. We compute the arc-length function

(4.19)
{

S1(a, t) = ea√
2

√
cosh(2t)− cosh(2a),

cosh(2t) = 2e−2aS2
1(a, t) + cosh(2a), t ≥ a.

As in Section 4.2, we obtain the following result.

Proposition 4.11. For a > 0 and s ∈ R, define the functions y1(a, s) and Λ1(a, s)
by the formulas

(4.20) y1(a, s) = a+
∫ s

0

2e−2at dt√(
2e−2at2 + cosh(2a)

)2 − 1
, and

(4.21) Λ1(a, s) =
∫ s

0

ea
(
2t2 + e2a sinh(2a)

)
dt

2
(
t2 + e2a cosh2(a)

)√
t2 + e2a sinh2(a)

.

(1) The function y1 is smooth, even, and satisfies

cosh(2y1(a, s)) = 2e−2as2 + cosh(2a).
(2) The function Λ1 is smooth, odd, and satisfies Λ1(a, s) = λ1(a, y1(a, s)) for

s ≥ 0.
(3) For a > 0, the maps R 3 s 7→ (

y1(a, s),Λ1(a, s)
) ∈ H2

{u,v} are arc-length
parametrizations of the family of embedded catenary cousins {C1,a} which
generate the family {C1,a}a>0 of embedded catenoid cousins.

(4) The parametrization of the family {C1,a}a>0 in H3
{x1,x2,x3} is given by

(4.22) Y1(a, s) =
(
eΛ1(a,s) tanh(y1(a, s))ωθ ,

eΛ1(a,s)

cosh(y1(a, s))

)
.

4.3.2. Jacobi fields on C1,a. As in Section 4.2, we define the vertical and variation
Jacobi fields on C1,a.
Lemma 4.12. The vertical Jacobi field v1 is a smooth odd function of s. It is given
by v1(a, s) = cosh(y1(a, s))y1,s(a, s) = e−as

(
s2 + e2a sinh2(a)

)−1/2 and satisfies
v1(a, 0) = 0, v1(a,∞) = e−a.
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The variation Jacobi field e1(a, s) on C1,a is given by

e1(a, s) = cosh
(
y1(a, s)

)(
Λ1,ay1,s − Λ1,sy1,a

)
(a, s).

which we can write as

e1(a, s) = v1(a, s)Λ1,a(a, s)− cosh(y1(a, s))y1,a(a, s)Λ1,s(a, s).

Using Proposition 4.11 and Lemma 4.12, we find the formula

(4.23) cosh(y1) Λ1,s y1,a = sinh2(2a)− 4e−4as4

4
(
e−2as2 + cosh2(a)

)(
e−2as2 + sinh2(a)

) .

By (4.21), we can write Λ1(a, s) as
∫ s

0 A(a, t) dt, where the integrand A(a, t) is
given by

(4.24)





A(a, t) = 2eat2 + e3a sinh(2a)
2
(
t2 + e2a cosh2(a)

)(
t2 + e2a sinh2(a)

)1/2 ,

= A1(a, t)
2A2(a, t)A1/2

3 (a, t)
,

where the second equality defines the functions Ai. One can now compute the
derivative of A(a, t) with respect to the variable a.

Aa(a, t) = A1,a(a, t)
2A2(a, t)A1/2

3 (a, t)
− A1(a, t)B2(a)

2A2
2(a, t)A1/2

3 (a, t)
− A1(a, t)B3(a)

4A2(a, t)A3/2
3 (a, t)

,

where B2(a) = ∂a
(
e2a cosh2(a)

)
, B3(a) = ∂a

(
e2a sinh2(a)

)
. It follows that

Aa(a, t) = 2eat2 + e3a(3 sinh(2a) + 2 cosh(2a))
2A2(a, t)A1/2

3 (a, t)
− A1(a, t)B2(a)

2A2
2(a, t)A1/2

3 (a, t)
· · ·

− A1(a, t)B3(a)
4A2(a, t)A3/2

3 (a, t)
,

i.e.

(4.25)





Aa(a, t) = B(a, t)− C(a, t), where
B(a, t), C(a, t) > 0, for a > 0, t ∈ R,
B(a, t) ∼ ea

|t| , at infinity,
C(a, t) = O( 1

|t|3 ), at infinity.

Finally, with the above notations, we can write the variation Jacobi field as

e1(a, s) = − e4a sinh2(a) cosh2(a)− s4
(
s2 + e2a cosh2(a)

)(
s2 + e2a sinh2(a)

)

− v1(a, s)
∫ s

0
C(a, t) dt+ v1(a, t)

∫ s

0
B(a, t) dt

We have proved,

Lemma 4.13. The variation Jacobi field e1 is a smooth, even function of s which
can be written as

(4.26) e1(a, s) = −f1(a, s) + v1(a, s)
∫ s

0
B(a, t) dt,
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where the function f1 is a smooth, even function of s, such that f1(a, 0) = 1 and
f1(a,∞) finite. Furthermore,

lim
s→∞

v1(a, s)
∫ s

0
B(a, t) dt = +∞.

4.3.3. Stable domains on the embedded catenoid cousins. We can now investigate
the stability properties of the embedded catenoids cousins {C1,a}a>0 in H3(−1).

Lemma 4.14. The upper and lower halves D1,a,± = Y1(a,R•±, [0, 2π]) of the em-
bedded catenoid cousins are stable. As a consequence, a Jacobi field w(a, s), which
only depends on the radial variable s, on C1,a can have at most one zero on R•+ and
on R•−.

Proof. Use Property 2.1 (3) and the fact that v1(a, s) is a Jacobi field which only
vanishes at s = 0. ¤
Lemma 4.15. The embedded catenoid cousins C1,a have at most index 1.

Proof. Same proof as for Lemma 4.6 ¤

We can now state the main theorem of this section. Recall that the Jacobi fields
v1(a, s) and e1(a, s) are given respectively by Lemmas 4.12 and 4.13.

Theorem 4.16. Let {C1,a, a > 0} be the family of embedded catenoid cousins in
H3 given by the parametrization Y1, Equation (4.22).

(1) The Jacobi field e1(a, s) has exactly one positive zero z1(a) and the domains
D1,a,z1(a) = Y1(a, ]− z1(a), z1(a)[, [0, 2π]) are stable-unstable.

(2) For any α > 0, there exists a β(α) > 0 such that the domains
D1,a,−α,β(α) = Y1(a, ]− α, β(α)[, [0, 2π])

are stable-unstable.
(3) In particular, the embedded catenoid cousins {C1,a}a>0 satisfy Lindelöf’s

property: the upper and lower halves of the embedded catenoid cousins
D1,a,± are maximal rotationally symmetric domains.

(4) The index of the catenoid C1,a is equal to 1.

Proof. Assertion 1. As we have seen in Lemma 4.14, the function e1(a, s) can have
at most one zero on ]0,∞[ and at most one zero on ]−∞, 0[. By Lemma 4.13, the
function e1(a, s) is even, e1(a, 0) = −1 and e1(a,∞) = ∞. It follows that e1(a, s)
has exactly two symmetric zeroes in R. Assertion 2. Given any α > 0, we introduce
the Jacobi field e1(a, α, s),
(4.27) e1(a, α, s) = v1(a, α)e1(a, s) + e1(a, α)v1(a, s).
This Jacobi field vanishes at s = −α < 0 so that it cannot vanish elsewhere in
]−∞, 0[ and can at most vanish once in ]0,∞[. Using Lemma 4.13, we can write

e1(a, α, s) = −v1(a, α)f1(a, s) + v1(a, s)
(
e1(a, α) + v1(a, α)

∫ s

0
B(a, t) dt

)
.

It follows that e1(a, α,−α) = 0, e1(a, α, 0) < 0 and lims→∞ e1(a, α, s) = +∞, and
hence that e1(a, α, ·) must vanish at least once. Assertion 3. This is a consequence
of Assertion 2. Assertion 4. This assertion follows from Assertion 1 and from
Lemma 4.15. This has also been proved, using different methods, by Lima and
Rossman [7]. ¤
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4.4. Further results. One can also study rotation surfaces with constant mean
curvature H, 0 ≤ H < 1 in H3(−1). This is similar to the case of minimal surfaces.
More precisely, H-rotation surfaces in H3(−1), with 0 ≤ H < 1, come in a one-
parameter family CH,a. For some values of a the surfaces are stable, for other values
of a they have index 1. Furthermore, they do not satisfy Lindelöf’s property. The
computations are much more complicated but similar to the minimal case. The
functions involved depend continuously on the parameter H, for 0 ≤ H < 1.

The method described in the previous sections can be applied to study the sta-
ble domains on higher dimensional catenoids (minimal rotation hypersurfaces or
constant mean curvature 1 rotation hypersurfaces) in Hn+1 or other homogeneous
spaces.
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