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Abstract

In this paper, we consider minimal hypersurfaces in the product space H" x R. We begin
by studying examples of rotation hypersurfaces and hypersurfaces invariant under hyperbolic
translations. We then consider minimal hypersurfaces with finite total curvature. This assump-
tion implies that the corresponding curvature goes to zero uniformly at infinity. We show that
surfaces with finite total intrinsic curvature have finite index. The converse statement is not
true as shown by our examples which also serve as useful barriers.
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1 Introduction

In this paper, we focus on complete oriented minimal hypersurfaces M immersed in H™ x R equiped
with the product metric.

In Section 3, we study the family {C,,a > 0} of hypersurfaces invariant under rotations about the
vertical geodesic {0} x R € H™ x R (“catenoids”) and the family {Mg4,d > 0} of hypersurfaces
invariant under hyperbolic translations. These examples generalize to higher dimensions some of
the minimal surfaces constructed in [25, 27, 28].

In particular, we prove that the n-dimensional catenoids C, have vertical heights bounded from
above by m/(n — 1) (Proposition 3.2). In Section 3.3, we describe the maximal stable rotationally
invariant domains on C, and we prove that the catenoids have index 1 (Theorem 3.5). We also give
an interpretation in terms of the envelope of the family C, (Corollary 3.7). Finally, we observe that
the half-catenoid C, N (H” X IR+) is not maximally stable.

We describe the minimal hypersurfaces invariant under hyperbolic translations in Theorem 3.9. In
particular, we find a hypersurface M which is a complete non-entire vertical graph over a half-space
bounded by some hyperplane IT in H™ x {0}. It takes infinite value data on IT and zero asymptotic
boundary value data. When d < 1, the hypersurface M, is an entire vertical graph. When d > 1,
it is a bi-graph over the exterior of an equidistant hypersurface of H" x {0}.

In Section 4, we consider the relationships between finiteness of the total curvature and finiteness of
the index. In dimension 2, we consider the curvature integrals [ 1A a|? and / ar [ K|, where Apy
is the second fundamental form of the immersion and Kj; the Gauss curvature. Finiteness of these
integrals implies that the corresponding curvatures tend to zero uniformly at infinity; finiteness
of the latter implies finiteness of the index of the Jacobi (stability) operator (Theorem 4.1). The
converse statements do not hold. For a related result see [31].

On the one hand, the catenoids C, have finite index although they have infinite total intrinsic
curvature. This is in contrast with the case of minimal surfaces in Euclidean 3-space ([15]) and
with the case of surfaces with constant mean curvature 1 in hyperbolic 3-space ([13, 23]). Note
that catenoids have finite total extrinsic curvature. On the other hand, the surfaces invariant under
hyperbolic translations are stable graphs, their curvature goes to zero at infinity although they
have infinite total curvature. The proof we give of Theorem 4.1 relies mainly on Simons’ equation
and the de Giorgi-Moser-Nash method which shows that finite total curvature implies that the
curvature tends to zero uniformly at infinity. We point out that the finiteness of the intrinsic total
curvature has deep consequences. Under this assumption on M, L. Hauswirth and H. Rosenberg
([17], Theorem 3.1) have indeed shown that the total intrinsic curvature is quantified, that the ends
of M are asymptotic to Scherk type surfaces and obtained a C2-control on the curvature at infinity.
In the paper by L. Hauswirth, B. Nelli, R. Sa Earp and E. Toubiana [18], one can find many details
about how finite curvature ends behave.

In dimension n > 3, we give an upper bound of the index in terms of the total extrinsic curvature
(Theorem 4.3).

In Section 5, using the catenoids C, as barriers, we prove some symmetry and characterization
results for minimal hypersurfaces in H" x R whose boundary consists of two congruent convex
hypersurfaces in parallel slices (Theorem 5.1). A further characterization of the n-catenoids can be
found in [26].

We point out that the hypersurfaces My (d < 1 and d = 1) have been used in [29, 30] as barriers for
the Dirichlet problem and that they play a crucial role for some existence theorem for the vertical
minimal surface equation. They have also been used in [26] for other applications.



Finally, we observe that Theorem 3.5 has been extended to minimal catenoids in Nil(2n + 1)
equipped with a left-invariant metric in Bérard-Cavalcante [9], and that Bérard-Castillon-Cavalcante
[8] improved 3 of Theorem 4.1, replacing intrinsic curvature by extrinsic curvature.

The authors would like to thank the Mathematics Department of PUC-Rio (PB) and the Institut
Fourier — Université Joseph Fourier (RSA) for their hospitality. They gratefully acknowledge the
financial support of CNPq, FAPERJ, Université Joseph Fourier and Région Rhone-Alpes.

2 General framework

2.1 Notations

We consider hypersurfaces M immersed in the space M:=H"xR equiped with the product metric
§ = g + dt?, where gp is the hyperbolic metric,

2
(2.1) g == (?W)Q(dxf + oo da?).

We have chosen the ball model B for the n-dimensional hyperbolic space H".

2.2 Jacobi operator, Index, Jacobi fields

Let M™ & M™+! be an orientable minimal hypersurface in an oriented Riemannian manifold M
with metric g. Let Njs be a unit normal field along M and let Ap; be the second fundamental
form of the immersion with respect to Nj;. Let Ric be the normalized Ricei curvature of M. The
second variation of the volume functional gives rise to the Jacobi operator (or stability operator)
Juar of M (see [33, 22, 11]),

(2.2) Jar i= —Anr — (|Au|? + Ric(Nar)),
where Ay is the (non-positive) Laplacian on M (for the induced metric).

Given a relatively compact regular domain € on the hypersurface M, we let Ind(2) denote the
number of negative eigenvalues of Jy; for the Dirichlet problem on € (this is well defined because
) is relatively compact). The index of M is defined to be the supremum (< +00)

(2.3) Ind(M) = sup{Ind(2) | @ € M},
taken over all relatively compact regular domains.

Let A1(2) be the least eigenvalue of the operator Jys with Dirichlet boundary conditions in €.
Recall that a relatively compact regular domain {2 is said to be stable, if A\1(Q2) > 0; unstable, if
A1(Q) < 0; stable-unstable, if A\1(2) = 0. More generally, we say that a domain € is stable if any
relatively compact subdomain is stable.

Properties 2.1 Recall the following properties.

1. Let Q be a stable-unstable relatively compact domain. Then, any smaller domain is stable
while any larger domain is unstable (monotonicity of Dirichlet eigenvalues).



2. Of particular interest are the solutions of the equation Jy(u) = 0. We call such functions

Jacobi fields on M. Let X, : M™ & (M\"H,’g\) be a one-parameter family of oriented minimal

immersions, with variation field V, = aa)fl” and unit normal N,. Then, the function g(Vg, Ny)

is a Jacobi field on M ([1], Theorem 2.7).

3. Let Q1 be a relatively compact domain on a minimal manifold M. If there exists a positive
function u on Q such that Jyr(u) > 0, then Q is stable ([16], Theorem 1).

3 Examples of minimal hypersurfaces in H" x R

In this section we give examples of minimal hypersurfaces in H” x R. We use these examples as
guidelines and counter-examples to study the relationships between index properties of the Jacobi
operator and the finiteness of some total curvature of M, see Theorems 4.1 and 4.3. We also use
them as barriers for a symmetry and characterization result in Section 5.

3.1 Rotational hypersurfaces in H” x R

We first consider rotational hypersurfaces about a vertical geodesic axis in H” x R. Up to isometry,
we can assume the rotation axis to be {0} x R. Recall that we take the ball model for H".

Take the vertical plane V := {(z1,..., 2y, t) € M | 1 = -+ = x,-1 = 0} and consider a generating
curve (tanh(f(t)/2),t) for some positive function f which represents the hyperbolic distance to the
axis R, at height ¢.

We define a rotational hypersurface M & M by the “parametrization”

R+ X Sn—l — M\,
(t,€) = (tanh(f(t)/2)¢,1),

where & = (£1,...,&,) is a point in the unit sphere S"~! and tanh(p/2)¢ stands for the point
(tanh(p/2)&1, ..., tanh(p/2)&,) in the ball B.

(3.4) X : {

The basic tangent vectors to the immersion X are

fi(t)

T, €)= Te X0 = (5 2 v 72)

57 1)7

where f; is the derivative of f with respect to ¢, and
U, & u) =T X (u) = (tanh(f(t)/Q)u,O),
where u € T¢S™ ! is a unit vector.
We collect basic formulas in the next proposition whose proof is straightforward.

Proposition 3.1 Let (M, gy) & (M\, g) be an isometric immersion. We have the following for-
mulas in the parametrization X on R x S"71.

1. The induced metric gy is given by
(3.5) gu = (L4 f7(t))dt? +sinh?(f(1))gs ,

where gg is the canonical metric on S™1.



2. The Riemannian measure duyy for the metric gy is given by

(3.6) dns = (1+ f2(1))

where dug is the canonical measure on the sphere.

Y2 Y (f (1)) dt dps,

3. The unit normal field to the immersion can be chosen to be
-1

_ 2\ —1/2
In particular, the vertical component of the unit normal field is given by
(3:8) or(t) = fu)) (L4 £20) 7.

We now compute the mean curvature of M.
At the point X (¢,£), the principal directions of M are

e the tangent to the meridian curve in the vertical 2-plane
Ve = {(tanh(f(t)/2)¢.t) | t € R},
e the vectors tangent to the distance sphere X (¢, S" 1) at ¢ in the hyperbolic slice H" x {t},
where the restriction of the second fundamental form Aj; is a scalar multiple of the identity.
The principal curvatures with respect to Nj; are

e [, (t), the principal curvature in the direction tangent to the meridian curve, given by

(3.9) kn(t) = = fue(0) (1 + f£(8)) 7%/,
e the principal curvatures in the directions tangent to X (¢, S"~1) at X (¢, £),
(3.10) ki(t) = - = kp_1(t) = coth(f(£))(1 + f2(t)) "2

We conclude that the mean curvature H(t) of the rotational hypersurface M ¢ M with respect to
the unit normal Ny, is given by

(3.11) nH(t) = —fu(t)(1+ F2(6) /2 + (n = 1) coth(F(1) (1 + F2(1) "2,
(3.12) nfult) sinh"™ L (7(0)) H(t) = 0 (sinh™ L (F()(1+ F2() 772,

where f; and f;; are the first and second derivatives of f with respect to t.

3.2 Catenoids in H* x R

In this Section, we describe the minimal rotational hypersurfaces about {0} x R, in H" x R. By
analogy with the Euclidean case, we call them catenoids. For n = 2 the catenoids are studied in
[28].

Given some a > 0, let (Ia, f(a, )) denote the maximal solution of the Cauchy problem

ftt = (n—1)coth(f)(1+ f?),
(3.13) f(0) = a>0,
ft(O) = 0,

where f; and f;; are the first and second derivatives of f with respect to .



Proposition 3.2 For a > 0, the maximal solution (Ia,f(a, )) gives rise to the generating curve
Cu, t— (tanh(f(a, t)), t) (catenary ), of a complete minimal rotational hypersurface C, (catenoid)
in H™ x R, with the following properties.

1. The interval 1, is of the form I, =] — T(a),T(a)[ for some finite positive number T(a) and
f(a,-) is an even function of the second variable.

2. For dllt € I,, f(a,t) > a.
3. The derivative fi(a,-) is positive on ]0,T(a)[, negative on | — T'(a),0[.
4. The function f(a,-) is a bijection from [0, T(a)[ onto [a, o], with inverse function A(a,-) given

by

P
3.14 a =sinh"™ " (a sinh*"~*(u) — sinh®™" " “(a)) .
( ) A( ’p) hn 1( )/ ( h2n 2( ) h2n 2( )) 1/2d

5. The catenoid C, has finite vertical height h(a),

(3.15) h(a) = 2sinh™ *(a) /OO (sinh2”72(u) - sinhzn*z(a))

a

172 qu.

6. The function a — h(a) increases from 0 to (nﬂfl) when a increases from 0 to infinity. Further-
more, given a # b, the generating catenaries C, and Cy intersect at exactly two symmetric
points.

Proof. Assertion 1 follows from the Cauchy-Lipschitz theorem for some positive T'(a) which is
finite as we will see below.

Assertion 2 follows from the fact that sinh""(f(a,t))(1 + f?(a,t))
| —T(a), T(a)[ (see (3.12)).

12 sinh™ ! (a) for all t €

Assertion 3 is clear.

Assertion 4. According to Assertion 3, t — f(a,t) is increasing on [0,T(a)[ so that it has a limit
when ¢ tends to T'(a) and this limit must be infinite because we took a maximal solution. It follows
that the inverse function A(a, -) maps [a, co[ onto [0, T'(a)[ . Moreover A,(a, f(a,t))fi(a,t) = 1. That

implies \,(a,p) = sinh" " (a)(sinh®">(p) — sinhzn_z(a))fl/2 on Ja,00[. The formula for A(a, p)
follows because f(a,0) = a. Note that the integral (3.14) converges at u = a.

Assertion 5. We have that h(a) = 2T (a), where

—1/2

T(a) = lim A a,p) = sinh”fl(a)/ (sinh**~?(u) — sinh®"~?(a)) du,

p—>00

where the integral converges at both a and oc.

Assertion 6. By a change of variables, we can write

—1/2

T(a) = sinh(a) /100 (0> 2 — 1)71/2(sinh2(a)v2 +1) dv

and compute the derivative

(o)
T (a) = cosh(a)/ (v* 2 — 1)_1/2(sinh2(a)v2 + 1)_3/2 dv > 0.
1



Note that

sinh(a) (v*" 7% = 1) 1z ( sinh?(a)v? + 1) ~1/2 <v He*T?-1) 1z
and that the right-hand side of the last inequality is in L!([1, oo[) for n > 2. So we can take the limits
under the integral and obtain that lim,_,o 7T(a) = 0 and lim, o, T'(a) = floo v (v T2 —1) 12 g,
The last integral can be calculated explicitly because (arctan m)l N_ The last

- 24/ vN —1

assertion follows by considering the function A(a, p) — A(b, p) and by using the monotonicity of
T(a). O

Remark. The above proposition shows
that the catenoids in H” x R have uniformly
bounded finite vertical height. This is in con-
trast with the Euclidean catenoids (n > 3)
which have finite, yet unbounded, vertical
heights.

Figure 1: Catenaries n = 2,4

Notations. Let N, denote the unit normal to the catenoid C,, let A, denote its second fundamental
form relative to the normal N, and let du, denote its Riemannian measure. When n = 2, let K,
denote the Gauss curvature of C,. We state the following proposition for later purposes.

Proposition 3.3 For a > 0, the n-dimensional catenoid C, in H™ x R has infinite volume and
finite total extrinsic curvature fc |Ag|™ dirg. When n = 2, the catenoid C, has infinite total
intrinsic curvature [, [K,|dpq,.

Proof. We can restrict to the upper half-catenoid, C, + = C, N (H™ x R,), which admits the
parametrization

Y(a,p,§) == (tanh(p/2)§, A(a, p))7 p = a.
The geometric data of C, ; are readily calculated. In particular,

sinh™ ! (a) cosh(p) )2
sinh™(p) ’

[Aal*(p) = n(n —1)(
and "
dpg = sinhzn*Q(p)(Sinh%*z(p) — sinh2"72(a))_ / dpdps.

The first assertion follows (|A,|"dp, tends to zero exponentially at infinity). For the second asser-
tion, we use Gauss equation and minimality to get that

~ 1 1
K, =K, — =|As*> = =02 — Z|A,?
2| | va 2‘ |7

where I/(\'a is the sectional curvature of the 2-plane tangent to C, in the ambient space H? x R and
where v, is the vertical component of the unit normal to C,,

Va(p) = §(Na, 8) = sinh' " (p) (sinh®*~%(p) — sinh®~2(a))"/*.



Assertion 2 follows because v, tends to 1 at infinity on C, 4. O

Recently, Elbert-Nelli-Santos [14] found rotationally invariant hypersurfaces in H" x R with r-mean
curvature H, 1 = 0. Their behavior is very similar to that of the n-catenoids.

3.3 Catenoids in H" x R, stability properties
Recall that the catenoid C, is generated by the curve ¢ — (tanh(f(a,?)/2),t) in the vertical plane V,
where f(a,-) is the maximal solution of the Cauchy problem (3.13). This yields the parametrization

(3.16) X(a,t, &) = (tanh(f(a,t)/2)§7t)

for C,, with t € R and £ € S"~!. According to Property 2.1 (2), we have two Jacobi fields on the
catenoid C,.

o The vertical Jacobi field v(a,t) comes from the vertical translations (z,t) — (z,t+7) in H” x R.
It is given by v(a,t) = G(Ng, 0t), where N, is the unit normal to C,. According to (3.7), it is given
by the formula

(3.17) v(a,t) = fia,t) (1 + f2(a,)) "%,

where f; stands for the derivative with respect to the variable t. Because ¢ — f(a,t) is even, the
function ¢ — v(a,t) is odd.

e The variation Jacobi field e(a,t) comes from the variations with respect to the parameter a. It is
given by e(a,t) = g(Ng, %—f). According to (3.7) and (3.16), the function e(a,t) is given
(3.18) e(a,t) = —fala, ) (1 + f2(a,1)) "2,

where f, stands for the derivative with respect to the variable a. Because t — f(a,t) is even, the
function ¢ +— e(a, t) is even.

e The Jacobi fields v(a,t) and e(a, t) have nice expressions when restricted to the upper-half C, =
Co N (H™ x Ry) of the catenoid C,. Indeed, recall that the function f(a,-) : [0,T(a)[— [0, 0] has
an inverse function A(a, p) given by (3.14). Using the relationships

/\(a,f(a,t)) =t for t>0
and
)\P(a'a f)ft = 1 and Aa(&,f) + )‘p(avf)fa = 07
we get the following expressions for v(a,t) and e(a,t) for t > 0,

v(a,t) = (14 X(a, f(a,t _1/2,
(3.19) (a,) (1+X2(a, f(a,1)))

e(a,t) = wv(a,t)Aa(a, f(a,t)).

For p > a, define the functions vy (a, p), A1(a, p) and Bj(a, p), by the following formulas

-1 sinh®" "2 (p) — sinh®" " ?(a) , 1
V1 (a, P) = (1 + )\;27(6% p)) *= ( SinhQn—Q(p) ) :
(3.20) A _ cosh(a) /sinh(a)\n—2
1(a,p) cosh(p) (sinh(p)) ’
sinh(p)
Bi(a,p) = cosh(a) [[™™ (v?=2 — 1)~ 3 (sinh?(a)v® + 1)~ 2 dv.



From (3.14), we can write

sinh(p)
sinh(a)

(3.21) A(a, p) = sinh(a) / (V"2 — 1)_% (sinh2(a)v2 + 1)_% dv

1

and compute A,

Na(a,p) = — cosh(a) sinh” 2 (a) tanh(p) (sinh®"~%(p) — sinh®"~%(a)) "% +

sinh(p)

+ cosh(a) flimh(a) (U2n—2 _ 1)_%(Sinh2(a)1}2 + 1)_% dov.
We obtain,
(322) )\a(av P)Ul (CL, p) = _Al <a7 p) + Bl (av ,O)U1 (CL, p)

We summarize the relevant properties in the following lemma whose proof is straightforward. We
define the functions A(a,t) and B(a,t) for ¢t > 0 by

(3.23) A(a,t) = A1(a, f(a,t)), Bl(a,t) = Bi(a, f(a,t)),
see Formulas (3.20).
Lemma 3.4 Then,
(3.24) e(a,t) = —A(a,t) + B(a,t)v(a,t), for t>0.
Furthermore, fort >0,

1. Aa,t) >0, A(a,0) =1 and lim,_ 7 A(a,t) = 0;

2. B(a,t) >0, B(a,0) =0 and lim;_,7,) B(a,t) = C(a),
where C(a) = cosh(a) [~ (0?72 — 1)~ 2 (sinh?(a)v? + 1)~ 2 dv;

3. v(a,t) =wvi(a, f(a,t)) fort >0, so that
v(a,t) >0 fort >0, v(a,0) =0 and lim;_,p)v(a,t) = 1.

Notation. For a < 8 € [0,T(a)], let D(«, 8) denote the rotationally invariant domain
(3.25) Da(a, 8) = X(a, o, B[, S" 7).
In particular, D,(0,T(a)) is the half-vertical catenoid C, 4 = C, N (H™ x Ry).

Theorem 3.5 The stability properties of the rotationally invariant domains Dy («, 8) on the catenoid
C, are as follows.

1. There exists some o(a) €]0,T(a)[ such that the relatively compact domain Dy(—o(a),o(a))
is stable-unstable. Hence, for any o €]0,0(a)|, the domain Dy(—a,a) is stable; for any
a €lo(a), T(a)], the domain Dy(—a, «) is unstable.

2. There exists some 7(a) €]0,T(a)[ such that

(a) the (non relatively compact) domain D,(—7(a),T(a)) is stable,

(b) for any o €]7(a),T(a)[, there exists some B(a) €]7(a),T(a)| such that the domain
Duo(—a, f(a)) is stable-unstable.



ﬁ A B

Figure 2: Case 1 Figure 3: Case 2a Figure 4: Case 2b

3. The catenoid C, has index 1.

The above domains are generated by the portions of curves illustrated in Figures 2-4.

Proof. Assertion 1. Consider the function e(a,t). According to Lemma 3.4, e(a,0) = —1 and
lim;_,p(q) €(a,t) = C(a) > 0, so that it must vanish at least once on |0, 7'(a)[. It turns out (compare
with Lemma 3.6 below) that e(a, -) has a unique positive zero o(a). Because e(a,t) is even in ¢, it
does not vanish in the open set D,(—o(a),o(a)) and satisfies J,(e¢) =0 in D,(—0c(a),o(a)), and
e|0Dy(—0o(a),o(a)) = 0. This means that D,(—o(a),o(a)) is a stable-unstable domain. The second
assertion follows from Property 2.1 (1).

Assertion 2. Take any a €]0,T(a)[ and define the function w(a, a,t) by
(3.26) w(a, a,t) = e(a, )v(a,t) + v(a,a)e(a,t), for t€]—T(a),T(a)l

This is a Jacobi field on C, and furthermore w(a, o, —a;) = 0, because v is odd and e is even with
respect to t. Note also that w(a,a,0) = —v(a, a) < 0.

Lemma 3.6 The function w(a, o, ) vanishes only once on | — T'(a),0[ and vanishes at most once
on 10, T(a)].

Let us prove the first assertion of the Lemma, the proof of the second assertion is similar. Assume
that w(a, a,-) has at least two consecutive zeroes a; < a2 in the interval | — T'(a),0[. The domain
D. (a1, as) would then be stable-unstable because J,(w) = 0 on D, (a1, a2) and because w vanishes
on 0D, (a1, az). On the other hand, the Jacobi field v satisfies J,(v) = 0 and v < 0 in D, (a1, as).
By Property 2.1 (3), we have that A1 (Dg(c1, a2)) > 0 which contradicts the fact that this domain
is stable-unstable. This proves the lemma.

In order to determine whether the function w(a, «, -) vanishes on |0, T'(a)[ or not, it is sufficient to
look at the behaviour of w(a, «,t) when t tends to T'(a) from below. For this purpose, we use the
expression (3.24) for e(a,t) and we write

w(a, a,t) = —A(a, t)v(a, a) + v(a,t)(e(a, @) + B(a, t)v(a, o).
Using Lemma 3.4, we can write

W(a, ) = tiijr;(la) w(a, a,t) = e(a,a) + Cla)v(a, o).

10



If W(a,a) <0, then w(a, «,t) does not vanish on ]0,7'(a)[ and in fact on | —a, T'(a)[; if W(a, «) > 0,
then w(a, a, t) has one and only one zero S(a)on |0, T (a)].

We now observe that W(a,t) := e(a,t) + C(a)v(a,t) is a Jacobi field on |0, T (a)[ which takes the
value —1 at 0 and the value C(a)v(a,o(a)) > 0 at o(a). It follows from Lemma 3.6 that W(a,-)
has one and only one positive zero 7(a) €]0,0(a)[. We have that W(a,t) < 0 on |0, 7(a)[, so that
for any « €]0,7(a)], the function w(a, a,t) has only one zero —« on | — T'(a),T'(a)[. This proves
the Assertion 2(a). On the other-hand, W(a,t) > 0 on |7(a), T (a)[, so that for any « €]7(a), T(a)],
the function w(a, «,t) has a unique positive zero () €]0,T(a)[. This proves the Assertion 2(b).

Assertion 8. Assertion 1 shows that C, has index at least 1. In order to show that the index is
at most one, we use Fourier decomposition with respect to the variable £ and an extra stability
argument.

Recall that we work in the ball model for H". Let v be a geodesic through 0 in H”. Up to a
rotation, we may assume that v(s) = (tanh(s/2),0,---,0). Let H? = {(z1, -+ ,z,) € B | 21 > 0}
and let Cy 4 = Co N (H7 x R). We call this set a half-horizontal catenoid.

Claim 1. A half-horizontal catenoid C, 4 is stable.

To prove the claim, we shall find a positive Jacobi field on Cq 4.
Let 2 = x + iy denote the complex coordinate in H? (ball model). We consider the group of
hyperbolic isometries along the geodesic v and we extend these isometries slice-wise as isometries
in H? x R. We then have the one-parameter group of isometries

e€(l+z2)—(1-2)
eT(1+2)+(1—2)

(z:t) — ( ;) in H? x R.

The associated Killing vector-field in H? x R is given by K, (z;t) = (5(1 — 2%);0) or, in the (z,y)
coordinates, K, (z,y;t) = (3(1 — 2* + ¢?), —zy; 0) which can be written as
1
Ko(@,y;t) = 5 (1427 +4%))(1,0,0) = 2(z, 5;0)
where (1,0;0) and (x,y;0) are seen as vectors in R? x R = T\, . H? x R.

This formula can easily be generalized to higher dimensions as

Ko (s) = 51+ [o?) (e 0) — 1 (;0),

where © = (21, -+ ,2,),e1 = (1,0,---,0),|2]?> = 2% + .-+ + 22, and where (e1;0) and (x;0) are
seen as vectors in R" x R = T, nH"™ x R. Writing the point z in the parametrization X as
x = tanh(f(a,t)/2)§, we obtain that

1
K, (tanh(f(a,1)/2)¢;t) = o (1 + tanh®(f/2)) (e1; 0) — tanh*(f/2)€1(&;0)-
Using the fact that (1 + f2)"1/2 = (%)nfl on C,, we find that the Killing field K, gives rise
to the horizontal Jacobi field

sinh(a)

sinh(f(a, t))) &

hy(a,t,§) :(
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which is positive on Cq 4.

Claim 2. On S™~! equiped with the standard Riemannian metric, there exists an orthonormal basis
of spherical harmonics Yy, k > 0 with the property that the nodal domains of the Y3,k > 1 are
contained in hemispheres.

The property is clearly true on S and can be proved by induction on the dimension, using polar
coordinates centeblack at a given point on the sphere.

Claim 3. The Jacobi operator on C, can be written as
Jo = La7t - q(a? t)AS;57

where L, ; is a Sturm-Liouville operator on the ¢ variable, with coefficients depending only on a
and t, where g(a, t) is a positive function and where Ag¢ is the Laplacian of the sphere S"~! acting
on the &-variable. This claim follows immediately from Formulas (3.5) and (3.6) for the metric and
the Riemannian measure on a rotational hypersurface and from the expression for the quadratic
form associated with J,.

Assume that the index of C, is at least 2. Then, there exists some S €]0,T(a)[ such that J,
has at least two negative eigenvalues A1 (S) < A2(S) < 0 in Co(—S,.S) (we only consider Dirichlet
boundary conditions). Because the least eigenvalue \;(.S) is simple, a corresponding eigenfunction
u must be invariant under rotations (i.e. only depends on the variable ¢) and say positive. Consider
an eigenfunction v associated with A2(S). We claim that v cannot be invariant under rotations.
Indeed, v would otherwise depend only on the variable ¢, it would be orthogonal to v and hence
it would have to vanish on | — S, S[. This would contradict the fact that the domains C,(—S,0)
and C,(0,S) are stable. Since v is not rotationally invariant, there exists some p > 1 and some
vp # 0 in the decomposition into spherical harmonics with respect to the second variable, v(t,§) =
> o Uk () Yi(€). We would have J,(v,Y)) = A2(S)v,Y,. Using Claim 2 and the fact that A2 (S) < 0,
this would mean that any nodal domain of v,Y), is unstable, in contradiction with Claim 1.

Assuming that the index is at least 2 therefore yields a contradiction and hence the index of C, is
exactly one. |

Remark. It follows from the positivity of the Jacobi field v(a,t) for t €]0,T(a)[ that the upper
half-catenoid C, 1 is stable (in the sense that any relatively compact domain 2 contained in C, +
is stable, see Section 2.2). The second assertion in the preceding theorem says more. Indeed,
there exists some 7(a) €]0,T(a)[ such that the non-compact domain D,(—7(a),T(a)) is stable and
stricly contains Cq 4. This is different from what happens for Euclidean catenoids. Indeed, the
half-catenoid C, ; in R? is a mazimal stable domain ([24]). We study this phenomenon with more
details in [5, 6].

Geometric interpretation. According to Proposition 3.2, Assertion (6), two distinct catenaries
C, and C}y meet at exactly two symmetric points, m4 (a,b). Fixing a and letting b tend to a, the
points m (a,b) tend to limit points m4 (a) which correspond to the points where the catenary C,
touches the envelope of the family of catenaries {C,},>0. According to [35], §58, page 127 ff, the
condition defining the envelope of a family ', given by the parametrization (J;(a, t),y(a, t)), is the

condition
xa(aat) xt(aat) _

ya(av t) yt(avt)



Figure 5: Envelope, n = 2 Figure 6: Catenaries, envelope

Specializing to catenaries, we find that the envelope condition is precisely the condition that e(a,t) =
0. Therefore, the value o(a) is precisely the value of ¢ at which the catenary C, touches the envelope
of the family, see Figures 5 and 6.

Corollary 3.7 The stable-unstable domain D,(—o(a),o(a)) is precisely the symmetric, rotationally
invariant compact domain bounded by the two spheres where the catenoid C, touches the envelope
of the family.

Remark. Results about stability of higher dimensional catenoids in R"! can be found in [34].

3.4 Translationally invariant hypersurfaces in H"” x R

Let v be a complete geodesic through 0 in the ball model B of the hyperbolic space H", parametrized
by the signed distance p to 0. Let P be the hyperbolic hyperplane orthogonal to v at 0. We consider
the hyperbolic translations along the geodesics passing through 0 in P. The image of a point of ~y
under these translations is an equidistant hypersurface to P in H". We can extend these translations
“slice-wise” to give positive isometries of H” x R which we call hyperbolic translations.

A generating curve (tanh(p/2), u(p)) in the vertical Euclidean plane v x R gives rise, under the
previous isometries, to a translationally invariant hypersurface M — H" x R, whose intersection
with the slice H" x {u(p)} is the equidistant hypersurface to P x {u(p)} in the slice, at distance p.

The principal directions of curvature of M are the tangent vector to the generating curve and
the directions tangent to the equidistant hypersurface. The corresponding principal curvatures are
given respectively by

(3.27) ke (p) = jip) (1 +i2(p)) %,
and
(3.28) ke(p) = iulp) (1 + i2(p) ~"/* tanh(p).

It follows that the mean curvature of M is given by

nH(p) = ji(p) (1+ i%(p) """ + (n = V(o) (1 + fi*(p)) ~"* tanh(p)
or, equivalently, by
(3.20) nH (p) cosh™ ! (p) = 9, (i) (1 + 2(p) ™% cosh™ () ).

This formula allows us to study constant mean curvature hypersurfaces invariant by hyperbolic
translations. In this paper we only consider the case H = 0 and we refer to [7] for the case H # 0.

—3/2
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3.5 Translation invariant minimal hypersurfaces in H" x R

In this section, we establish the following theorem which generalizes the 2-dimensional result of [29].
We first introduce the notion of horizontal graph which is essentially the same as in [31].

Definition 3.8 Let P C H""! be the totally geodesic n-space, orthogonal to the geodesic v at v(0).
Let {F(t),t € R} be the one-parameter family of hyperbolic translations along v. For x € P, the
trajectory {F(t)-x,t € R} is an equidistant curve to . Let Q@ C P be a domain and let u : Q@ — R be
a smooth function. The horizontal graph with respect to a geodesic ~v,or simply horizontal graph,
of w above Q is the set of points {F(u(x)) -z | x € Q}. Horizontal graphs are transversal to the
trajectories of the hyperbolic translations along geodesics. In the half-space model, a horizontal graph
with respect to the vertical axis is a radial graph in each horizontal slice.

In H" x R, we give a similar definition for a horizontal graph over a domain in an n-space of the
form P x R, where P is a totally geodesic (n — 1)-space in H".

Theorem 3.9 There exists a 1l-parameter family {Mg, d > 0} of complete embedded minimal
hypersurfaces in H" x R invariant under hyperbolic translations. The hypersurfaces My are stable
(in the sense of the Jacobi operator), their principal curvatures go uniformly to zero at infinity, but
they have infinite total curvatures.

More precisely,

1. Ifd > 1, the hypersurface My consists of the union of two symmetric vertical graphs over the
exterior of an equidistant hypersurface in the slice H™ x {0}. It is also a horizontal graph,
and hence stable. Furthermore, the asymptotic boundary of My consists of the union of two
copies of an hemisphere ST x {0} of OsH" x {0} in parallel slices t = £5(d), glued with
the finite cylinder 9S ™" x [—S(d), S(d)].

2. Ifd =1, the hypersurface My is a complete stable vertical graph over a half-space in H"™ x {0},
bounded by a totally geodesic hyperplane P. It takes infinite boundary value data on P and
constant asymptotic boundary value data c. Furthermore, the asymptotic boundary of M is
the union of a spherical cap S in O H™ x {c} with a half-vertical cylinder over 05S.

3. If d < 1, the hypersurface Mgy is an entire stable vertical graph with finite vertical height.
Furthermore, its asymptotic boundary consists of a homologically non-trivial (n — 1)-sphere in
O H™ x R.

Remark: If d > 1, the family M, has finite vertical height hr(d), a function which decreases from
infinity to 7/(n — 1). In particular, it is bounded from below by 7/(n — 1), the upper bound of the
heights of the family of catenoids.

Proof. In the minimal case, Equation (3.29) can be written

(3.30) (o) (1 + i2(p) ™1 cosh™(p) = d,

for some constant d which satisfies d < cosh™ !(p) for all p for which the solution exists. Changing
u to —p if necessary, we may assume that d is non-negative and hence, fi(p) > 0 and p(p) =

d(cosh2”72(p) — d2)_1/2 whenever the square root exists. We have to consider three cases, d > 1,
d=1andd<1.
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Let d =: cosh™ ! (a), with a > 0. It follows from Equation (3.30) that

f(p) = COSh"_l(a)(cosh2"_2(p) - COShZ"—Q(a))*l/%

Up to a vertical translation, the solution u4 (a, p) of Equation (3.30) is given by

(3.31) pi4 (a, p) = cosh™ *(a) /p (coshQ"_Z(r) - cosh2"_2(a))71/2 dr

or, making cosh(r) = cosh(a) t,

cosh(p)
Cosh(a)

(3.32) pi(ap) = coshia) [T (1) ok (o)t~ 1)

These integrals converge at p = a (resp. at t = 1) and at infinity and
(3.33) he(d) := 2 cosh(a) / (272 — 1)=1/2 (cosh® (a)£2 — 1)~1/2 it
1

is the height of the hypersurface Mog,n-1(4). The function hr(d) is decreasing in d, tends to infinity
when d tends to 14 and to 7/(n — 1) when d tends to infinity. (Hints. When a tends to zero, use
the fact that (3.33) is bigger than some constant times the integral f12 ((t—1)(cosh(a)t —1)) 2 g
which can be computed explicitly. When a tends to infinity, use the fact that [ (tN — 1)~V dt =

% arctan vtV — 1.) The assertions about the asymptotic boundary are clear.

P 0.6 e
15 i1 // 4 //'
/ 0 /
1 d=1 7 f—
/’/ . 02
05 / 4 05 05 1
. 05 — 05 1
d<1 -0.2 d=1
d<1 0.5 — 1\
— 04 \
\ \\
B \ s [ T
15 \ o8
Figure 7: Generatrices for translationally Figure 8: Generatrices for translationally
invariant hypersurfaces, n = 2 invariant hypersurfaces, n = 4

d=1| It follows from Equation (3.30) that

fi(p) = (cosh®2(p) — 1) 7'/,

so that, when d = 1, the solution is given by

(3.34) to(p) = /bp (cosh®2(r) = 1) ar,
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for some constant b > 0, and po(p) tends to —oo when p tends to zero and to a finite value when
p tends to infinity. The corresponding hypersurface is complete. It is a vertical graph so that it is
stable. The assertion about the asymptotic boundary is clear.

In this case, Equation (3.30) gives the following solution (up to a vertical translation),

12 g

P

(3.35) p_(d,p)=d / (cosh®2(r) — d?)
0

The corresponding curve can be extended by symmetry and we get a complete hypersurface in a

vertical slab with finite height. This surface is an entire vertical graph (hence stable). The assertion

about the asymptotic boundary is clear. m]

The generating curves for translationally invariant minimal hypersurfaces are given in Fig. 7 and
8. Note that they cannot meet tangentially at finite distance.

Remark. Using the catenoids and the minimal translational hypersurfaces, the second author and
E. Toubiana have extended the 2-dimensional results of their paper [29] to higher dimensions, see
[30].

4 Index and total curvature for minimal hypersurfaces in
H" x R

4.1 Dimension two, M? 9 H? x R

For oriented minimal surfaces in H? x R we have the following general theorem in which we consider
two possible notions of total curvature.

Theorem 4.1 Let M 9+ H? x R be a complete oriented minimal immersion with unit normal field
Nur. Let vpr := G(Nap, ) be the vertical component of Ny, let Apr be the second fundamental
form of M and let Ky; be the intrinsic curvature of M.

1. If the total curvature fM |Anr|? duns is finite, then Ayp tends to zero uniformly at infinity.

2. If the intrinsic total curvature fM | K ar| dpas is finite, then Apg,vpr and Ky tend to zero
uniformly at infinity.

3. If the intrinsic total curvature fM |Kas| duns is finite, then the Jacobi operator of M has finite
indez.

Remarks.

1. For complete orientable minimal surfaces in R3, finiteness of the index is equivalent to finite-
ness of the intrinsic total curvature (see [15, 13, 23]). No such statement can hold in H? x R.
Indeed, the surfaces M, ([29] and Section 3.5) are stable complete minimal surfaces, invari-
ant under a group of hyperbolic translations. Their total curvatures are infinite, so that the
converse to Assertion 3 is false.

2. The assumption [, |Ky|duas finite is natural in view of Huber’s theorem. In [17], L.
Hauswirth and H. Rosenberg show that this assumption actually implies that the total intrin-
sic curvature is an integer multiple of 2. There are actually many examples of such surfaces
(12, 17)).
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3. In the paper by L. Hauswirth, B. Nelli, R. Sa Earp and E. Toubiana [18], a geometric de-
scription of minimal ends of finite total curvature in H? x R is given. The authors also proved
that a minimal complete end E with finite total curvature is properly immersed and that the
Gaussian curvature of E is locally bounded in terms of the geodesic distance to its boundary.

4. As pointed out in the introduction, Assertion 2 is contained in [17], Theorem 3.1 whose
proof actually gives a C?-control on the curvature at infinity. We provide a simple proof of
Assertion 2 for completeness.

In the following proposition we give a slight improvement of the previous theorem.

Proposition 4.2 The notations are the same as in Theorem 4.1.

1. Assume that 5v3; < 1. Then there exists a universal constant C such that if the integral
fM |AM|2 dups is less than C' then M is a vertical plane.

2. Assume that the integral fM |Apr|? duns is finite and that there exists a compact set Q C M
and a positive constant ¢ such that v3; <1 —c <1 on M\ Q. Then the Jacobi operator of
the itmmersion has finite index.

Remarks.

1. Assertion 1 generalizes the following facts : (i) A minimal surface whose intrinsic curvature
Ky is zero is part of a vertical plane v x R (where 7 is a geodesic in H?). Indeed, we have

Ky = —3|Ayn|? — v3, and hence M is totally geodesic with horizontal normal vector. (ii)
A complete minimal surface whose total intrinsic curvature is less than 27 is a vertical plane
(see [17]).

2. We do not know whether the sole assumption f Y |AM|2 dups finite is sufficient to insure the
finiteness of the index of the Jacobi operator of M.

Sketch of the proof of Theorem 4.1 and Proposition 4.2.

Fact 1. The function u := |A)/| satisfies the non-linear elliptic inequality
(4.36) —uApyu <ut — (SIA(M + Du? < ut + 4u?,

where K a is the sectional curvature of the 2-plane 7'M in H? x R.

This equation follows from J. Simons’ equation for minimal submanifolds ([33]), applied to our
context. To establish (4.36) we use the fact that H? x R is locally symmetric (hence the covariant
derivative of its curvature tensor vanishes), that we work in codimension 1 (thus the term u*). The
term (5[? a + 1)u? comes from explicit curvature computations in H? x R.

Fact 2. The surface M satisfies the Sobolev inequality
(4.37) IF13 < S(M)|df |1t

for some positive constant S(M) and all C! functions f with compact support. This follows from
[19, 20] and the fact that H? x R is simply-connected and non-positively curved.

Fact 3. Curvature computations in H? x R give

~

(4.38) Ky = —v2; and Ric(Ny, Nag) = —(1— %)),
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The fact that vy is a Jacobi field implies that
(4.39) —Apvy = ’UJSM + (|AM|2 — I)UM
and a similar equality for |vps].

Theorem, Assertion 1. Following the general ideas of [32], we use (4.36) and (4.37), to estimate
the LP-norms of u and the classical de Giorgi-Moser-Nash method to estimate ||u||o outside big
balls. The details appear in the proof of Theorem 4.1, p. 282 of [4], where it is observed that the
proof only uses the facts that u satisfies Simons’ inequality and M a Sobolev inequality.

Theorem, Assertion 2. By Gauss equation, the Gauss curvature Ky, of M satisfies

1
(440) KM:_ilAMF_”]Q\/['

The assumption implies that both integrals fM | Anr|? dups and fM v3, duyy are finite. By Assertion
1, we already know that |Aas| tends to zero at infinity, and hence that it is bounded. Equation
(4.39) then tells us that |vp| satisfies an elliptic inequality similar to (4.36) and we can again apply
the de Giorgi-Moser-Nash method to conclude.

Theorem, Assertion 8 and Proposition, Assertion 2. According to Section 2.2 and to the above
curvature calculations, the Jacobi operator can be written as Jy = —Apr + 1 — [Ap |2 — 03, We
now follow [3], Section 2. It follows from Assertion 2 in the Theorem that Jjs is bounded from
below, essentially self-adjoint and that its essential spectrum lies above 1. As the eigenvalues below
the essential spectrum can only accumulate at —oo or at the bottom of the essential spectrum, it
follows that Jj; has finite index.

Proposition, Assertion 1. By (4.38), we have that 5Ky +1=1- 5v2,. Using (4.36) and the
assumption on vys, we obtain that

(@) —ulpyu<u'

Multiply equation (a) by &2 for some function & with compact support (to be chosen later on) and
integrate by parts to obtain,

/M 2 dul* + 2 /M Eu(du, d€) < /M 2t

Using Cauchy-Schwarz inequality, we obtain

2 2 2.4 2 2
(b) /Mg |dul §2/M§u +4/Mu |de|?.

Plug the function f = £u? into Sobolev inequality (4.37) to obtain

[ et <s( [ qaed)? <2s( [ alag)®+ss( [ aglaul)’
M M M M
where we have noted S for S(M). Using the fact that [,, u? is finite and Cauchy-Schwarz, we find
(c) / 2t < 25(/ u?|de))® + 85(/ u?) [ €dul?.
M M M M
Plug (c) into (a) to get
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_ 2 2 2 2 2 2 2
(1 165/Mu )/Mf |du] §4S(/Mu |d¢]) +4/Mu |dg|”.

We now assume that 165 [,, u? < 1 and we choose a family of functions £x such that £ is equal
to 1 in B(xo, R) (the ball with radius R centeblack at some zq € M), g is equal to 0 outside
B(xg,2R) and |d¢g| < 2/R. Letting R tend to infinity and using the fact that [, u* is finite, we
obtain that du = 0. Since M has infinite volume, it follows that v = 0. O

Remark. The reader is referblack to Simon’s type inequality in [21, Corollary 3.2], related to
Theorem 4.1 and Proposition 4.2.
4.2 Higher dimension, M" & H" x R,n > 3
Recall the formula for the Jacobi operator,
Jar = —Anr — (|An|? + Ric(Nar))

where Nj; is a unit normal field along M and A); the second fundamental form of M with respect
to Nas (Section 2.2).

Let vy := §(Nas, 0) be the vertical component of the unit normal vector Nj;. A simple compu-
tation gives that Ric(Nps) = —(n — 1)(1 — v3,). It follows that the Jacobi operator of M is given
by

(4.41) Iy = Ay + (n—1)(1 —vi)) — |An %
We have the following theorem.

Theorem 4.3 Let M™ & H" x R a complete oriented minimal immersion. Assume that M has
finite total curvature, i.e. [, [An|" dun < oo.

1. Forn > 2, the second fundamental form Ay; tends to zero uniformly at infinity.

2. For n > 3, the Jacobi operator of the immersion has finite index and, more precisely, there
exists a universal constant C(n) such that

(4.42) Ind(Jar) < C(n) /M | Ans|™ dpins.

Remarks.

(i) The examples My prove that the converse statements in the previous theorems are not true in
general, see Section 3.5.

(ii) Note that we state the second assertion of Theorem 4.3 only for dim(M) > 3 (our proof does
not apply in dimension 2, see [2]).

Sketch of the proof. As in the proof of Theorem 4.1, the manifold M satisfies a Sobolev inequality
of the form (4.37), namely

1 £llns(n-1) < S(M)|dfl1 for all f € Co(M)

for some constant S(M). Furthermore, the second fundamental form Aj; satisfies the following
Simons’ equation (compare with (4.36)),

—A|An| < |Ap]? + C(n)|Anl,
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for some constant C'(n) which only depends on the dimension (this follows from the expression of
the term R(A) as given in [33].

The de Giorgi-Moser-Nash technique applies (see [4], Theorem 4.1) and it follows that |Aps| tends
to zero uniformly at infinity.

Since |vps| < 1, the operator Jys is bounded from below and essentially self-adjoint. Furthermore,
its index is less than or equal to the index of the operator —A — |A M\Q which is also bounded from
below and essentially self-adjoint. The estimate (4.42) then follows by applying Theorem 39 in [2].
O

Remark. The reader is referblack to Simon’s type inequality in [21, Corollary 3.2], related to
Theorem 4.3.

5 Applications

In this section, we use the examples constructed in Section 3 as barriers to prove some general
results on minimal hypersurfaces in H” x R. These results generalize results obtained in [25] for
dimension 2. Similar results hold for H-hypersurfaces as well, see [25, 7].

Theorem 5.1 Let I' C H" be a connected compact embedded hypersurface and consider two copies
of T in different slices, T_ =T x {—a} and Ty =T x {a} C H" xR, for some a > 0. Assume that
I' is convex.

Let M C H" xR be a connected compact immersed minimal hypersurface such that OM =T _UT,.
Then,

2a < % (the height of the family of catenoids).
Furthermore, if M is embedded and is a vertical graph in a neighborhood of OM ,
1. M is symmetric with respect to the slice H" x {0}.
2. The parts of M above and below the slice of symmetry are vertical graphs.

3. If T is symmetric with respect to a hyperbolic hyperplane P, and is a horizontal graph in each
side of P, then M is a horizontal graph in each side of the hyperplane P and symmetric with
respect to the vertical hyperplane P x R. In particular, if T' is an (n — 1)-sphere, then M s
part of a catenoid.

Proof. We reason ad absurdo. Suppose that the height of M is greater than or equal to Ll’ that
n —
is 2a > Ll We recall that the height of the family of n-dimensional catenoids {C,, p € (0,00)}
n—

. Now as

is bounded from above by %, but each catenoid C, has height strictly less than - T 1
M is compact, there is a (hyperbolic) radius pg big enough such that M is strictly contained inside
the vertical cylinder M, of radius py (where M, is a cylinder over a n—1 sphere S,, C H" x {0} of
radius pg) containing M in its mean convex side. Recall that, by the geometry of the catenoids, the
catenoid C,, whose distance to the t-axis is pg is contained in the closure of the non mean convex
side of Ml,, touching M, just along the n — 1 sphere S,,. Hence, M is strictly contained in the
connected component of H? x R\ C,, that contains the ¢ axis of C,,. Notice that the whole family
of catenoids C, is strictly contained in the slab of H" x R with boundary I'_ UT'}. Starting from
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p = po, making p — 0, that is moving the family of catenoids {C,, p < po} towards M, we will find
a first interior point of contact with some C, and M, since the family of catenoid cannot touch the
boundary of M. We arrive at a contradiction, by the the maximum principle. The proof of the first
part of the statement is completed.

Now using the family of slices H" x {t} UH" x {—t} coming from the infinity towards M we get, by
the maximum principle, that M is entirely contained in the closed slab whose boundary consists of
the slices H" x {a} UH" x {—a} and (H" x {a} UH" X {—a}) N M = OM.

In the same way, considering the family of vertical hyperplanes, we get that M is contained in the
mean convex side of the vertical cylinder Mr over I' and Mir N M = M. Now using Alexandrov
Reflection Principle on the slices, moving the slices from ¢t = a towards ¢ = 0, by vertical reflections,
we get that the reflection of M = M N {t > 0} with respect to the horizontal slice t = 0, is above
M~ = M N {t <0}. Moreover, we find that M is a vertical graph. Notice that we may start the
reflections since M is a vertical graph in a neighborhood of 9M. In the same way, moving the slices
from t = —a to t = 0, doing vertical reflections, we get that the reflection of M~ = M N{t < 0} with
respect to the horizontal slice t = 0, is below M+ = M N {t > 0}. We conclude that M~ = M,
hence both M+ and M~ are vertical graphs and M is symmetric with respect to the slice H" x {0}.
The proof of the second part of the statement is completed.

Let us assume now that P C H™ x {0} is a hyperplane of symmetry of I'. Consider the vertical
hyperplane P = P x R and the family of hyperplanes P; at signed distance ¢ from P obtained from
P by horizontal translations along an oriented geodesic v orthogonal to P at the origin. Choosing
|t| big enough, we move the family P; towards PP (in the two sides of H" x R\ P), doing Alexandrov
Reflection Principle on Py, taking into account that I' is a horizontal graph in both sides of P, and
that the symmetric of 9M on P; stays on the slices t = +a, so that it does not touch the interior
of M. We can argue as before to conclude that P is a hyperplane of symmetry of M. Of course,
if T" is rotationally symmetric then M is a minimal hypersurface of revolution. Henceforth, by the
classification theorem, M is part of a catenoid. This completes the proof of the theorem. o

References

[1] Lucas Barbosa, Jonas Gomes, and Alexandre Silveira. Foliation of 3-dimensional space forms
by surfaces with constant mean curvature. Bol. Soc. Bras. Mat., 18 (1987), 1-12.

[2] Pierre Bérard and Gérard Besson. Number of bound states and estimates on some geometric
invariants. J. Funct. Anal., 94 (1990), 375-396.

[3] Pierre Bérard, Manfredo P. do Carmo, and Walcy Santos. The index of constant mean curvature
surfaces in hyperbolic 3-space. Math. Z., 224 (1997), 313-326.

[4] Pierre Bérard, Manfredo P. do Carmo, and Walcy Santos. Complete hypersurfaces with con-
stant mean curvature and finite total curvature. Ann. Global Anal. Geom., 16 (1998), 273-290.

[5] Pierre Bérard and Ricardo Sa Earp. Lindel6f’s theorem for catenoids, revisited.
arXiv:0907.4294, 2009.

[6] Pierre Bérard and Ricardo Sa Earp. Lindel6f’s theorem for hyperbolic catenoids. Proc. Amer.
Math. Soc, 2010.

21



[7] Pierre Bérard and Ricardo Sa Earp. H-hypersurfaces in H" x R and applications. Mat.
Contemp., 34 (2008), 19-51.

[8] Pierre Bérard, Philippe Castillon and Marcos Cavalcante. Eigenvalue estimates for hypersur-
faces in H™ x R and applications. Pacific Journal of Mathematics 253 (2011), 19-35.

[9] Pierre Bérard and Marcos Cavalcante. Stability properties of rotational catenoids in the Heisen-
berg group. Matemdtica Contempordnea 43 (2014), 37-60.

[10] Manfredo P. do Carmo and C.K. Peng. Stable complete minimal hypersurfaces. In Proceedings
Beijing Symposium on Diff. Geom. and Diff. Eq., ed. by S.S. Chern and W.W. Tsun, pages
1349-1358, 1980.

[11] Tobias H. Colding and William P. Minicozzi. Estimates for parametric elliptic integrands.
IMRN International Mathematics Research Notices, 6 (2002), 291-297.

[12] Pascal Collin and Harold Rosenberg. Construction of harmonic diffeomorphisms and minimal
graphs. Annals of Mathematics 172 (3) (2010), 1879-1906.

[13] Manfredo P. do Carmo and Alexandre M. Da Silveira. Index and total curvature of surfaces
with constant mean curvature. Proc. Amer. Math. Soc., 110 (1990), 1009-1015.

[14] Maria Fernanda Elbert, Barbara Nelli and Walcy Santos. Hypersurfaces with H,;; = 0 in
H™ x R. To be published in Manuscripta Mathematica. DOI: 10.1007/s00229-015-0794-y (first
online 15 oct 2015).

[15] Doris Fischer-Colbrie. On complete minimal surfaces with finite Morse index in three-manifolds.
Invent. Math., 82 (1985), 121-132.

[16] Doris Fischer-Colbrie and Richard Schoen. The structure of complete stable minimal surfaces
in 3-manifolds of nonnegative scalar curvature. Comm. Pure Appl. Math., 33 (1980), 199-211.

[17] Laurent Hauswirth and Harold Rosenberg. Minimal surfaces of finite total curvature in H x R.
Mat. Contemp., 31 (2006), 65-80.

[18] Laurent Hauswirth, Barbara Nelli, Ricardo Sa Earp and Eric Toubiana. A Schoen theorem for
minimal surfaces in H? x R. Advances in Mathematics, 274 (2015) 199-240.

[19] David Hoffman and Joel Spruck. Sobolev and isoperimetric inequalities for riemannian sub-
manifolds. Comm. Pure Appl. Math., 27 (1974), 715-727.

[20] David Hoffman and Joel Spruck. A correction to : Sobolev and isoperimetric inequalities for
riemannian submanifolds. Comm. Pure Appl. Math., 28 (1975), 765-766.

[21] Said Ilias, Barbara Nelli and Marc Soret. Caccioppoli’s inequalities for cme-hypersurfaces in
Riemmanian Manifolds. Annals of Global Analysis and Geometry, 42 (4) (2012), 443-471.

[22] H. Blaine Lawson, Jr. Lectures on minimal submanifolds. Vol. I, volume 9 of Mathematics
Lecture Series. Publish or Perish Inc., Wilmington, Del., second edition, 1980.

[23] Levi Lopes de Lima and Wayne Rossman. On the index of constant mean curvature 1 surfaces
in hyperbolic space. Indiana Univ. Math. J., 47 (1998), 685-723.

[24] Lorenz Lindeloef. Sur les limites entre lesquelles le caténoide est une surface minimale. Math.
Annalen, 2 (1870), 160—-166.

22



[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

Barbara Nelli, Ricardo Sa Earp, Walcy Santos, and Eric Toubiana. Uniqueness of H-surfaces
in H? x R, |H| < 1/2, with boundary one or two parallel horizontal circles. Ann. Global Anal.
Geom., 33 (2008), 307-321.

Barbara Nelli, Ricardo Sa Earp and Eric Toubiana. Maximum Principle and Symmetry for
Minimal Hypersurfaces in H"™ x R. Annali della Scuola Normale Superiore di Pisa, Classe di
Scienze, Vol. XIV (2015), 1-14.

Ricardo Sa Earp. Parabolic and hyperbolic screw motion surfaces in H? x R. Journal of the
Australian Math. Soc., 85 (2008), 113-143.

Ricardo Sa Earp and Eric Toubiana. Screw motion surfaces in H? x R and S? x R. Illinois J.
Math., 49 (2005), 1323-1362.

Ricardo Sa Earp and Eric Toubiana. An asymptotic theorem for minimal surfaces and existence
results for minimal graphs in H? x R. Math. Annalen, 342 (2008), 309-331.

Ricardo Sa Earp and Eric Toubiana. Minimal graphs in H® x R and R™**'. Annales Inst.
Fourier, 60 (7) (2010), 2373-2402.

Ricardo Sa Earp and Eric Toubiana. A minimal stable vertical planar end in H? x R has finite
total curvature. J. London Math. Soc., 92 (2) (2015) 712-723.

Richard Schoen, Leon Simon, and Shing-Tung Yau. Curvature estimates for minimal hyper-
surfaces. Acta Math., 134 (1975), 275-288.

James Simons. Minimal varieties in riemannian manifolds. Ann. of Math., 83 (1968), 62-105.

Luen-Fai Tam and Detang Zhou. Stability for higher dimensional catenoids in R"*!. Proc.
Amer. Math. Soc., 137 (10) (2009), 3451-3461.

Georges Valiron. Equatz’ons fonctionnelles. Applications. Masson, 1950.

Pierre Bérard Ricardo Sa Earp

Université de Grenoble & CNRS Pontificia Universidade Catdlica
Institut Fourier do Rio de Janeiro

B.P. 74 Departamento de Matemaética
38402 Saint Martin d’Heres Cedex 22453-900 Rio de Janeiro - RJ
France Brazil
pierrehberard@gmail.com rsaearp@gmail.com

23



