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Abstract

In this paper, we give all solutions of the constant mean curvature equation in

Hn×R that are invariant by parabolic screw motion and we give the full description

of their geometric behaviors. Some of these solutions give examples of non-trivial

entire stable horizontal graphs that are not vertical graphs.

Introduction

In the last years, the ancient theory of minimal and constant mean curvature surfaces

has been revisited for ”new” ambient spaces, one of them being H2 × R, where H2 is

the hyperbolic space (see for instance [D1], [M-O], [N-R], [O], [R] and the references

therein). More generally, dealing with greater dimensions, the study of hypersurfaces in

Hn × R has also been pursued (see for instance [B-SE], [D2],[B-C-C]). The construction

of examples is an important tool that contributes to the understanding of what happens

in this new ambient spaces. In this paper, we search for constant mean curvature (CMC)

hypersurfaces in Hn×R that are invariant by parabolic screw motions, i.e., invariant by a

(n-1)-parameter group of isometries such that each element is given by a composition of a

parabolic translation in Hn followed by a vertical translation. In fact, we give all solutions

of the constant mean curvature equation in Hn ×R that are invariant by parabolic screw

motion and we give the full description of their geometric behaviors.
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We use the half-space model of the hyperbolic space Hn = {(x1, . . . , xn−1, xn = y) ∈
Rn|y > 0}. We begin with a curve t = λ(y) that after the action of such a group gives

rise to a vertical graph.

After imposing the mean curvature equation, we are able to caracterize the generating

curves λ(y) depending on the value of H. From the results about λ(y) we construct many

families of interesting examples of complete CMC hypersurfaces in Hn × R, including
embedded and stable ones.

Besides giving explicit examples we prove the existence of families of hypersurfaces.

These existence results are briefly stated below.

Theorem A: There exists a family of non-entire horizontal minimal complete graphs in

Hn ×R invariant by parabolic screw motions. The asymptotic boundary of each graph of

this family is formed by two parallel (n-1)-planes.

Theorem B:

i) For each H, 0 < |H| < (n−1)
n

, there exists a family of complete horizontal H-CMC

graphs in Hn × R invariant by parabolic screw motions .

ii) For each H, 0 < |H| ≤ (n−1)
n

, there exists a family of complete non-embedded

H-CMC hypersurfaces in Hn × R invariant by parabolic screw motions .

Theorem C: For each H, |H| > n−1
n
, there exists a family of complete non-embedded

and t-periodic H-CMC hypersurfaces in Hn × R invariant by parabolic screw motions.

Theorems A,B and C are restated with more details in sections 3 and 4, where we give

good descriptions of the behavior of the hypersurfaces. We point out that the translations

hypersurfaces given in Theorems A and Theorem B i) are stable (see Proposition 2.2).

Some of them are examples of complete stable CMC-hypersurfaces that are neither entire

vertical graphs nor the trivial examples, namely, cylinders over totally umbilic (n-1)-

submanifolds of Hn × {0}.
In [SE], the second author studies the case n = 2. In the following papers, and in the

references therein, the interested reader will find related topics [SE-T1],[SE-T2].

1 Preliminaries

We use the half-space model of the hyperbolic space Hn (n ≥ 2), i.e., we consider

Hn = {(x1, . . . , xn−1, xn = y) ∈ Rn|y > 0}
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endowed with the metric

gH :=
dx2

1 + . . .+ dx2
n−1 + dy2

y2
.

On Hn × R, with coordinates (x1, . . . , xn−1, y, t), we consider the product metric

g = gH + dt2.

A vertical graph of a real function u defined over Ω ⊂ Hn is the set

G = {(x, u(x)) ∈ Hn × R| x ∈ Ω}. A computation shows that when u is C2 and we

choose the orientation given by the upper unit normal, the mean curvature H of the

graph G is given by

div

(
∇u√

1 + y2||∇u||2

)
+

(2− n)uy

y
√
1 + y2||∇u||2

=
nH

y2
. (1.1)

Here, div, ∇, and ||.|| denote quantities in the Euclidean metric of Rn. For a proof see,

for instance, [SE-T1], Proposition (3.1).

We notice that in Hn×R we can also define the horizontal graph, y = g(x1, . . . , xn−1, t),

of a real and positive function g (see [SE]).

We search for constant mean curvature (CMC) hypersurfaces that are invariant by

parabolic screw motions, that is, a parabolic translation in Hn followed by a vertical

translation. We recall that a parabolic translation can be identified with a horizontal

Euclidean translation in this model for Hn. We begin with a generating curve t = λ(y)

in the yt-vertical 2-plane of Hn × R. The induced metric in this vertical 2-plane is

Euclidean. We fix (l1, . . . , ln−1) ∈ Rn−1. After a parabolic translation composed with a

vertical translation gives rise to a vertical graph

t = u(x1, . . . , xn−1, y) = λ(y) + l1x1 + . . .+ ln−1xn−1. (1.2)

Imposing the mean curvature equation (1.1) to this graph we obtain that λ and

(l1, . . . , ln−1) satisfy(
λ′(y)√

1 + y2l2 + y2(λ′)2(y)

)′

+
(2− n)λ′(y)

y
√

1 + y2l2 + y2(λ′)2(y)
=

nH

y2
(1.3)

where l2 = l21 + . . .+ l2n. Equivalently we may write

y2−n

(
λ′(y)√

1 + y2l2 + y2(λ′)2(y)

)′

+
(2− n)y1−nλ′(y)√
1 + y2l2 + y2(λ′)2(y)

= nHy−n.
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If we suppose that H is constant, integrate and conveniently rearrange the terms we

obtain
λ′(y)√

1 + y2l2 + y2(λ′)2(y)
=

d(n− 1)yn−1 − nH

y(n− 1)
, (1.4)

where d is the constant that comes from integrating. After another rearrangement and

integration we get

λ(y) =

∫ y

∗

√
1 + ξ2l2 (d(n− 1)ξn−1 − nH)

ξ(n− 1)

√
1−

(
d(n−1)ξn−1−nH

n−1

)2dξ. (1.5)

Since λ depends also on d and l we write λ(y, d, l) instead of λ(y) whenever convenient.

2 Some general facts

The function λ(y, d, l) is given by (1.5) and we can suppose that d ≥ 0. The case d < 0 is

obtained from this by vertical translations or symmetries. In order to simplifly notation,

we set g =
(

d(n−1)yn−1−nH
n−1

)
and write

λ(y) =

∫ y

∗

√
1 + ξ2l2g

ξ
√
1− g2

dξ. (2.1)

Then

λ′(y) =

√
1 + y2l2g

y
√
1− g2

, (2.2)

where we are assuming that 1− g2 > 0. We notice that the sign of λ′(y) is that of g and

that, when d ̸= 0, both vanish at y = τ0
1/n−1, where τ0 =

nH
d(n−1)

.

A computation shows that

λ′′(y) =
(1 + y2l2)g′y − g(1− g2)

(1 + y2l2)1/2y2(1− g2)3/2

which helps studying the behavior of the curve t = λ(y, d, l). For notation purposes, we

set η(y) = (1 + y2l2)g′y − g(1 − g2), i.e., the numerator of λ′′(y). We point out that the

sign of η(y) is that of λ′′(y). The following lemma will be useful.

Lemma 2.1. If H ≥ 0 then λ′′ > 0.
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Proof: We need to study the sign of η(y). Since g′ = d(n−1)yn−2 > 0, we easily see that

η(y) > 0 when g ≤ 0. Now we see what happens when g > 0. Since, in this case

η(y) = (1 + y2l2)g′y − g(1− g2) > (1 + y2l2)g′y − g

= (1 + y2l2)d(n− 1)yn−1 − dyn−1 + nH
n−1

≥ (n− 2)dyn−1 + nH
n−1

,

the lemma follows.

We now analyse the behavior of λ(y) near y = 0. If we write

λ(y) =

∫ y

∗

√
1 + ξ2l2g

ξ
√

1− g2
dξ =

∫ y

∗

f(ξ)

ξ
dξ,

we can see that f(y) is differentiable in y = 0. By observing the expansion

f(y) = − −nH

(n− 1)
√
1−

(
nH
n−1

)2 + f ′(0)y + o(y)

near 0 we can conclude that λ(y) has a log behavior when y → 0. Now, we study the

behavior of λ(y) near a zero of
√

1− g2. We notice that these zeroes only exist for d > 0.

For simplicity purposes, we introduce the variable v = dξn−1, d > 0. In this new variable,

the integral given by (1.5) becomes

∫ dyn−1

∗

√
1 + l2

(
v
d

)2/(n−1)
((n− 1)v − nH)

v(n− 1)2
√

1−
(
v − nH

n−1

)2 dv. (2.3)

Near one of the zeroes of
√

1−
(
v − nH

n−1

)2
, say v0 = (1+ nH

n−1
), we can rewrite the integral

as ∫ dyn−1

∗

h(v)√
v0 − v

dv,

with a function h that is differentiable at v0. We can then see that this integral, and a

fortiori the integral in (1.5), converge to a finite value near this zero of
√

1− g2. The

same happens for the other zero. Hence the graph of λ(y, d, l) is vertical at both zeroes

of
√
1− g2. A computation shows that the (Euclidean) curvature of the curve in the

yt-vertical 2-plane is finite at these points.

Proposition 2.2. Any H-CMC or minimal horizontal graph invariant by parabolic trans-

lations (l = 0) is stable.
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Proof: Let us consider the killing field (for a definition, see for instance [J], page 52)

generated by the homotheties in each slice Hn × {t} w.r.t. the origin of the slice (a

hyperbolic isometry of the slice). Notice that the generating curve is a horizontal smooth

graph in the yt-vertical 2-plane (x1 = x2 = . . . = xn−1 ̸= 0). Then the trajectories of the

killing field cut the graph transversally at one point at most, proving that it is a killing

graph and, a fortiori, proving the proposition, since killing graphs are stable (see [B-G-S],

Theorem 2.7).

3 The minimal examples

In this section, we consider the particular case H = 0. We find some explicit exam-

ples given by elementary formulas or integral formulas. Preserving the notation and the

method stated in the preliminaries, we set our first result.

Proposition 3.1. (Minimal vertical graphs)

The minimal vertical graphs invariant by parabolic screw motions generated by a curve

t = λ(y) are, up to translations or symmetries, of one of the following types:

a) t = l1x1 + . . .+ ln−1xn−1, y > 0.

b) t = λ(y, d, l) + l1x1 + . . . + ln−1xn−1, y ∈ (0, (1/d)
1

n−1 ), where λ is increasing and

strictly convex in the interval and is vertical at y =
(
1
d

) 1
n−1 (see Figure 1). For the

particular case l = 0, we obtain the graph given by the elementary formula

t =
1

n− 1
arcsin(dyn−1) + κ.

Proof: The case H = 0 and d = 0:

If we impose in (1.4) that H and d vanish, we obtain that λ ≡ κ = constant. In this case,

the vertical graphs obtained are

t = κ+ l1x1 + . . . , ln−1xn−1, y > 0.

The case H = 0 and d ̸= 0:

In this case, (1.5) gives, up to vertical translations or symmetries,

λ(y, d, l) =

∫ y

0

dξn−2
√
1 + ξ2l2√

1− (dξn−1)2
dξ,

6



with d > 0. Changing for the variable v = dξn−1 we obtain

λ(y, d, l) =
1

n− 1

∫ dyn−1

0

√
1 +

(
l(v

d
)

1
n−1

)2
√
1− v2

dv. (3.1)

We then have

t = λ(y, d, l) + l1x1 + . . .+ ln−1xn−1, y ∈ (0, (1/d)
1

n−1 ),

with λ given by (3.1). By the results of Section 2 applied to this case we conclude that it

is increasing and strictly convex in the interval (0, (1/d)
1

n−1 ) and is vertical at y =
(
1
d

) 1
n−1 .

d=1, n= 3, H=0, l=0

Figure 1: d = 1, n = 3 , H = 0 , l = 0 .

For the special case l = 0, we can integrate the above formula and obtain an explicit

family of examples, namely, the graphs of

t =
1

n− 1
arcsin(dyn−1) + κ.

Theorem 3.2. The curves of Proposition 3.1 b) generate a family of non-entire

horizontal minimal complete graphs in Hn ×R invariant by parabolic screw motions. The

asymptotic boundary of each graph of this family is formed by two parallel (n-1)-planes

(see Figure 2).
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Proof: We know that the function λ(y, d, l) given by b) of Proposition (3.1) is increasing

and convex in the interval (0, (1/d)
1

n−1 ) and is vertical at y =
(
1
d

) 1
n−1 . We also know that

the Euclidean curvature is finite at y = (1/d)
1

n−1 . If we set t0 = λ
(
(1/d)

1
n−1 , d, l

)
, we

can then glue together the graph

t = λ(y, d, l) + l1x1 + . . .+ ln−1xn−1

with its Schwarz reflection given by

2t0 − λ(y, d, l) + l1x1 + . . .+ ln−1xn−1,

in order to obtain a horizontal minimal complete graph invariant by parabolic screw

motions defined over {(x1, . . . , xn−1, t) ∈ Rn−1×R|l1x1+ . . .+ ln−1xn−1 ≤ t ≤ 2t0+ l1x1+

. . . + ln−1xn−1}. The asymptotic boundary of this example is formed by two parallel

hyperplanes. The stability comes from Proposition 2.2.

d=1, n= 3, H=0, l=0

Figure 2: d = 1, n = 3, H = 0, l = 0 .

4 The H-CMC examples

In this section we treat the case H ̸= 0. We recall that we are using the orientation given

by the upper unit normal. We first deal with the hypothesis d = 0.

The case H ̸= 0 and d = 0:

Imposing that d = 0, (1.5) becomes

λ(y, l) =
−nH

(n− 1)
√

1−
(

nH
n−1

)2
∫ y

∗

√
1 + ξ2l2

ξ
dξ (4.1)
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and naturally imposes the restriction |H| < n−1
n
.

Integrating (4.1) we obtain

t =
−nH

(n− 1)
√
1−

(
nH
n−1

)2
√1 + l2y2 + ln

(√
1 + l2y2 − 1√
1 + l2y2 + 1

)1/2
+ κ, l ̸= 0,

which give a explicit family of entire vertical graphs of mean curvature H
(
|H| < n−1

n

)
,

defined over Hn × R, that are also complete horizontal graphs (see Figure 3).

Figure 3: d = 0, n = 4 , H = 1/2 , l = 1 .

For the case l = 0, we obtain the explicit examples (see Figure 4)

t =
−nH

(n− 1)
√
1−

(
nH
n−1

)2 ln(y) + κ.

The case H ̸= 0 and d > 0:

We can distinguish four cases, depending on the values of H, as one can see below.

For each case, we come back to Section 2 and try to understand the behavior of the curve

t = λ(y, d, l). By observing that both y and 1− g2 should be positive in (2.1), we see that

y, besides being positive, should be in the interval (y0, y1), where y0 =
(
τ0 − 1

d

)1/n−1
and

y1 =
(
τ0 +

1
d

)1/n−1
.

Now we deal with each case separately.

• H ≤ − (n−1)
n

: There is no solution, since τ0 +
1
d
≤ 0.
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Figure 4: d = 0, n = 3 , H = 1/3 , l = 0 .

• − (n−1)
n

< H < 0: Since, for this case, τ0 − 1
d
< 0 we see that λ(y, d, l) is defined on

(0, y1). We also know that λ is increasing (see (2.2)), is vertical at y1 and has a log

behavior near 0.

Now, we should understand the sign of λ′′(y), i.e., the sign of η(y). It is easy

to see that η(y) < 0 near 0 and η(y) > 0 near y1. A computation shows that

η′(y) = 2l2g′y2 + (1 + y2l2)g′′y + 3g2g′. Since g > 0, g′ > 0 and g′′ ≥ 0, we see

that η′(y) > 0, which implies that η(y) = 0 only once in (0, y1). Then, λ(y, d, l) is

concave near 0 and becomes convex after some point in (0, y1) (see Figure 5).

d=1, n= 4, H=−1/4, l=1

Figure 5: d = 1, n = 4, H = −1/4, l = 1.

• 0 < H ≤ (n−1)
n

: In this case, λ(y, d, l) is defined on (0, y1), is decreasing on
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(
0, τ0

1/n−1
)
and increasing on

(
τ0

1/n−1, y1
)
(see (2.2)). By Lemma 2.1, it is strictly

convex and by the results of Section 2, λ is vertical at y1 and has a log behavior at

y = 0 (see Figure 6).

• H > (n−1)
n

: In this case, λ(y, d, l) is defined on (y0, y1), is decreasing on
(
y0, τ0

1/n−1
)

and increasing on
(
τ0

1/n−1, y1
)
(see (2.2)). By Lemma 2.1, λ is strictly convex in

the interval and by the results of Section 2, is vertical at y0 and y1. We claim that

λ(y0) > λ(y1) (see Figure 7). In order to prove the claim, we proceed as follows.

Instead of working with (1.5) we use (2.3), where the integrand is defined in an

interval (v0, v1). Let us set σ0 for the middle point of this interval. We first notice

the the function

√
1 + l2

(
v
d

)2/(n−1)

v

has negative derivative, being therefore decreasing. Now, we explore the symmetries

of the functions ((n−1)v−nH) and
√
1−

(
v − nH

n−1

)2
to conclude that the integrand

is negative in (v0, σ0) and positive in (σ0, v1), but with a greater modulus for the

negative part. After integration, we see that the claim is true.

d=1, n= 4, H=1/4, l=1

Figure 6: d = 1, n = 4, H = 1/4, l = 1.
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We now collect the results we obtained for H ̸= 0 in the following propositions and

theorems.

Proposition 4.1. (H-CMC vertical graphs, 0 < |H| ≤ n−1
n
)

The H-CMC vertical graphs invariant by parabolic screw motions generated by a curve

t = λ(y) are, up to translations or symmetries, of one of the following types:

a) t = −nH

(n−1)
√

1−( nH
n−1)

2

[√
1 + l2y2 + ln

(√
1+l2y2−1√
1+l2y2+1

)1/2
]
+ l1x1 + . . . + ln−1xn−1,

l ̸= 0, y > 0, |H| < n−1
n

(see Figure 3).

b) t =
−nH

(n− 1)
√

1−
(

nH
n−1

)2 ln(y), y > 0, |H| < n−1
n

(see Figure 4).

c) t = λ(y, d, l) + l1x1 + . . . + ln−1xn−1, for − (n−1)
n

< H < 0. In this case, λ(y, d, l)

is defined on (0, y1), is increasing, is vertical at y1 and has a log behavior near 0.

Also, λ(y, d, l) is concave near 0 and becomes convex after some point in (0, y1) (see

Figure 5).

d) t = λ(y, d, l) + l1x1 + . . . + ln−1xn−1, for 0 < H ≤ (n−1)
n

. In this case, λ(y, d, l) is

defined on (0, y1) is decreasing on
(
0, τ0

1/n−1
)
and increasing on

(
τ0

1/n−1, y1
)
. It is

strictly convex, is vertical at y1 and has a log behavior at y = 0 (see Figure 6).

Proposition 4.2. (H-CMC vertical graphs, H > n−1
n
)

The H-CMC vertical graphs invariant by parabolic screw motions generated by a curve

t = λ(y) are, up to translations or symmetries, of the form t = λ(y, d, l) + l1x1 + . . . +

ln−1xn−1, where λ(y, d, l) is defined on (y0, y1), is decreasing on
(
y0, τ0

1/n−1
)
and increasing

on
(
τ0

1/n−1, y1
)
. λ is strictly convex in the interval and is vertical at y0 and y1, with

λ(y0) > λ(y1)(see Figure 7).

Theorem 4.3. (Complete H-CMC hypersurfaces, 0 < |H| ≤ n−1
n
)

a) For each H, 0 < |H| < n−1
n
, the curves of Proposition 4.1 a) generate a family

of complete entire vertical graphs of mean curvature H in Hn × R, that are also

complete stable horizontal graphs (see Figure 3).
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d=1, n= 3, H=1, l=1

Figure 7: d = 1, n = 3, H = 1, l = 1

b) For each H, 0 < |H| < n−1
n
, the curves of Proposition 4.1 b) generate a family of

complete entire vertical graphs of mean curvature H in Hn ×R, that are also entire

stable horizontal graph (see Figure 4).

c) For each H, − (n−1)
n

< H < 0, the curves of Proposition 4.1 c) generate a family

of entire horizontal H-CMC graphs in Hn ×R invariant by parabolic screw motions

(see Figure 8).

d) For each H, 0 < H ≤ (n−1)
n

, the curves of Proposition 4.1 d) generate a family

of complete non-embedded H-CMC hypersurfaces in Hn × R invariant by parabolic

screw motions (see Figure 9).

Proof: The proofs of a) and b) are trivial. For the other two cases we can, similar to what

we have done in Theorem 3.2, glue the graphs given in c) and d) of Proposition 4.1 with

their Schwarz reflection. Stability comes from the well-known fact that vertical H-CMC

graphs are stable. Notice that each parabolic invariant H-CMC horizontal graph is stable

(Proposition 2.2).
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d=1, n= 4, H=−1/4, l=1

Figure 8: d = 1, n = 4, H = −1/4, l = 1 and its Schwarz reflection.

d=1, n= 4, H=1/4, l=1

Figure 9: d = 1, n = 4, H = 1/4, l = 1 and its Schwarz reflection.
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Theorem 4.4. (Complete H-CMC hypersurfaces, H > n−1
n
) For each H, H > n−1

n
, the

curves of Proposition (4.2) generate a family of complete non-embedded and t-periodic

H-CMC hypersurfaces in Hn × R invariant by parabolic screw motions (see Figure 10).

Proof: Similar to what we have done in Theorem 3.2, we can first take the curve given by

Proposition (4.2) and glue the graph with its Schwarz reflection. Then, we conveniently

translate upwards and downwards the obtained curve successively in order to obtain, after

gluing, a complete hypersurface. We recall that the curve obtained in Proposition (4.2)

is vertical at y0 and y1

d=1, n= 3, H=1, l=1

Figure 10: d = 1, n = 3, H = 1, l = 1, with Schwarz reflection and translation.

References

[B-SE] Bérard P., Sa Earp R.; Examples of H-hypersurfaces in Hn × R and geometric

applications. Mat. Contem. 34, 19-51 (2008).

[B-C-C] Bérard, P.; Castillon, P.; Cavalcante, M.; Eigenvalue estimates For hypersurfaces

in Hn × R and applications, Pacific J. of Math. 253, 19-35 (2011).

[B-G-S] Barbosa, L.; Gomes, J.; Silveira, A.; Foliation of 3-dim space forms by surfaces

with constant mean curvature, Bol. Soc. Bras. Math. 18 (1987), 1-12.

[D1] Daniel, B.; Isometric immersions into 3-dimensional homogeneous manifolds,

Comm. Math. Helv. 82 (1) (2007), 87-131.

15



[D2] Daniel, B.; Isometric immersions into Sn × R and Hn × R and applications to

minimal surfaces, Trans. AMS, 361 (12) (2009), 6255-6282.

[J] Jost, J.; Riemannian Geometry and Geometric Analysis, Universitext-Springer

Fourth Edition (2005).

[M-O] Montaldo, S.; Onnis, I.;Invariant CMC surfaces in H2 ×R, Glasgow Math J. 46

(2004), 311-321.

[N-R] Nelli, B.; Rosenberg, H.; Minimal Surfaces in H2×R Bull. Braz. Math. Soc. 33,

(2002) 263-292.

[O] Onnis., I.; Invariant surfaces with constant mean curvature in H2 × R, Annali
di Matematica Pura ed Applicata 187 (2008), 667-682.

[R] Rosenberg, H.; Minimal Surfaces in M2 × R, Illinois Jour. of Math. 46 (4),

(2002), 1177-1195.

[SE] Sa Earp, R.: Parabolic and hyperbolic screw motion surfaces in H2×R, J. Aust.
Math. Soc. 85 (2008), 113 - 143.

[SE-T1] Sa Earp, R.; Toubiana, E.: Minimal Graphs in Hn ×R and Rn+1, Annals Inst.

Fourrier 60 (7) (2010), 2373-2402.

[SE-T2] Sa Earp, R.; Toubiana, E.: Screw motions surfaces in H2×R and S2×R, Illinois
Jour. of Math 49 (4) (2005), 1323 - 1362.

Maria Fernanda Elbert

Universidade Federal do Rio de Janeiro - UFRJ

fernanda@im.ufrj.br

Ricardo Sa Earp

PUC, Rio de Janeiro

earp@mat.puc-rio.br

16


