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Abstract
Given a complete Riemannian manifold M of dimension n, we study

the existence of vertical graphs in M × R with prescribed mean curva-
ture H = H(x, z). Precisely, we prove that such a graph exists over a
smooth bounded domain Ω in M for arbitrary smooth boundary data, if

Riccx ≥ n sup
z∈R

∥∇xH(x, z)∥ − n2

n− 1
inf
z∈R

(H(x, z))2 for each x ∈ Ω and

(n − 1)H∂Ω(y) ≥ n sup
z∈R

|H(y, z)| for each y ∈ ∂Ω. We also establish an-

other existence result in the case where M = Hn if sup
Ω×R

|H(x, z)| ≤ n−1
n

in

the place of the condition involving the Ricci curvature. Finally, we have a
related result when M is a Hadamard manifold whose sectional curvature
K satisfies −c2 ≤ K ≤ −1 for some c > 1. We generalize classical results
of Serrin and Spruck.

1 Introduction
Let M be a complete Riemannian manifold of dimension n ≥ 2. Given a

smooth bounded domain Ω in M , we ask if for a given smooth function φ and a
prescribed smooth function H = H(x, z) non-decreasing in the variable z, there
exists a smooth up to the boundary function u satisfyingdiv

(
∇u
W

)
= nH(x, u) in Ω,

u = φ in ∂Ω,

(P)
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where W =

√
1 + ∥∇u(x)∥2 and the quantities involved are calculated with

respect to the metric of M . If u satisfies the equation

div

(
∇u
W

)
= nH(x, u), (1)

then its vertical graph,

Gr(u) = {(x, u(x));x ∈ Ω} ⊂M × R,

is an hypersurfaces in M × R of mean curvature H(x, u(x)) at each point
(x, u(x)).

In a coordinates system (x1, . . . , xn) in M equation (1) can be written in
non-divergence form as

Mu :=

n∑
i,j=1

(
W 2σij − uiuj

)
∇2

iju = nH(x, u)W 3, (2)

where (σij) is the inverse of the metric (σij) of M , ui =
n∑

j=1

σij∂ju are the co-

ordinates of ∇u and ∇2
iju(x) = ∇2 u(x)

(
∂

∂xi
, ∂
∂xj

)
. We also define the operator

Q by
Qu = Mu− nH(x, u)W 3.

The matrix of the operator M (and Q) is given by A = W 2g, where g is the
induce metric on the graph of u. This implies that the eigenvalues of A are
positive and depends on x and on ∇u. Hence, M is locally uniformly elliptic.
Furthermore, if Ω is bounded and u ∈ C 1(Ω), then M is uniformly elliptic in Ω
(see [19] for more details).

We recall that the Dirichlet problem (P) is a classical problem in the inter-
section between Differential Geometry and Partial Differential Equations. First
steps were given by Bernstein [6], Douglas [10] and Radó [17, p. 795] in domains
of R2 for the minimal case. In 1966 Jenkins-Serrin [13, Th. 1 p. 171] derived
related results in higher dimensions.

Later on, Serrin [18] devoted his attention to study Dirichlet problems for
a class of more general elliptic equations within which is the prescribed mean
curvature equation. Specifically related to our work, he obtained the following
result.

Theorem 1 (Serrin [18, Th. p. 484]). Let Ω ⊂ Rn be a bounded domain
whose boundary is of class C 2. Let H(x) ∈ C 1(Ω) and suppose that

|∇H(x)| ≤ n

n− 1
(H(x))2 ∀ x ∈ Ω. (3)

Then the Dirichlet problem in Ω for surfaces having prescribed mean curvature
H(x) is uniquely solvable for arbitrarily given C 2 boundary values if, and only
if,

(n− 1)H∂Ω(y) ≥ n |H(y)| ∀ y ∈ ∂Ω. (4)
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We note that in Serrin condition (4), H∂Ω(y) denotes the inward mean cur-
vature of ∂Ω at y ∈ ∂Ω. A direct consequence of theorem 1 is the following
sharp result.

Theorem 2 (Serrin sharp solvability criterion [18, p. 416]). Let Ω ⊂ Rn

be a bounded domain whose boundary is of class C 2. Then the Dirichlet problem
for the mean curvature equation has a unique solution for every constant H and
arbitrary C 2 boundary data if, and only if, (n− 1)H∂Ω ≥ n |H|.

Joel Spruck [19] is the pioneer in the study of the Dirichlet problem (P) in
the M × R setting. Spruck established a priori estimates for this problem that
led to several existence results when H is a positive constant. More specifically
related with our work is the theorem stated below.

Theorem 3 (Spruck [19, T 1.4 p. 787]). Let Ω ⊂M be a bounded domain
whose boundary is of class C 2,α for some α ∈ (0, 1). Let H ∈ R+ and suppose
that

(n− 1)H∂Ω(y) ≥ nH. (5)

Suppose also that

Riccx ≥ − n2

n− 1
H2 ∀x ∈ Ω. (6)

Then the Dirichlet problem (P) is uniquely solvable for arbitrary continuous
boundary data φ.

Above, Riccx is the Ricci curvature of M at x. The notation Riccx ≥ f(x)
means that the Ricci curvature evaluated in any unitary tangent vector at x is
bounded below by the function f(x). The definition of the Ricci curvature we
use throughout the text follows [16].

We note that, condition (6) is trivially satisfy for any constant H if M = Rn.
So, theorem 3 of Spruck is a generalization of the sufficient part of theorem 2
of Serrin.

On the other hand, in our previous work [3, Th. 1 p. 3] we proved that the
strong Serrin condition,

(n− 1)H∂Ω(y) ≥ n sup
z∈R

|H (y, z)| ∀ y ∈ ∂Ω, (7)

is necessary for the solvability of problem (P) in a large class of Riemannian
manifolds. As an examples are the Hadamard manifolds [3, Corollary 2 p. 3]
and the simply connected and compact manifolds whose sectional curvature
satisfies 0 < 1

4K0 < K ≤ K0 provided diam(Ω) < π
2
√
K0

[3, Corollary 3 p. 4].

In the present paper, our goal is to study under which conditions on the
function H the strong Serrin condition (7) is also sufficient. The main theorem
of this paper is the following.
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Theorem 4 (main theorem). Let Ω ⊂ M be a bounded domain with ∂Ω of
class C 2,α for some α ∈ (0, 1). Let H ∈ C 1,α(Ω× R) satisfying ∂zH ≥ 0 and

Riccx ≥ n sup
z∈R

∥∇xH(x, z)∥ − n2

n− 1
inf
z∈R

(H(x, z))
2 ∀ x ∈ Ω. (8)

If
(n− 1)H∂Ω(y) ≥ n sup

z∈R
|H (y, z)| ∀ y ∈ ∂Ω, (9)

then for every φ ∈ C 2,α(Ω) there exists a unique solution u ∈ C 2,α(Ω) of the
Dirichlet problem (P).

Notice that assumptions (3) and (6) are particular cases of (8). Hence,
theorem 4 generalizes the existence part in theorem 1 of Serrin and theorem 3
of Spruck. We also highlight that the combination of the non-existence results
mentioned above with theorem 4 gives Serrin type solvability criteria for the
Dirichlet problem (P) (see [3, Thms. 8 and 9]).

On the other hand, notice that, from the combination of theorem 3 of Spruck
and our non-existence result [3, Corollary 2 p. 3] for Hadamard manifolds, we
can deduce that the Serrin condition (5) is necessary and sufficient for the
solvability of problem (P) for every constant H satisfying (6). In the case where
M = Hn we see that condition (6) is satisfied for every constant H ≥ n−1

n .
In the opposite case, H ∈

[
0, n−1

n

)
, Spruck [19, Th. 5.4 p. 797] obtained an

existence result assuming the strict inequality in the Serrin condition.
In this paper we also extend this result of Spruck [19, Th. 5.4 p. 797] in the

hyperbolic space by deriving the following theorem.
Theorem 5. Let Ω ⊂ Hn be a bounded domain with ∂Ω of class C 2,α for some
α ∈ (0, 1) and φ ∈ C 2,α(Ω). Let H ∈ C 1,α(Ω × R) satisfying ∂zH ≥ 0 and
sup
Ω×R

|H| ≤ n−1
n . If

(n− 1)H∂Ω(y) ≥ n sup
z∈R

|H (y, z)| ∀ y ∈ ∂Ω,

then for every φ ∈ C 2,α(Ω) there exists a unique solution u ∈ C 2,α(Ω) of the
Dirichlet problem (P).

Putting together theorem 5 and our non existence result for Hadamard man-
ifolds [3, Cor. 1 p. 3] with theorem 3 of Spruck, one can deduce: the Serrin
sharp solvability criterion for arbitrary constant H as stated in theorem 2 above
also holds in the hyperbolic case [3, Th. 7 p. 5].

At last, we use the barriers constructed by Galvez-Lozano [11, Th. 6 p. 12]
to prove the following result in Hadamard manifolds.
Theorem 6. Let M be a Hadamard manifold such that −c2 ≤ K ≤ −1, for
some c > 1. Let Ω ⊂ M be a bounded domain with ∂Ω of class C 2,α for some
α ∈ (0, 1) and whose principal curvatures are greater than c. Let φ ∈ C 2,α(Ω)
and H ∈ C 1,α(Ω × R) satisfying ∂zH ≥ 0 and sup

Ω×R
|H| ≤ n−1

n . Then problem

(P) has a unique solution u ∈ C 2,α(Ω).
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2 The a priori estimates
Firstly, we establish a lemma that will help us to obtain a priori height and

boundary gradient estimates.
Lemma 7. Let Γ be an embedded and oriented C 2 hypersurface of M and Γt

parallel to Γ for each t ∈ [0, τ). Assume that for some fix y ∈ Γ, HΓ(y) ≥ 0 with
respect to a normal field N . Suppose also that there exists a function h ∈ C 1[0, τ)
satisfying

|h(0)| ≤ HΓ(y) (10)
and

(n− 1)
(
|h′(t)| − (h(t))2

)
≤ Riccγy(t)(γ

′
y(t)) ∀ t ∈ [0, τ), (11)

where γy(t) = expy(tNy) ∈ Γt. Then

|h(t)| ≤ HΓt(γy(t)) ∀ 0 ≤ t < τ, (12)

where HΓt is computed with respect to γ′y(t). Furthemore, HΓt(γy(t)) is increas-
ing as a function of t.
Proof. Let H(t) := HΓt

(γy(t)). It is known that (see [2, Cor. B.4 p. 66])

H′(t) ≥
Riccγy(t)(γ

′
y(t))

n− 1
+ (H(t))

2
.

Since we are assuming (11) it follows

H′(t) ≥ |h′(t)| − (h(t))2 + (H(t))
2
. (13)

Then,
(H(t)− h(t))′ ≥ (H(t) + h(t)) (H(t)− h(t)) (14)

and
(H(t) + h(t))′ ≥ (H(t)− h(t)) (H(t) + h(t)) . (15)

Let us define v(t) = H(t)− h(t) and g(t) = H(t) + h(t). From (14) we have(
v(t)

e
∫ t
0
g(s)ds

)′

≥ 0,

so v(t) ≥ v(0)e
∫ t
0
g(s)ds for each t ∈ [0, τ). As a consequence of (10) we obtain

H(t) ≥ h(t) ∀t ∈ [0, τ).

Using (15) we obtain in a similar way that

H(t) ≥ −h(t) ∀t ∈ [0, τ).

Therefore,
H(t) ≥ |h(t)| ∀t ∈ [0, τ). (16)

Substituting (16) in (13) we also obtain H′(t) ≥ 0.

Roughly speaking, lemma 7 says that, under condition (11), the parallel hy-
persurfaces inherit the initial condition on Γ throughout the orthogonal geodesics.
Moreover, the mean curvature of the parallel hypersurfaces in Ω increases along
the inner normal geodesics.
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2.1 A priori height estimate
We point out that in theorem 1 of Serrin the combination of condition (3)

with the Serrin condition (4) provides height estimate for the Dirichlet problem
(P) in the Euclidean case. Analogously for theorem 3 of Spruck. We generalize
these geometric ideas in the next theorem.

Theorem 8. Let Ω ∈ M be a bounded domain with ∂Ω of class C 2 and φ ∈
C 0(∂Ω). Let H ∈ C 1(Ω× R) satisfying ∂zH ≥ 0,

Riccx ≥ n sup
z∈R

∥∇xH(x, z)∥ − n2

n− 1
inf
z∈R

(H(x, z))
2 ∀ x ∈ Ω, (17)

and
(n− 1)H∂Ω(y) ≥ n |H(y, φ(y))| ∀ y ∈ ∂Ω. (18)

If u ∈ C 2(Ω) ∩ C 0(Ω) is a solution of problem (P), then

sup
Ω

|u| ≤ sup
∂Ω

|φ|+ eµδ − 1

µ
,

where µ > n sup

{
|H(x, z)| , (x, z) ∈ Ω×

[
− sup

∂Ω
|φ| , sup

∂Ω
|φ|
]}

and δ = diam(Ω).

Proof. For x ∈ Ω let us define the distance function d(x) = dist(x, ∂Ω). Let Ω0

be the biggest open subset of Ω having the unique nearest point property; that
is, for every x ∈ Ω0 there exists a unique y ∈ ∂Ω such that d(x) = dist(x, y).
Then d ∈ C 2(Ω0) (see [19, Prop. 4.1 p. 794], [14]).

We now define w = ϕ ◦ d+ sup
∂Ω

|φ| over Ω, where

ϕ(t) =
eµδ

µ

(
1− e−µt

)
.

If we prove that u ≤ w in Ω we obtain the desired estimate. By the sake
of contradiction we suppose that the function v = u − w attains a maximum
m > 0 at x0 ∈ Ω.

Let y0 ∈ ∂Ω be such that d(x0) = dist(x0, y0) = t0 and γ the minimizing
geodesic orthogonal to ∂Ω joining x0 to y0. Restricting u and w to γ we see that
v′(t0) = 0. Hence, u′(t0) = w′(t0) = ϕ′(t0) > 0 which implies that ∇u(x0) ̸= 0.
Therefore, Γ0 = {x ∈ Ω;u(x) = u(x0)} is of class C 2 near x0. Then, there exists
a geodesic ball Bϵ(z0) tangent to Γ0 in x0 such that

u > u(x0) in Bϵ(z0) \ {x0}. (19)

We note that

dist(z0, y0) ≤ dist(z0, x0) + dist(x0, y0) = ϵ+ d(x0).
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Hence, for z̃ lying in the intersection of ∂Bϵ(z0) with a minimizing geodesic
joining z0 to y0, we have

d(z̃) ≤ dist(z̃, y0) = dist(z0, y0)− ϵ ≤ d(x0) + ϵ− ϵ = d(x0).

Thus, w(z̃) ≤ w(x0) since ϕ is increasing. Consequently,

u(z̃)− w(x0) ≤ u(z̃)− w(z̃) ≤ u(x0)− w(x0)

and u(z̃) ≤ u(x0). By (19) one has that z̃ = x0, so z0 = γ(t0 + ϵ). This ensures
that x0 ∈ Ω0 because if there exists y1 ≠ y0 satisfying d(x0) = dist(x0, y1), then

dist(z0, y1) < dist(z0, x0) + dist(x0, y1) = dist(z0, x0) + dist(x0, y0) = d(z0),

which is a contradiction.
However, let’s show that this is also impossible. After some computations

we have
Mw = ϕ′(1 + ϕ′2)∆d+ ϕ′′ in Ω0. (20)

For x ∈ Ω0, let y = y(x) in ∂Ω be the nearest point to x and γy(t) the orthogonal
geodesic to ∂Ω from y to x. Let us define

h(t) =
n

n− 1
H (γy(t), φ(y)) .

Note that y is now fixed. From the Serrin condition (18) it follows that

|h(0)| = n

n− 1
|H (y, φ(y))| ≤ H∂Ω(y) = H(0).

Besides,
h′(t) =

n

n− 1

〈
∇xH(γy(t), φ(y)), γ

′
y(t)

〉
.

Taking into account the additional hypothesis (17) we see that

(n− 1)
(
|h′(t)| − (h(t))2

)
≤ Riccγy(t)(γ

′
y(t)).

Then we can apply lemma 7 to the function h(t) to obtain

n |H(γy(t), φ(y))| ≤ (n− 1)HΓt
(γy(t)),

where Γt is parallel to some portion of ∂Ω. Therefore

∆d(x) ≤ −n |H (x, φ(y(x)))| ∀ x ∈ Ω0.

Using this estimate in (20) we obtain

Mw ≤ −n |H (x, φ(y(x)))|ϕ′(1 + ϕ′2) + ϕ′′.

Also
ϕ′′(t) = −µeµ(δ−t) = −µϕ′(t) < −n |H(x, φ(y(x)))|ϕ′(t)
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and ϕ′ ≥ 1, so

Mw ≤ −n |H (x, φ(y(x)))|ϕ′(2 + ϕ′2) < −n |H (x, φ(y(x)))|
(
1 + ϕ′2

)3/2
. (21)

On the other hand, the hypothesis ∂zH ≥ 0 implies that

∓H(x,±w) ≤ ∓H (x, φ(y(x))) ≤ |H (x, φ(y(x)))| . (22)

From this fact and (21) we conclude that

±Q(±w) =Mw ∓ nH (x,±w)
(
1 + ϕ′2

)3/2 ≤ 0.

Therefore

Q(w +m) =M(w +m)− nH(x,w +m)
(
1 + ϕ′2

)3/2 ≤ Qw ≤ Qu.

Moreover u ≤ w + m and u(x0) = w(x0) + m. By the maximum principle
u ≡ w +m in Ω0 which is a contradiction since u < w +m in ∂Ω. This proves
that u ≤ w in Ω.

Similarly we prove that u ≥ −w in Ω.

Remark 9. Instead of condition (17), the proof shows that it is suffice to
assume that

Riccx ≥ n ∥∇xH(x, φ(y))∥ − n2

n− 1
(H(x, φ(y)))

2 ∀ x ∈ Ω0,

where Ω0 is the biggest open subset of Ω having the unique nearest point prop-
erty, and y ∈ ∂Ω is the nearest point to x.

2.2 A priori boundary gradient estimates
In this section we use the classical idea to find upper and a lower barriers

for u on ∂Ω to get a control for ∇u along ∂Ω.

Theorem 10. Let Ω ∈ M be a bounded domain with ∂Ω of class C 2 and
φ ∈ C 2(Ω). Let H ∈ C 1

(
Ω× R

)
satisfying ∂zH ≥ 0,

Riccx ≥ n sup
z∈R

∥∇xH(x, z)∥ − n2

n− 1
inf
z∈R

(H(x, z))
2 ∀ x ∈ Ω, (23)

and
(n− 1)H∂Ω(y) ≥ n |H(y, φ(y))| ∀ y ∈ ∂Ω. (24)

If u ∈ C 2(Ω) ∩ C 1(Ω) is a solution of (P), then

sup
∂Ω

∥∇u∥ ≤ ∥φ∥1 + eC(1+∥H∥1+∥φ∥2)(1+∥φ∥1)
3
(∥u∥0+∥φ∥0) (25)

for some C = C(n,Ω).

Proof. Again, for x ∈ Ω, we set d(x) = dist(x, ∂Ω). Let τ > 0 be such that d is
of class C 2 over the set of points in Ω for which d(x) ≤ τ . Let ψ ∈ C 2([0, τ ]) be
a non-negative function satisfying
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P1. ψ′(t) ≥ 1, P2. ψ′′(t) ≤ 0, P3. tψ′(t) ≤ 1.

For a < τ to be fixed latter on we consider the set

Ωa = {x ∈M ; d(x) < a} .

We now define w± = ±ψ ◦ d + φ. Firstly, let’s estimate ±Mw± in Ωa. A
straightforward computation yields

±Mw± =ψ′W 2
±∆d+ ψ′′W 2

± − ψ′′⟨∇d,±ψ′∇d+∇φ⟩2

− ψ′ ∇2 d(∇φ,∇φ)∓∇2 φ(±ψ′∇d+∇φ,±ψ′∇d+∇φ),
(26)

where
W± =

√
1 + ∥∇w±∥2 =

√
1 + ∥±ψ′∇d+∇φ∥2 .

Since ψ′′ < 0 and ⟨∇d,±ψ′∇d+∇φ⟩2 ≤ ∥±ψ′∇d+∇φ∥2, then

ψ′′W 2
± − ψ′′⟨∇d,±ψ′∇d+∇φ⟩2 ≤ ψ′′. (27)

Once ∇2 d(x) is a continuous bilinear form and ψ′ ≥ 1 we have

ψ′ ∣∣∇2 d(∇φ,∇φ)
∣∣ ≤ ψ′2 ∥d∥2 ∥φ∥

2
1 . (28)

Note also that

∥±ψ′∇d+∇φ∥2 =
(
ψ′2 + 2ψ′⟨±∇d,∇φ⟩+ ∥∇φ∥2

)
≤ (1 + ∥φ∥1)

2
ψ′2, (29)

hence ∣∣∇2 φ(±ψ′∇d+∇φ,±ψ′∇d+∇φ)
∣∣ ≤ ∥φ∥2 (1 + ∥φ∥1)

2
ψ′2. (30)

Substituting (27), (28), (30) in (26) it follows

±Mw± ≤ ψ′W 2
±∆d+ ψ′′ + cψ′2, (31)

where
c = ∥d∥2 ∥φ∥

2
1 + ∥φ∥2 (1 + ∥φ∥1)

2
. (32)

Observe now that

±Qw± = ±Mw± ∓ nH(x,w±)W 3
±.

Moreover

∓H(x,w±(x)) = ∓H(x,±ψ(d(x)) + φ(x)) ≤ ∓H(x, φ(x))

since we are assuming that ∂zH ≥ 0, so

±Qw± ≤ ±Mw± ∓ nH(x, φ(x))W 3
± ≤ ±Mw± + n |H(x, φ(x))|W 3

±.
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Using the estimate in (31) we obtain

±Qw± ≤ ψ′W 2
±∆d+ ψ′′ + cψ′2 + n |H(x, φ(x))|W 3

±. (33)

Let now y ∈ ∂Ω be fixed and γy(t) = expy(tNy) for 0 ≤ t ≤ a, where N is the
inner normal field to ∂Ω. Applying again lemma 7 to h(t) = n

n−1H(γy(t), φ(y)),
we see that H′(t) ≥ 0, for 0 ≤ t ≤ τ . Then, HΓt(γy(t)) ≥ H∂Ω(y) for 0 ≤ t ≤ a,
where Γt is parallel to ∂Ω. Therefore,

∆d(x) ≤ ∆d(y) ≤ −n |H(y, φ(y))| ∀ x ∈ Ωa, (34)

where we denote by y = y(x) ∈ ∂Ω the nearest point to x. Substituting (34) in
(33) we obtain

±Qw± ≤nψ′W 2
±(|H(x, φ(x))| − |H(y, φ(y))|)

+ n |H(x, φ(x))|W 2
± (W± − ψ′) + ψ′′ + cψ′2.

(35)

It follows directly from (29) that

W 2
± ≤ 1 + (1 + ∥φ∥1)

2
ψ′2 ≤ 2 (1 + ∥φ∥1)

2
ψ′2. (36)

In addition
|H(x, φ(x))| − |H(y, φ(y))| ≤ h1(1 + ∥φ∥1)d(x),

where
h1 = sup

Ω×
[
− sup

Ω
|φ|,sup

Ω
|φ|

] ∥∇M×RH(x, z)∥ .

Then,

nψ′W 2
±(|H(x, φ(x))| − |H(y, φ(y))|) ≤ 2nh1 (1 + ∥φ∥1)

3
d(x)(ψ′(d(x)))3.

Using the assumption P3 it follows

nψ′W 2
±(|H(x, φ(x))| − |H(y, φ(y))|) ≤ 2nh1 (1 + ∥φ∥1)

3
ψ′2. (37)

On the other hand,

W± − ψ′ ≤ 1 + ∥±ψ′∇d+∇φ∥ − ψ′ ≤ 1 + ∥φ∥1 . (38)

From (36) and (38) we obtain

n |H(x, φ(x))| (W± − ψ′)W 2
± ≤ 2nh0 (1 + ∥φ∥1)

3
ψ′2, (39)

where
h0 = sup

Ω×
[
− sup

Ω
|φ|,sup

Ω
|φ|

] |H(x, z)| .

Using (37) and (39) in (35) we get

±Qw± ≤
(
c+ 2n ∥H∥1 (1 + ∥φ∥1)

3
)
ψ′2 + ψ′′,

10



where we are using the notation ∥H∥1 = h0 + h1.
Remembering the expression for c given in (32) and making some algebraic

computation we infer that

c+ 2n ∥H∥1 (1 + ∥φ∥1)
3
< C (1 + ∥φ∥2 + ∥H∥1) (1 + ∥φ∥1)

3
,

where
C = 2n (1 + ∥d∥2 + 1/τ) . (40)

Choosing
ν = C (1 + ∥H∥1 + ∥φ∥2) (1 + ∥φ∥1)

3 (41)

we define ψ by
ψ(t) =

1

ν
log(1 + kt).

So,
ψ′(t) =

k

ν(1 + kt)
(42)

and
ψ′′(t) = − k2

ν(1 + kt)2
, (43)

hence
±Qw± < νψ′2 + ψ′′ = 0, in Ωa.

Besides
tψ′(t) =

kt

ν(1 + kt)
≤ 1

ν
< 1,

which is property P3. From (43) we see that property P2 is also satisfied. This
implies that ψ′(t) > ψ′(a) for all t ∈ [0, a] as well, thus property P1 is ensured
provided that

ψ′(a) =
k

ν(1 + ka)
= 1. (44)

Furthermore, if we choose

ψ(a) =
1

ν
log(1 + ka) = ∥u∥0 + ∥φ∥0 , (45)

we would have

±w±(x) = ψ(a)± φ(x) = ∥u∥0 + ∥φ∥0 ± φ(x) ≥ ±u(x) ∀ x ∈ ∂Ωa \ ∂Ω.

By combining (44) and (45) we see that

k = νeν(∥u∥0+∥φ∥0) (46)

and, therefore,

a =
eν(∥u∥0+∥φ∥0) − 1

νeν(∥u∥0+∥φ∥0)
.

11



Note also that a < 1
ν < τ as required.

Finally, if x ∈ ∂Ω, then w±(x) = ±ψ(0) + φ(x) = u(x). By the maximum
principle we can conclude that w− ≤ u ≤ w+ in Ωa, thus

−ψ ◦ d ≤ u− φ ≤ ψ ◦ d in Ωa.

Recall that
−ψ ◦ d = u− φ = ψ ◦ d = 0 in ∂Ω.

Consequently, for y ∈ ∂Ω and 0 ≤ t ≤ a, we have that

−ψ(t) + ψ(0) ≤ (u− φ)(γy(t))− (u− φ)(γy(0)) ≤ ψ(t)− ψ(0).

Dividing by t > 0 and passing to the limit as t goes to zero we infer that

|⟨∇u(y), N⟩| ≤ |⟨∇φ(y), N⟩|+ ψ′(0). (47)

As u = φ on ∂Ω, using (47) we derive

∥∇u(y)∥ ≤∥∇φ(y)∥+ ψ′(0).

which yields the desired estimate.

Remark 11. It is suffice to assume in the statement of theorem 10 that

Riccx ≥ n ∥∇xH(x, φ(y))∥ − n2

n− 1
(H(x, φ(y)))

2 ∀ x ∈ Ω0,

where Ω0 is the biggest open subset of Ω having the unique nearest point prop-
erty, and y ∈ ∂Ω is the nearest point to x.

Now, we observe that the combination of assumption (23) with the Serrin
condition (24) ensures that the mean curvature of the parallel hypersurfaces Γt

in Ω increases along the inner normal geodesics.
On the other hand, this behavior of HΓt is guaranteed indeed by the geo-

metric condition

Riccγy(t)(γ
′
y(t)) ≥ −(n− 1) (H∂Ω(y))

2 ∀ y ∈ ∂Ω. (48)

This can be seen applying lemma 7 to the constant function h(t) = H∂Ω(y) (see
also [9, Th. 1 p. 232]).

Therefore, if (48) holds we do not need the assumption (23) in the statement
of theorem 10. So, we are able to establish the following result for later reference.
Theorem 12. Suppose that for Riccx ≥ −(n − 1)c2 for each x ∈ M , where
c > 0. Let Ω ∈M be a bounded domain with ∂Ω of class C 2 such that H∂Ω ≥ c
and φ ∈ C 2(Ω). Let H ∈ C 1

(
Ω× R

)
satisfying ∂zH ≥ 0 and

(n− 1)H∂Ω(y) ≥ n |H(y, φ(y))| ∀ y ∈ ∂Ω. (49)

If u ∈ C 2(Ω) ∩ C 1(Ω) is a solution of (P), then

sup
∂Ω

∥∇u∥ ≤ ∥φ∥1 + eC(1+∥H∥1+∥φ∥2)(1+∥φ∥1)
3
(∥u∥0+∥φ∥0) (50)

for some C = C(n,Ω).
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Proof. By the previous discussion we see that

∆d(x) ≤ ∆d(y) ∀ x ∈ Ωa,

where y ∈ ∂Ω is the nearest point to x. The rest of the proof is the same as
before.

Now we consider a mean convex domain Ω in the hyperbolic space Hn and
let y ∈ ∂Ω. If λi(t) represents the ith principal curvature of Γt in γy(t), then
(see [1, p. 17])

λi(t) =
− tanh t+ λi(0)

1− λi(0) tanh t
, (51)

hence

λ′i(t) =
sech2(t)

(
(λi(0))

2 − 1
)

(1− λi(0) tanh t)
2 . (52)

Thus, HΓt
(γy(t)) decrease if |λi| < 1 for all 1 ≤ i ≤ n. In any case we can

choose τ small enough such that∣∣H∂Ω(y)−Hd(x)(x)
∣∣ ≤ κd(x)

for some κ > 0 depending on Ω. Using this fact we are able to deduce the
following result.

Theorem 13. Let Ω ∈ Hn be a bounded domain with ∂Ω of class C 2 and
φ ∈ C 2(Ω). Let H ∈ C 1

(
Ω× R

)
satisfying ∂zH ≥ 0, and

(n− 1)H∂Ω(y) ≥ n |H(y, φ(y))| ∀ y ∈ ∂Ω.

If u ∈ C 2(Ω) ∩ C 1(Ω) is a solution of (P), then

sup
∂Ω

∥∇u∥ ≤ ∥φ∥1 + eC(1+∥H∥1+∥φ∥2)(1+∥φ∥1)
3
(∥u∥0+∥φ∥0) (53)

for some C = C(n,Ω).

Proof. The proof follows the steps of the proof of theorem 10 with the difference
that we need to replace relation (34) by

∆d(x) ≤ ∆d(y) + (n− 1)κd(x) ≤ −n |H(y, φ(y))|+ nκd(x).

In this case C = 2n (1 + κ+ ∥d∥2 + 1/τ) instead of (40).
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2.3 A priori global gradient estimate
In order to obtain a priori global gradient estimate we use techniques in-

troduced by Caffarelli-Nirenberg-Spruck [8, p. 51] in the Euclidean context.
See other applications in the works of Nelli-Sa Earp [15, Lemma 3.1 p. 4] and
Barbosa-Sa Earp [4, Lemma 5.2 p. 62] in the hyperbolic setting.

Theorem 14. Let Ω ∈ M be a bounded domain with ∂Ω of class C 2. Let u ∈

C 3(Ω) ∩ C 1(Ω) be a solution of (1), where H ∈ C 1

(
Ω×

[
− sup

Ω

|u| , sup
Ω

|u|

])
satisfies ∂zH ≥ 0. Then

sup
Ω

∥∇u(x)∥ ≤
(√

3 + sup
∂Ω

∥∇u∥
)
exp

(
2 sup

Ω
|u| (1 + 8n (∥H∥1 +R))

)
,

where R ≥ 0 is such that Riccx ≥ −R for each x ∈ Ω.

Proof. Let w(x) = ∥∇u(x)∥ eAu(x) where A ≥ 1. Suppose w attains a maximum
at x0 ∈ Ω. If x0 ∈ ∂Ω, then

w(x) ≤ w(x0) = ∥∇u(x0)∥ eAu(x0).

So,
sup
Ω

∥∇u(x)∥ ≤ sup
∂Ω

∥∇u∥ e
2A sup

Ω
|u|
. (54)

Suppose now that x0 ∈ Ω and that ∇u(x0) ̸= 0. Let us define normal coordi-
nates at x0 in such a way that ∂

∂x1

∣∣
x0

= ∇u(x0)
∥∇u(x0)∥ . Then,

∂ku(x0) =
〈

∂
∂xk

∣∣
x0
,∇u(x0)

〉
= ∥∇u(x0)∥ δk1. (55)

Denoting by σ the metric in this coordinates system we recall that

σij(x0) = σij(x0) = δij , (56)

∂kσij(x0) = ∂kσ
ij(x0) = 0, (57)

Γk
ij(x0) = 0. (58)

Also ∇u(x) =
∑
i

ui ∂
∂xi

, where

ui =

n∑
j=1

σij∂ju. (59)

Thus,

∥∇u(x)∥2 =

n∑
i,j=1

σij∂iu∂ju. (60)
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Observe now that the function w̃(x) = lnw(x) = Au(x) + ln ∥∇u(x)∥ also
attains a maximum at x0. Therefore, for each 0 ≤ k ≤ n, we have the relations
∂kw̃(x0) = 0 and ∂kkw̃(x0) ≤ 0. Thus

∂kw̃(x) = A∂ku(x) +
∂k

(
∥∇u∥2

)
(x)

2 ∥∇u(x)∥2
,

∂kkw̃(x) = A∂kku(x) +
1

2
∂k

(
∥∇u∥−2

)
(x)∂k

(
∥∇u∥2

)
(x) +

∂kk

(
∥∇u∥2

)
(x)

2 ∥∇u(x)∥2
.

Since

∂k

(
∥∇u∥−2

)
= ∂k

(
∥∇u∥2

)−1

= −
(
∥∇u∥2

)−2

∂k

(
∥∇u∥2

)
,

then

∂kkw̃(x) = A∂kku(x)−

(
∂k

(
∥∇u∥2

)
(x)
)2

2 ∥∇u(x)∥4
+
∂kk

(
∥∇u∥2

)
(x)

2 ∥∇u(x)∥2
.

Hence,

A∂ku(x0) +
∂k

(
∥∇u∥2

)
(x0)

2 ∥∇u(x0)∥2
= 0, (61)

and

A∂kku(x0)−

(
∂k

(
∥∇u∥2

)
(x0)

)2
2 ∥∇u(x0)∥4

+
∂kk

(
∥∇u∥2

)
(x0)

2 ∥∇u(x0)∥2
≤ 0. (62)

From (60) it follows

∂k

(
∥∇u∥2

)
=

n∑
i,j=1

((
∂kσ

ij
)
∂iu∂ju+ 2σij∂kiu∂ju

)
(63)

From (55), (56) and (57) we obtain

∂k

(
∥∇u∥2

)
(x0) = 2

n∑
i,j=1

δij∂kiu(∥∇u(x0)∥ δj1),

so
∂k

(
∥∇u∥2

)
(x0) = 2 ∥∇u(x0)∥ ∂1ku(x0). (64)

Substituting (55) and (64) in (61) we derive

A ∥∇u(x0)∥ δk1 +
2 ∥∇u(x0)∥ ∂1ku(x0)

2 ∥∇u(x0)∥2
= 0,
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thus,
∂1ku(x0) = −A ∥∇u(x0)∥2 δk1. (65)

Substituting also (65) in (64) we obtain

∂k

(
∥∇u∥2

)
(x0) = −2A ∥∇u(x0)∥3 δk1. (66)

On the other hand, taking into account the expression (63) it follows

∂kk

(
∥∇u∥2

)
(x) =

n∑
i,j=1

((
∂kkσ

ij
)
∂iu∂ju+

(
∂kσ

ij
)
∂k (∂iu∂ju)

+2
((
∂kσ

ij
)
∂kiu∂ju+ σij∂kkiu∂ju+ σij∂kiu∂kju

))
.

From (55), (56) and (57) we have

∂kk

(
∥∇u∥2

)
(x0) = ∥∇u(x0)∥2

(
∂kkσ

11
)
+ 2 ∥∇u(x0)∥ ∂kk1u

+2

n∑
i=1

(∂kiu(x0))
2.

(67)

Differentiating two times with respect to xk the equation σ ◦ σ−1 = Id and
evaluating in x0 we see that ∂kkσ−1(x0) = −∂kkσ(x0). Besides,

∂kkσ11 = ∂
∂xk

∂
∂xk

〈
∂

∂x1
, ∂
∂x1

〉
= 2 ∂

∂xk

〈
∇ ∂

∂xk

∂
∂x1

, ∂
∂x1

〉
=2

(〈
∇ ∂

∂xk

∇ ∂
∂xk

∂
∂x1

, ∂
∂x1

〉
+

∥∥∥∥∇ ∂
∂xk

∂
∂x1

∥∥∥∥2
)
.

Recalling (58) we then have

∂kkσ
11(x0) = −∂kkσ11(x0) = −2

〈
∇ ∂

∂xk

∇ ∂
∂xk

∂
∂x1

, ∂
∂x1

〉
. (68)

Substituting (68) in (67) we can conclude that

∂kk

(
∥∇u∥2

)
(x0) = 2

(
− ∥∇u(x0)∥2

〈
∇ ∂

∂xk

∇ ∂
∂xk

∂
∂x1

, ∂
∂x1

〉
+ ∥∇u(x0)∥ ∂kk1u(x0) +

n∑
i=1

(∂kiu(x0))
2
)
.

(69)

Using expressions (66) and (69) in (62) we verify that

A∂kku(x0)− 2A2 ∥∇u(x0)∥2 δk1 +
∂kk1u(x0)

∥∇u(x0)∥
−
〈
∇ ∂

∂xk

∇ ∂
∂xk

∂
∂x1

, ∂
∂x1

〉

+

n∑
i=1

(∂kiu(x0))
2

∥∇u(x0)∥2
≤ 0.
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From (65) we have for k = 1

−A2 ∥∇u(x0)∥2 − 2A2 ∥∇u(x0)∥2 +
∂111u(x0)

∥∇u(x0)∥
−
〈
∇ ∂

∂x1

∇ ∂
∂x1

∂
∂x1

, ∂
∂x1

〉

+

n∑
i=1

(
−A ∥∇u(x0)∥2

)2
δi1

∥∇u(x0)∥2
≤ 0,

then,

∂111u(x0) ≤ 2A2 ∥∇u(x0)∥3 + ∥∇u(x0)∥
〈
∇ ∂

∂x1

∇ ∂
∂x1

∂
∂x1

, ∂
∂x1

〉
. (70)

If k > 1, then

A∂kku(x0) +
∂kk1u(x0)

∥∇u(x0)∥
−
〈
∇ ∂

∂xk

∇ ∂
∂xk

∂
∂x1

, ∂
∂x1

〉
≤ −

n∑
i=1

(∂kiu(x0))
2

∥∇u(x0)∥2
≤ 0,

so,

∂kk1u(x0) ≤ −A∂kku(x0) ∥∇u(x0)∥+ ∥∇u(x0)∥
⟨
∇ ∂

∂xk

∇ ∂
∂xk

∂
∂x1

, ∂
∂x1

⟩
. (71)

In the sequel we evaluate at x0 the mean equation (2). First we recall that

∇2
iju(x) = ∇2 u(x)

(
∂

∂xi
, ∂
∂xj

)
= ∂iju−

n∑
k=1

Γk
ij∂ku, (72)

∆u(x) = tr
(
X −→∇X ∇u

)
=
∑
ij

σij∇2
iju(x). (73)

From (59), (72) and (73) we have

ui(x0) = ∂iu(x0) = ∥∇u(x0)∥ δi1, (74)

∇2
iju(x0) = ∂iju(x0), (75)

∆u(x0) =

n∑
i=1

∂iiu(x0). (76)
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Substituting these expressions in (2), using (65), we see that

nH0W
3
0 =W 2

0∆u(x0)−
n∑

i,j=1

(∥∇u(x0)∥ δi1) (∥∇u(x0)∥ δj1) ∂iju

=W 2
0∆u(x0)− ∥∇u(x0)∥2 ∂11u(x0)

=W 2
0

∑
i>1

∂iiu(x0) + ∂11u(x0)

=W 2
0

∑
i>1

∂iiu(x0)−A ∥∇u(x0)∥2 ,

where H0 = H(x0, u(x0)) and W0 =

√
1 + ∥∇u(x0)∥2 . Therefore,

∑
i>1

∂iiu(x0) = nH0W0 +
A ∥∇u(x0)∥2

W 2
0

. (77)

Finally let us differentiate (2) with respect to x1. We have

∂1
(
W 2
)
∆u+W 2(∂1∆u)− 2

n∑
i,j=1

ui
(
∂1u

j
)
∇2

iju−
n∑

i,j=1

uiuj∂1(∇2
iju)

= n(∂1H + ∂zH∂1u)W
3 + nH∂1

(
W 3
)
.

(78)

Let us calculate the derivative involved in this equation and evaluate at x0.
Since (66) holds we deduce

∂1
(
W 2
)
(x0) = ∂1

(
∥∇u∥2

)
(x0) = −2A ∥∇u(x0)∥3 , (79)

∂1
(
W 3
)
(x0) =

3

2
W0∂1

(
W 2
)
(x0) = −3AW0 ∥∇u(x0)∥3 . (80)

Using (59), we have

∂1u
i = ∂1

n∑
j=1

σij∂ju =

n∑
j=1

((
∂1σ

ij
)
∂ju+ σij∂1ju

)
.

Using now (65) we obtain

∂1u
i(x0) = ∂1iu(x0) = −A ∥∇u(x0)∥2 δi1. (81)

On the other hand, from (72) we deduce

∂1(∇2
iju)(x) =∂1iju(x)−

〈
∇ ∂

∂x1

∇u,∇ ∂
∂xi

∂
∂xj

〉
−
〈
∇u(x),∇ ∂

∂x1

∇ ∂
∂xi

∂
∂xj

〉
.
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Hence,

∂1(∇2
iju)(x0) = ∂1iju(x0)−

〈
∇ ∂

∂x1

∇ ∂
∂xi

∂
∂xj

,∇u(x0)
〉
. (82)

Finally, it follows from (73),

∂1∆u(x) =
∑
ij

((
∂1σ

ij
)
∇2

iju(x) + σij∂1
(
∇2

iju(x)
))
.

From (82) we also have

∂1(∆u)(x0) =

n∑
i=1

(
∂1iiu(x0)−

〈
∇ ∂

∂x1

∇ ∂
∂xi

∂
∂xi

,∇u(x0)
〉)

. (83)

Substituting (74), (75), (79), (80), (81), (82) and (83) in (78) we obtain

n∂1H(x0)W
3
0 + n∂zH(x0) ∥∇u(x0)∥W 3

0 − 3nAH0W0 ∥∇u(x0)∥3

=− 2A ∥∇u(x0)∥3 ∆u(x0) +W 2
0

n∑
i=1

(
∂1iiu(x0)−

〈
∇ ∂

∂x1

∇ ∂
∂xi

∂
∂xi

,∇u(x0)
〉)

+ 2A ∥∇u(x0)∥3 ∂11u(x0)

− ∥∇u(x0)∥2
(
∂111u(x0)−

〈
∇ ∂

∂x1

∇ ∂
∂x1

∂
∂x1

,∇u(x0)
〉)

=− 2A ∥∇u(x0)∥3 (∆u(x0)− ∂11u(x0))

+W 2
0

∑
i>1

(
∂1iiu(x0)−

〈
∇ ∂

∂x1

∇ ∂
∂xi

∂
∂xi

,∇u(x0)
〉)

+W 2
0

(
∂111u(x0)− ∥∇u(x0)∥

〈
∇ ∂

∂x1

∇ ∂
∂x1

∂
∂x1

, ∂
∂x1

〉)
− ∥∇u(x0)∥2

(
∂111u(x0)−

〈
∇ ∂

∂x1

∇ ∂
∂x1

∂
∂x1

,∇u(x0)
〉)

=− 2A ∥∇u(x0)∥3
∑
i>1

∂iiu(x0)

+W 2
0

∑
i>1

(
∂1iiu(x0)−

〈
∇ ∂

∂x1

∇ ∂
∂xi

∂
∂xi

,∇u(x0)
〉)

+ ∂111u(x0)− ∥∇u(x0)∥
〈
∇ ∂

∂x1

∇ ∂
∂x1

∂
∂x1

, ∂
∂x1

〉
.
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Using (70), (71), (77) we obtain

n∂1H(x0)W
3
0 + n∂zH(x0) ∥∇u(x0)∥W 3

0 − 3nAH0W0 ∥∇u(x0)∥3

≤− 2A ∥∇u(x0)∥3
∑
i>1

∂iiu(x0)

+W 2
0

∑
i>1

(
−A∂iiu(x0) ∥∇u(x0)∥+ ∥∇u(x0)∥

〈
∇ ∂

∂xi

∇ ∂
∂xi

∂
∂x1

, ∂
∂x1

〉
−∥∇u(x0)∥

〈
∇ ∂

∂x1

∇ ∂
∂xi

∂
∂xi

, ∂
∂x1

〉)
+ 2A2 ∥∇u(x0)∥3 + ∥∇u(x0)∥

〈
∇ ∂

∂x1

∇ ∂
∂x1

∂
∂x1

, ∂
∂x1

〉
−∥∇u(x0)∥

〈
∇ ∂

∂x1

∇ ∂
∂x1

∂
∂x1

, ∂
∂x1

〉

=− 2A ∥∇u(x0)∥3
∑
i>1

∂iiu(x0)

−A ∥∇u(x0)∥W 2
0

∑
i>1

∂iiu(x0) + 2A2 ∥∇u(x0)∥3

+ ∥∇u(x0)∥W 2
0

∑
i>1

(〈
∇ ∂

∂xi

∇ ∂
∂x1

∂
∂xi

, ∂
∂x1

〉
−
〈
∇ ∂

∂x1

∇ ∂
∂xi

∂
∂xi

, ∂
∂x1

〉)

=
(
−2A ∥∇u(x0)∥3 −A ∥∇u(x0)∥W 2

0

)∑
i>1

∂iiu(x0)

+ 2A2 ∥∇u(x0)∥3 + ∥∇u(x0)∥W 2
0

∑
i>1

〈
R
(

∂
∂xi

, ∂
∂x1

)
∂

∂xi
, ∂
∂x1

〉

≤−A ∥∇u(x0)∥
(
1 + 3 ∥∇u(x0)∥2

)(
nH0W0 +

A ∥∇u(x0)∥2

W 2
0

)
+ 2A2 ∥∇u(x0)∥3 − ∥∇u(x0)∥W 2

0 Riccx0

(
∂

∂x1

)

=−A ∥∇u(x0)∥nH0W0

(
1 + 3 ∥∇u(x0)∥2

)
− A2 ∥∇u(x0)∥3

W 2
0

(
1 + 3 ∥∇u(x0)∥2

)
+ 2A2 ∥∇u(x0)∥3 − ∥∇u(x0)∥W 2

0 Riccx0

(
∂

∂x1

)
.
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Since ∂zH ≥ 0 we have

n∂1HW
3
0

≤AnH0W0 ∥∇u(x0)∥
(
3 ∥∇u(x0)∥2 − 1− 3 ∥∇u(x0)∥2

)
+
A2 ∥∇u(x0)∥3

W 2
0

(
2W 2

0 − 1− 3 ∥∇u(x0)∥2
)
− ∥∇u(x0)∥W 2

0 Riccx0

(
∂

∂x1

)

=−AnH0W0 ∥∇u(x0)∥+
A2 ∥∇u(x0)∥3

W 2
0

(
1− ∥∇u(x0)∥2

)
− ∥∇u(x0)∥W 2

0 Riccx0

(
∂

∂x1

)
.

Let

h0 = sup

Ω×
[
− sup

Ω
|u|,sup

Ω
|u|

] |H|

h1 = sup

Ω×
[
− sup

Ω
|u|,sup

Ω
|u|

] (∥∇xH∥+ ∂zH) .

and R ≥ 0 such that −Ricc ≤ R in Ω. Then

A2 ∥∇u(x0)∥3

W 2
0

(
∥∇u(x0)∥2 − 1

)
≤ Anh0W0 ∥∇u(x0)∥+ ∥∇u(x0)∥W 2

0R+ nh1W
3
0 .

Dividing by W 3
0 it follows

A2 ∥∇u(x0)∥3

W 5
0

(
∥∇u(x0)∥2 − 1

)
≤ Anh0

∥∇u(x0)∥
W 2

0

+ nh1 +
∥∇u(x0)∥

W0
R,

≤ Anh0 + nh1 +R, (*)
≤ An (h0 + h1 +R) (**)

where for (∗) we used the fact that W 2
0 > W0 > ∥∇u(x0)∥, and for (∗∗) that

A,n > 1. Denoting by H1 = h0 + h1 and dividing by A2 we obtain

∥∇u(x0)∥3

W 5
0

(
∥∇u(x0)∥2 − 1

)
<
n

A
(H1 +R) .

We can suppose that ∥∇u(x0)∥ > 1. Since

W 3
0 =

(
1 + ∥∇u(x0)∥2

)3/2
<
(
2 ∥∇u(x0)∥2

)3/2
< 4 ∥∇u(x0)∥3 ,
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we see that
∥∇u∥3

W 3
0

>
1

4
.

Then,

1

4

∥∇u(x0)∥2 − 1

W 2
0

<
∥∇u(x0)∥3

W 3
0

∥∇u(x0)∥2 − 1

W 2
0

<
n

A
(H1 +R) ,

that is,
∥∇u(x0)∥2 − 1

∥∇u(x0)∥2 + 1
<

4n

A
(H1 +R) ,

Choosing A > 8n (H1 +R) it follows

∥∇u(x0)∥2 − 1

∥∇u(x0)∥2 + 1
<

1

2
,

so,
∥∇u(x0)∥ <

√
3 .

As a consequence,

w(x) ≤ w(x0) = ∥∇u(x0)∥ eAu(x0) ≤
√
3 eAu(x0),

thus
sup
Ω

∥∇u(x)∥ ≤
√
3 e

2A sup
Ω

|u|
. (84)

Joining (54) and (84) we obtain

sup
Ω

∥∇u(x)∥ ≤
√
3 e

2A sup
Ω

|u|
+ sup

∂Ω
∥∇u∥ e

2A sup
Ω

|u|
,

Choosing
A = 1 + 8n (∥H∥1 +R) .

we obtain the desire estimate.

Remark 15. A related global gradient estimate was obtained independently in
[7, Prop. 2.2 p. 5].

3 Proof of the theorems

Proof of the main theorem (theorem 4). Let Ω ⊂ M with ∂Ω of class C 2,α for
some α ∈ (0, 1) and φ ∈ C 2,α(Ω). Elliptic theory assures that the solvability of
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problem (P) strongly depends on C 1 a priori estimates for the family of related
problems 

div

(
∇u
W

)
= τnH(x, u) in Ω,

u = τφ in ∂Ω,
(Pτ )

not depending on τ or u.
Let u be a solution of problem (Pτ ) for arbitrary τ ∈ [0, 1]. Let w =

ϕ ◦ d+ sup
∂Ω

|φ| as in the proof of theorem 8. Then

u ≤ sup
∂Ω

|τφ| ≤ sup
∂Ω

|φ| = w on ∂Ω.

As before, let Ω0 be the biggest open subset of Ω having the unique nearest
point property. Let x ∈ Ω0 and y = y(x) ∈ ∂Ω the nearest point to x. Once
(22) holds and τ ∈ [0, 1] we have that

∓nτH(x,±w) ≤ nτ |H(x, φ(y))| ≤ n |H(x, φ(y))| .

From (21) we have

±Qτ (±w) = Mw ∓ nτH(x,±w)(1 + ϕ′2)3/2 ≤ 0.

Proceeding as in the proof of theorem 8, we get that w and −w are supersolution
and subsolution in Ω0, respectively, for the problem (Pτ ). This provides a priori
height estimate for any solution of the problems (Pτ ) independently of τ .

On account of assumptions (8) and (9), we can apply theorem 10 to obtain
a priori boundary gradient estimate for the solutions of the problems (Pτ ).

Elliptic regularity guarantees that any solution u of the related problems
(Pτ ) belongs to C 3(Ω). We conclude therefore, by applying theorem 14, the
desired a priori global gradient estimate independently of τ and u.

Classical elliptic theory (see [12, Th. 11.4 p. 281]), ensures the existence
of a solution u ∈ C 2,α(Ω) for our problem (P). Uniqueness follows from the
maximum principle.

Proof of theorem 5. We first recall that in Hn ×R there exists an entire vertical
graph of constant mean curvature n−1

n . Explicit formulas were given by Bérard-
Sa Earp [5, Th. 2.1 p. 22]. The a priori height estimate for the solutions of the
related problems (Pτ ) follows directly from the convex hull lemma [5, Prop. 3.1
p. 41].

Now, the a priori boundary gradient estimate and the a priori global gradient
estimate follows from theorem 13 and theorem 14, respectively. The rest of the
proof is the same as before.

Proof of theorem 6. Under the hypothesis on M and Ω, Galvez-Lozano [11,
Th. 6 p. 12] proved the existence of a vertical graph over Ω with constant
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mean curvature n−1
n and zero boundary data. As a matter of fact, such a graph

constitutes a barrier for the solutions of the related problems (Pτ ).
On the other hand, the strong Serrin condition trivially holds since for

y ∈ ∂Ω we have

(n− 1)H∂Ω(y) > (n− 1)c > n− 1 ≥ n sup
Ω×R

|H(x, z)| .

Also,
Riccx ≥ −(n− 1)c2 > −(n− 1)H∂Ω(y).

Thus, the boundary gradient estimate follows from our theorem 12. The rest of
the proof is the same as before.

References
[1] M. Alexandrino. Hipersuperfícies de Nível de uma função Transnormal.

Master’s thesis, PUC-Rio, september, 1997.

[2] Y. N. Alvarez. Critérios de solubilidade de tipo Serrin para problemas de
Dirichlet para equações de curvatura média pré-determinada em variedades.
PhD thesis, PUC-Rio, december, 2018.

[3] Y. N. Alvarez and R. Sa Earp. Sharp solvability criteria for Dirichlet prob-
lems of mean curvature type in Riemannian manifolds: non-existence re-
sults. arXiv e-prints, page arXiv:1902.08662, Feb 2019.

[4] J. L. M. Barbosa and R. Sa Earp. Prescribed mean curvature hypersurfaces
in Hn+1 with Convex Planar Boundary, II. Séminaire de théorie spectrale
et géometrie, Grenoble, 16:43–79, 1998.

[5] P. Bérard and R. Sa Earp. Examples of H-hypersurfaces in Hn × R and
geometric applications. Matemática Contemporânea, 34(2008):19–51, 2008.

[6] S. Bernstein. Sur les surfaces définies au moyen de leur courbure moyenne
ou totale. Annales scientifiques de l’École Normale Supérieure, 27:233–256,
1910.

[7] L. P. Bonorino, J.-B. Casteras, P. K. Kruse, J. Ripoll, and M. Telichevesky.
On the asymptotic Dirichlet problem for a class of mean curvature type par-
tial differential equations. arXiv e-prints, page arXiv:1811.09867, November
2018.

[8] L. Caffarelli, L. Nirenberg, and J. Spruck. Nonlinear second order ellip-
tic equations IV: Starshaped compact Weingarten hypersurfaces. Current
topics in partial differential equations, pages 47–70, 01 1986.

[9] M. Dajczer, P. A. Hinojosa, and J. H. de Lira. Killing graphs with pre-
scribed mean curvature. Calculus of Variations and Partial Differential
Equations, 33(2):231–248, Oct 2008.

24



[10] J. Douglas. Solution of the problem of Plateau. Trans., Amer. Math. Soc.,
33:263–321, 1931.

[11] J. A. Gálvez and V. Lozano. Geometric barriers for the existence of hyper-
surfaces with prescribed curvatures in Mn×R. Calculus of Variations and
Partial Differential Equations, 54(2):2407–2419, Oct 2015.

[12] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of
Second Order. Classics in Mathematics. Springer-Verlag, 2001.

[13] H. Jenkins and J. Serrin. The Dirichlet problem for the minimal surface
equation in higher dimensions. Journal für die reine und angewandte Math-
ematik, 229:170–187, 1968.

[14] Y. Li and L. Nirenberg. Regularity of the distance function to the boundary.
Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 29:257–264, 2005.

[15] B. Nelli and R. Sa Earp. Some properties of hypersurfaces of prescribed
mean curvature in Hn+1. Bulletin des Sciences Mathématiques, 120:537–
553, 01 1996.

[16] P. Petersen. Riemannian Geometry. Graduate Texts in Mathematics.
Springer New York, 1998.

[17] T. Radó. The problem of the least area and the problem of Plateau. Math-
ematische Zeitschrift, 32(1):763–796, 1930.

[18] J. Serrin. The Problem of Dirichlet for Quasilinear Elliptic Differential
Equations with Many Independent Variables. Philosophical Transactions of
the Royal Society of London. Series A, Mathematical and Physical Sciences,
264(1153):413–496, 1969.

[19] J. Spruck. Interior gradient estimates and existence theorems for constant
mean curvature graphs in Mn × R. Pure and Applied Mathematics Quar-
terly, 3(3):785–800, 2007.

Yunelsy N. Alvarez
Departamento de Matemática
Pontifícia Universidade Católica do Rio de Janeiro
Rio de Janeiro, 22451-900
Brazil
Email address: ynapolez@gmail.com

Ricardo Sa Earp
Departamento de Matemática
Pontifícia Universidade Católica do Rio de Janeiro
Rio de Janeiro, 22451-900
Brazil
Email address: rsaearp@gmail.com

25


	Introduction
	The a priori estimates
	A priori height estimate
	A priori boundary gradient estimates
	A priori global gradient estimate

	Proof of the theorems

