Existence Serrin type results for the Dirichlet problem for the prescribed mean curvature equation in Riemannian manifolds

Yunelsy N. Alvarez^{*} Ricardo Sa $Earp^{\dagger}$

March 8, 2019

Abstract

Given a complete Riemannian manifold M of dimension n, we study the existence of vertical graphs in $M \times \mathbb{R}$ with prescribed mean curvature H = H(x, z). Precisely, we prove that such a graph exists over a smooth bounded domain Ω in M for arbitrary smooth boundary data, if $\operatorname{Ricc}_x \geq n \sup_{z \in \mathbb{R}} \|\nabla_x H(x, z)\| - \frac{n^2}{n-1} \inf_{z \in \mathbb{R}} (H(x, z))^2$ for each $x \in \Omega$ and $(n-1)\mathcal{H}_{\partial\Omega}(y) \geq n \sup_{z \in \mathbb{R}} |H(y, z)|$ for each $y \in \partial\Omega$. We also establish another existence result in the case where $M = \mathbb{H}^n$ if $\sup_{\Omega \times \mathbb{R}} |H(x, z)| \leq \frac{n-1}{n}$ in the place of the condition involving the Ricci curvature. Finally, we have a related result when M is a Hadamard manifold whose sectional curvature K satisfies $-c^2 \leq K \leq -1$ for some c > 1. We generalize classical results of Serrin and Spruck.

1 Introduction

Let M be a complete Riemannian manifold of dimension $n \ge 2$. Given a smooth bounded domain Ω in M, we ask if for a given smooth function φ and a prescribed smooth function H = H(x, z) non-decreasing in the variable z, there exists a smooth up to the boundary function u satisfying

$$\begin{cases} \operatorname{div}\left(\frac{\nabla u}{W}\right) = nH(x,u) \text{ in } \Omega, \\ u = \varphi \text{ in } \partial\Omega, \end{cases}$$
(P)

^{*}Supported by CNPq of Brazil.

[†]Partially supported by CNPq of Brazil.

²⁰⁰⁰ AMS Subject Classification: 53C42, 49Q05, 35J25, 35J60.

Keywords and phrases: mean curvature equation; Dirichlet problems; Serrin condition; distance function; hyperbolic space; maximum principle; Ricci curvature.

where $W = \sqrt{1 + \|\nabla u(x)\|^2}$ and the quantities involved are calculated with respect to the metric of M. If u satisfies the equation

$$\operatorname{div}\left(\frac{\nabla u}{W}\right) = nH(x, u),\tag{1}$$

then its vertical graph,

$$\operatorname{Gr}(u) = \{(x, u(x)); x \in \Omega\} \subset M \times \mathbb{R},\$$

is an hypersurfaces in $M \times \mathbb{R}$ of mean curvature H(x, u(x)) at each point (x, u(x)).

In a coordinates system (x_1, \ldots, x_n) in M equation (1) can be written in non-divergence form as

$$\mathcal{M}u := \sum_{i,j=1}^{n} \left(W^2 \sigma^{ij} - u^i u^j \right) \nabla_{ij}^2 u = n H(x, u) W^3,$$
(2)

where (σ^{ij}) is the inverse of the metric (σ_{ij}) of M, $u^i = \sum_{j=1}^n \sigma^{ij} \partial_j u$ are the co-

ordinates of ∇u and $\nabla_{ij}^2 u(x) = \nabla^2 u(x) \left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right)$. We also define the operator \mathfrak{Q} by

$$\mathfrak{Q}u = \mathcal{M}u - nH(x, u)W^3.$$

The matrix of the operator \mathcal{M} (and \mathfrak{Q}) is given by $A = W^2 g$, where g is the induce metric on the graph of u. This implies that the eigenvalues of A are positive and depends on x and on ∇u . Hence, \mathcal{M} is locally uniformly elliptic. Furthermore, if Ω is bounded and $u \in \mathscr{C}^1(\overline{\Omega})$, then \mathcal{M} is uniformly elliptic in $\overline{\Omega}$ (see [19] for more details).

We recall that the Dirichlet problem (P) is a classical problem in the intersection between Differential Geometry and Partial Differential Equations. First steps were given by Bernstein [6], Douglas [10] and Radó [17, p. 795] in domains of \mathbb{R}^2 for the minimal case. In 1966 Jenkins-Serrin [13, Th. 1 p. 171] derived related results in higher dimensions.

Later on, Serrin [18] devoted his attention to study Dirichlet problems for a class of more general elliptic equations within which is the prescribed mean curvature equation. Specifically related to our work, he obtained the following result.

Theorem 1 (Serrin [18, Th. p. 484]). Let $\Omega \subset \mathbb{R}^n$ be a bounded domain whose boundary is of class \mathscr{C}^2 . Let $H(x) \in \mathscr{C}^1(\overline{\Omega})$ and suppose that

$$|\nabla H(x)| \le \frac{n}{n-1} (H(x))^2 \ \forall \ x \in \Omega.$$
(3)

Then the Dirichlet problem in Ω for surfaces having prescribed mean curvature H(x) is uniquely solvable for arbitrarily given \mathcal{C}^2 boundary values if, and only if,

$$(n-1)\mathcal{H}_{\partial\Omega}(y) \ge n |H(y)| \quad \forall \ y \in \partial\Omega.$$
(4)

We note that in Serrin condition (4), $\mathcal{H}_{\partial\Omega}(y)$ denotes the inward mean curvature of $\partial\Omega$ at $y \in \partial\Omega$. A direct consequence of theorem 1 is the following sharp result.

Theorem 2 (Serrin sharp solvability criterion [18, p. 416]). Let $\Omega \subset \mathbb{R}^n$ be a bounded domain whose boundary is of class \mathscr{C}^2 . Then the Dirichlet problem for the mean curvature equation has a unique solution for every constant H and arbitrary \mathscr{C}^2 boundary data if, and only if, $(n-1)\mathcal{H}_{\partial\Omega} \geq n|H|$.

Joel Spruck [19] is the pioneer in the study of the Dirichlet problem (P) in the $M \times \mathbb{R}$ setting. Spruck established a priori estimates for this problem that led to several existence results when H is a positive constant. More specifically related with our work is the theorem stated below.

Theorem 3 (Spruck [19, T 1.4 p. 787]). Let $\Omega \subset M$ be a bounded domain whose boundary is of class $\mathscr{C}^{2,\alpha}$ for some $\alpha \in (0,1)$. Let $H \in \mathbb{R}_+$ and suppose that

$$(n-1)\mathcal{H}_{\partial\Omega}(y) \ge nH. \tag{5}$$

Suppose also that

$$\operatorname{Ricc}_{x} \geq -\frac{n^{2}}{n-1}H^{2} \quad \forall x \in \Omega.$$
(6)

Then the Dirichlet problem (P) is uniquely solvable for arbitrary continuous boundary data φ .

Above, Ricc_x is the Ricci curvature of M at x. The notation $\operatorname{Ricc}_x \geq f(x)$ means that the Ricci curvature evaluated in any unitary tangent vector at x is bounded below by the function f(x). The definition of the Ricci curvature we use throughout the text follows [16].

We note that, condition (6) is trivially satisfy for any constant H if $M = \mathbb{R}^n$. So, theorem 3 of Spruck is a generalization of the sufficient part of theorem 2 of Serrin.

On the other hand, in our previous work [3, Th. 1 p. 3] we proved that the strong Serrin condition,

$$(n-1)\mathcal{H}_{\partial\Omega}(y) \ge n \sup_{z \in \mathbb{R}} |H(y,z)| \quad \forall \ y \in \partial\Omega,$$
(7)

is necessary for the solvability of problem (P) in a large class of Riemannian manifolds. As an examples are the Hadamard manifolds [3, Corollary 2 p. 3] and the simply connected and compact manifolds whose sectional curvature satisfies $0 < \frac{1}{4}K_0 < K \leq K_0$ provided diam $(\Omega) < \frac{\pi}{2\sqrt{K_0}}$ [3, Corollary 3 p. 4].

In the present paper, our goal is to study under which conditions on the function H the strong Serrin condition (7) is also sufficient. The main theorem of this paper is the following.

Theorem 4 (main theorem). Let $\Omega \subset M$ be a bounded domain with $\partial\Omega$ of class $\mathscr{C}^{2,\alpha}$ for some $\alpha \in (0,1)$. Let $H \in \mathscr{C}^{1,\alpha}(\overline{\Omega} \times \mathbb{R})$ satisfying $\partial_z H \geq 0$ and

$$\operatorname{Ricc}_{x} \ge n \sup_{z \in \mathbb{R}} \|\nabla_{x} H(x, z)\| - \frac{n^{2}}{n-1} \inf_{z \in \mathbb{R}} \left(H(x, z)\right)^{2} \ \forall \ x \in \Omega.$$
(8)

If

$$(n-1)\mathcal{H}_{\partial\Omega}(y) \ge n \sup_{z \in \mathbb{R}} |H(y,z)| \quad \forall \ y \in \partial\Omega,$$
(9)

then for every $\varphi \in \mathscr{C}^{2,\alpha}(\overline{\Omega})$ there exists a unique solution $u \in \mathscr{C}^{2,\alpha}(\overline{\Omega})$ of the Dirichlet problem (P).

Notice that assumptions (3) and (6) are particular cases of (8). Hence, theorem 4 generalizes the existence part in theorem 1 of Serrin and theorem 3 of Spruck. We also highlight that the combination of the non-existence results mentioned above with theorem 4 gives Serrin type solvability criteria for the Dirichlet problem (P) (see [3, Thms. 8 and 9]).

On the other hand, notice that, from the combination of theorem 3 of Spruck and our non-existence result [3, Corollary 2 p. 3] for Hadamard manifolds, we can deduce that the Serrin condition (5) is necessary and sufficient for the solvability of problem (P) for every constant H satisfying (6). In the case where $M = \mathbb{H}^n$ we see that condition (6) is satisfied for every constant $H \geq \frac{n-1}{n}$. In the opposite case, $H \in [0, \frac{n-1}{n})$, Spruck [19, Th. 5.4 p. 797] obtained an existence result assuming the strict inequality in the Serrin condition.

In this paper we also extend this result of Spruck [19, Th. 5.4 p. 797] in the hyperbolic space by deriving the following theorem.

Theorem 5. Let $\Omega \subset \mathbb{H}^n$ be a bounded domain with $\partial\Omega$ of class $\mathscr{C}^{2,\alpha}$ for some $\alpha \in (0,1)$ and $\varphi \in \mathscr{C}^{2,\alpha}(\overline{\Omega})$. Let $H \in \mathscr{C}^{1,\alpha}(\overline{\Omega} \times \mathbb{R})$ satisfying $\partial_z H \geq 0$ and $\sup_{\Omega \times \mathbb{R}} |H| \leq \frac{n-1}{n}$. If

$$(n-1)\mathcal{H}_{\partial\Omega}(y) \ge n \sup_{z\in\mathbb{R}} |H(y,z)| \ \forall \ y\in\partial\Omega,$$

then for every $\varphi \in \mathscr{C}^{2,\alpha}(\overline{\Omega})$ there exists a unique solution $u \in \mathscr{C}^{2,\alpha}(\overline{\Omega})$ of the Dirichlet problem (P).

Putting together theorem 5 and our non existence result for Hadamard manifolds [3, Cor. 1 p. 3] with theorem 3 of Spruck, one can deduce: the Serrin sharp solvability criterion for arbitrary constant H as stated in theorem 2 above also holds in the hyperbolic case [3, Th. 7 p. 5].

At last, we use the barriers constructed by Galvez-Lozano [11, Th. 6 p. 12] to prove the following result in Hadamard manifolds.

Theorem 6. Let M be a Hadamard manifold such that $-c^2 \leq K \leq -1$, for some c > 1. Let $\Omega \subset M$ be a bounded domain with $\partial\Omega$ of class $\mathscr{C}^{2,\alpha}$ for some $\alpha \in (0,1)$ and whose principal curvatures are greater than c. Let $\varphi \in \mathscr{C}^{2,\alpha}(\overline{\Omega})$ and $H \in \mathscr{C}^{1,\alpha}(\overline{\Omega} \times \mathbb{R})$ satisfying $\partial_z H \geq 0$ and $\sup_{\Omega \times \mathbb{R}} |H| \leq \frac{n-1}{n}$. Then problem

(P) has a unique solution $u \in \mathscr{C}^{2,\alpha}(\overline{\Omega})$.

2 The a priori estimates

Firstly, we establish a lemma that will help us to obtain a priori height and boundary gradient estimates.

Lemma 7. Let Γ be an embedded and oriented \mathscr{C}^2 hypersurface of M and Γ_t parallel to Γ for each $t \in [0, \tau)$. Assume that for some fix $y \in \Gamma$, $\mathcal{H}_{\Gamma}(y) \geq 0$ with respect to a normal field N. Suppose also that there exists a function $h \in \mathscr{C}^1[0, \tau)$ satisfying

$$|h(0)| \le \mathcal{H}_{\Gamma}(y) \tag{10}$$

and

$$(n-1)\left(|h'(t)| - (h(t))^2\right) \le \operatorname{Ricc}_{\gamma_y(t)}(\gamma'_y(t)) \ \forall \ t \in [0,\tau), \tag{11}$$

where $\gamma_y(t) = \exp_y(tN_y) \in \Gamma_t$. Then

$$|h(t)| \le \mathcal{H}_{\Gamma_t}(\gamma_y(t)) \ \forall \ 0 \le t < \tau, \tag{12}$$

where \mathcal{H}_{Γ_t} is computed with respect to $\gamma'_y(t)$. Furthemore, $\mathcal{H}_{\Gamma_t}(\gamma_y(t))$ is increasing as a function of t.

Proof. Let $\mathcal{H}(t) := \mathcal{H}_{\Gamma_t}(\gamma_y(t))$. It is known that (see [2, Cor. B.4 p. 66])

$$\mathcal{H}'(t) \ge \frac{\operatorname{Ricc}_{\gamma_y(t)}(\gamma'_y(t))}{n-1} + \left(\mathcal{H}(t)\right)^2.$$

Since we are assuming (11) it follows

$$\mathcal{H}'(t) \ge |h'(t)| - (h(t))^2 + (\mathcal{H}(t))^2.$$
(13)

Then,

$$(\mathcal{H}(t) - h(t))' \ge (\mathcal{H}(t) + h(t)) \left(\mathcal{H}(t) - h(t)\right)$$
(14)

and

$$\left(\mathcal{H}(t) + h(t)\right)' \ge \left(\mathcal{H}(t) - h(t)\right) \left(\mathcal{H}(t) + h(t)\right).$$
(15)

Let us define $v(t) = \mathcal{H}(t) - h(t)$ and $g(t) = \mathcal{H}(t) + h(t)$. From (14) we have

$$\left(\frac{v(t)}{e^{\int_0^t g(s)ds}}\right)' \ge 0,$$

so $v(t) \ge v(0)e^{\int_0^t g(s)ds}$ for each $t \in [0, \tau)$. As a consequence of (10) we obtain

$$\mathcal{H}(t) \ge h(t) \ \forall t \in [0, \tau).$$

Using (15) we obtain in a similar way that

$$\mathcal{H}(t) \ge -h(t) \ \forall t \in [0, \tau).$$

Therefore,

$$\mathcal{H}(t) \ge |h(t)| \quad \forall t \in [0, \tau).$$
(16)

Substituting (16) in (13) we also obtain $\mathcal{H}'(t) \ge 0$.

Roughly speaking, lemma 7 says that, under condition (11), the parallel hypersurfaces inherit the initial condition on Γ throughout the orthogonal geodesics. Moreover, the mean curvature of the parallel hypersurfaces in Ω increases along the inner normal geodesics.

2.1 A priori height estimate

We point out that in theorem 1 of Serrin the combination of condition (3) with the Serrin condition (4) provides height estimate for the Dirichlet problem (P) in the Euclidean case. Analogously for theorem 3 of Spruck. We generalize these geometric ideas in the next theorem.

Theorem 8. Let $\Omega \in M$ be a bounded domain with $\partial\Omega$ of class \mathscr{C}^2 and $\varphi \in \mathscr{C}^0(\partial\Omega)$. Let $H \in \mathscr{C}^1(\overline{\Omega} \times \mathbb{R})$ satisfying $\partial_z H \ge 0$,

$$\operatorname{Ricc}_{x} \ge n \sup_{z \in \mathbb{R}} \|\nabla_{x} H(x, z)\| - \frac{n^{2}}{n-1} \inf_{z \in \mathbb{R}} \left(H(x, z)\right)^{2} \ \forall \ x \in \Omega,$$
(17)

and

$$(n-1)\mathcal{H}_{\partial\Omega}(y) \ge n |H(y,\varphi(y))| \quad \forall \ y \in \partial\Omega.$$
(18)

If $u \in \mathscr{C}^2(\Omega) \cap \mathscr{C}^0(\overline{\Omega})$ is a solution of problem (P), then

$$\sup_{\Omega} |u| \leq \sup_{\partial \Omega} |\varphi| + \frac{e^{\mu \delta} - 1}{\mu}$$

where $\mu > n \sup \left\{ \left| H(x,z) \right|, (x,z) \in \overline{\Omega} \times \left[-\sup_{\partial \Omega} \left| \varphi \right|, \sup_{\partial \Omega} \left| \varphi \right| \right] \right\}$ and $\delta = \operatorname{diam}(\Omega)$.

Proof. For $x \in \Omega$ let us define the distance function $d(x) = \operatorname{dist}(x, \partial\Omega)$. Let Ω_0 be the biggest open subset of Ω having the unique nearest point property; that is, for every $x \in \Omega_0$ there exists a unique $y \in \partial\Omega$ such that $d(x) = \operatorname{dist}(x, y)$. Then $d \in \mathscr{C}^2(\Omega_0)$ (see [19, Prop. 4.1 p. 794], [14]).

We now define $w = \phi \circ d + \sup_{\alpha \in \Omega} |\varphi|$ over Ω , where

$$\phi(t) = \frac{e^{\mu\delta}}{\mu} \left(1 - e^{-\mu t}\right).$$

If we prove that $u \leq w$ in $\overline{\Omega}$ we obtain the desired estimate. By the sake of contradiction we suppose that the function v = u - w attains a maximum m > 0 at $x_0 \in \Omega$.

Let $y_0 \in \partial\Omega$ be such that $d(x_0) = \operatorname{dist}(x_0, y_0) = t_0$ and γ the minimizing geodesic orthogonal to $\partial\Omega$ joining x_0 to y_0 . Restricting u and w to γ we see that $v'(t_0) = 0$. Hence, $u'(t_0) = w'(t_0) = \phi'(t_0) > 0$ which implies that $\nabla u(x_0) \neq 0$. Therefore, $\Gamma_0 = \{x \in \Omega; u(x) = u(x_0)\}$ is of class \mathscr{C}^2 near x_0 . Then, there exists a geodesic ball $B_{\epsilon}(z_0)$ tangent to Γ_0 in x_0 such that

$$u > u(x_0) \text{ in } \overline{B_{\epsilon}(z_0)} \setminus \{x_0\}.$$
(19)

We note that

$$dist(z_0, y_0) \le dist(z_0, x_0) + dist(x_0, y_0) = \epsilon + d(x_0).$$

Hence, for \tilde{z} lying in the intersection of $\partial B_{\epsilon}(z_0)$ with a minimizing geodesic joining z_0 to y_0 , we have

$$d(\tilde{z}) \le \operatorname{dist}(\tilde{z}, y_0) = \operatorname{dist}(z_0, y_0) - \epsilon \le d(x_0) + \epsilon - \epsilon = d(x_0).$$

Thus, $w(\tilde{z}) \leq w(x_0)$ since ϕ is increasing. Consequently,

$$u(\tilde{z}) - w(x_0) \le u(\tilde{z}) - w(\tilde{z}) \le u(x_0) - w(x_0)$$

and $u(\tilde{z}) \leq u(x_0)$. By (19) one has that $\tilde{z} = x_0$, so $z_0 = \gamma(t_0 + \epsilon)$. This ensures that $x_0 \in \Omega_0$ because if there exists $y_1 \neq y_0$ satisfying $d(x_0) = \text{dist}(x_0, y_1)$, then

$$\operatorname{dist}(z_0, y_1) < \operatorname{dist}(z_0, x_0) + \operatorname{dist}(x_0, y_1) = \operatorname{dist}(z_0, x_0) + \operatorname{dist}(x_0, y_0) = d(z_0),$$

which is a contradiction.

However, let's show that this is also impossible. After some computations we have

$$\mathcal{M}w = \phi'(1+\phi'^2)\Delta d + \phi'' \quad \text{in } \Omega_0.$$
⁽²⁰⁾

For $x \in \Omega_0$, let y = y(x) in $\partial \Omega$ be the nearest point to x and $\gamma_y(t)$ the orthogonal geodesic to $\partial \Omega$ from y to x. Let us define

$$h(t) = \frac{n}{n-1} H\left(\gamma_y(t), \varphi(y)\right).$$

Note that y is now fixed. From the Serrin condition (18) it follows that

$$|h(0)| = \frac{n}{n-1} |H(y,\varphi(y))| \le \mathcal{H}_{\partial\Omega}(y) = \mathcal{H}(0).$$

Besides,

$$h'(t) = \frac{n}{n-1} \langle \nabla_x H(\gamma_y(t), \varphi(y)), \gamma'_y(t) \rangle.$$

Taking into account the additional hypothesis (17) we see that

$$(n-1)\left(|h'(t)| - (h(t))^2\right) \le \operatorname{Ricc}_{\gamma_y(t)}(\gamma'_y(t)).$$

Then we can apply lemma 7 to the function h(t) to obtain

$$n |H(\gamma_y(t), \varphi(y))| \le (n-1)\mathcal{H}_{\Gamma_t}(\gamma_y(t)),$$

where Γ_t is parallel to some portion of $\partial \Omega$. Therefore

$$\Delta d(x) \le -n \left| H\left(x, \varphi(y(x))\right) \right| \ \forall \ x \in \Omega_0.$$

Using this estimate in (20) we obtain

$$\mathcal{M}w \le -n |H(x, \varphi(y(x)))| \phi'(1 + \phi'^2) + \phi''.$$

Also

$$\phi''(t) = -\mu e^{\mu(\delta - t)} = -\mu \phi'(t) < -n |H(x, \varphi(y(x)))| \phi'(t)$$

and $\phi' \ge 1$, so

$$\mathcal{M}w \le -n |H(x,\varphi(y(x)))| \phi'(2+\phi'^2) < -n |H(x,\varphi(y(x)))| (1+\phi'^2)^{3/2}.$$
(21)

On the other hand, the hypothesis $\partial_z H \ge 0$ implies that

$$\mp H(x, \pm w) \le \mp H\left(x, \varphi(y(x))\right) \le \left|H\left(x, \varphi(y(x))\right)\right|.$$
(22)

From this fact and (21) we conclude that

$$\pm \mathfrak{Q}(\pm w) = \mathcal{M}w \mp nH(x, \pm w) \left(1 + \phi^{\prime 2}\right)^{3/2} \le 0.$$

Therefore

$$\mathfrak{Q}(w+m) = \mathcal{M}(w+m) - nH(x,w+m) \left(1 + {\phi'}^2\right)^{3/2} \le \mathfrak{Q}w \le \mathfrak{Q}u.$$

Moreover $u \leq w + m$ and $u(x_0) = w(x_0) + m$. By the maximum principle $u \equiv w + m$ in Ω_0 which is a contradiction since u < w + m in $\partial\Omega$. This proves that $u \leq w$ in $\overline{\Omega}$.

Similarly we prove that
$$u \geq -w$$
 in Ω .

Remark 9. Instead of condition (17), the proof shows that it is suffice to assume that

$$\operatorname{Ricc}_{x} \geq n \left\| \nabla_{x} H(x, \varphi(y)) \right\| - \frac{n^{2}}{n-1} \left(H(x, \varphi(y)) \right)^{2} \ \forall \ x \in \Omega_{0},$$

where Ω_0 is the biggest open subset of Ω having the unique nearest point property, and $y \in \partial \Omega$ is the nearest point to x.

2.2 A priori boundary gradient estimates

In this section we use the classical idea to find upper and a lower barriers for u on $\partial\Omega$ to get a control for ∇u along $\partial\Omega$.

Theorem 10. Let $\Omega \in M$ be a bounded domain with $\partial\Omega$ of class \mathscr{C}^2 and $\varphi \in \mathscr{C}^2(\overline{\Omega})$. Let $H \in \mathscr{C}^1(\overline{\Omega} \times \mathbb{R})$ satisfying $\partial_z H \ge 0$,

$$\operatorname{Ricc}_{x} \ge n \sup_{z \in \mathbb{R}} \|\nabla_{x} H(x, z)\| - \frac{n^{2}}{n-1} \inf_{z \in \mathbb{R}} \left(H(x, z)\right)^{2} \ \forall \ x \in \Omega,$$
(23)

and

$$(n-1)\mathcal{H}_{\partial\Omega}(y) \ge n |H(y,\varphi(y))| \quad \forall \ y \in \partial\Omega.$$
(24)

If $u \in \mathscr{C}^2(\Omega) \cap \mathscr{C}^1(\overline{\Omega})$ is a solution of (P), then

$$\sup_{\partial\Omega} \|\nabla u\| \le \|\varphi\|_1 + e^{C(1+\|H\|_1+\|\varphi\|_2)(1+\|\varphi\|_1)^3(\|u\|_0+\|\varphi\|_0)}$$
(25)

for some $C = C(n, \Omega)$.

Proof. Again, for $x \in \Omega$, we set $d(x) = \operatorname{dist}(x, \partial \Omega)$. Let $\tau > 0$ be such that d is of class \mathscr{C}^2 over the set of points in Ω for which $d(x) \leq \tau$. Let $\psi \in \mathscr{C}^2([0, \tau])$ be a non-negative function satisfying

P1.
$$\psi'(t) \ge 1$$
, P2. $\psi''(t) \le 0$, P3. $t\psi'(t) \le 1$.

For $a < \tau$ to be fixed latter on we consider the set

$$\Omega_a = \left\{ x \in M; d(x) < a \right\}.$$

We now define $w^{\pm} = \pm \psi \circ d + \varphi$. Firstly, let's estimate $\pm \mathcal{M}w^{\pm}$ in Ω_a . A straightforward computation yields

$$\pm \mathcal{M}w^{\pm} = \psi' W_{\pm}^2 \Delta d + \psi'' W_{\pm}^2 - \psi'' \langle \nabla d, \pm \psi' \nabla d + \nabla \varphi \rangle^2 - \psi' \nabla^2 d(\nabla \varphi, \nabla \varphi) \mp \nabla^2 \varphi(\pm \psi' \nabla d + \nabla \varphi, \pm \psi' \nabla d + \nabla \varphi),$$
(26)

where

$$W_{\pm} = \sqrt{1 + \|\nabla w^{\pm}\|^2} = \sqrt{1 + \|\pm \psi' \nabla d + \nabla \varphi\|^2}.$$

Since $\psi'' < 0$ and $\langle \nabla d, \pm \psi' \nabla d + \nabla \varphi \rangle^2 \le \|\pm \psi' \nabla d + \nabla \varphi\|^2$, then

$$\psi'' W_{\pm}^2 - \psi'' \langle \nabla d, \pm \psi' \nabla d + \nabla \varphi \rangle^2 \le \psi''.$$
(27)

Once $\nabla^2 d(x)$ is a continuous bilinear form and $\psi' \ge 1$ we have

$$\psi' \left| \nabla^2 d(\nabla \varphi, \nabla \varphi) \right| \le \psi'^2 \left\| d \right\|_2 \left\| \varphi \right\|_1^2.$$
(28)

Note also that

$$\left\|\pm\psi'\nabla d + \nabla\varphi\right\|^{2} = \left(\psi'^{2} + 2\psi'\langle\pm\nabla d,\nabla\varphi\rangle + \left\|\nabla\varphi\right\|^{2}\right) \le \left(1 + \left\|\varphi\right\|_{1}\right)^{2}\psi'^{2}, \quad (29)$$

hence

$$\left|\nabla^{2} \varphi(\pm \psi' \nabla d + \nabla \varphi, \pm \psi' \nabla d + \nabla \varphi)\right| \leq \left\|\varphi\right\|_{2} \left(1 + \left\|\varphi\right\|_{1}\right)^{2} \psi'^{2}.$$
 (30)

Substituting (27), (28), (30) in (26) it follows

$$\pm \mathcal{M}w^{\pm} \le \psi' W_{\pm}^2 \Delta d + \psi'' + c\psi'^2, \qquad (31)$$

where

$$c = \|d\|_{2} \|\varphi\|_{1}^{2} + \|\varphi\|_{2} \left(1 + \|\varphi\|_{1}\right)^{2}.$$
(32)

Observe now that

$$\pm \mathfrak{Q}w^{\pm} = \pm \mathcal{M}w^{\pm} \mp nH(x, w^{\pm})W^3_{\pm}.$$

Moreover

$$\mp H(x, w^{\pm}(x)) = \mp H(x, \pm \psi(d(x)) + \varphi(x)) \le \mp H(x, \varphi(x))$$

since we are assuming that $\partial_z H \ge 0$, so

$$\pm \mathfrak{Q} w^{\pm} \leq \pm \mathcal{M} w^{\pm} \mp n H(x, \varphi(x)) W_{\pm}^3 \leq \pm \mathcal{M} w^{\pm} + n \left| H(x, \varphi(x)) \right| W_{\pm}^3.$$

Using the estimate in (31) we obtain

$$\pm \mathfrak{Q}w^{\pm} \le \psi' W_{\pm}^2 \Delta d + \psi'' + c\psi'^2 + n |H(x,\varphi(x))| W_{\pm}^3.$$
(33)

Let now $y \in \partial \Omega$ be fixed and $\gamma_y(t) = \exp_y(tN_y)$ for $0 \le t \le a$, where N is the inner normal field to $\partial \Omega$. Applying again lemma 7 to $h(t) = \frac{n}{n-1}H(\gamma_y(t),\varphi(y))$, we see that $\mathcal{H}'(t) \ge 0$, for $0 \le t \le \tau$. Then, $\mathcal{H}_{\Gamma_t}(\gamma_y(t)) \ge \mathcal{H}_{\partial\Omega}(y)$ for $0 \le t \le a$, where Γ_t is parallel to $\partial \Omega$. Therefore,

$$\Delta d(x) \le \Delta d(y) \le -n \left| H(y, \varphi(y)) \right| \ \forall \ x \in \Omega_a, \tag{34}$$

where we denote by $y = y(x) \in \partial \Omega$ the nearest point to x. Substituting (34) in (33) we obtain

$$\pm \mathfrak{Q} w^{\pm} \leq n \psi' W_{\pm}^{2}(|H(x,\varphi(x))| - |H(y,\varphi(y))|) + n |H(x,\varphi(x))| W_{\pm}^{2} (W_{\pm} - \psi') + \psi'' + c\psi'^{2}.$$
(35)

It follows directly from (29) that

$$W_{\pm}^{2} \leq 1 + (1 + \|\varphi\|_{1})^{2} \psi'^{2} \leq 2 (1 + \|\varphi\|_{1})^{2} \psi'^{2}.$$
(36)

In addition

$$|H(x,\varphi(x))| - |H(y,\varphi(y))| \le h_1(1 + ||\varphi||_1)d(x),$$

where

$$h_1 = \sup_{\substack{\Omega \times \left[-\sup_{\Omega} |\varphi|, \sup_{\Omega} |\varphi|\right]}} \left\| \nabla_{M \times \mathbb{R}} H(x, z) \right\|.$$

Then,

$$n\psi' W_{\pm}^{2}(|H(x,\varphi(x))| - |H(y,\varphi(y))|) \le 2nh_{1}\left(1 + \|\varphi\|_{1}\right)^{3} d(x)(\psi'(d(x)))^{3}.$$

Using the assumption P3 it follows

$$n\psi' W_{\pm}^{2}(|H(x,\varphi(x))| - |H(y,\varphi(y))|) \le 2nh_{1}\left(1 + \|\varphi\|_{1}\right)^{3}\psi'^{2}.$$
 (37)

On the other hand,

$$W_{\pm} - \psi' \le 1 + \|\pm \psi' \nabla d + \nabla \varphi\| - \psi' \le 1 + \|\varphi\|_1.$$
(38)

From (36) and (38) we obtain

$$n |H(x,\varphi(x))| (W_{\pm} - \psi') W_{\pm}^2 \le 2nh_0 (1 + ||\varphi||_1)^3 \psi'^2,$$
(39)

where

$$h_{0} = \sup_{\substack{\Omega \times \left[-\sup_{\Omega} |\varphi|, \sup_{\Omega} |\varphi|\right]}} |H(x, z)|.$$

Using (37) and (39) in (35) we get

$$\pm \mathfrak{Q} w^{\pm} \le \left(c + 2n \|H\|_1 \left(1 + \|\varphi\|_1 \right)^3 \right) \psi'^2 + \psi'',$$

where we are using the notation $||H||_1 = h_0 + h_1$. Remembering the expression for c given in (32) and making some algebraic computation we infer that

$$c + 2n \|H\|_{1} (1 + \|\varphi\|_{1})^{3} < C (1 + \|\varphi\|_{2} + \|H\|_{1}) (1 + \|\varphi\|_{1})^{3},$$

where

$$C = 2n \left(1 + \|d\|_2 + 1/\tau \right). \tag{40}$$

Choosing

$$\nu = C \left(1 + \|H\|_1 + \|\varphi\|_2 \right) \left(1 + \|\varphi\|_1 \right)^3 \tag{41}$$

we define ψ by

$$\psi(t) = \frac{1}{\nu}\log(1+kt).$$

So,

$$\psi'(t) = \frac{k}{\nu(1+kt)} \tag{42}$$

and

$$\psi''(t) = -\frac{k^2}{\nu(1+kt)^2},\tag{43}$$

hence

$$\pm \mathfrak{Q} w^{\pm} < \nu \psi'^2 + \psi'' = 0, \quad \text{in} \quad \Omega_a.$$

Besides

$$t\psi'(t) = \frac{kt}{\nu(1+kt)} \le \frac{1}{\nu} < 1,$$

which is property P3. From (43) we see that property P2 is also satisfied. This implies that $\psi'(t) > \psi'(a)$ for all $t \in [0, a]$ as well, thus property P1 is ensured provided that

$$\psi'(a) = \frac{k}{\nu(1+ka)} = 1.$$
(44)

Furthermore, if we choose

$$\psi(a) = \frac{1}{\nu} \log(1 + ka) = \|u\|_0 + \|\varphi\|_0, \qquad (45)$$

we would have

$$\pm w^{\pm}(x) = \psi(a) \pm \varphi(x) = \|u\|_0 + \|\varphi\|_0 \pm \varphi(x) \ge \pm u(x) \ \forall \ x \in \partial \Omega_a \setminus \partial \Omega.$$

By combining (44) and (45) we see that

$$k = \nu e^{\nu(\|u\|_0 + \|\varphi\|_0)} \tag{46}$$

and, therefore,

$$a = \frac{e^{\nu(\|u\|_0 + \|\varphi\|_0)} - 1}{\nu e^{\nu(\|u\|_0 + \|\varphi\|_0)}}.$$

Note also that $a < \frac{1}{\nu} < \tau$ as required. Finally, if $x \in \partial\Omega$, then $w^{\pm}(x) = \pm \psi(0) + \varphi(x) = u(x)$. By the maximum principle we can conclude that $w^- \leq u \leq w^+$ in Ω_a , thus

$$-\psi \circ d \leq u - \varphi \leq \psi \circ d$$
 in Ω_a .

Recall that

$$-\psi \circ d = u - \varphi = \psi \circ d = 0$$
 in $\partial \Omega$.

Consequently, for $y \in \partial \Omega$ and $0 \leq t \leq a$, we have that

$$-\psi(t) + \psi(0) \le (u - \varphi)(\gamma_y(t)) - (u - \varphi)(\gamma_y(0)) \le \psi(t) - \psi(0).$$

Dividing by t > 0 and passing to the limit as t goes to zero we infer that

$$\langle \nabla u(y), N \rangle | \le |\langle \nabla \varphi(y), N \rangle| + \psi'(0).$$
 (47)

As $u = \varphi$ on $\partial \Omega$, using (47) we derive

$$\|\nabla u(y)\| \le \|\nabla \varphi(y)\| + \psi'(0).$$

which yields the desired estimate.

Remark 11. It is suffice to assume in the statement of theorem 10 that

$$\operatorname{Ricc}_{x} \geq n \left\| \nabla_{x} H(x, \varphi(y)) \right\| - \frac{n^{2}}{n-1} \left(H(x, \varphi(y)) \right)^{2} \ \forall \ x \in \Omega_{0},$$

where Ω_0 is the biggest open subset of Ω having the unique nearest point property, and $y \in \partial \Omega$ is the nearest point to x.

Now, we observe that the combination of assumption (23) with the Serrin condition (24) ensures that the mean curvature of the parallel hypersurfaces Γ_t in Ω increases along the inner normal geodesics.

On the other hand, this behavior of \mathcal{H}_{Γ_t} is guaranteed indeed by the geometric condition

$$\operatorname{Ricc}_{\gamma_y(t)}(\gamma'_y(t)) \ge -(n-1)\left(\mathcal{H}_{\partial\Omega}(y)\right)^2 \ \forall \ y \in \partial\Omega.$$
(48)

This can be seen applying lemma 7 to the constant function $h(t) = \mathcal{H}_{\partial\Omega}(y)$ (see also [9, Th. 1 p. 232]).

Therefore, if (48) holds we do not need the assumption (23) in the statement of theorem 10. So, we are able to establish the following result for later reference.

Theorem 12. Suppose that for $\operatorname{Ricc}_x \geq -(n-1)c^2$ for each $x \in M$, where c > 0. Let $\Omega \in M$ be a bounded domain with $\partial\Omega$ of class \mathscr{C}^2 such that $\mathcal{H}_{\partial\Omega} \geq c$ and $\varphi \in \mathscr{C}^2(\overline{\Omega})$. Let $H \in \mathscr{C}^1(\overline{\Omega} \times \mathbb{R})$ satisfying $\partial_z H \geq 0$ and

$$(n-1)\mathcal{H}_{\partial\Omega}(y) \ge n \left| H(y,\varphi(y)) \right| \ \forall \ y \in \partial\Omega.$$
(49)

If $u \in \mathscr{C}^2(\Omega) \cap \mathscr{C}^1(\overline{\Omega})$ is a solution of (P), then

$$\sup_{\partial\Omega} \|\nabla u\| \le \|\varphi\|_1 + e^{C(1+\|H\|_1+\|\varphi\|_2)(1+\|\varphi\|_1)^3(\|u\|_0+\|\varphi\|_0)}$$
(50)

for some $C = C(n, \Omega)$.

Proof. By the previous discussion we see that

$$\Delta d(x) \le \Delta d(y) \ \forall \ x \in \Omega_a,$$

where $y \in \partial \Omega$ is the nearest point to x. The rest of the proof is the same as before.

Now we consider a mean convex domain Ω in the hyperbolic space \mathbb{H}^n and let $y \in \partial \Omega$. If $\lambda_i(t)$ represents the *i*th principal curvature of Γ_t in $\gamma_y(t)$, then (see [1, p. 17])

$$\lambda_i(t) = \frac{-\tanh t + \lambda_i(0)}{1 - \lambda_i(0) \tanh t},\tag{51}$$

hence

$$\lambda_{i}'(t) = \frac{\operatorname{sech}^{2}(t) \left((\lambda_{i}(0))^{2} - 1 \right)}{\left(1 - \lambda_{i}(0) \tanh t \right)^{2}}.$$
(52)

Thus, $\mathcal{H}_{\Gamma_t}(\gamma_y(t))$ decrease if $|\lambda_i| < 1$ for all $1 \leq i \leq n$. In any case we can choose τ small enough such that

,

$$\left|\mathcal{H}_{\partial\Omega}(y) - \mathcal{H}_{d(x)}(x)\right| \le \kappa d(x)$$

for some $\kappa > 0$ depending on Ω . Using this fact we are able to deduce the following result.

Theorem 13. Let $\Omega \in \mathbb{H}^n$ be a bounded domain with $\partial\Omega$ of class \mathscr{C}^2 and $\varphi \in \mathscr{C}^2(\overline{\Omega})$. Let $H \in \mathscr{C}^1(\overline{\Omega} \times \mathbb{R})$ satisfying $\partial_z H \ge 0$, and

$$(n-1)\mathcal{H}_{\partial\Omega}(y) \ge n |H(y,\varphi(y))| \ \forall \ y \in \partial\Omega.$$

If $u \in \mathscr{C}^2(\Omega) \cap \mathscr{C}^1(\overline{\Omega})$ is a solution of (P), then

$$\sup_{\partial\Omega} \|\nabla u\| \le \|\varphi\|_1 + e^{C(1+\|H\|_1+\|\varphi\|_2)(1+\|\varphi\|_1)^3 (\|u\|_0+\|\varphi\|_0)}$$
(53)

for some $C = C(n, \Omega)$.

Proof. The proof follows the steps of the proof of theorem 10 with the difference that we need to replace relation (34) by

$$\Delta d(x) \le \Delta d(y) + (n-1)\kappa d(x) \le -n |H(y,\varphi(y))| + n\kappa d(x).$$

In this case $C = 2n \left(1 + \kappa + \|d\|_2 + 1/\tau\right)$ instead of (40).

2.3 A priori global gradient estimate

In order to obtain a priori global gradient estimate we use techniques introduced by Caffarelli-Nirenberg-Spruck [8, p. 51] in the Euclidean context. See other applications in the works of Nelli-Sa Earp [15, Lemma 3.1 p. 4] and Barbosa-Sa Earp [4, Lemma 5.2 p. 62] in the hyperbolic setting.

Theorem 14. Let $\Omega \in M$ be a bounded domain with $\partial\Omega$ of class \mathscr{C}^2 . Let $u \in \mathscr{C}^3(\Omega) \cap \mathscr{C}^1(\overline{\Omega})$ be a solution of (1), where $H \in \mathscr{C}^1\left(\Omega \times \left[-\sup_{\overline{\Omega}} |u|, \sup_{\overline{\Omega}} |u|\right]\right)$ satisfies $\partial_z H \geq 0$. Then

$$\sup_{\Omega} \left\| \nabla u(x) \right\| \leq \left(\sqrt{3} + \sup_{\partial \Omega} \left\| \nabla u \right\| \right) \exp \left(2 \sup_{\Omega} \left| u \right| \left(1 + 8n \left(\left\| H \right\|_1 + R \right) \right) \right),$$

where $R \ge 0$ is such that $\operatorname{Ricc}_x \ge -R$ for each $x \in \Omega$.

Proof. Let $w(x) = \|\nabla u(x)\| e^{Au(x)}$ where $A \ge 1$. Suppose w attains a maximum at $x_0 \in \overline{\Omega}$. If $x_0 \in \partial\Omega$, then

$$w(x) \le w(x_0) = \|\nabla u(x_0)\| e^{Au(x_0)}$$

So,

$$\sup_{\Omega} \|\nabla u(x)\| \le \sup_{\partial\Omega} \|\nabla u\| e^{2A \sup_{\Omega} |u|}.$$
(54)

Suppose now that $x_0 \in \Omega$ and that $\nabla u(x_0) \neq 0$. Let us define normal coordinates at x_0 in such a way that $\frac{\partial}{\partial x_1}\Big|_{x_0} = \frac{\nabla u(x_0)}{\|\nabla u(x_0)\|}$. Then,

$$\partial_k u(x_0) = \left\langle \frac{\partial}{\partial x_k} \Big|_{x_0}, \nabla u(x_0) \right\rangle = \left\| \nabla u(x_0) \right\| \delta_{k1}.$$
(55)

Denoting by σ the metric in this coordinates system we recall that

$$\sigma_{ij}(x_0) = \sigma^{ij}(x_0) = \delta_{ij}, \tag{56}$$

$$\partial_k \sigma_{ij}(x_0) = \partial_k \sigma^{ij}(x_0) = 0, \tag{57}$$

$$\Gamma_{ij}^k(x_0) = 0. \tag{58}$$

Also $\nabla u(x) = \sum_{i} u^{i} \frac{\partial}{\partial x_{i}}$, where

$$u^{i} = \sum_{j=1}^{n} \sigma^{ij} \partial_{j} u.$$
(59)

Thus,

$$\|\nabla u(x)\|^2 = \sum_{i,j=1}^n \sigma^{ij} \partial_i u \partial_j u.$$
(60)

Observe now that the function $\tilde{w}(x) = \ln w(x) = Au(x) + \ln ||\nabla u(x)||$ also attains a maximum at x_0 . Therefore, for each $0 \le k \le n$, we have the relations $\partial_k \tilde{w}(x_0) = 0$ and $\partial_{kk} \tilde{w}(x_0) \le 0$. Thus

$$\partial_k \tilde{w}(x) = A \partial_k u(x) + \frac{\partial_k \left(\|\nabla u\|^2 \right)(x)}{2 \|\nabla u(x)\|^2},$$
$$\partial_{kk} \tilde{w}(x) = A \partial_{kk} u(x) + \frac{1}{2} \partial_k \left(\|\nabla u\|^{-2} \right)(x) \partial_k \left(\|\nabla u\|^2 \right)(x) + \frac{\partial_{kk} \left(\|\nabla u\|^2 \right)(x)}{2 \|\nabla u(x)\|^2}.$$

Since

$$\partial_k \left(\left\| \nabla u \right\|^{-2} \right) = \partial_k \left(\left\| \nabla u \right\|^2 \right)^{-1} = - \left(\left\| \nabla u \right\|^2 \right)^{-2} \partial_k \left(\left\| \nabla u \right\|^2 \right),$$

 ${\rm then}$

$$\partial_{kk}\tilde{w}(x) = A\partial_{kk}u(x) - \frac{\left(\partial_k \left(\|\nabla u\|^2\right)(x)\right)^2}{2\left\|\nabla u(x)\right\|^4} + \frac{\partial_{kk} \left(\|\nabla u\|^2\right)(x)}{2\left\|\nabla u(x)\right\|^2}.$$

Hence,

$$A\partial_k u(x_0) + \frac{\partial_k \left(\left\| \nabla u \right\|^2 \right)(x_0)}{2 \left\| \nabla u(x_0) \right\|^2} = 0,$$
(61)

and

$$A\partial_{kk}u(x_0) - \frac{\left(\partial_k \left(\|\nabla u\|^2\right)(x_0)\right)^2}{2\|\nabla u(x_0)\|^4} + \frac{\partial_{kk} \left(\|\nabla u\|^2\right)(x_0)}{2\|\nabla u(x_0)\|^2} \le 0.$$
(62)

From (60) it follows

$$\partial_k \left(\left\| \nabla u \right\|^2 \right) = \sum_{i,j=1}^n \left(\left(\partial_k \sigma^{ij} \right) \partial_i u \partial_j u + 2\sigma^{ij} \partial_{ki} u \partial_j u \right)$$
(63)

From (55), (56) and (57) we obtain

$$\partial_k \left(\left\| \nabla u \right\|^2 \right) (x_0) = 2 \sum_{i,j=1}^n \delta_{ij} \partial_{ki} u(\left\| \nabla u(x_0) \right\| \delta_{j1}),$$

 \mathbf{SO}

$$\partial_k \left(\|\nabla u\|^2 \right) (x_0) = 2 \|\nabla u(x_0)\| \partial_{1k} u(x_0).$$
 (64)

Substituting (55) and (64) in (61) we derive

$$A \|\nabla u(x_0)\| \,\delta_{k1} + \frac{2 \|\nabla u(x_0)\| \,\partial_{1k} u(x_0)}{2 \|\nabla u(x_0)\|^2} = 0,$$

thus,

$$\partial_{1k} u(x_0) = -A \|\nabla u(x_0)\|^2 \,\delta_{k1}.$$
(65)

Substituting also (65) in (64) we obtain

$$\partial_k \left(\left\| \nabla u \right\|^2 \right) (x_0) = -2A \left\| \nabla u(x_0) \right\|^3 \delta_{k1}.$$
(66)

On the other hand, taking into account the expression (63) it follows

$$\partial_{kk} \left(\left\| \nabla u \right\|^2 \right) (x) = \sum_{i,j=1}^n \left(\left(\partial_{kk} \sigma^{ij} \right) \partial_i u \partial_j u + \left(\partial_k \sigma^{ij} \right) \partial_k \left(\partial_i u \partial_j u \right) \right. \\ \left. + 2 \left(\left(\partial_k \sigma^{ij} \right) \partial_{ki} u \partial_j u + \sigma^{ij} \partial_{kki} u \partial_j u + \sigma^{ij} \partial_{ki} u \partial_k u \right) \right).$$

From (55), (56) and (57) we have

$$\partial_{kk} \left(\|\nabla u\|^2 \right) (x_0) = \|\nabla u(x_0)\|^2 \left(\partial_{kk} \sigma^{11} \right) + 2 \|\nabla u(x_0)\| \partial_{kk1} u + 2 \sum_{i=1}^n (\partial_{ki} u(x_0))^2.$$
(67)

Differentiating two times with respect to x_k the equation $\sigma \circ \sigma^{-1} = Id$ and evaluating in x_0 we see that $\partial_{kk}\sigma^{-1}(x_0) = -\partial_{kk}\sigma(x_0)$. Besides,

$$\partial_{kk}\sigma_{11} = \frac{\partial}{\partial x_k} \frac{\partial}{\partial x_k} \left\langle \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_1} \right\rangle = 2 \frac{\partial}{\partial x_k} \left\langle \nabla_{\frac{\partial}{\partial x_k}} \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_1} \right\rangle$$
$$= 2 \left(\left\langle \nabla_{\frac{\partial}{\partial x_k}} \nabla_{\frac{\partial}{\partial x_k}} \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_1} \right\rangle + \left\| \nabla_{\frac{\partial}{\partial x_k}} \frac{\partial}{\partial x_1} \right\|^2 \right).$$

Recalling (58) we then have

$$\partial_{kk}\sigma^{11}(x_0) = -\partial_{kk}\sigma_{11}(x_0) = -2\left\langle \nabla_{\frac{\partial}{\partial x_k}} \nabla_{\frac{\partial}{\partial x_k}} \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_1} \right\rangle.$$
(68)

Substituting (68) in (67) we can conclude that

$$\partial_{kk} \left(\|\nabla u\|^2 \right) (x_0) = 2 \left(- \|\nabla u(x_0)\|^2 \left\langle \nabla_{\frac{\partial}{\partial x_k}} \nabla_{\frac{\partial}{\partial x_k}} \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_1} \right\rangle + \|\nabla u(x_0)\| \partial_{kk1} u(x_0) + \sum_{i=1}^n \left(\partial_{ki} u(x_0) \right)^2 \right).$$
(69)

Using expressions (66) and (69) in (62) we verify that

$$A\partial_{kk}u(x_0) - 2A^2 \|\nabla u(x_0)\|^2 \delta_{k1} + \frac{\partial_{kk1}u(x_0)}{\|\nabla u(x_0)\|} - \left\langle \nabla_{\frac{\partial}{\partial x_k}} \nabla_{\frac{\partial}{\partial x_k}} \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_1} \right\rangle + \frac{\sum_{i=1}^n (\partial_{ki}u(x_0))^2}{\|\nabla u(x_0)\|^2} \le 0.$$

From (65) we have for k = 1

$$-A^{2} \left\|\nabla u(x_{0})\right\|^{2} - 2A^{2} \left\|\nabla u(x_{0})\right\|^{2} + \frac{\partial_{111}u(x_{0})}{\left\|\nabla u(x_{0})\right\|} - \left\langle \nabla_{\frac{\partial}{\partial x_{1}}} \nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{1}} \right\rangle + \frac{\sum_{i=1}^{n} \left(-A \left\|\nabla u(x_{0})\right\|^{2}\right)^{2} \delta_{i1}}{\left\|\nabla u(x_{0})\right\|^{2}} \leq 0,$$

 $\qquad \text{then},$

$$\partial_{111}u(x_0) \le 2A^2 \left\|\nabla u(x_0)\right\|^3 + \left\|\nabla u(x_0)\right\| \left\langle \nabla_{\frac{\partial}{\partial x_1}} \nabla_{\frac{\partial}{\partial x_1}} \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_1} \right\rangle.$$
(70)

If k > 1, then

$$A\partial_{kk}u(x_0) + \frac{\partial_{kk1}u(x_0)}{\|\nabla u(x_0)\|} - \left\langle \nabla_{\frac{\partial}{\partial x_k}} \nabla_{\frac{\partial}{\partial x_k}} \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_1} \right\rangle \le -\frac{\sum_{i=1}^n \left(\partial_{ki}u(x_0)\right)^2}{\|\nabla u(x_0)\|^2} \le 0,$$

 $\mathrm{so},$

$$\partial_{kk1}u(x_0) \le -A\partial_{kk}u(x_0) \|\nabla u(x_0)\| + \|\nabla u(x_0)\| \left\langle \nabla_{\frac{\partial}{\partial x_k}} \nabla_{\frac{\partial}{\partial x_k}} \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_1} \right\rangle.$$
(71)

In the sequel we evaluate at x_0 the mean equation (2). First we recall that

$$\nabla_{ij}^2 u(x) = \nabla^2 u(x) \left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right) = \partial_{ij} u - \sum_{k=1}^n \Gamma_{ij}^k \partial_k u, \tag{72}$$

$$\Delta u(x) = \operatorname{tr}\left(X \longrightarrow \nabla_X \nabla u\right) = \sum_{ij} \sigma^{ij} \nabla^2_{ij} u(x).$$
(73)

From (59), (72) and (73) we have

$$u^{i}(x_{0}) = \partial_{i}u(x_{0}) = \|\nabla u(x_{0})\| \,\delta_{i1},$$
(74)

$$\nabla_{ij}^2 u(x_0) = \partial_{ij} u(x_0), \tag{75}$$

$$\Delta u(x_0) = \sum_{i=1}^n \partial_{ii} u(x_0).$$
(76)

Substituting these expressions in (2), using (65), we see that

$$nH_0W_0^3 = W_0^2 \Delta u(x_0) - \sum_{i,j=1}^n \left(\|\nabla u(x_0)\| \,\delta_{i1} \right) \left(\|\nabla u(x_0)\| \,\delta_{j1} \right) \partial_{ij}u$$
$$= W_0^2 \Delta u(x_0) - \|\nabla u(x_0)\|^2 \,\partial_{11}u(x_0)$$
$$= W_0^2 \sum_{i>1} \partial_{ii}u(x_0) + \partial_{11}u(x_0)$$
$$= W_0^2 \sum_{i>1} \partial_{ii}u(x_0) - A \|\nabla u(x_0)\|^2,$$

where $H_0 = H(x_0, u(x_0))$ and $W_0 = \sqrt{1 + \|\nabla u(x_0)\|^2}$. Therefore,

$$\sum_{i>1} \partial_{ii} u(x_0) = nH_0 W_0 + \frac{A \left\|\nabla u(x_0)\right\|^2}{W_0^2}.$$
(77)

Finally let us differentiate (2) with respect to x_1 . We have

$$\partial_1 \left(W^2 \right) \Delta u + W^2 (\partial_1 \Delta u) - 2 \sum_{i,j=1}^n u^i \left(\partial_1 u^j \right) \nabla_{ij}^2 u - \sum_{i,j=1}^n u^i u^j \partial_1 (\nabla_{ij}^2 u)$$

$$= n (\partial_1 H + \partial_z H \partial_1 u) W^3 + n H \partial_1 \left(W^3 \right).$$
(78)

Let us calculate the derivative involved in this equation and evaluate at x_0 . Since (66) holds we deduce

$$\partial_1 (W^2) (x_0) = \partial_1 (\|\nabla u\|^2) (x_0) = -2A \|\nabla u(x_0)\|^3,$$
 (79)

$$\partial_1 (W^3) (x_0) = \frac{3}{2} W_0 \partial_1 (W^2) (x_0) = -3AW_0 \|\nabla u(x_0)\|^3.$$
 (80)

Using (59), we have

$$\partial_1 u^i = \partial_1 \sum_{j=1}^n \sigma^{ij} \partial_j u = \sum_{j=1}^n \left(\left(\partial_1 \sigma^{ij} \right) \partial_j u + \sigma^{ij} \partial_{1j} u \right).$$

Using now (65) we obtain

$$\partial_1 u^i(x_0) = \partial_{1i} u(x_0) = -A \|\nabla u(x_0)\|^2 \,\delta_{i1}.$$
(81)

On the other hand, from (72) we deduce

$$\partial_1(\nabla_{ij}^2 u)(x) = \partial_{1ij}u(x) - \left\langle \nabla_{\frac{\partial}{\partial x_1}} \nabla u, \nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} \right\rangle - \left\langle \nabla u(x), \nabla_{\frac{\partial}{\partial x_1}} \nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} \right\rangle.$$

Hence,

$$\partial_1(\nabla_{ij}^2 u)(x_0) = \partial_{1ij}u(x_0) - \left\langle \nabla_{\frac{\partial}{\partial x_1}} \nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j}, \nabla u(x_0) \right\rangle.$$
(82)

Finally, it follows from (73),

$$\partial_1 \Delta u(x) = \sum_{ij} \left(\left(\partial_1 \sigma^{ij} \right) \nabla^2_{ij} u(x) + \sigma^{ij} \partial_1 \left(\nabla^2_{ij} u(x) \right) \right).$$

From (82) we also have

$$\partial_1(\Delta u)(x_0) = \sum_{i=1}^n \left(\partial_{1ii} u(x_0) - \left\langle \nabla_{\frac{\partial}{\partial x_1}} \nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_i}, \nabla u(x_0) \right\rangle \right).$$
(83)

Substituting (74), (75), (79), (80), (81), (82) and (83) in (78) we obtain

$$n\partial_{1}H(x_{0})W_{0}^{3} + n\partial_{z}H(x_{0}) \|\nabla u(x_{0})\|W_{0}^{3} - 3nAH_{0}W_{0}\|\nabla u(x_{0})\|^{3}$$

$$= -2A \|\nabla u(x_{0})\|^{3} \Delta u(x_{0}) + W_{0}^{2} \sum_{i=1}^{n} \left(\partial_{1ii}u(x_{0}) - \left\langle \nabla_{\frac{\partial}{\partial x_{1}}} \nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{i}}, \nabla u(x_{0})\right\rangle \right)$$

$$+ 2A \|\nabla u(x_{0})\|^{3} \partial_{11}u(x_{0})$$

$$- \|\nabla u(x_{0})\|^{2} \left(\partial_{111}u(x_{0}) - \left\langle \nabla_{\frac{\partial}{\partial x_{1}}} \nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{1}}, \nabla u(x_{0})\right\rangle \right)$$

$$= -2A \|\nabla u(x_0)\|^3 (\Delta u(x_0) - \partial_{11}u(x_0)) + W_0^2 \sum_{i>1} \left(\partial_{1ii}u(x_0) - \left\langle \nabla_{\frac{\partial}{\partial x_1}} \nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_i}, \nabla u(x_0) \right\rangle \right) + W_0^2 \left(\partial_{111}u(x_0) - \|\nabla u(x_0)\| \left\langle \nabla_{\frac{\partial}{\partial x_1}} \nabla_{\frac{\partial}{\partial x_1}} \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_1} \right\rangle \right) - \|\nabla u(x_0)\|^2 \left(\partial_{111}u(x_0) - \left\langle \nabla_{\frac{\partial}{\partial x_1}} \nabla_{\frac{\partial}{\partial x_1}} \frac{\partial}{\partial x_1}, \nabla u(x_0) \right\rangle \right)$$

$$= -2A \|\nabla u(x_0)\|^3 \sum_{i>1} \partial_{ii} u(x_0)$$

+ $W_0^2 \sum_{i>1} \left(\partial_{1ii} u(x_0) - \left\langle \nabla_{\frac{\partial}{\partial x_1}} \nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_i}, \nabla u(x_0) \right\rangle \right)$
+ $\partial_{111} u(x_0) - \|\nabla u(x_0)\| \left\langle \nabla_{\frac{\partial}{\partial x_1}} \nabla_{\frac{\partial}{\partial x_1}} \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_1} \right\rangle.$

Using (70), (71), (77) we obtain

$$\begin{split} n\partial_{1}H(x_{0})W_{0}^{3} + n\partial_{z}H(x_{0}) \|\nabla u(x_{0})\|W_{0}^{3} - 3nAH_{0}W_{0} \|\nabla u(x_{0})\|^{3} \\ \leq & -2A \|\nabla u(x_{0})\|^{3} \sum_{i>1} \partial_{ii}u(x_{0}) \\ & + W_{0}^{2} \sum_{i>1} \left(-A\partial_{ii}u(x_{0}) \|\nabla u(x_{0})\| + \|\nabla u(x_{0})\| \left\langle \nabla_{\frac{\partial}{\partial x_{i}}} \nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{1}} \right\rangle \\ & - \|\nabla u(x_{0})\| \left\langle \nabla_{\frac{\partial}{\partial x_{1}}} \nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{1}} \right\rangle \right) \\ & + 2A^{2} \|\nabla u(x_{0})\|^{3} + \|\nabla u(x_{0})\| \left\langle \nabla_{\frac{\partial}{\partial x_{1}}} \nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{1}} \right\rangle \\ & - \|\nabla u(x_{0})\| \left\langle \nabla_{\frac{\partial}{\partial x_{1}}} \nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{1}} \right\rangle \end{split}$$

$$= -2A \|\nabla u(x_0)\|^3 \sum_{i>1} \partial_{ii} u(x_0)$$

$$-A \|\nabla u(x_0)\| W_0^2 \sum_{i>1} \partial_{ii} u(x_0) + 2A^2 \|\nabla u(x_0)\|^3$$

$$+ \|\nabla u(x_0)\| W_0^2 \sum_{i>1} \left(\left\langle \nabla_{\frac{\partial}{\partial x_i}} \nabla_{\frac{\partial}{\partial x_1}} \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_1} \right\rangle - \left\langle \nabla_{\frac{\partial}{\partial x_1}} \nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_1} \right\rangle \right)$$

$$= \left(-2A \left\|\nabla u(x_0)\right\|^3 - A \left\|\nabla u(x_0)\right\| W_0^2\right) \sum_{i>1} \partial_{ii} u(x_0) + 2A^2 \left\|\nabla u(x_0)\right\|^3 + \left\|\nabla u(x_0)\right\| W_0^2 \sum_{i>1} \left\langle R\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_1}\right) \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_1}\right\rangle$$

$$\leq -A \|\nabla u(x_0)\| \left(1 + 3 \|\nabla u(x_0)\|^2\right) \left(nH_0W_0 + \frac{A \|\nabla u(x_0)\|^2}{W_0^2}\right) \\ + 2A^2 \|\nabla u(x_0)\|^3 - \|\nabla u(x_0)\| W_0^2 \operatorname{Ricc}_{x_0}\left(\frac{\partial}{\partial x_1}\right)$$

$$= -A \|\nabla u(x_0)\| nH_0 W_0 \left(1 + 3 \|\nabla u(x_0)\|^2\right) - \frac{A^2 \|\nabla u(x_0)\|^3}{W_0^2} \left(1 + 3 \|\nabla u(x_0)\|^2\right) + 2A^2 \|\nabla u(x_0)\|^3 - \|\nabla u(x_0)\| W_0^2 \operatorname{Ricc}_{x_0}\left(\frac{\partial}{\partial x_1}\right).$$

Since $\partial_z H \ge 0$ we have $n\partial_1 H W_0^3$

$$\leq AnH_0W_0 \|\nabla u(x_0)\| \left(3 \|\nabla u(x_0)\|^2 - 1 - 3 \|\nabla u(x_0)\|^2\right) \\ + \frac{A^2 \|\nabla u(x_0)\|^3}{W_0^2} \left(2W_0^2 - 1 - 3 \|\nabla u(x_0)\|^2\right) - \|\nabla u(x_0)\| W_0^2 \operatorname{Ricc}_{x_0}\left(\frac{\partial}{\partial x_1}\right)$$

$$= -AnH_0W_0 \|\nabla u(x_0)\| + \frac{A^2 \|\nabla u(x_0)\|^3}{W_0^2} \left(1 - \|\nabla u(x_0)\|^2\right) \\ - \|\nabla u(x_0)\| W_0^2 \operatorname{Ricc}_{x_0}\left(\frac{\partial}{\partial x_1}\right).$$

Let

$$h_{0} = \sup_{\substack{\Omega \times \left[-\sup_{\Omega} |u|, \sup_{\Omega} |u|\right] \\ h_{1} = \sup_{\substack{\Omega \times \left[-\sup_{\Omega} |u|, \sup_{\Omega} |u|\right] \\ 0}} \left(\|\nabla_{x}H\| + \partial_{z}H \right).$$

and $R \ge 0$ such that $-\operatorname{Ricc} \le R$ in Ω . Then

$$\frac{A^2 \left\|\nabla u(x_0)\right\|^3}{W_0^2} \left(\left\|\nabla u(x_0)\right\|^2 - 1\right) \le Anh_0 W_0 \left\|\nabla u(x_0)\right\| + \left\|\nabla u(x_0)\right\| W_0^2 R + nh_1 W_0^3$$

Dividing by W_0^3 it follows

$$\frac{A^2 \left\|\nabla u(x_0)\right\|^3}{W_0^5} \left(\left\|\nabla u(x_0)\right\|^2 - 1\right) \le Anh_0 \frac{\left\|\nabla u(x_0)\right\|}{W_0^2} + nh_1 + \frac{\left\|\nabla u(x_0)\right\|}{W_0}R,$$

$$\le Anh_0 + nh_1 + R, \qquad (*)$$

$$\le An \left(h_0 + h_1 + R\right) \qquad (**)$$

where for (*) we used the fact that $W_0^2 > W_0 > \|\nabla u(x_0)\|$, and for (**) that A, n > 1. Denoting by $H_1 = h_0 + h_1$ and dividing by A^2 we obtain

$$\frac{\left\|\nabla u(x_0)\right\|^3}{W_0^5} \left(\left\|\nabla u(x_0)\right\|^2 - 1\right) < \frac{n}{A} \left(H_1 + R\right).$$

We can suppose that $\|\nabla u(x_0)\| > 1$. Since

$$W_0^3 = \left(1 + \|\nabla u(x_0)\|^2\right)^{3/2} < \left(2 \|\nabla u(x_0)\|^2\right)^{3/2} < 4 \|\nabla u(x_0)\|^3,$$

we see that

$$\frac{\|\nabla u\|^3}{W_0^3} > \frac{1}{4}.$$

Then,

$$\frac{1}{4} \frac{\left\|\nabla u(x_0)\right\|^2 - 1}{W_0^2} < \frac{\left\|\nabla u(x_0)\right\|^3}{W_0^3} \frac{\left\|\nabla u(x_0)\right\|^2 - 1}{W_0^2} < \frac{n}{A} \left(H_1 + R\right),$$

that is,

$$\frac{\left\|\nabla u(x_{0})\right\|^{2}-1}{\left\|\nabla u(x_{0})\right\|^{2}+1} < \frac{4n}{A} \left(H_{1}+R\right),$$

Choosing $A > 8n(H_1 + R)$ it follows

$$\frac{\|\nabla u(x_0)\|^2 - 1}{\|\nabla u(x_0)\|^2 + 1} < \frac{1}{2},$$

 $\mathrm{so},$

$$\|\nabla u(x_0)\| < \sqrt{3}$$

As a consequence,

$$w(x) \le w(x_0) = \|\nabla u(x_0)\| e^{Au(x_0)} \le \sqrt{3} e^{Au(x_0)},$$

thus

$$\sup_{\Omega} \|\nabla u(x)\| \le \sqrt{3} e^{2A \sup_{\Omega} |u|}.$$
(84)

Joining (54) and (84) we obtain

$$\sup_{\Omega} \|\nabla u(x)\| \le \sqrt{3} e^{\frac{2A \sup|u|}{\Omega}} + \sup_{\partial \Omega} \|\nabla u\| e^{\frac{2A \sup|u|}{\Omega}},$$

Choosing

$$A = 1 + 8n \left(\|H\|_1 + R \right).$$

we obtain the desire estimate.

Remark 15. A related global gradient estimate was obtained independently in [7, Prop. 2.2 p. 5].

3 Proof of the theorems

Proof of the main theorem (theorem 4). Let $\Omega \subset M$ with $\partial \Omega$ of class $\mathscr{C}^{2,\alpha}$ for some $\alpha \in (0,1)$ and $\varphi \in \mathscr{C}^{2,\alpha}(\overline{\Omega})$. Elliptic theory assures that the solvability of

problem (P) strongly depends on \mathscr{C}^1 a priori estimates for the family of related problems

$$\begin{cases} \operatorname{div}\left(\frac{\nabla u}{W}\right) = \tau n H(x, u) \text{ in } \Omega, \\ u = \tau \varphi \text{ in } \partial\Omega, \end{cases}$$

$$(P_{\tau})$$

not depending on τ or u.

Let u be a solution of problem (P_{τ}) for arbitrary $\tau \in [0,1]$. Let $w = \phi \circ d + \sup_{\varphi \circ q} |\varphi|$ as in the proof of theorem 8. Then

$$u \leq \sup_{\partial \Omega} |\tau \varphi| \leq \sup_{\partial \Omega} |\varphi| = w \text{ on } \partial \Omega.$$

As before, let Ω_0 be the biggest open subset of Ω having the unique nearest point property. Let $x \in \Omega_0$ and $y = y(x) \in \partial \Omega$ the nearest point to x. Once (22) holds and $\tau \in [0, 1]$ we have that

$$\mp n\tau H(x,\pm w) \le n\tau \left| H(x,\varphi(y)) \right| \le n \left| H(x,\varphi(y)) \right|.$$

From (21) we have

$$\pm \mathfrak{Q}_{\tau}(\pm w) = \mathcal{M}w \mp n\tau H(x, \pm w)(1 + \phi'^2)^{3/2} \le 0.$$

Proceeding as in the proof of theorem 8, we get that w and -w are supersolution and subsolution in Ω_0 , respectively, for the problem (P_{τ}) . This provides a priori height estimate for any solution of the problems (P_{τ}) independently of τ .

On account of assumptions (8) and (9), we can apply theorem 10 to obtain a priori boundary gradient estimate for the solutions of the problems (P_{τ}) .

Elliptic regularity guarantees that any solution u of the related problems (P_{τ}) belongs to $\mathscr{C}^{3}(\Omega)$. We conclude therefore, by applying theorem 14, the desired a priori global gradient estimate independently of τ and u.

Classical elliptic theory (see [12, Th. 11.4 p. 281]), ensures the existence of a solution $u \in \mathscr{C}^{2,\alpha}(\overline{\Omega})$ for our problem (P). Uniqueness follows from the maximum principle.

Proof of theorem 5. We first recall that in $\mathbb{H}^n \times \mathbb{R}$ there exists an entire vertical graph of constant mean curvature $\frac{n-1}{n}$. Explicit formulas were given by Bérard-Sa Earp [5, Th. 2.1 p. 22]. The a priori height estimate for the solutions of the related problems (P_{τ}) follows directly from the convex hull lemma [5, Prop. 3.1 p. 41].

Now, the a priori boundary gradient estimate and the a priori global gradient estimate follows from theorem 13 and theorem 14, respectively. The rest of the proof is the same as before. $\hfill\square$

Proof of theorem 6. Under the hypothesis on M and Ω , Galvez-Lozano [11, Th. 6 p. 12] proved the existence of a vertical graph over Ω with constant

mean curvature $\frac{n-1}{n}$ and zero boundary data. As a matter of fact, such a graph constitutes a barrier for the solutions of the related problems (P_{τ}) .

On the other hand, the strong Serrin condition trivially holds since for $y \in \partial \Omega$ we have

$$(n-1)\mathcal{H}_{\partial\Omega}(y) > (n-1)c > n-1 \ge n \sup_{\Omega \times \mathbb{R}} |\mathcal{H}(x,z)|.$$

Also,

$$\operatorname{Ricc}_{x} \geq -(n-1)c^{2} > -(n-1)\mathcal{H}_{\partial\Omega}(y)$$

Thus, the boundary gradient estimate follows from our theorem 12. The rest of the proof is the same as before. $\hfill \Box$

References

- M. Alexandrino. Hipersuperfícies de Nível de uma função Transnormal. Master's thesis, PUC-Rio, september, 1997.
- [2] Y. N. Alvarez. Critérios de solubilidade de tipo Serrin para problemas de Dirichlet para equações de curvatura média pré-determinada em variedades. PhD thesis, PUC-Rio, december, 2018.
- [3] Y. N. Alvarez and R. Sa Earp. Sharp solvability criteria for Dirichlet problems of mean curvature type in Riemannian manifolds: non-existence results. arXiv e-prints, page arXiv:1902.08662, Feb 2019.
- [4] J. L. M. Barbosa and R. Sa Earp. Prescribed mean curvature hypersurfaces in Hⁿ⁺¹ with Convex Planar Boundary, II. Séminaire de théorie spectrale et géometrie, Grenoble, 16:43–79, 1998.
- [5] P. Bérard and R. Sa Earp. Examples of H-hypersurfaces in Hⁿ × ℝ and geometric applications. Matemática Contemporânea, 34(2008):19–51, 2008.
- [6] S. Bernstein. Sur les surfaces définies au moyen de leur courbure moyenne ou totale. Annales scientifiques de l'École Normale Supérieure, 27:233–256, 1910.
- [7] L. P. Bonorino, J.-B. Casteras, P. K. Kruse, J. Ripoll, and M. Telichevesky. On the asymptotic Dirichlet problem for a class of mean curvature type partial differential equations. arXiv e-prints, page arXiv:1811.09867, November 2018.
- [8] L. Caffarelli, L. Nirenberg, and J. Spruck. Nonlinear second order elliptic equations IV: Starshaped compact Weingarten hypersurfaces. *Current topics in partial differential equations*, pages 47–70, 01 1986.
- [9] M. Dajczer, P. A. Hinojosa, and J. H. de Lira. Killing graphs with prescribed mean curvature. *Calculus of Variations and Partial Differential Equations*, 33(2):231–248, Oct 2008.

- [10] J. Douglas. Solution of the problem of Plateau. Trans., Amer. Math. Soc., 33:263–321, 1931.
- [11] J. A. Gálvez and V. Lozano. Geometric barriers for the existence of hypersurfaces with prescribed curvatures in $M^n \times \mathbb{R}$. Calculus of Variations and Partial Differential Equations, 54(2):2407–2419, Oct 2015.
- [12] D. Gilbarg and N. S. Trudinger. *Elliptic Partial Differential Equations of Second Order*. Classics in Mathematics. Springer-Verlag, 2001.
- [13] H. Jenkins and J. Serrin. The Dirichlet problem for the minimal surface equation in higher dimensions. Journal für die reine und angewandte Mathematik, 229:170–187, 1968.
- [14] Y. Li and L. Nirenberg. Regularity of the distance function to the boundary. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 29:257–264, 2005.
- [15] B. Nelli and R. Sa Earp. Some properties of hypersurfaces of prescribed mean curvature in Hⁿ⁺¹. Bulletin des Sciences Mathématiques, 120:537– 553, 01 1996.
- [16] P. Petersen. *Riemannian Geometry*. Graduate Texts in Mathematics. Springer New York, 1998.
- [17] T. Radó. The problem of the least area and the problem of Plateau. Mathematische Zeitschrift, 32(1):763–796, 1930.
- [18] J. Serrin. The Problem of Dirichlet for Quasilinear Elliptic Differential Equations with Many Independent Variables. *Philosophical Transactions of* the Royal Society of London. Series A, Mathematical and Physical Sciences, 264(1153):413–496, 1969.
- [19] J. Spruck. Interior gradient estimates and existence theorems for constant mean curvature graphs in $M^n \times R$. Pure and Applied Mathematics Quarterly, 3(3):785–800, 2007.

Yunelsy N. Alvarez Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Rio de Janeiro, 22451-900 Brazil Email address: ynapolez@gmail.com

Ricardo Sa Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Rio de Janeiro, 22451-900 Brazil Email address: rsaearp@gmail.com