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Abstract. In the product space Hn × R, we obtain uniform a
priori C0 horizontal length estimates, uniform a priori C1 bound-
ary gradient estimates, as well as uniform modulus of continuity,
for a class of horizontal minimal equations. In two independent
variables, we derive an uniform global a priori C1 estimates and
we infer an existence result.

1. Introduction

In this paper, we derive uniform a priori horizontal length estimates
and uniform a priori boundary gradient estimates for positive smooth
solutions of a wider class of quasilinear elliptic equations, indexed by
the parameter ϵ ∈ [0, 1]. We call such equations the ϵ-horizontal min-
imal equations (see equation (5)). If ϵ = 0, we find the horizontal
minimal equation [42, Equation 32].

The uniform C0 estimates for positive smooth solutions on bounded
domains, continuous up to the boundary, is obtained by comparing, by
maximum principle, such solutions with certain geometric subsolutions
and supersolutions. These a priori C0 estimates depends on the width
of the domain and on the boundary value data.

In the same sprit as in [44], we obtain uniform a priori boundary gra-
dient estimates on arbitrary bounded smooth convex domains for solu-
tions of equation (5), that are smooth and positive up to the boundary.
Indeed, we provide uniform analytic barriers on bounded C0 convex do-
mains to ensure uniform modulus of continuity for positive continuous
solutions of (5) that are continuous and positive up to the boundary.

In the case of two variables, we are able to derive uniform a priori
global C1 estimates on bounded smooth convex domains, making an
additional (strong) assumption on the horizontal length. However, this
assumption is compatible with the geometry of the ambient space, i.e.,
it is invariant by hyperbolic translations.

Date: April 1, 2016.
2000 Mathematics Subject Classification. 53C42, 35J25.
The author wish to thank CNPq, FAPERJ of Brazil, for a financial support.

1



2 RICARDO SA EARP

We obtain an existence result for the ϵ-horizontal minimal equation
in two independent variables on bounded smooth convex domains, tak-
ing certain smooth positive boundary value data. This existence result
is, in certain sense, a counterpart of a non-existence results discussed
below.

Particularly, we derive the following consequence. Given a smooth
positive function f on ∂Ω; if c0 is a constant large enough, then there
exists a solution of the ϵ- horizontal minimal equation in Ω, taking
boundary value data f + c0 on ∂Ω. Actually, it suffices to take c0
greater than the sum of the oscillation of the boundary data f with
the half of the horizontal width of the domain Ω.

The techniques use suitable barriers and the maximum principle,
combined with our a priori uniform C1 estimates. Then, we are able
to apply the Leray-Schaulder theorem and method [2], [17], [18] to
accomplish the proof of our existence result.

Existence results for the Dirichlet problem for the ϵ-horizontal min-
imal equation in n > 3 variables is an open problem.

We point out that if ϵ > 0, the equation is strictly elliptic, but if
ϵ = 0 this fact is no longer true in general. Indeed, there are many
examples that can be constructed to show lack of strictly ellipticity
for the horizontal minimal equation, even on bounded domains. We
give now a significant example of this phenomenon in two variables.
Just take g(x, t) = x sinh t, 0 < x < 1, 0 < t < 1. It is easy to
verify that y = g(x, t) satisfies the horizontal minimal equation. A
simple verification shows that if x → 0, then the first eigenvalue of
the horizontal minimal operator goes to zero. On the other hand, it
is amazing that the vertical minimal equation is strictly elliptic for all
values of the independent variables [42, Equation 4], [45, Equation 6].

Notice that there is a non-existence result that follows from the as-
ymptotic principle proved by E. Toubiana and the author in [45, The-
orem 2.1]. Namely, there is no horizontal minimal graph given by a
function g ∈ C2(Ω) ∩ C0(Ω) on a bounded smooth strictly convex do-
main Ω, taking zero boundary data on ∂Ω. Furthermore, there is no
horizontal minimal graph in H2×R, over a bounded Jordan domain Ω
strictly contained in an horizontal slab of height π, given by a function
g ∈ C2(Ω) ∩ C0(Ω), taking zero asymptotic boundary data on ∂Ω [45,
Corollary 2.1].

The theory of minimal and constant mean curvature surfaces in the
product space H2 × R, where H2 is the hyperbolic plane is now a rich
field of intense research. The notion of vertical graph has a major
importance in this theory. The first main results about minimal vertical
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graphs were derived by B. Nelli and H. Rosenberg [36]. Since then, a
significant progress in the theory has been achieved, see, for instance,
[45], [28], [27], [29]. When the ambient space is Hn × R, the notion of
vertical mean curvature equation in n independent variables has also
been established and developed [49], [47], [25], [4].

On the other hand, there exists a notion of graph called “horizontal
graph” that has been focused in the theory of minimal and constant
mean curvature surfaces [42], [43].

The notion of horizontal graph arises naturally in the theory of hy-
persurfaces in Hn×R. There are many interesting examples of minimal
and constant mean curvature horizontal graphs in Hn×R given by ex-
plicit formulas. In fact, there are complete horizontal minimal graphs
and there are entire horizontal constant mean curvature graphs [6], [7],
[13], [14].

We notice, that another notion of horizontal graph appears naturally
in the theory, as well. More precisely, they are horizontal graph with
respect to a geodesic of H2. This notion arises in the proof of a Schoen
type result for minimal surfaces in H2 × R [21].

We choose the upper half-plane model of hyperbolic plane H2 =

{(x, y), y > 0}, endowed with the hyperbolic metric dσ2 =
dx2 + dy2

y2
·

A horizontal graph in H2 × R is the set S = {(x, g(x, t), t), (x, t) ∈
Ω} ⊂ H2 × R , where Ω ⊂ ∂∞H2 × R is a domain and g(x, t) > 0,
for every (x, t) ∈ Ω. This means that in any slice of H2 × R given by
t = cst, each horizontal geodesic x = cst, y > 0 intersects S in one point
at most. We call the positive function g(x, t) the horizontal length of
the graph. If S is a horizontal minimal graph in H2 × R the positive
function g(x, t) satisfies equation (4).

It is worthwhile to notice that the horizontal minimal equation (4)
is not invariant by Euclidean translations along the y-axis. Of course,
the structure of the horizontal minimal equation does not ensure the
uniqueness of the solution of the Dirichlet problem on bounded do-
mains. Now, looking to the model minimal surfaces described in [45,
Proposition 2.1] and used in [43, Proof of Theorem 1.1] to prove a
Bernstein type theorem, we see that there is a family of horizontal
minimal graphs over rectangles R of t-height greater than π taking
zero boundary data over ∂R. Furthermore, over domains of arbitrarily
large x- width, each element of this family takes arbitrarily small posi-
tive constant boundary data over a bounded domain in a rectangle R,
but the family attains arbitrarily large horizontal length. Thus, for the
horizontal minimal equation, it follows that the dependence of the a



4 RICARDO SA EARP

priori horizontal length estimates on the width of the domain is quite
natural.

However, over certain admissible convex domains such that the bound-
ary data has an admissible bounded slope condition, the solution is the
Morrey’s solution of the Plateau problem [30]. This result follows from
the uniqueness theorem established in [43]. The uniqueness or the
non-uniqueness of the Dirichlet problem for the ϵ- horizontal minimal
equation on bounded convex domains and positive boundary data is
an open problem.

We remark that we need to consider the family of ϵ- horizontal min-
imal equations in order to prove the existence of our Dirichlet problem
for the horizontal minimal equation. The scheme of our construction is
the following. First, we prove the existence result in the strictly elliptic
situation,i. e. when ϵ > 0. Then, we are able to deduce it for ϵ = 0;
that is, we get a solution for the horizontal minimal equation. In fact,
in view of our uniform a priori C1 global estimates and elliptic theory,
this solution is obtained as the limit in the C2-topology of a sequence
gϵn , as 0 < ϵn → 0, satisfying the ϵn- horizontal minimal equation.

Acknowledgments: The author warmly thanks to Eric Toubiana
and Barbara Nelli for their valuable observations.

2. The ϵ-horizontal minimal equation in Hn × R.

In this section we give some computations, some model subsolutions
and supersolutions and we write down some basic properties of the
ϵ-horizontal minimal equation in the product space Hn × R.

We choose the upper half-plane model of the hyperbolic plane Hn =
{(x1, x2, . . . , xn−1, y), y > 0}, endowed with the hyperbolic metric dσ2 =
dx21 + · · ·+ dx2n−1 + dy2

y2
. The asymptotic boundary of Hn, denoted by

∂∞Hn is the set ∂∞Hn = {(x1, x2, . . . , xn−1, y); y = 0} ∪ {∞}, see [46,
Chapter 3]. The space Hn × R is endowed with the product metric
dσ2 + dt2.

A horizontal graph in Hn × R is the set
S = {(x1, x2, . . . , xn−1, g(x1, x2, . . . , xn−1, t), t), (x1, x2, . . . , xn−1, t) ∈
Ω} ⊂ Hn × R, where Ω ⊂ ∂∞Hn × R is a domain and
g(x1, x2, . . . , xn−1, t) > 0, (x1, x2, . . . , xn−1, t) ∈ Ω. This means that
at any slice of Hn × R given by t = cst, each horizontal geodesic
(x1, x2, . . . , xn−1) = cst, y > 0 intersects S at most on one point.

We give now the computations of some important geometric quan-
tities of the horizontal graph S. Let us consider the natural global
adapted tangent field on S given by Xx1 = (1, 0, . . . , 0, gx1 , 0), . . . ,
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Xn−1 = (0, . . . , 0, 1, gxn−1 , 0), Xt = (0, . . . , 0, gt, 1). We denote by gij
and by bij the coefficients of the first and second fundamental forms,
respectively (with respect to the adapted frame field).

Let us define the quantity
W := g2

(
1 + g2x1

+ · · ·+ g2xn−1

)
+ g2t .

• The coefficients of the first fundamental form are

gkk =
1+g2xk
g2

, 1 6 k < n, gjk =
gxj gxk

g2
, 1 6 j < k < n,

gnk =
gxkgt
g2

, 1 6 k < n, gnn =
g2+g2t
g2

.

• The inverse of the matrix (gij) is the matrix (gij) given by

gkk =
[
g2
(
1 + g2x1

+ · · ·+ ĝ2xk
+ · · · g2xn−1

)
+ g2t

]
· g2

W
,

1 6 k < n.
gkj = −g2gxj

gxk
· g2

W
, 1 6 j < k < n.

gnk = −gtgxk
· g2

W
, 1 6 k < n.

gnn =
(
1 + g2x1

+ · · ·+ g2xn−1

)
· g2

W
.

Let us assume that our horizontal graph S is oriented by the unit
normal N given by

(1) N =
(
−gx1g

2,−gx2g
2, . . . ,−gxn−1g

2, g2,−gt
)
· 1

W 1/2

• The coefficients of the second fundamental form are given by

bkk =
(

1
g
+ gxkxk

+
g2xk
g

)
· 1

W 1/2 , 1 6 k < n.

bkj =
(
gxkxj

+
gxkgxj

g

)
· 1

W 1/2 , 1 6 j < k < n.

bnk = gtxk
· 1

W 1/2 , 1 6 k < n.

bnn =
(
gtt − g2t

g

)
· 1

W 1/2 .

Proposition 2.1. Let S be a horizontal graph oriented by the unit
normal N given by (1). Let H = H(N) be the mean curvature of S.

Then the horizontal mean curvature equation is given by
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(2) MH(g) =
nH

g2
(
g2
(
1 + g2x1

+ · · ·+ g2xn−1

)
+ g2t

)3/2
where

MH(g) :=
n−1∑
k=1

gxkxk

[
g2
(
1 + g2x1

+ · · ·+ ĝ2xk
+ · · · g2xn−1

)
+ g2t

]
+

(
1 +

n−1∑
k=1

g2xk

)
gtt

−2
n−1∑
k=1

gxk
gtgxkt−2g2

∑
16j<k6n−1

gxj
gxk

gxjxk
+(n−1)g

(
1 +

n−1∑
k=1

g2xk

)
+(n−2)

g2t
g

Now, if S is a horizontal minimal graph in Hn × R, i.e. H = 0,
then the positive function y = g(x1, x2, . . . , xn−1, t) that we call the
horizontal length satisfies the equation

(3) MH(g) = 0

If n = 2 we recover the horizontal minimal equation in H2 × R [42,
equation (2)]:

(4) MH(g) = gxx(g
2 + g2t ) + gtt(1 + g2x)− 2gxgtgxt + g(1 + g2x) = 0.

From now on, we focus on a 1- parameter family of elliptic equations
including equation (3). Given a constant ϵ ∈ [0, 1], we say that a
positive C2 function g on a domain Ω is a solution of the ϵ-horizontal
minimal equation, if it satisfies the following quasilinear elliptic P.D.E:

(5)

MHϵ(g) :=
n−1∑
k=1

[
g2
(
1 + g2x1

+ · · ·+ ĝ2xk
+ · · · g2xn−1

)
+ g2t +

ϵ

n− 1

]
gxkxk

+

(
1 +

n−1∑
k=1

g2xk

)
gtt − 2

n−1∑
k=1

gxk
gtgxkt − 2g2

∑
16j<k6n−1

gxj
gxk

gxjxk

+ (n− 1)g

(
1 +

n−1∑
k=1

g2xk

)
+ (n− 2)

g2t
g

= 0
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Setting akk(g,Dg) :=
[
g2
(
1 + g2x1

+ · · ·+ ĝ2xk
+ · · · g2xn−1

)
+ g2t +

ϵ
n−1

]
, k =

1, . . . n−1, ann(g,Dg) =

(
1 +

n−1∑
k=1

g2xk

)
and akn(g,Dg) = −gxk

gt, k =

1, . . . n − 1, ajk(g,Dg) = −g2
∑

16j<k6n−1

gxj
gxk

, then the symmetric

matrix aij(g,Dg), i, j = 1, . . . , n is positive, and satisfies

(6)
∑
i,j

aij(g,Dg)ξiξj 6 trace(aij(g,Dg))
n∑

k=1

ξ2k =(
1+ ϵ+g2(n−1)+(g2(n−2)+1)(g2x1

+ · · ·+ · · · g2xn−1
)+(n−1)g2t

)
|ξ|2

6
(
2+g2(n−1)+

(
max{1, g2}(n− 2) + 1

) (
g2x1

+ · · ·+ g2xn−1
+ g2t

))
|ξ|2
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And

(7)∑
i,j

aij(g,Dg)ξiξj =
n−1∑
k=1

ξ2k(g
2+

ϵ

n− 1
)+ξ2n+g

2
∑

16j<k6n−1

(
ξkgxj

− ξjgxk

)2
+

n−1∑
k=1

(ξkgt − ξngxk
)2

> min{1, g2}|ξ|2,

where ξ ∈ Rn \ {0}, |ξ|2 =
n∑

k=1

ξ2k.

By invoking inequality (7), we deduce that the ϵ-horizontal minimal
equation (5) is a second order quasilinear elliptic equation. Of course,
if ϵ > 0, equation (5) is strictly elliptic. If ϵ = 0 and if g is a C2 positive
function on a bounded domain Ω, continuous up to the boundary, then
(5) is a strictly elliptic equation (cf. Section 3, inequality (8)).

Remark 2.1. It is worth noticing that L. Hauswirth, H. Rosenberg and
J. Spruck proved a half-space theorem for properly embedded constant
constant mean curvature 1/2 surfaces in H2×R, where the construction
of H = 1/2 horizontal graphs play a significant role in the proof [20,
Theorem 1.1].

We recall now the definition of subsolution and supersolution [45],
[47]. We say that a C2 function u : Ω → R is a subsolution of equation
(5) in a domain Ω, if MHϵ(u) > 0, in Ω. We say that w : Ω → R is
a supersolution if MHϵ(w) 6 0. It is well-known that elliptic theory
ensures the following [39],[17], [40]:

Proposition 2.2 (Classical maximum principle ). Let u : Ω → R
and w : Ω → R be a subsolution and a supersolution, for equation (5),
respectively. Then if u 6 w in Ω and if there is a point p ∈ Ω such that
u(p) = w(p), it follows that u = w in Ω.

Remark 2.2.

(1) Is is easy to see that the Euclidean n-planes in Hn×R given by

y =
n−1∑
k=1

akxk+bt+c; a, b, c ∈ R, y > 0 are positive subsolutions

of equation (5). In particular the horocylinders given by y =
c, c > 0, are subsolutions of (5).
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(2) Of course, the vertical geodesic n-planes P = P(R, x0) =
{(x1, . . . , xn−1, y, t) ∈ Hn × R;
y =

√
R2 − (x1 − a1)2 − · · · − (xn−1 − an−1)2, t ∈ (−∞,∞),

R2 − (x1 − a1)
2 − · · · − (xn−1 − an−1)

2 > 0}, where R > 0 and
a1, . . . , an−1 ∈ R, are solutions of equation (3). Moreover, it is
routine to check that they are supersolutions for equation (5),
as well.

(3) Minimality is invariant by a positive isometry of Hn × R given
by a hyperbolic translation of Hn × {0} along a horizontal ge-
odesic L [46]. Particularly, the homothety in Hn with cen-
ter (a1, . . . , an−1) ∈ Rn−1, ratio λ > 0, keeping Hn invariant
gives rise to an isometry of the product space Hn ×R given by

(x1, . . . , xn−1, y, t) 7→
(
λ [(x1, . . . , xn−1, y)− (a1, . . . , an−1, 0)]+

(a1, . . . , an−1, 0), t
)
. In view of this observation, we deduce that

if y = g(x1, . . . , xn−1, t) is a positive solution of (3) on a do-
main Ω then y = λg(x1

λ
, . . . , xn−1

λ
, t), λ > 0 is also a solution of

(3) on Tλ(Ω), where Tλ is the linear map given by the matrix(
λ In−1 0

0 1

)
, and where In−1 is the n−1×n−1 identity matrix.

(4) Important model minimal hypersurfaces in Hn × R are the hy-
persurfaces invariant by hyperbolic translations. They are com-
plete horizontal minimal graphs, constructed by P. Bérard and
the author, if n > 3 [6, Theorem 3.8]. The minimal hypersur-
faces in Hn×R invariant by parabolic transations are complete
horizontal graphs. They were obtained by M. F. Elbert and the
author [13, Theorem 3.2], if n > 3.

3. Uniform horizontal length estimates

In this section we infer uniform horizontal length estimates for so-
lutions of equation (5) over bounded domains that are continuous and
positive up to the boundary. In order to do that, we find minimal and
constant mean curvature surfaces that will be used as barriers.

We need to define some geometric quantities that will be useful in
the sequel.

Definition 3.1. Let Ω ⊂ ∂∞Hn × R be a bounded C0 domain with
boundary Γ. Let f ∈ C0(Γ) be a positive function. If n = 2, let

h(Γ) = max
Γ

x|Γ −min
Γ
x|Γ



10 RICARDO SA EARP

be the horizontal width of the domain Ω, where x|Γ is the restriction
of the x coordinate to Γ. We define

R(Ω, f) :=

√
max

Γ
f 2 +

(
h(Γ)

2

)2

If n > 3, let Ωπ be the orthogonal projection of Ω on ∂∞Hn × {0}.
We denote by diam(Ωπ) the diameter of Ωπ.

We define r(Ω) by the radius of the smallest n− 1 closed round disk
containing Ωπ, with center in Ωπ. Clearly,
diam(Ωπ)

2
6 r(Ω) < diam(Ωπ).

We set
R(Ω, f) :=

√
max

Γ
f 2 + r2(Ω)

We have therefore:

Lemma 3.1 (Uniform horizontal length estimates).
Let Ω ⊂ ∂∞Hn × R be a bounded C0 domain with boundary Γ. Let

f ∈ C0(Γ) be a positive function.
Assume that f admits a positive extension g ∈ C2(Ω)∩C0(Ω) satis-

fying the ϵ-horizontal minimal surface equation in Ω.
Then, the following estimate holds:

(8) min
Γ
f < g < R(Ω, f) in Ω.

Proof. If n = 2 then the proof is based on the observation that the
horocylinders and the vertical geodesic planes are subsolutions and
supersolutions for equation (5), respectively. Let us proceed with the
proof. Let S be the graph of g. Notice that g = y|S is the horizontal
coordinate y restricted to S and f = y|∂S is the horizontal coordinate
y restricted to ∂S.

First, we will deduce the lower bound. Let c0 be a positive constant
such that c0 < min

S
y|S. Consider the family of horocylinders Ps, s > 0

given by y = c0 + s, s > 0. Of course, for s = 0, S is contained in
the mean convex side of P0, that is, the horizontal length of S satisfies
y|S > c0. Now letting s ↑ ∞ we find a first point of contact of S with
the family Ps. By the maximum principle this first point of contact
should be at a point of the boundary ∂S, hence the whole surface S
should be strictly contained in the mean convex side of the horocylinder
y = min

Γ
f, i.e y|S\∂S > min

Γ
f, or equivalently g > min

Γ
f in Ω, as

desired.
To obtain the upper bound, we argue as follows.

Consider the geodesic plane P(Γ) given by Remark 2.2 (2), where x0 =
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x0(Γ) :=
(
max

Γ
x|Γ +min

Γ
x|Γ
)
/2 and R = R(Ω, f) =√

max
Γ

(y|Γ)2 +
(

max
Γ

x|Γ
2

−
min
Γ

x|Γ
2

)2

. By construction, ∂S ⊂ P+(Γ) :=

{(x, y, t) ∈ H2 × R; y 6
√
R2(Ω, f)− (x− x0(Γ))2}. Consider now

the family of geodesic planes Ps = P(R(Γ) + s, x0(Γ)), s > 0,P0 =
P(Γ). Of course, for s big enough, we have that S is contained in
the same connected component of H2 × R \ Ps(Γ) as ∂S, that is S ⊂
{(x, y, t) ∈ H2 × R; y <

√
(R(Γ) + s)2 − (x− x0(Γ))2}. Now letting

s ↓ 0 we cannot find a point of contact for s > 0, by maximum principle.
In contrary, we should find a first interior point of contact of S with
some geodesic plane of the family for some s0 > 0. Since this first point
of contact should be an interior point, we deduce that S would be part
of the geodesic plane Ps0 . Hence, the horizontal projection of whole S
in H2 ×{0}, would be contained in the geodesic (half Euclidean circle)
y2 + (x− x0(Γ))

2 = (R(Ω, f) + s)2, y > 0, which gives a contradiction.
We conclude therefore that S ⊂ P+(Γ). Thus, we have y|S 6 R(Ω, f).

For the same reason we cannot find an interior point of contact when,
during the movement toward the original position at s = 0, the family
reaches P(Γ). Indeed if this could happen then S would be a part of the
geodesic plane P(Γ), so that the horizontal projection of Γ would be an
arc of the geodesic y2 + (x− x0(Γ))

2 = (R(Ω, f))2, y > 0 with positive
length. Since the intersection of the horizontal projection of Γ with
such geodesic consists at most of two points, we get a contradiction.
Henceforth, we obtain the strictly inequality y|S\Γ < R(Ω, f). This
completes the proof of the Lemma, if n = 2.

Now, if n > 2 the structure of the proof is the same. Let us consider
again S = graph (g). Notice that our assumption implies that ∂S lies
in the side of a n-dimensional vertical geodesic plane SR(Ω,f) × R ⊂
Hn × R, whose asymptotic boundary contains Ωπ. Where SR(Ω,f) is a
n − 1 geodesic plane in Hn (Euclidean n − 1 halfsphere) of Euclidean
radius R(Ω, f).

We now accomplish the proof, as follows: We can use the n dimen-
sional horocylinders to obtain the horizontal lower length bounds for
(5), in the same way as in the case n = 2. Moreover, the n-dimensional
vertical totally geodesic planes (Remark 2.2 (2)) can be employed, to
obtain the desired horizontal upper bounds for (5), working similarly
as in the case n = 2. �

Remark 3.1. The proof shows that the estimate hold if we allow the
solutions to be nonnegative on the boundary.
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4. Uniform boundary gradient estimates and
modulus of continuity

In this section we build uniform barriers at any point of the boundary
of a bounded convex smooth domain, for a positive smooth solution
g of the ϵ-horizontal minimal equation C1 up to the boundary. We
obtain in fact these a priori gradient estimates in the sprit of [44], on
account of the techniques explained by Gilbarg and Trudinger [17]. We
also construct analytic barriers to get an uniform modulus of continuity
along the boundary of a bounded convex domain, for a positive solution
g of the ϵ-horizontal minimal equation C0 up to the boundary.

Definition 4.1. We say that a C0 domain Ω ⊂ ∂∞Hn×R is convex if,
for any p ∈ ∂Ω, Ω lies in one side of some n− 1-plane Π of ∂∞Hn × R
passing through p, i.e p ∈ Π ∩ ∂Ω and Π ∩ Ω = ∅.

We need now the definition of the quantity R(Ω, f) raised in Defini-
tion 3.1.

Theorem 4.1 (Uniform boundary gradient estimates I). Let
Ω ⊂ ∂∞Hn × R be a C2 bounded domain. Let φ ∈ C2(Ω) be a pos-
itive function. Let g ∈ C2(Ω) ∩ C1(Ω) be a positive solution of the
ϵ-horizontal minimal equation (5) in Ω, such that g = φ on Γ = ∂Ω,
ϵ ∈ [0, 1]. Assume that Ω is convex. Then, the following estimate holds.

(9) max
Γ

|Dg| 6 C

where C = C(min
Γ
g,max

Γ
g, r(Ω),max

Ω
φ,max

Ω
|Dφ|,max

Ω
|D2φ|).

Proof. Let g be a solution of the ϵ-horizontal minimal equation as in
the statement of the Theorem.

It suffices to get a priori estimates for the normal derivatives at
any point p ∈ ∂Ω. We obtain first the upper bound for the normal
derivatives constructing an upper barrier.

We define

(10) ψ(d) :=
1

b1
ln

(
1 +

e
(R(Ω,f)+max

Ω
φ) b1 − 1

δ1
d

)
where b1 and δ1 are positive constants to be defined later.

Let p ∈ ∂Ω and let Π be the n − 1-plane passing through p as
in Definition 4.1 and let d(q) = d(q,Π), q ∈ Ω, where d(q,Π) is the
Euclidean distance from q to Π. We define v(q) := ψ(d(q)), q ∈ Ω. Of
course, v(p) = 0.
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Let w = φ+ v and let MHϵ be the strictly elliptic operator given by

(11)

MHϵ(w) :=
n−1∑
k=1

[
g2
(
1 + w2

x1
+ · · ·+ ŵ2

xk
+ · · ·w2

xn−1

)
+ w2

t +
ϵ

n− 1

]
wxkxk

+

(
1 +

n−1∑
k=1

w2
xk

)
wtt − 2

n−1∑
k=1

wxk
wtwxkt − 2g2

∑
16j<k6n−1

wxj
wxk

wxjxk

+ (n− 1)g

(
1 +

n−1∑
k=1

w2
xk

)
+ (n− 2)

w2
t

g

:= aij(g,Dw)Dijw + (n− 1)g

(
1 +

n−1∑
k=1

w2
xk

)
+ (n− 2)

w2
t

g

(using summation convention)

In view of inequalities (7) and (6) we have:

(12) min{1, g2}|ξ|2 6 aij(g,Dw)ξiξj 6(
2+g2(n−1)+

(
max{1, g2}(n− 2) + 1

)
|Dw|2

)
|ξ|2 inΩ

Now by invoking the horizontal length estimates (Lemma 3.1), it
follows that

(13) min{1,min
Γ
g2}|ξ|2 6 aij(g,Dw)ξiξj inΩ

SetΛ1 := 2 + g2(n− 1) +
(
max{1, g2}(n− 2) + 1

)
|Dw|2

= 2 + g2(n− 1) +
(
max{1, g2}(n− 2) + 1

)
|Dφ+Dv|2 inΩ.

We deduce the following inequalities:
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(14)

Λ1 < 2+R2(Ω, f)(n−1)+
(
max{1, R2(Ω, f)}(n− 2) + 1

)
|Dφ+Dv|2

< 2+R2(Ω, f)(n−1)+2
(
max{1, R2(Ω, f)}(n− 2) + 1

)
(|Dφ|2+|Dv|2)

6 2 +R2(Ω, f)(n− 1) + 2
(
max{1, R2(Ω, f)}(n− 2) + 1

)
|Dφ|2

+ 2
(
max{1, R2(Ω, f)}(n− 2) + 1

)
|Dv|2

6
(
2+R2(Ω, f)(n−1)+2

(
max{1, R2(Ω, f)}(n− 2) + 1

)
|Dφ|2

)
|Dv|2

+2
(
max{1, R2(Ω, f)}(n− 2) + 1

)
|Dv|2, whenever |Dv| > 1

6
(
2+R2(Ω, f)(n−1)+2

(
max{1, R2(Ω, f)}(n− 2) + 1

)
(|Dφ|2+1)

)
|Dv|2,

whenever |Dv| > 1

Set
(15)

α1 :=

(
2 +R2(Ω, f)(n− 1) + 2 (max{1, R2(Ω, f)}(n− 2) + 1) (max

Ω
|Dφ|2 + 1)

)
min{1,min

Γ
g2}

.

By combining (13), (14) and (15) we have

(16) Λ1 < α1 min{1,min
Γ
g2}|Dv|2

< α1 aij(g,Dφ+Dv)DivDjv, whenever |Dv| > 1

< α1 F , whenever |Dv| > 1

where F := aij(g,Dφ+Dv)DivDjv.

Now set Λ2 := 1 + |Dw|2 = 1 + |Dφ + Dv|2. In the same way as in
proof of the inequalities (14), we deduce

(17) Λ2 < α2F , whenever |Dv| > 1

whereα2 =
3 + 2max

Ω
|Dφ|2

min{1,min
Γ
g}
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From (11), (14), and from the definitions of w, F , α1 and α2, we get

(18)

MHϵ(φ+ v) = aijDijv + aijDijφ+ (n− 1)g

(
1 +

n−1∑
k=1

(φxk
+ vxk

)2

)

+ (n− 2)
(φt + vt)

2

g

= aijψ
′′(d)DidDjd+ aijDijφ+ (n− 1)g

(
1 +

n−1∑
k=1

(φxk
+ vxk

)2

)

+ (n− 2)
(φt + vt)

2

g

(since d is linear)

6 aij
ψ′′(d)

ψ′(d)2
DivDjv+Λ1|D2φ|+(n− 1)g

(
1 +

n−1∑
k=1

(φxk
+ vxk

)2

)

+ (n− 2)
(φt + vt)

2

g

< aij
ψ′′(d)

ψ′(d)2
DivDjv + Λ1|D2φ|

+max

{
(n− 1)max

Ω
g,
n− 2

min
Γ
g

}
(1 + |Dφ+Dv|2)

6 −b1aijDivDjv + Λ1|D2φ|

+max

{
(n− 1)max

Ω
g,
n− 2

min
Γ
g

}
(1 + |Dφ+Dv|2)

< −b1F +(max
Ω

|D2φ|)α1 F +max

{
(n− 1)max

Ω
g,
n− 2

min
Γ
g

}
α2 F

< (−b1 + α) F , whenever |Dv| > 1,

whereα := (max
Ω

|D2φ|)α1 +max

{
(n− 1)max

Ω
g,
n− 2

min
Γ
g

}
α2

Now we choose b1 and δ1 such that

(1) b1 > α .
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(2)
e
(R(Ω,f)+max

Ω
φ) b1 − 1

δ1
> b1e

(R(Ω,f)+max
Ω

φ)b1
.

With these choices of b1 and δ1 we get that |Dv| = ψ′(d) > 1
if d 6 δ1.

Define N = {q ∈ Ω; d(q) < δ1}. From the choices of b1 and δ1 above
we deduce that w = φ + v is a positive supersolution of (11); that
is, MHϵ(φ + v) < 0 in N . Observe that the linear elliptic operator
L given by L[g − (φ + v)] := MHϵ(g) − MHϵ(φ + v) = MHϵ(g) −
MHϵ(φ + v) = −MHϵ(φ + v) > 0 in N , since g is a positive solution
of the ϵ-horizontal minimal equation, by assumption. Furthermore,
L[g − (φ + v)] satisfies the Hopf maximum principle. Recall now that
g < R(Ω, f), by Lemma 3.1. On ∂N ∩ Ω we get g < R(Ω, f) 6 φ +
R(Ω, f)+max

Ω
φ = φ+v. On ∂Ω∩∂N we have g = φ 6 φ+v. Hence g 6

φ+ v in N , by the maximum principle. Moreover, g(p) = φ(p) + v(p).
Therefore, w = φ+v is an upper barrier (since g(q) 6 w(q), q ∈ N and
g(p) = w(p)). From this, the upper bound for the normal derivatives
follows. We obtain henceforth the desired boundary gradient upper
bound.

To obtain the lower bound for the normal derivatives, we will con-
struct a lower barrier. Consider φ− v. Note that φ(p)− v(p) = φ(p) =
g(p) > 0. Notice that there exists a connected part N of N , containing
p, such that φ− v > 0 in N. We derive the following computations.

(19)

MHϵ(φ− v) = −aijDijv+aijDijφ+(n−1)g

(
1 +

n−1∑
i=1

(φxk
− vxk

)2

)

+ (n− 2)
(φt − vt)

2

g

= b1aijDivDjv + aijDijφ+ (n− 1)g

(
1 +

n−1∑
i=1

(φxk
− vxk

)2

)

+ (n− 2)
(φt − vt)

2

g

> b1 min{1,min
Γ
g2}|Dv|2 −max

Ω
|D2φ|Λ1

Thus

MHϵ(φ− v) > 0, whenever |Dv| > 1,
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if b1 is chosen big enough. So with this choice of b1, it follows that
φ− v is a subsolution of (11). Noticing that on ∂N ∩ Ω, v = ψ(δ1) =
max
Ω

φ+R(Ω, f), we deduce that on ∂N∩Ω we have φ−v = φ−max
Ω

φ−
R(Ω, f) < 0 < g. And on ∂Ω∩∂N , we have φ−v 6 φ = g, hence φ−v 6
g on N , by the maximum principle and g(p) = φ(p) − v(p). We thus
infer the a priori lower bound for the normal derivatives. Therefore we
obtain the desired a priori boundary gradient estimates. This completes
the proof of the Theorem. �
Remark 4.1. For a C2,α domain Ω for some 0 < α < 1 whose boundary
has positive mean curvature, we can find a simpler and more geometric
a priori lower bounds for the gradient. In fact, these domains satisfies
a boundary slope condition and the Euclidean n-planes can be used
as lower barriers, since they are subsolutions of the ϵ-horizontal mean
equation (5).

Recall now that the minimal equation in Euclidean space is given by

(20) div

(
∇u
W (u)

)
:=

n∑
i=1

∂

∂xi

(
uxi√

1 + ∥∇u∥2Rn

)
= 0

Definition 4.2. Let Ω ⊂ Rn be a C2,α bounded convex domain for
some 0 < α < 1, with boundary Γ. Let f ∈ C2,α(Γ). We define by
φ̂ ∈ C2,α(Ω) the unique minimal solution of the minimal equation in
Euclidean space in Ω, taking the prescribed boundary data f on Γ, given
by Jenkins and Serrin [23].

We recall that the maximum principle and the use of the Euclidean
n-planes as barriers ensures that min

Γ
f 6 φ̂ 6 max

Γ
f in Ω.

The following Lemma is well-known and we will use it in the proof
of the next Lemma. We will write a proof for completeness.

Lemma 4.1. Let Ω ⊂ Rn be a C2,α bounded convex domain for some
0 < α < 1. Let Γ = ∂Ω and let f ∈ C2,α(Γ) be a positive function.

For each s ∈ [1/2, 1], let φ̂s ∈ C2,α(Ω) be the unique solution of (20)
taking the prescribed boundary value data (2s− 1)f +2(1− s)min

Γ
f on

Γ. Then there exists a constant K, independent of s, such that

(21) max
Ω

|Dφ̂s|+max
Ω

|D2φ̂s| 6 K

Proof. For the readers convenience, we outline a proof, as follows.
First, note that the Extension Lemma [17, Lemma 6.38] provides a



18 RICARDO SA EARP

C2, α(Ω) extension φs of (2s−1)f+2(1−s)min
Γ
f such that max

Ω
|φs|+

max
Ω

|Dφs| + max
Ω

|D2φs| is bounded by a constant C independent of

s, s ∈ [1/2, 1].
As we have observed before, the maximum principle yields

min
Γ
f 6 φ̂s 6 max

Γ
f, since this inequality occurs on the boundary.

Note also that that the first eigenvalue of the matrix associated to
equation (20) is 1. Now using the extension φs, we can follow, step
by step, the proof of Theorem 4.1, to ensure the bounds for the first
derivatives of φ̂s, independent of s. Then by applying the global a priori
Hölder estimates of Ladyzhenskaya and Ural’tseva [24], [17, Theorem
13.7], we have global Hölder a priori estimates for the first derivatives
of φ̂s, independent of s. Finally, the global a priori Schauder estimates
[17, Theorem 6.6] shows that the C2, α(Ω) norm |φ̂s|C2, α(Ω), is bounded

by a constant K, independent of s, s ∈ [1/2, 1]. This gives the desired
estimate.

�

Let ℓ : [0, 1] → R be a continuous function satisfying 0 6 ℓ(s) 6 1,
ℓ(1) = 1 and ℓ(s) = 0, s ∈ [0, 1/2]. For each s ∈ [0, 1], let us now turn
attention to the positive solutions of the following P.D.E:

(22)
n−1∑
k=1

[
g2
(
1 + g2x1

+ · · ·+ ĝ2xk
+ · · · g2xn−1

)
+ g2t +

ϵ

n− 1

]
gxkxk

+

(
1 +

n−1∑
k=1

g2xk

)
gtt − 2

n−1∑
k=1

gxk
gtgxkt − 2g2

∑
16j<k6n−1

gxj
gxk

gxjxk

+
[
(n− 1)g

(
1 +

n−1∑
k=1

g2xk

)
+ (n− 2)

g2t
g

]
ℓ(s)

= 0

Note that for s = 1, equation (22) reduces to the ϵ-horizontal minimal
equation.

For later purposes, we need a slight refined generalization of the
boundary gradient estimates for C2,α domains and boundary data, on
account of Lemma 4.1 and the above observations.

Theorem 4.2 (Uniform boundary gradient estimates II). Let
Ω ⊂ ∂∞Hn × R be a C2,α bounded convex domain for some
0 < α < 1. Let Γ = ∂Ω and let f ∈ C2,α(Γ) be a positive function.
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For each s ∈ [1/2, 1], let gs ∈ C2,α(Ω) be a positive solution of (22) in
Ω, such that gs = (2s− 1)f + 2(1− s)min

Γ
f on Γ.

Then, for each s ∈ [1/2, 1] the following estimate holds.

(23) min
Γ
f 6 max

Ω
gs < R(Ω, f) on Ω

where R(Ω, f) is given by Definition 3.1

and max
Γ

|Dgs| 6 C

where C = C(min
Γ
f,max

Γ
f, r(Ω), K),

where K is given by Lemma 4.1.

Proof. Let φ̂s be the unique minimal Euclidean extension of (2s−1)f+
2(1− s)min

Γ
f satisfying equation (20).

Notice that, as in the proof of the Theorem 4.1, we have the following
ingredients:
1: First, it is routine to check that min

Γ
f 6 gs|Γ 6 max

Γ
f. On the

other hand, observe that the Euclidean n-planes are subsolutions of
(22). Moreover, the vertical geodesic n-planes (Remark 2.2 (2)) are still
supersolutions of (22), since 0 6 ℓ(s) 6 1,. Consequently, the length
estimate inferred in Section 3 hold with exactly the same statement as
in Lemma 3.1. Thus, by invoking the length estimate, it follows that
min
Γ
f < gs < R(Ω, f) on Ω and min

Γ
f 6 gs < R(Ω, f) on Ω.

2: Secondly, taking into account again that 0 6 ℓ(s) 6 1, inequality
(21), and inequalities (7) and (6), we are able to follow the procedure
of the proof of Theorem 4.1 to obtain the desired estimate.

Noticing that in view of Lemma 4.1 and its proof, we have K in the
place of max

Ω
|Dφ̂s| + max

Ω
|D2φ̂s| and max

Γ
f instead of max

Ω
φ̂s in the

estimate.
This accomplishes the proof of the theorem.

�

Next, we show that a positive solution g ∈ C2(Ω)∩C0(Ω) of (5) has
a uniform modulus of continuity along a bounded convex domain Ω.

Let Γ ⊂ ∂∞Hn × R be a bounded convex hypersurface and let f ∈
C0(Γ). Given ε > 0, the continuity of f yields the existence of a positive
constant δ0 > 0, such that |f(p′)−f(p)| < ε/3, if |p′−p| < δ0, p

′, p ∈ Γ.
We now define the barriers φ± at p ∈ Γ that we need in the next

theorem. Let
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(24) φ±(q) := f(p)± ε

3
±R(Ω, f)

ln(1 + |q − p|2)
ln(1 + δ20)

, q ∈ Ω

where δ0 = δ0(f) is defined in the above paragraph.

Theorem 4.3 (Uniform modulus of continuity). Let Ω ⊂ ∂∞Hn×
R be a C0 bounded domain. Let Γ = ∂Ω and let f ∈ C0(Γ) be a
positive function. Let g ∈ C2(Ω) ∩ C0(Ω) be a positive solution of the
ϵ- horizontal minimal equation (5) in Ω, such that g = f on Γ. Assume
that Ω is convex.

Then, it follows that given ε > 0 there is δ > 0 such that if p ∈ ∂Ω
and q ∈ Ω, satisfy |q − p| < δ, then |g(q)− g(p)| < ε, where
δ = δ(ε, δ0,min

Γ
g,max

Γ
g, r(Ω),max

Ω
|Dφ±|,max

Ω
|D2φ±|).

Proof. The proof is carry out by mimicking the proof of the boundary
gradient estimates, using the barriers φ± (instead of the function φ).
Let ε > 0.

Notice that f 6 φ+ on Γ and f > φ− on Γ.
We need to prove that we can find a suitable constant δ > 0 such

that if |q− p| < δ, q ∈ Ω, p ∈ Γ, then both inequalities g(q) < f(p) + ε
and g(q) > f(p)− ε hold.

To obtain the first inequality we use the barrier w+ = φ++v+, where
the function v+ is defined by v+(q) := ψ+(d(q)), q ∈ Ω, where

(25) ψ+(d) :=
1

b1
ln

(
1 +

eR(Ω,f) b1 − 1

δ1
d

)
Indeed working exactly as in the proof of Theorem 4.1, we can deduce

that w+ is a supersolution of (11) in N , and g 6 φ+ + v+ in N , where
N is defined in the proof of Theorem 4.1. Next, we are able to choose
δ > 0 small enough, δ < δ0, δ < δ1, such that if |q − p| < δ, then
0 6 φ+(q) < f(p) + 2ε/3 and 0 < v+(q) < ε/3. We infer therefore that
if |q − p| < δ then g(q) < f(p) + ε, as desired.

In order to achieve the proof of the theorem, we now define v−(q) :=
ψ−(d(q)), q ∈ Ω, where

(26) ψ−(d) :=
1

b1
ln

(
1 +

e
(R(Ω,f)+max

Ω
|φ−|) b1 − 1

δ1
d

)
Then, we can use the barrier w− = φ− − v−, working as before, to

deduce that w− is a subsolution of (11) in N , and finally, to obtain
that g(q) > f(p)− ε. This accomplishes the proof of the Theorem.

�
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5. Uniform global gradient estimates

In this section we are able to obtain uniform a priori global gradient
estimates for the ϵ-horizontal minimal equation in two independent
variables. The a priori interior gradient bound for the minimal equation
in Euclidean space in two independent variables was established by R.
Finn [15]. The n-dimensional case was done by Bombieri, De Giorgi
and Miranda [8]. Equations of minimal type were first studied by Finn
[15]. He established a priori estimates for the gradient of a solution.
Then H. Jenkins and J. Serrin [22] obtained curvature estimates for
some kind of such equations.

When the ambient is the hyperbolic space, R. López and S. Montiel,
under certain geometric assumptions, obtained one of the first estimate
of the gradient for the constant mean curvature equation. They applied
it to solve a related Dirichlet problem [26].

In his fundamental paper L. Simon [48] derived a priori gradient es-
timates for general mean curvature type equations in two variables.
His results has been applied to many mean curvature equations in two
variables in several spaces [44], [12]. However, due to the geometry of
the ambient space, the horizontal minimal equation does not fit the
structure conditions of the equations of mean curvature type, estab-
lished by L. Simon. It does not match either the structure conditions
in [17, Theorem 5.2].

Moreover, the technique developed by L. Cafarelli, L. Nirenberg and
J. Spruck in [9] to obtain a priori global gradient estimates, cannot be
applied to the present situation. On the contrary, the method in [9] has
been applied to a mean curvature equation in hyperbolic space in [33]
and [5] and to a constant mean curvature equation in warped product
[11]. We notice that, in some cases, the a priori global C1 estimates
depends on the derivation of both a priori C0 estimates and a priori
C1 boundary gradient estimates, see, for instance, [32], [19] and [1].

We remark that the a priori gradient estimates inferred by J. Spruck
[49], are adapted for the vertical mean curvature equation to study
many problems in the product spacesM×R, whereM is a Riemannian
manifold [7], [16], [47], [10].

At last, the general a priori gradient estimates carry out by H. Rosen-
berg, E. Toubiana and R. Souam [41, Theorem 3.6] has been applied
to solve Dirichlet problems in homogeneous spaces [37].

Next, we follow the techniques derived by Bakel’man [3]. We do the
analysis in two independent variables, for the reasons that will be clear
in the proof.
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Notice that certain model horizontal minimal graphs in two indepen-
dent variables are Killing graphs [45],[43]. That is they are graphs with
respect to the coordinates system given by the 1-parameter group of
isometries (x, y, t) → (λx, λ y, t), λ > 0 of H2 × R. This group is con-
stituted of hyperbolic translations of the ambient space. Noticing also
that by employing the translations (x, y, t) → (λx, λy, t) := (x, y, t),
given a solution g(x, t) of the ϵ-horizontal minimal equation (27), we
obtain another function y = gλ(x, t), satisfying (27), for ϵλ2 in the
place of ϵ (see (45)).

Due to the techniques employed, we are forced to make a strong
constraint on the horizontal length to obtain the uniform global C1

gradient estimates. Nevertheless, the assumption is invariant by hyper-
bolic translations, so it is compatible with the geometry of the ambient
space.

We recall that if n = 2 the ϵ-horizontal minimal equation becomes

(27) MHϵ(g) = gxx(g
2+g2t +ϵ)+gtt(1+g

2
x)−2gxgtgxt+g(1+g

2
x) = 0,

Theorem 5.1 (Uniform global gradient estimates I). Let Ω ⊂
∂∞H2 × R be a C1 bounded domain. Let g ∈ C2,α(Ω) ∩ C1(Ω) be a
positive solution of the ϵ-horizontal minimal equation (27) in Ω. As-
sume there exist constants c1 and c2, and c3, independent of ϵ, such
that 0 < c1 6 g 6 c2 on Ω and |Dg| 6 c3 on ∂Ω. Assume further that

c2 < c1 + c1

√
π

2
. Then there exists a constant C depending only on

c1, c2 and c3 such that |Dg| 6 C on the whole Ω.

Proof. Let g be a solution of the ϵ-horizontal minimal equation on Ω,
C1 up to the boundary, such that 0 < c1 6 g 6 c2 on Ω.

Assume first that c1 6 1.

By assumption, we have c2 − c1 < c1

√
π

2
. We first recall the elemen-

tary identity

+∞∫
0

e−γs2 ds =

(
π

2 · 2γ

)1/2

.We now consider the function

ϕ(u) given by

(28) ϕ(u) = c1 +

u∫
0

e−γs2 ds
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where γ is chosen such that c1 >
1√
2γ
>
√

2
π
· (c2 − c1). It follows that

c2 < c1 +
(

π
2·2γ

)1/2
.

Let c12 = c12(c1, c2) be a constant such that c1 +

c12∫
0

e−γs2 ds > c2.

With this choice, we are able to write

(29) g(p) = ϕ(u(p)), u > 0, p ∈ Ω

for some auxiliary function u satisfying u(p) < c12 on Ω. Then, we have
the inequalities

(30) e−γc212 < ϕ′(u) 6 1

and

0 < −ϕ′′(u) 6 +2γc12

−ϕ′′′(u)ϕ′(u) + ϕ′′2(u)

ϕ′2(u)
= 2γ

Next differentiate (29) with respect to x and t to obtain

(31) gx = ϕ′(u)ux, gt = ϕ′(u)ut

g2x + g2t = ϕ′2(u)(u2x + u2t )

Of course, with the aid of equation (31), we infer the following in-
equalities:

(32)
√
u2x + u2t 6

max
∂Ω

√
g2x + g2t

min
Ω
ϕ′(u)

, on ∂Ω

and √
g2x + g2t 6

√
u2x + u2t , on Ω.

Thus, if the maximum of Du on Ω is achieved at the boundary then

max
Ω

|Du| 6
max
∂Ω

|Dg|

min
Ω

ϕ′(u)
6 c3e

γc212 and we are done. Otherwise, we assume

that the maximum of Du is attained at an interior point p of Ω. Set
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w(q) :=
u2
x(q)+u2

t (q)

2
, q ∈ Ω. Thus, it suffices to infer the desired a priori

estimates for the quantity w(p) =
u2
x(p)+u2

t (p)

2
. Of course, we have

(33) wx(p) = wt(p) = 0

and u2xuxx = u2tutt at p.

We remark that for the deduction of the last equation we used that
we are working only with two independent variables x, t. This will allow
us to write the second derivatives appearing in (27), in term of the first
derivatives (at p). This is a crucial step to achieve the desired global
estimates making use of the present method.

Hereafter, we write ϕ, ϕ′, ϕ′′. Next plug the expressions (31) and its
derivatives with respect to x and t, respectively, in (27). Then rewrite
the ϵ-horizontal minimal equation in the form:

(34) (ϕ2 + 2ϕ′2w + ϵ)uxx + (1 + 2ϕ′2w)utt − ϕ′2(uxwx + utwt)

+
ϕ2ϕ′′

ϕ′ 2w − ϕ′′(ϕ2 − 1)

ϕ′ u2t +
ϕ

ϕ′ (1 + 2wϕ′2)− ϕϕ′2

ϕ′ u
2
t +

ϕ′′

ϕ′ ϵ u
2
x = 0

Now note that by invoking elliptic regularity g ∈ C3(Ω). In fact,
g is analytic in Ω by Morrey’s regularity theorem [31]. Set a11 :=
ϕ2 +ϕ′2u2t + ϵ, a22 = 1+ϕ′2u2x and a12 = a21 = −ϕ′2uxut. The following
identity will be useful and its verification is easy to check.

(35) (ϕ2 + 2ϕ′2w + ϵ)(uxuxxx + ututxx) + (1 + 2ϕ′2w)(uxuxtt + ututtt)

− ϕ′2(u2xwxx + u2twtt + 2uxutwxt)

= (ϕ2+ϕ′2u2x+ϕ
′2u2t+ϵ)(uxuxxx+ututxx)+(1+ϕ′2u2x+ϕ

′2u2t )(uxuxtt++ututtt)

− ϕ′2(u2xwxx + u2twtt + 2uxutwxt)

== (ϕ2+ϕ′2u2x+ϕ
′2u2t+ϵ)(wxx−u2xx−u2xt)+(1+ϕ′2u2x+ϕ

′2u2t )(wtt−u2tt−u2xt)
− ϕ′2(u2xwxx + u2twtt + 2uxutwxt)

= a11wxx+a22wtt+2a12wxt−(ϕ2+ϕ′2u2t+ϵ)(u
2
xx+u

2
xt)−(ϕ′2u2x)(u

2
xx+u

2
xt)

− (1 + ϕ′2u2x)(u
2
xt + u2tt)− ϕ′2u2t (u

2
xt + u2tt)

= a11wxx+a22wtt+2a12wxt−(ϕ2+ϵ+2ϕ′2w)(u2xx+u
2
xt)−(1+2ϕ′2w)(u2tt+u

2
xt)

The conditions aij is positive and D2w(p) is negative read
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(36) (ϕ2 + 2ϕ′2w + ϵ)(uxuxxx + ututxx) + (1 + 2ϕ′2w)(uxuxtt + ututtt)

− ϕ′2(u2xwxx + u2twtt + 2uxutwxt)

6 0 at p.

Now differentiate the P.D.E (34) with respect to x (respectively dif-
ferentiate with respect to t) and multiply the resulting equation by ux
(respectively multiply by ut). Adding the two equations thus obtained
and using (33) and (36), we infer

(37)

8ϕ′ϕ′′w2(uxx+utt)+4ϕϕ′w uxx−2ϕ′2u2tw+6ϕ′′ϕu2xw+2w

(
ϕ′2 − ϕ′′ϕ

ϕ′2

)
+4w2

[
−ϕ2

(
−ϕ′′′ϕ′ + ϕ′′2

ϕ′2

)
+ ϕ′2

]
+2u2tw

[
(ϕ2 − 1)

(
−ϕ′′′ϕ′ + ϕ′′2

ϕ′2

)]
−
(
−ϕ′′′ϕ′ + ϕ′′2

ϕ′2

)
ϵ 2wu2x > 0 at p.

Hence, according to the foregoing we find

(38) (8ϕ′ϕ′′w2)(uxx + utt) + (4ϕϕ′w)uxx

+ 4w2

[
−min{ϕ2(u), 1}

(
−ϕ′′′ϕ′ + ϕ′′2

ϕ′2

)
+ ϕ′2

]
+ (6ϕ′′ϕu2xw) + 2w

(
ϕ′2 − ϕ′′ϕ

ϕ′2

)
> 0 at p.

since
−ϕ′′′ϕ′ + ϕ′′2

ϕ′2 = 2γ > 0, noticing that the last term of inequality

(37) is negative .
We must now estimate the quantities uxx(p) and (uxx + utt)(p) in

terms of ϕ, ϕ′, ϕ′′ and w at p. Owing to (33) performing some compu-
tations we find that (34) becomes

(39) uxx ϕ
′ [(ϕ2 + ϵ+ 2ϕ′2w)u2t + (1 + 2ϕ′2w)u2x

]
= −u2tϕ′′ϕ2u2x − ϕ′′u4t − ϕu2t − ϕ′2ϕu2tu

2
x − ϕ′′ ϵ u2xu

2
t at p.
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and

(40) (uxx + utt)ϕ
′ [(ϕ2 + ϵ+ 2ϕ′2w)u2t + (1 + 2ϕ′2w)u2x

]
= −2ϕ′′ϕ2wu2x − ϕ′′u2t2w − 2ϕw − 2ϕϕ′2wu2x − 2ϕ′′ϵ wu2x at p.

We now perform some calculations to discover

(41) (8ϕ′ϕ′′w2)(p)(uxx + utt)(p) 6 −4ϕϕ′′w

ϕ′2 (p)− (4ϕϕ′′u2xw)(p)

and

(4ϕϕ′w)(p)uxx(p) 6 −4ϕ3ϕ′′w

ϕ′2 (p)− 8ϕϕ′′w

ϕ′2 (p)

since ϕ′ > 0 and ϕ′′ < 0.

Inserting (41) into (38) we then obtain

(42) 4w2(p)

[
−min{ϕ2(u(p)), 1}

(
−ϕ′′′ϕ′ + ϕ′′2

ϕ′2

)
(p) + ϕ′2(p)

]
+ 2w(p)

[(
ϕ′2 − ϕ′′ϕ

ϕ′2

)
(p)− 6ϕϕ′′

ϕ′2 (p)− 2ϕ3ϕ′′

ϕ′2 (p)

]
> 0

Employing (30) into (42) we at last infer

(43) 4w2(p)
[
−2γmin{c21, 1}+ 1

]
+2w(p)

[
1 +

(
(γ + 2γc12)c2 + (2γ + 4γc12)(3c2 + c32)

)
e2γc12+2γc212

]
> 0

since c1 > 0.
But then,

(44) w2(p)
[
−2γc21 + 1

]
+2w(p)

[
1 +

(
(γ + 2γc12)c2 + (2γ + 4γc12)(3c2 + c32)

)
e2γc12+2γc212

]
> 0

since we assume that c1 6 1.
Finally, we recall that we have chosen γ, so that 2γ > 1

c21
. Henceforth,

in the light of (44) we derive the a priori bounds for |Du(p)|, if c1 6 1.
Now assume that c1 > 1. Choose λ < 1 such that λc1 < 1. Write

by y = g(x, t), the solution of (27) in Ω, taking coordinates (x, y, t) ∈
H2 × R.
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By employing the translations (x, y, t) → (λx, λy, t) := (x, y, t), we
obtain another function y = gλ(x, t), (x, t) ∈ Tλ(Ω) (Remark 2.2 (3)),
satisfying the equation (27) in Tλ(Ω) for ϵλ

2 in the place of ϵ. In fact,
noticing that gλ(x, t) = λg(x, t) = λg(x

λ
, t). It suffices to compute the

relations between the first and second derivatives of g(x, t) and gλ(x, t).
We conclude therefore that gλ satisfies

(45)
(gλ)xx((gλ)

2+(gλ)
2
t+ϵλ

2)+(gλ)tt(1+(gλ)
2
x)−2(gλ)x(gλ)t(gλ)xt+(gλ)(1+(gλ)

2
x) = 0

Now the same relations between the first derivatives of g(x, t) and
gλ(x, t), ensures that λ2(g2x(

x
λ
, t) + g2t (

x
λ
, t)) 6 (gλ)

2
x(x, t) + (gλ)

2
t (x, t)

and (gλ)
2
x(x, t) + (gλ)

2
t (x, t) 6 g2x(

x
λ
, t) + g2t (

x
λ
, t).

Thus

max
∂Tλ(Ω)

|Dgλ| 6 max
∂Ω

|Dg| and max
Ω

|Dg| 6
max
Tλ(Ω)

|Dgλ|

λ
.

In view of λc1 6 gλ 6 λc2, in Tλ(Ω), we can commence again (since
λc1 < 1), to mimic each step of the the above procedure to obtain the
desired a priori bounds, if c1 > 1.

Henceforth, the a priori global gradient estimates for |Dg| is achieved,
as desired. This completes the proof of the theorem.

�
In the case of a convex domain, we state the following global C1

estimates. First, if n = 2, equation (22) becomes (recall that 0 6
ℓ(s) 6 1, s ∈ [0, 1], ℓ(1) = 1, ℓ(s) = 0, s ∈ [0, 1/2]).

(46) gxx(g
2 + g2t + ϵ) + gtt(1 + g2x)− 2gxgtgxt + ℓ(s)g(1 + g2x) = 0,

Theorem 5.2 (Uniform global gradient estimates II).
Let Ω ⊂ ∂∞H2 × R be a C2,α bounded convex domain for some

0 < α < 1. Let Γ = ∂Ω and let f ∈ C2,α(Γ) be a positive func-
tion. Let ϵ ∈ [0, 1]. Given s ∈ [1/2, 1], let gs ∈ C2,α(Ω) be a posi-
tive solution of equation (46) in Ω, such that gs = (2s − 1)f + 2(1 −

s)min
Γ
f on Γ. Assume further that R(Ω, f) < min

Γ
f + min

Γ
f

√
π

2
,

where R(Ω, f) is given by Definition 3.1 and Lemma 3.1.

Then, the following estimate holds.

(47) max
Ω

|Dgs| 6 C

where C = C(min
Γ
f,max

Γ
f,max

Ω
x−min

Ω
x,K).



28 RICARDO SA EARP

where K is given by Lemma 4.1.

Proof. We summarize the proof as follows. In view of Theorem 4.2, it
is routine to check that the proof of the global gradient (Theorem 5.1)
is valid for equation (46), taking c2 = R(Ω, f) and c1 = min

Γ
f, noticing

that 0 6 ℓ(s) 6 1. Indeed, we obtain the same a priori bounds as given
by equations (43) and (44).

�

6. An existence result

Our main goal now is to prove the existence of a solution of a Dirichlet
problem for the horizontal minimal equation. However, the non strictly
ellipticity of the equation imposes a new insight.

Because of that, we need to consider the family of ϵ-horizontal min-
imal equation (27) (0 6 ϵ 6 1) in order to solve the Dirichlet Problem
for ϵ > 0; then, by a compactness argument, we solve the original
horizontal minimal equation.

Consider the following Dirichlet problem in two independent vari-
ables.

(48) MHϵ(g) = 0 in Ω

g = f on Γ, g ∈ C2, α(Ω̄)

Let R(Ω, f) be the quantity defined in Definition 3.1. We have the
following existence result.

Theorem 6.1. Let Ω ⊂ ∂∞H2 × R be a C2,α bounded convex domain
for some 0 < α < 1. Let Γ = ∂Ω and let f ∈ C2,α(Γ) be a positive
function.

Assume further that R(Ω, f) < min
Γ
f +min

Γ
f

√
π

2
.

Then, for any ϵ ∈ [0, 1], the Dirichlet problem (48) admits a positive
solution g.

Particularly, f admits an extension g ∈ C2, α(Ω) satisfying the hor-
izontal minimal equation (4) on Ω. Furthermore, this solution is ob-
tained as the limit in the C2-topology of a sequence gϵn , 0 < ϵn < 1
satisfying (48), as ϵn → 0.

We observe that, as in Theorem 5.1, the last assumption in Theo-
rem 6.1 is invariant by hyperbolic translations.
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Proof. Suppose first 0 < ϵ 6 1. We first intend to show the existence
of a solution of the Dirichlet problem (48), for 0 < ϵ 6 1.

Let ℓ(s) = 2s−1, s ∈ [1/2, 1] and ℓ(s) = 0, s ∈ [0, 1/2]. Let h(s, p) =
(2s − 1)f(p) + 2(1 − s)min

Γ
f, s ∈ [1/2, 1] and h(s, p) = 2smin

Γ
f, s ∈

[0, 1/2].
Given s ∈ [0, 1] and given g ∈ C1, β(Ω), consider the following family

of linear Dirichlet problems:

uxx(g
2 + g2t + ϵ) + utt(1 + g2x)− 2gxgtuxt + ℓ(s)max{g, 0}(1 + g2x) = 0

in Ω,

u(p) = h(s, p), p ∈ Γ.

Define an operator T : C1, β(Ω) × [0, 1] → C2, αβ(Ω̄), u = T (g, s) by
the unique solution of the above problem for given (g, s). Existence
and uniqueness of u are ensured by the extension lemma [17, Lemma
6.38] and by the classical theorem for linear strictly elliptic operator
[17, Theorem 6.14]. Note that T (g, 0) = 0 and T (g, s) = 2smin

Γ
f, if

s ∈ [0, 1/2].
To ensure the existence of a solution of our Dirichlet problem in the

space C2, α(Ω̄) it is suffices to check that T (·, 1) has a fixed point. The
equation g = T (g, s) reads

(49)

gxx(g
2 + g2t + ϵ) + gtt(1 + g2x)− 2gxgtgxt + ℓ(s)max{g, 0}(1 + g2x) = 0

in Ω,

g = h(s, ·) on Γ .

Then, we can apply maximum principle, comparing with Euclidean
planes y = cst, to ensure that a solution of the equation (49) is non-
negative, so it satisfies

gxx(g
2 + g2t + ϵ) + gtt(1 + g2x)− 2gxgtgxt + ℓ(s)g(1 + g2x) = 0

in Ω,

g = h(s, ·) on Γ .

(50)

with g > 0 on Ω.
Noticing that by applying the maximum principle we have if s ̸= 0,

g > 0 on Ω and if s = 0, g ≡ 0, i.e. g satisfies equation (46), for
0 < ϵ 6 1. Of course, the definition of ℓ(s) ensures that the solution g
for 0 6 s 6 1/2, is constant equal to h(s, p) = 2smin

Γ
f. Observe that
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the solution g for s > 1/2, satisfies the inequality g > min
Γ
f on Ω.

Now in virtue of our a priori global C1 estimates (Theorem 5.2) and
the global Hölder estimates of Ladyzhenskaya and Ural’tseva [17], we
have a priori global Hölder estimates for the first derivatives. That is,
there exists a constant C such that [Dg]Ω,β 6 C, for all g satisfying
(50). Hence, by employing the Leray-Schauder theorem [2], [17], we
obtain the desired existence of a positive solution gϵ of the Dirichlet
problem (48), if 0 < ϵ 6 1. Recall that the uniform a priori horizontal
length estimates, given by Lemma 3.1, forces the uniform lower bound
gϵ > min

Γ
f on Ω, independently of ϵ.

Now let ϵn be a sequence such that ϵn → 0, if n → ∞ (0 < ϵn 6 1)
and let gϵn be a positive C2, α(Ω) solution of (48). Our a priori global
C1 estimates combined with the a priori Schauder global estimates,
allow us to apply the Arzelà-Ascoli’s theorem to obtain a subsequence
{gϵnj

} that converges to a C2(Ω) nonnegative function g satisfying (27).

Clearly, g > min
Γ
f on Ω. Henceforth we have a solution of the Dirichlet

problem (48), for ϵ = 0. This accomplishes the proof of the theorem. �

Remark 6.1. The geometry of the ambient space H2 × R has some
very intriguing geometric phenomenon, as we have commented in the
introduction: Any catenoid (minimal surface of revolution) has ver-
tical height less than π and the supremum of the family is π. E.
Toubiana and the author, using the family of catenoids as suitable
barriers, proved an asymptotic principle [45, Theorem 2.1] that have
many consequences. In particular, it follows that there is no horizontal
minimal graph given by a function g ∈ C2(Ω) ∩ C0(Ω) on a bounded
strictly convex domain Ω, taking zero boundary data on ∂Ω.We believe
that the fact that the strict convexity of the Jordan domain forbids the
existence of the Dirichlet problem for (4), with zero boundary data, is
a very surprising phenomenon.

Some other results in the minimal surfaces theory, make use of the
behavior of the catenoid family [34], [21]. The family of n-dimensional
catenoids in Hn × R has an analogous interesting geometric behavior
[6].

Finally, we remark that in [35] it is proved an Asymptotic Theorem
setting in higher dimensions the non-existence result mentioned above:
There is no horizontal minimal graph in Hn×R over a bounded strictly
convex domain, given by a positive function g continuous up to the
boundary, taking zero boundary value data.
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On the other hand, the following existence result is somehow a coun-
terpart of the above remark and is a immediate consequence of Theo-
rem 6.1. Recall that h(Γ) = max

Γ
x|Γ −min

Γ
x|Γ (Definition 3.1).

Corollary 6.1. Let Ω ⊂ ∂∞H2×R be a C2,α bounded convex domain
for some 0 < α < 1. Let Γ = ∂Ω and let f ∈ C2,α(Γ) be a positive
function.

Let c0 be a constant satisfying the inequality c0 > oscΓ(f) +
h(Γ)

2
·

Then, for any ϵ ∈ [0, 1], there exists a solution of the ϵ-horizontal
minimal equation taking the boundary data f + c0 on Γ.
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[26] R. López and S. Montiel. Existence of constant mean curvature graphs in
hyperbolic space, Calc. Var. 8, 177-190 (1999).
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