Halfspace Theorems

Ricardo Sá Earp

Pontifícia Universidade Católica do Rio de Janeiro

"", Universidade , 2010

Halfspace theorem of Hoffman and Meeks

D. Hoffman and W. Meeks proved a beautiful theorem on minimal surfaces, the so-called Halfspace Theorem:

Theorem

There is no non planar, complete, minimal surface properly immersed in a halfspace of \mathbb{R}^3 .

Halfspace theorem of Hoffman and Meeks

D. Hoffman and W. Meeks proved a beautiful theorem on minimal surfaces, the so-called Halfspace Theorem:

Theorem

There is no non planar, complete, minimal surface properly immersed in a halfspace of \mathbb{R}^3 .

Sketch of the proof:

Special Weingarten surfaces (joint work with Eric Toubiana)

We shall consider surfaces M immersed in \mathbb{R}^3 , which are oriented by a unit normal vector field N and whose mean curvature H = H(N) and Gaussian curvature K, satisfies a Weingarten relation of the form

$$H = f(H^2 - K)$$

where f is a C^1 function defined in the interval $[0, +\infty]$. We assume that f is elliptic i.e

$$4t(f'(t))^2 < 1$$

We call such a surface M special Weingarten surface, or simply special Weingarten surface, if H, K satisfy the above condition for f elliptic.

Special Weingarten surfaces (joint work with Eric Toubiana)

We shall consider surfaces M immersed in \mathbb{R}^3 , which are oriented by a unit normal vector field N and whose mean curvature H = H(N) and Gaussian curvature K, satisfies a Weingarten relation of the form

$$H = f(H^2 - K)$$

where f is a C^1 function defined in the interval $[0, +\infty]$. We assume that f is elliptic i.e

$$4t(f'(t))^2 < 1$$

We call such a surface M special Weingarten surface, or simply special Weingarten surface, if H, K satisfy the above condition for f elliptic.

We remark that if there is a plane in the class of M, i.e. f(0) = 0, then the theory is "minimal type". Otherwise, if there is a sphere in the class of M, i.e. $f(0) \neq 0$, then the theory is constant (non zero) mean curvature type.

In both cases, ellipticity ensures that M satisfies a maximum principle.

Basic Statements for a Special Minimal Type Surface (f(0) = 0):

- ▶ The Gaussian curvature K of M is non positive;
- ► The zeros of K are isolated;
- M is contained inside the convex hull of the boundary;
- ▶ If M is complete with zero Gaussian curvature, i.e. $K \equiv 0$, then M is a plane.

Basic Statements for a Special Minimal Type Surface (f(0) = 0):

- ightharpoonup The Gaussian curvature K of M is non positive;
- The zeros of K are isolated;
- M is contained inside the convex hull of the boundary;
- ▶ If M is complete with zero Gaussian curvature, i.e. $K \equiv 0$, then M is a plane.

Basic Statements for a Special Constant (non zero) Mean Curvature Type Surface $(f(0) \neq 0)$:

- ► Alexandrov's theorem hold: If *M* is closed (compact without boundary) and embedded then *M* is a round sphere;
- ► Hopf's theorem hold: If M is closed immersed with genus zero then M is a round sphere (here, ellipticity is not required);
- ▶ If M is complete with zero Gaussian curvature then M is a right cylinder;

Existence of Special Catenoids

Theorem 1:

Let f be an elliptic function with f(0) = 0 and let $\tau > 0$ be a real number that verifies

$$\frac{1}{\tau} < \lim_{t \to +\infty} (t - f(t^2))$$

Then there is a unique complete rotational symmetric special surface M_{τ} such that its generating curve is a graph of a C^2 convex, strictly positive function y=y(x), which attains a minimum at 0 and is symmetric respect to the y axis, i.e., y verifies:

$$y > 0, y(0) = \tau, y'(0) = 0, y'' > 0$$
 and $y(x) = y(-x)$.

Halfspace theorem for special surfaces of minimal type

The geometry of special catenoids

Theorem 2:

Let f be a C^2 elliptic function near 0 with f(0) = 0. Let M be a rotational symmetric surface given by Theorem 1.

Then the x coordinate over M is a proper function.

The geometry of special catenoids

Theorem 2:

Let f be a C^2 elliptic function near 0 with f(0) = 0. Let M be a rotational symmetric surface given by Theorem 1.

Then the x coordinate over M is a proper function.

Remark 2: The differentiability hypothesis for f in Theorem 2 is necessary, a counter example may be constructed considering $f_{\alpha}(t) = \alpha \sqrt{t}, t \geqslant 0, 0 < \alpha < 1.$

The geometry of special catenoids

Theorem 2:

Let f be a C^2 elliptic function near 0 with f(0) = 0. Let M be a rotational symmetric surface given by Theorem 1.

Then the x coordinate over M is a proper function.

Remark 2: The differentiability hypothesis for f in Theorem 2 is necessary, a counter example may be constructed considering $f_{\alpha}(t) = \alpha \sqrt{t}, t \geqslant 0, 0 < \alpha < 1$.

We remark that if f is non negative with f(0)=0 and $\lim_{t\to+\infty}(t-f(t^2))=+\infty$ then there is a 1-parameter family $M_{\tau}, \tau>0$, of special catenoids converging to a vertical plane as $\tau\to0$. This yields the following generalization of the well-known "Halfspace Theorem" for minimal type special surfaces.

Halfspace Theorem for special surfaces

Theorem 3:

Let f be a elliptic non negative ($f \ge 0$) function. Assume f is C^2 in a neighborhood of the origin. Suppose f verifies

$$f(0) = 0, \lim_{t \to +\infty} (t - f(t^2)) = +\infty$$

If M is a complete connected properly immersed special surface (respect to f) contained inside a halfspace of \mathbb{R}^3 , then M is a plane.

igspace Halfspace theorem for mean curvature 1/2 surfaces in $\mathbb{H}^2 imes \mathbb{R}$

Rotational surfaces with mean curvature 1/2 in $\mathbb{H}^2 \times \mathbb{R}$

For any $\alpha \in \mathbb{R}_+$, there exists a rotational surface \mathcal{H}_{α} of constant mean curvature $H = \frac{1}{2}$.

For $\alpha \neq 1$, the surface \mathcal{H}_{α} has two vertical ends (where a vertical end is a topological annulus, with no asymptotic point at finite height) that are vertical graphs over the exterior of a disk D_{α} (see Figure 1).

Rotational surfaces with mean curvature 1/2 in $\mathbb{H}^2 \times \mathbb{R}$

For any $\alpha \in \mathbb{R}_+$, there exists a rotational surface \mathcal{H}_{α} of constant mean curvature $H = \frac{1}{2}$.

For $\alpha \neq 1$, the surface \mathcal{H}_{α} has two vertical ends (where a vertical end is a topological annulus, with no asymptotic point at finite height) that are vertical graphs over the exterior of a disk D_{α} (see Figure 1).

Up to vertical translation, one can assume that \mathcal{H}_{α} is symmetric with respect to the horizontal plane t=0.

For $\alpha=1$, the surface \mathcal{H}_1 has only one end, it is a graph over \mathbb{H}^2 and it is denoted by S.

When $\alpha>1$ the surface \mathcal{H}_{α} is not embedded (first picture in Figure 1). The self intersection set is a horizontal circle on the plane t=0. Denote by ρ_{α} the radius of the intersection circle. For $\alpha<1$ the surface \mathcal{H}_{α} is embedded (second picture in Figure 1).

LHalfspace theorem for mean curvature 1/2 surfaces in $\mathbb{H}^2\times\mathbb{R}$

For any $\alpha \in \mathbb{R}_+$, let $u_\alpha : \mathbb{H}^2 \times \{0\} \setminus D_\alpha \longrightarrow \mathbb{R}$ be the function such that the end of the surface \mathcal{H}_α is the vertical graph of u_α .

The asymptotic behavior of u_{α} has the following form: $u_{\alpha}(\rho) \simeq \frac{1}{\sqrt{\alpha}} e^{\frac{p}{2}}$, $\rho \longrightarrow \infty$, where ρ is the hyperbolic distance from the origin. The positive number $\frac{1}{\sqrt{\alpha}} \in \mathbb{R}_+$ is called the growth of the end.

The asymptotic behavior of u_{α} has the following form: $u_{\alpha}(\rho) \simeq \frac{1}{\sqrt{\alpha}} e^{\frac{\rho}{2}}$, $\rho \longrightarrow \infty$, where ρ is the hyperbolic distance from the origin. The positive number $\frac{1}{\sqrt{\alpha}} \in \mathbb{R}_+$ is called the growth of the end.

The function u_{α} is vertical along the boundary of D_{α} . Furthermore the radius r_{α} is always greater or equal to zero, it is zero if and only if $\alpha=1$ and tends to infinity as $\alpha\longrightarrow 0$ or $\alpha\longrightarrow \infty$.

The asymptotic behavior of u_{α} has the following form: $u_{\alpha}(\rho) \simeq \frac{1}{\sqrt{\alpha}} e^{\frac{\rho}{2}}$, $\rho \longrightarrow \infty$, where ρ is the hyperbolic distance from the origin. The positive number $\frac{1}{\sqrt{\alpha}} \in \mathbb{R}_+$ is called the growth of the end.

The function u_{α} is vertical along the boundary of D_{α} . Furthermore the radius r_{α} is always greater or equal to zero, it is zero if and only if $\alpha=1$ and tends to infinity as $\alpha\longrightarrow 0$ or $\alpha\longrightarrow \infty$.

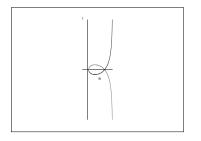
As we pointed out before, the function $u_1 = 2\cosh\left(\frac{\rho}{2}\right)$ is entire and its graph corresponds to the unique simply connected rotational example S.

The asymptotic behavior of u_{α} has the following form: $u_{\alpha}(\rho) \simeq \frac{1}{\sqrt{\alpha}} e^{\frac{\rho}{2}}$, $\rho \longrightarrow \infty$, where ρ is the hyperbolic distance from the origin. The positive number $\frac{1}{\sqrt{\alpha}} \in \mathbb{R}_+$ is called the growth of the end.

The function u_{α} is vertical along the boundary of D_{α} . Furthermore the radius r_{α} is always greater or equal to zero, it is zero if and only if $\alpha=1$ and tends to infinity as $\alpha\longrightarrow 0$ or $\alpha\longrightarrow \infty$.

As we pointed out before, the function $u_1=2\cosh\left(\frac{\rho}{2}\right)$ is entire and its graph corresponds to the unique simply connected rotational example S.

Notice that, any end of an immersed rotational surface $(\alpha>1)$ has growth smaller than the growth of S, while any end of an embedded rotational surface $(\alpha<1)$ has growth greater than the growth of S. This means that the intersection between any \mathcal{H}_{α} and S is a compact set.



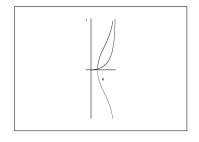


Figure: $H = \frac{1}{2}$: the profile curve in the immersed and embedded case $(R = \tanh \rho/2)$.

R. Sa Earp and E. Toubiana find explicit integral formulas for rotational surfaces of constant mean curvature $H \in (0, \frac{1}{2}]$. A careful description of the geometry of these surfaces is a work by B. Nelli, R. Sa Earp, W. Santos and E. Toubiana. Generalizations in $\mathbb{H}^n \times \mathbb{R}$ can be found in the work by P. Bérard and R. Sa Earp.

 \sqsubseteq Halfspace theorem for mean curvature 1/2 surfaces in $\mathbb{H}^2 \times \mathbb{R}$

Vertical halfspace Theorem (joint work with Barbara Nelli)

Theorem:

Let S be a simply connected rotational surface with constant mean curvature $H=\frac{1}{2}$. Let Σ be a complete surface with constant mean curvature $H=\frac{1}{2}$, different from a rotational simply connected one. Then, Σ cannot be properly immersed in the mean convex side of S.

Vertical halfspace Theorem (joint work with Barbara Nelli)

Theorem:

Let S be a simply connected rotational surface with constant mean curvature $H=\frac{1}{2}$. Let Σ be a complete surface with constant mean curvature $H=\frac{1}{2}$, different from a rotational simply connected one. Then, Σ cannot be properly immersed in the mean convex side of S.

We remark that L. Hauswirth, H. Rosenberg and J. Spruck prove a halfspace type theorem for $H=\frac{1}{2}$ surfaces on one side of a horocylinder. Their result is different in nature from our result the "halfspace" is one side of a horocylinder, while for us, the "halfspace" is the mean convex side of a rotational simply connected surface.