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Abstract

We study the minimal surface equation in the Heisenberg space, Nil3. A geometric proof of non
existence of minimal graphs over non convex, bounded and unbounded domains is achieved for
some prescribed boundary data (our proof holds in the Euclidean space as well). We solve the
Dirichlet problem for the minimal surface equation over bounded and unbounded convex domains,
taking bounded, piecewise continuous boundary value. We are able to construct a Scherk type
minimal surface and we use it as a barrier to construct non trivial minimal graphs over a wedge of
angle θ ∈ [π

2
, π[, taking non negative continuous boundary data, having at least quadratic growth.

In the case of an half-plane, we are also able to give solutions (with either linear or quadratic
growth), provided some geometric hypothesis on the boundary data are satisfied. Finally, some
open problems arising from our work, are posed.
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1 Introduction

In this paper we study the minimal surface equation in the Heisenberg space, Nil3. We first consider
non convex (non convex, smooth) domains Ω ⊂ R2 and we provide a construction of a continuous
(smooth) boundary data that does not admit a minimal extension over Ω (Theorems 3.1, 3.2). We
point out that our proof is geometric in nature and holds for the minimal surface equation in the
Euclidean three space as well. Notice that, for bounded non convex domains, the non solvability of
the Euclidean minimal equation in two variables was established by Finn [12] for continuous boundary
data, and by Jenkins and Serrin [15] for C2 boundary data, with arbitrarily small absolute value.

Secondly, we prove that, for any convex domain Ω (bounded or unbounded) different from the half-
plane, given a piecewise continuous or smooth boundary data ϕ over ∂Ω, there exists a minimal
extension u of ϕ over Ω. Moreover, we prove that the boundary of the graph of u is the union of the
graph of ϕ with Euclidean vertical segments at the discontinuity points of ϕ (Theorem 4.3).
We would like to mention that, in [1, Theorem 1], Alias, Dajczer and Rosenberg prove an existence
result for minimal graphs on bounded domains in Nil3, whose boundary is C3 and strictly convex,
with continuous boundary data.
We also solve the Dirichlet problem in a half-plane with piecewise continuous or smooth bounded
boundary data (Theorem 4.3). All these graphs over the half-plane have linear growth (see Definition
4.2).

Thirdly, we provide a geometric construction of a Scherk type surface over a triangle and we use it to
prove that any non negative prescribed continuous boundary data ϕ on the boundary of a wedge of an-
gle θ ∈ [π/2, π[, has a minimal extension u in the wedge with at least quadratic growth. The existence
of the Scherk type surface and of the graph over a wedge, are consequences of more general existence
results (Theorems 4.2, 4.4). When the domain is a half-plane, we are able to construct bounded
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minimal graphs and minimal graphs with quadratic growth, provided some geometric hypothesis on
the boundary data are satisfied (Corollary 4.4).
Our result in Nil3 is in contrast with the classical results for the minimal equation in Euclidean space.
In R3, if the boundary data on a wedge of angle less that π is zero (respectively bounded) then the
minimal solution is zero (resp. bounded) [22].

Finally, here are some questions that arise from a glimpse of our developments together with the
known results in the Euclidean space:

• The following maximum principle holds for the minimal surface equation in R3. Let Ω be a strip:
if the boundary data ϕ on ∂Ω is bounded above by a constant A, then any minimal extension
in Ω is also bounded above by the same constant A [22, Theorem 2.2, pg. 168].

It is very interesting to check if this maximum principle holds in the Heisenberg space. The
solutions given by Theorem 4.3(A) satisfy such property.

• Let Ω be a strip. In R3, the solution of the Dirichlet problem for the minimal surface equation
in Ω is not unique in general. In fact, P. Collin [6], using the Jenkins-Serrin construction [14],
showed that there exists a smooth unbounded boundary data ϕ such that ϕ admits an infinity
of minimal extensions to Ω. Any such extension has at most linear growth.

The non uniqueness (or the uniqueness) of the minimal extension on a strip in the Heisenberg
space is an open problem.

On the other hand, in [7, Theorem 3.3], Collin and Krust proved the following uniqueness result
in R3 : if Ω is a strip and if ϕ is a continuous bounded boundary data over ∂Ω, then there exists
a unique minimal extension u in R3 to Ω.

It is very interesting to investigate if an analogous uniqueness result holds in the Heisenberg
space.

Acknowledgement. The first author would like to thank PUC-Rio and Université Paris Diderot for
the kind hospitality during the preparation of this work. We all thank the referee for the deep and
competent analysis of our work.

2 Nil3(τ) and the minimal surface equation

2.1 The Setting

The three dimensional Heisenberg group Nil3(τ) can be viewed as R3 with the following metric:

ds2
τ = dx2

1 + dx2
2 + (τ(x2dx1 − x1dx2) + dx3)

2
,

where τ is a constant different from zero. If τ = 0, we recover the Euclidean space. In fact, most of
our results hold for τ = 0. We will point out when our results are new in the Euclidean case, as well.

The isometries of Nil3(τ) in this model are generated by the following maps (see [11] for further
details).

ϕ1(x1, x2, x3) = (x1 + c, x2, x3 + τcx2)

ϕ2(x1, x2, x3) = (x1, x2 + c, x3 − τcx1)

ϕ3(x1, x2, x3) = (x1, x2, x3 + c)

ϕ4(x1, x2, x3) = (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ, x3)

ϕ5(x1, x2, x3) = (x1,−x2,−x3).

Notice that ϕ3, ϕ4 and ϕ5 are also Euclidean isometries.
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We can express the isometries of Nil3(τ) in a complex form, that will be useful in the following. Let
z := x1 + ix2 on R2, then any isometry of Nil3(τ) is of one of the following forms

Ψ1(z, x3) :=
(
ψ1(z), x3 + τ Im(z̄0e

iθz)
)
, Ψ2(z, x3) :=

(
ψ2(z), −x3 + τ Im(z̄0e

iθ z̄)
)

(1)

where ψ1(z) = eiθz + z0 and ψ2(z) = eiθ z̄ + z0, for some θ ∈ R and some z0 ∈ C. Notice that both ψ1

and ψ2 are isometries of R2.

In this work we always assume that the open subsets Ω ⊂ R2 considered have properly embedded
boundary. More precisely for any p ∈ ∂Ω, there exists an open ball B ⊂ R2 centered at p such that
B ∩ ∂Ω is the graph of a Ck function defined on some open interval, k > 0.

Let u : Ω → R be a C2 function. The graph of the function x3 = u(x1, x2) is minimal in Nil3(τ) if
and only if u satisfies the (vertical ) minimal surface equation

Dτ (u) :=
(
1 + (u2 − τx1)2

)
u11 − 2(u1 + τx2)(u2 − τx1)u12 +

(
1 + (u1 + τx2)2

)
u22 = 0 (2)

The previous equation can be written in divergence form, that is:

divR2

(
τx2 + u1

Wu
,
−τx1 + u2

Wu

)
= 0

where

Wu =

√
1 + (τx2 + u1)

2
+ (−τx1 + u2)

2
. (3)

Notice that, as u is C2 on Ω then, by Morrey’s regularity result [17], u is analytic on Ω. Moreover the
standard interior and boundary maximum principle hold for solutions of equation (2). Let us recall
the geometric formulations of the maximum principle, that will be largely applied in this article. One
can find a proof of the maximum principle in [13].

Maximum Principle.

1. Let M1 and M2 be two connected minimal surfaces immersed in Nil3(τ) and assume M2 is
complete. Let p be an interior point of both of them. Assume that M1 lies on one side of M2

in a neighborhood of p, then, M1 coincides with M2 in a neighborhood of p and, by analytic
continuation, M1 ⊂M2.

2. Let M1 and M2 be two compact, connected minimal surfaces in Nil3(τ), both with boundary.
Assume that M1 ∩ ∂M2 = ∅ and that M2 ∩ ∂M1 = ∅ .

Let p be an interior point of both of them. Then it cannot occur that M1 lies on one side of M2

in a neighborhood of p.

Definition 2.1. Let Ω be an open subset of R2 and let ϕ be a function continuous on ∂Ω except,
possibly, at a discrete and closed set Z ⊂ ∂Ω of points where ϕ has left and right limit. We say that
u is a minimal extension of ϕ over Ω if

1. u : Ω \ Z −→ R, is continuous, smooth in Ω, and satisfies the minimal surface equation (2).

2. u| (∂Ω\Z) = ϕ.

Remark 2.1. (A) Let us describe the effect of the isometries of Nil3(τ) on a curve Γ in the
x1-x2 plane. Let ϕ be any isometry of Nil3(τ). The curve ϕ(Γ) is not contained in the x1-x2

plane in general. The projection π(ϕ(Γ)) of such curve on the x1-x2 plane is obtained from
the curve Γ by an isometry of the Euclidean x1-x2 plane, because the trace of any isometry of
Nil3(τ) on the x1-x2 plane is an isometry of R2.
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Then, for example, the notion of convexity of a curve Γ in the x1-x2 plane is somewhat intrinsic,
for the following reason. Assume that Γ is convex (in Euclidean sense), then π(ϕ(Γ)) is convex,
for any isometry ϕ of Nil3(τ).

(B) Let Ω be a domain in R2 and let v : Ω → R be any function defined in Ω with boundary
value v|∂Ω = ϕ. Apply the isometry Ψ1 defined in (1) to the graph of u :

Ψ1 ({(z, v(z)), z ∈ Ω}) = {
(
ψ1(z), v(z) + τIm(z0e

iθz)
)
, z ∈ Ω}

= {
(
z̃, ṽ(z̃)

)
, z̃ ∈ ψ1(Ω)},

where z̃ := ψ1(z) and ṽ(z̃) := (v ◦ψ−1
1 )(z̃) + τIm(z0e

iθψ−1
1 (z̃)) for any z̃ ∈ ψ1(Ω). Consequently

the image of the graph of v by the isometry Ψ1 is again a graph with boundary value ṽ.

2.2 Examples of Minimal Graphs

1. The graph of a linear entire function u(x1, x2) = ax1 + bx2 + c, a, b, c ∈ R, is a minimal surface,
that is usually called plane. Notice that a vertical Euclidean plane is also a minimal surface and
it is flat.

2. Let φ(t, s) = (r(t) cos s, r(t) sin s, h(t)) a parametrization of a rotationally invariant surface (τ =
1
2 ). Looking for minimal solutions one gets either planes (h(t) = const) or a 1-parameter family
of surfaces, vertical catenoids, depending on a parameter r0 > 0, given by:

h(r) = ±
∫ r

r0

r0

√
s2 + 4

2
√
s2 − r2

0

ds, r > r0.

This means that the half of the catenoid is a graph over the exterior domain r > r0 with zero
boundary value [16]. One finds a detailed study of the vertical catenoids in [4].

3. C.B. Figueroa, F. Mercuri and R. H. Pedrosa [11], [10] classified all the minimal graphs invariant
by a one parameter group of left invariant isometries. Such surfaces are the graphs of functions
of the following form:

ua(x1, x2) = τx1x2 + a

[
2τx2

√
1 + 4τ2x2

2 + sinh−1(2τx2)

]
, a ∈ R (4)

For these examples, see also M. Bekkar and T. Sari [2, 3].

4. B. Daniel [8, Examples 8.4 and 8.5] constructed entire minimal graphs of the form f(x1, x2) =
x1g(x2) for some real function g with linear growth.

5. M. Bekkar and T. Sari [2, 3] described some examples of minimal graphs ruled by Euclidean
straight lines (that are not geodesic in Nil3) and classified minimal surfaces in Nil3 ruled by
geodesics.

2.3 Horizontal Catenoids in Nil3(τ)

Let us describe Horizontal Catenoids in Nil3(τ). In [9], B. Daniel and L. Hauswirth have constructed
a family of horizontal catenoids Cα, α ∈ ]0,+∞[ , in Nil3( 1

2 ).
The catenoids Cα have the following description [9, Theorem 5.6].

• The intersection of Cα with any vertical plane x2 = c, c ∈ R, is a nonempty, embedded, closed
curve, convex with respect to the Euclidean metric.
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• The surface Cα is properly embedded.

• Cα is conformally equivalent to C \ {0}.

• The projection of Cα in the x1-x2 plane is the following subset of R2

π(Cα) =
{

(x1, x2) ∈ R2, |x1| 6 α cosh
(x2

α

)}
• The surface Cα is invariant by rotation of angle π around the x1, x2 and x3 axis.

Remark 2.2. We extend the construction of the family Cα in Nil3(τ), for any value of τ > 0.
Consider a new copy of R3 with coordinates y = (y1, y2, y3) and, for any real number λ > 0, let
fλ : (R3, y)→ (R3, x) be the map defined by x = fλ(y) = λy.
Then, the pullback metric of (R3, x, ds2

1/2) on (R3, y) induced by fλ is:

gλ = λ2

[
dy2

1 + dy2
2 +

(
λ

2
(y2dy1 − y1dy2) + dy3

)2
]

= λ2ds2
λ/2.

Let X : Σ → (R3, x, ds2
1/2) be a conformal and minimal immersion, where Σ is a Riemann surface.

We deduce that Y := f−1
2τ ◦X : Σ→ (R3, y, ds2

τ ) is also a conformal and minimal immersion.

Consequently, for any τ > 0, and for any α > 0, the surface Cτα := 1
2τ Cα is a horizontal catenoid in

(R3, ds2
τ ), that is in Nil3(τ).

We deduce from the construction that, for any τ > 0, the family of horizontal catenoids Cτα of Nil3(τ)
has a geometric description analogous to that of the case τ = 1/2. In particular the family of the
projections {π(Cτα), α > 0} is the same for any τ > 0 since, for any α, β > 0, we can obtain π(Cα)
from π(Cβ) by a suitable homothety.

3 Non existence Results in Nil3(τ)

As, in the following, we will deal with convex and non convex curves, let us recall some properties of
them. Let Γ be a Jordan curve in the x1-x2 plane and let Ω be the open bounded subset of the x1-x2

plane such that ∂Ω = Γ. As the projection of Nil3(τ) on the first two coordinates is a Riemannian
submersion on R2, it makes sense to assume that Γ is convex as an Euclidean curve. Recall that Γ is
convex if and only if, for any point p ∈ Γ, there exists a straight line lp passing through p such that
Ω ⊂ R2 \ lp. Recall, moreover, that this definition is equivalent to say that Ω is convex, that is: for
any two points p, q ∈ Ω, the segment between p and q is contained in Ω. We observe that, if Γ is not
convex, then either

(*) There exists a point p ∈ Γ, a straight line L passing through p and a neighborhood V of p
in R2, such that (L ∩ V ) \ p ⊂ Ω (see Figure 1(a)),

or

(**) There exists a closed arc γ̃ ⊂ Γ with endpoints p̃, q̃, and there exists a segment l̂ such that:

– the straight line L containing l̂ is parallel (and distinct) to the straight line passing by p̃
and q̃, (therefore p̃, q̃ 6∈ L),

– γ̃ ∩ L is infinite,

– γ̃ remains in one closed side of L,
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– Let p ∈ l̂ (resp. q ∈ l̂ ) be the first intersection point of γ̃ with l̂, coming from p̃ (resp. q̃).
Denote by l the segment [p, q].

Then p and q are interior points of l̂ and l̂ \ l ⊂ Ω (see Figure 1(b)).

Γ

p

L

V

Ω

Γ

(a) Non convex (∗)

Γ

q

L

p

q

l
p

γΩ

(b) Non convex (∗∗)

Figure 1: Non Convexity

Our first result is a non existence theorem on bounded domains.

Theorem 3.1. Let Ω be a bounded domain such that Γ = ∂Ω is a non convex Ck curve, k > 0. Then
there exists a Ck function ϕ on Γ that does not admit a minimal extension over Ω in Nil3(τ).

Proof. We do the proof for τ = 1
2 . It will be clear that the proof is analogous for any τ > 0 (by

Remark 2.2). By Remark 2.1 (B), it is enough to prove the result for ψ(Γ), where ψ is any Euclidean
isometry of R2 and for some function ϕ̃ over ψ(Γ). The desired function ϕ will be obtained by modify
ϕ̃ accordingly.

We assume that Γ satisfies (**) and we use the same notations as there. The proof in the case of Γ
satisfying (*) follows easily.

Without loss of generality, we can assume that l is parallel to the x2 axis and that the x1 axis intersects
l at its middle point p0 of coordinates (d, 0). Moreover we assume that each point of l ∩ γ̃ is a local
minimum of γ̃ for the coordinate x1, since the case where each point of l ∩ γ̃ is a local maximum for
the coordinate x1 can be handed analogously (see Figure 2).

We will consider the continuous 1-parameter family of catenoids Cα, α > 0, described in Section 2.3.
Recall that the projection of Cα in the x1-x2 plane is the following subset of R2:{

(x1, x2) ∈ R2, |x1| 6 α cosh
(x2

α

)}
, α > 0.

Notice that the projection π(Cα) is equal to the projection of an Euclidean catenoid with axis x2 on
the x1-x2 plane. Therefore, the projections are obtained one from the other by an homothety and,
next to the waist, they become flatter as α increases.

Let ε > 0 and let p1 ∈ γ̃ (resp. q1 ∈ γ̃), be the first point on γ̃ with x1 coordinate equals to d + ε,
coming from p (resp. q) and going to p̃ (resp. q̃). Such points exist if ε is small enough. We denote
by γ1 the sub-arc of γ̃ with endpoints p1 and q1.
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γ

Γ

x

x

1

2

B

−B

p0

p
p

1

q
1

q

d+ε

l

d

Figure 2: The curve Γ

As (**) holds, the points of γ1 \ l have x1 coordinate strictly greater that d.

Let B a positive constant such that Γ ⊂ {(x1, x2) ∈ R2, |x2| 6 B
2 }.

Consider the unique catenoid Cµ such that

µ+
ε

4
= µ cosh

B

µ
. (5)

This means that the portion of π(Cµ) defined by:

π(Cµ) ∩ {(x1, x2) ∈ R2, x1 > 0, 0 6 x2 6 B},

is contained in the following vertical strip of R2 of width ε/4:

{(x1, x2) ∈ R2, µ 6 x1 6 µ+
ε

4
}.

Up to translate Γ along the x1 axis, we can assume that the x1 coordinate of p0 is d = µ + ε
4 . This

choice guarantees that π(Cµ) does not intersect γ1.
Then, deform π(Cα) by an homothety from the origin, α going from µ to µ + ε/4, in order to find a
first contact point of π(Cα) with the curve γ1. Let µ′ ∈ (µ, µ + ε/4) such that π(Cµ′) is the desired
homothetic image (see Figure 3).

By our choice of µ and d and because of the geometry of the curves π(Cα), we can assume that the
contact points between π(Cµ′) and γ1 are interior points of γ1. Denote by q0 one of the contact points
and notice that q0 does not belong to the interior of l. Denote by γ0 the sub-arc of γ1 whose endpoints
are q0 and one of the endpoints of l, and such that γ0 ∩ l is infinite.
Let D > 0 be such that, for any α ∈ [µ, µ′] and any p ∈ Cα ∩ {(x1, x2, x3) ∈ R3, |x2| 6 B}, we have
|x3(p)| 6 D.
Now consider a non negative Ck function ϕ̃ on Γ such that

ϕ̃ =

{
0 on Γ \ γ̃,
3D on γ1.
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’

Γ

x

x

1

2

d

B

−B

d+ εl

µ

Cµ

Figure 3: The deformation of Cµ

Assume that there exists a minimal extension u of ϕ̃ over Ω. As the function u is continuous in Ω, for
any η1 > 0 there exists η2 > 0 such that

|u(p̂)− 3D| 6 η1, for any p̂ = (x1, x2) ∈ Ω, x1(q0)− η2 6 x1 6 x1(q0), x2 = x2(q0) (6)

where xi(q0) is the xi coordinate of q0, i = 1, 2.
This means that u has a small variation on a small segment, δ, parallel to the x1 axis, δ starting at
q0 and having x1 coordinates less than x1(q0).
Consider a homothety π(Cµ′′) of π(Cµ′) such that µ′′ ∈ (µ, µ′) is very close to µ′. As Cµ′ is the first
catenoid of the family, such that its projection touches γ1, then π(Cµ′′) ∩ γ1 = ∅ and π(Cµ′′) ∩ δ 6= ∅.
Now, translate vertically (along the x3 axis) upward Cµ′′ such that the translation of Cµ′′ does not
touch the graph of u. Then translate vertically downward till the first contact point between the
translation of Cµ′′ and the graph of u occurs. We observe that our construction yields that the first
contact point between the translation of Cµ′′ and the graph of u

• occurs before that Cµ′′ touches x3 = 0,

• does not occur at a boundary point of the graph of u.

Then, the first contact point between the translation of Cµ′′ and the graph of u is an interior point of
both surfaces. This is a contradiction by the maximum principle.

In the next theorem, we extend the result of Theorem 3.1 to the case of unbounded domains.

Theorem 3.2. Let Ω be an unbounded and non convex domain. Assume that the boundary Γ = ∂Ω
is composed by a finite number of connected components, each one being a properly embedded (possibly
compact) Ck curve, k > 0. Then there exists a Ck function ϕ on Γ that does not admit a minimal
extension over Ω.

Proof. As Ω is non convex, there exist points p, q ∈ Γ such that the segment I joining p and q is not
entirely contained in Ω. Let J be a connected component of the complement of I ∩Ω in I. Since Ω is
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connected and J is an open segment contained in the complement of Ω, the endpoints of J belong to
the same connected component of Γ. From now on, the proof is analogous to the proof of Theorem
3.1, taking as p̃, q̃, the endpoints of the segment J.

Remark 3.1. We notice that our proofs of Theorem 3.1 and 3.2 hold in R3 (τ = 0), as well. In the
case of bounded domain, an almost analogous result is stated by H. Jenkins and J. Serrin in [15], page
185. The result in R3 for unbounded domain was unknown, to the best of our knowledge.

4 Existence Results in Nil3(τ)

4.1 Compactness Theorem

In the proof of existence results either on unbounded domain or with infinite boundary data, we will
use strongly the Compactness Theorem for minimal graphs in Nil3(τ). Despite of the fact that it is
a classical result for the minimal surface equation in several ambient spaces, we clarify which are the
main ingredients of the proof in Nil3(τ).
The Compactness Theorem yields that any C2,α bounded sequence (un) of solutions of the minimal
surface equation on a domain Ω in R2 admits a subsequence that converges uniformly in the C2

topology, on any compact subset of Ω, to a solution of the minimal surface equation. The proof of
this result relies on Ascoli-Arzelá Theorem, so one needs to prove that the sequence (un) is uniformly
bounded in the C2,α topology. By Schauder theory, C2,α a-priori estimates follow from C1,β a-priori
estimates. These last estimates follow, by Ladyzhenskaya-Ural’ceva theory, from C1 a-priori estimates.
By [23, Theorem 3.6], such estimates follow from uniform height estimates. As [23, Theorem 3.6] is
stated in a more general situation, we state it on our case.

Theorem. (see [23, Theorem 3.6]) Let Ω ⊂ R2 be a relatively compact domain and u : Ω −→ R be
a C2 function on Ω satisfying (2). Assume that C1 is a positive constant such that |u|< C1 on Ω.
Then, for any positive constant C2, there exists a constant α = α(C1, C2,Ω) such that for any p ∈ Ω
with d(p, ∂Ω) > C2, we have

Wu(p) < α.

where Wu is defined in (3)

The uniform bound on Wu clearly gives C1 a-priori estimates on any compact subset of Ω.

Remark 4.1. Let (un) be a sequence of C2 functions satisfying the minimal surface equation on a
domain Ω. We deduce from above that, once we have uniform height estimates for (un), there exists
a subsequence of (un) that converges C2 on any compact subset of Ω, to a solution of the minimal
surface equation.

4.2 Construction of Barriers

In the proof of existence results, in order to prove that the solutions takes the given boundary value, it
is important to get barriers at a convex point of the boundary, where the boundary data is continuous.
Our construction of barriers is strongly inspired by the analogous construction in H2×R, by the second
and the third author in [25]. Let us first define a convex point of a domain Ω.

Definition 4.1. Let Ω ⊂ R2 be a domain. We say that a boundary point p ∈ ∂Ω is a convex point of
Ω if there exist an open neighborhood V of p in R2 and a straight line L ⊂ R2 passing through p such
that:

• V ∩ Ω stays in one side of L,
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• (V ∩ L) ∩ Ω = ∅.

Let Ω be a (not necessarily bounded) domain and let ϕ : ∂Ω −→ R be a function. We recall what is
a barrier at a point p0 ∈ Γ := ∂Ω with respect to the function ϕ.
Let p0 be a point of Γ. One says that p0 admits an upper (lower) barrier with respect to ϕ if the
following holds. For any positive M and any k ∈ N, there exists an open set Vk containing p0 in its
boundary and a function ω+

k (resp. ω−k ) in C2(Vk ∩ Ω) ∩ C0(Vk ∩ Ω) such that

1. ω+
k (q)|∂Ω∩Vk

> ϕ(q), ω+
k (q)|Ω∩∂Vk

>M (resp. ω−k (q)|∂Ω∩Vk
6 ϕ(q), ω−k (q)|Ω∩∂Vk

6 −M).

2. D(ω+
k ) 6 0 (resp. D(ω−k ) > 0) where D is defined in (2) .

3. ω+
k (p0) = ϕ(p0) + 1

k (resp. ω−k (p0) = ϕ(p0)− 1
k ).

Now, let p0 ∈ Γ be a convex point of Ω and assume that ϕ is continuous at p0. Let M be any positive
real number. We show how to construct an upper barrier at the point p0 (see Figure 4).

Ω

φ
0
)+1/k(p 

0

(p 

p

M
1

M1

α

β γ

Γ

Figure 4: The upper barrier

Consider a triangle T in R2 with sides α, β, γ. Let A,B,C be the vertices of T labeled such that
A,B,C are opposite to α, β, γ respectively. Let M1 be a positive constant to be chosen later and let
Ã, (B̃, C̃) be the endpoints of the vertical segment above A (B, C respectively) of Euclidean lenght

M1. Let α̃ (β̃ respectively) be the segment projecting one to one on α (β respectively) with endpoints

B̃, C̃ (Ã, C̃ respectively) and with third coordinate equal to M1. Denote by LB (LA) the vertical

segment between B and B̃ (A and Ã respectively). We solve the Plateau problem with boundary

γ, LB , LA, α̃, β̃ (see [18]). The solution of the Plateau problem is a graph in the interior of T of a
function v having value zero on the interior of γ and value M1 on α∪ β (see the proof of [1, Theorem
1]).
As ϕ is continuous, there exists ε > 0 such that, for any q ∈ ∂Ω such that d(p0, q) < ε, one has
ϕ(q) < ϕ(p0) + 1

k .
In the definition of barrier, let Vk be the triangle T defined above, such that γ touches Γ at p0,
γ ∩ Ω = ∅ and T ∩ Ω 6= ∅. Moreover, choose T such that for any q ∈ T ∩ ∂Ω, one has d(q, p0) < ε.
We choose M1 such that M1 > max(M,ϕ(p0) + 1

k ) and we set ω+
k = v + ϕ(p) + 1

k , where v is the
function on T described above.
Hence the function ω+

k satisfies the required properties.

The construction of the lower barrier is analogous.
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4.3 Existence on Bounded Domains

We state an existence result and we prove it by using classical tools of minimal surfaces theory. See
[25, Corollary 4.1, page 325] for analogous results in H2×R. In [1, Theorem 1] and [21, Theorem 1.1]
one finds existence results in Nil3, with different regularity assumptions.

Theorem 4.1. Let Ω ⊂ R2 be a bounded convex domain. Let ϕ be a continuous function on Γ = ∂Ω
except, possibly, at a finite number of points {p1, . . . , pn}, where ϕ has finite left and right limits.
Then, there exists a unique minimal extension u of ϕ over Ω. Moreover, the boundary of the graph
of u in Nil3(τ) is the Jordan curve γ given by the graph of ϕ over Γ \ {p1, . . . , pn} and the vertical
segments between the left and right limit of ϕ at any p1, . . . , pn.

Proof. We first prove the existence part. Let S be a solution of the Plateau problem for the Jordan
curve γ defined in the statement (see [18]). As Γ is convex, we can compare S with the vertical planes
and by the maximum principle, we get that the surface S is contained in the Euclidean cylinder over
Ω. Then, S ∩ (Ω× R) is a graph, as it is proved in [1].

The uniqueness, in the case of continuous boundary data, follows by a standard up and down argument
and the maximum principle. When ϕ has a finite number of discontinuity points, one uses the classical
argument of H. Jenkins and J. Serrin [14] adapted to the metric of Nil3, by A. L. Pinheiro [21, Theorem
2.1].

Remark 4.2. The result analogous to Theorem 4.1 in H2 ×R and ˜PSL2(R) are consequences of the
results in [19], [20], [25] and [27] respectively. The proof of Theorem 4.1 holds in such spaces as well.

4.4 Scherk’s Type Surface

Theorem 4.2. Let Ω be a bounded, convex domain such that ∂Ω = C ∪ γ, where C is a convex curve
and γ is a segment. Let ϕ : C → R be a continuous function. Then, ϕ has a unique minimal extension
over Ω assuming the value +∞ on the interior of γ.
More precisely, there exists a unique continuous function u : Ω \ γ → R such that:

• u is C2 on Ω and verifies the minimal surface equation (2),

• u(pn)→ +∞ for any sequence (pn) of Ω converging to an interior point of γ,

• u(p) = ϕ(p) for any p ∈ C \ ∂C.

As a particular case of Theorem 4.2 we get the following existence result. Let T ⊂ R2 be a triangle with
sides α, β, γ. Let A,B,C the vertices of T labeled such that they are opposite to α, β, γ respectively.

Corollary 4.1. Let ϕ : α∪β → R be a continuous function. Then, ϕ has a unique minimal extension
over T assuming the value +∞ on the interior of γ.
More precisely, there exists a unique continuous function u : T \ γ → R such that:

• u is C2 on the interior of T and verifies the minimal surface equation (2),

• u(pn)→ +∞ for any sequence (pn) of int(T ) converging to an interior point of γ,

• u(p) = ϕ(p) for any p ∈ α ∪ β, p 6= A,B.

Proof of Theorem 4.2. We do the proof for τ = 1
2 . It will be clear that the proof is analogous for any

τ > 0 (by Remark 2.2).
By Remark 2.1(B), it is enough to prove the result for ψ(Ω) where ψ is any Euclidean isometry of R2

and for any continuous function on ψ(C).
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It follows that we can assume that the segment γ is orthogonal to the x1 axis, with: 0 < x1(C) < x1(γ).

Let n ∈ N and let ϕn be the piecewise continuous function on ∂Ω with value ϕ on C and n on int(γ).
Theorem 4.1 insures the existence and uniqueness of a minimal extension un of ϕn to Ω. Namely, for
any n ∈ N:

• un is continuous on Ω \ ∂C,

• un is C2 on Ω and satisfies the minimal surface equation (2),

• un(p) = ϕn(p) for any p ∈ C \ ∂C.

Claim 1. There is a subsequence of (un) converging to a C2 function u on Ω, satisfying the minimal
surface equation.
By Remark 4.1, it is enough to prove that for any compact subset K of Ω, there exist uniform height
estimates for the sequence (un).
We show uniform height estimates for (un) from above on K. A similar reasoning shows that uniform
height estimates from below hold as well.

Let dK > 0 be the Euclidean distance between K and γ, and let B be a positive constant such that
Ω ⊂ {(x1, x2) ∈ R2, |x2| < B/2}.
As in the proof of Theorem 3.1, we consider the family of horizontal catenoids Ct of Nil3, t ∈ R+.
Recall that the projection of Ct, t > 0, on the x1-x2 plane is given by:

π(Ct) =
{

(x1, x2) ∈ R2, |x1| 6 t cosh
(x2

t

)}
.

We set L+
B(t) = ∂π(Ct) ∩ {(x1, x2) ∈ R2, x1 > 0 , |x2| 6 B}. Then:

L+
B(t) ∩ {(x1, B), x1 ∈ R} = {(t cosh

(
B

t

)
, B)}

L+
B(t) ∩ {(x1, 0), x1 ∈ R} = {(t, 0)}.

Then we have

L+
B(t) ⊂ {(x1, x2) ∈ R2, t 6 x1 6 t cosh

(
B

t

)
, |x2| 6 B}.

Let t > 0 be large enough to have

t cosh

(
B

t

)
− t < dK/2. (7)

Now, let us translate the domain Ω along the x1 axis so that x1(γ) = t cosh
(
B
t

)
, recall that the side

γ is orthogonal to the x1 axis. Because of inequality (7) we have that K ⊂ int
(
π(Ct)

)
(see Figure 5).

Translate vertically the catenoid Ct so that it stays above the graph of ϕ on Ω ∩ π(Ct). Then, as the
boundary of the graph of any of the functions un over Ω∩π(Ct) stays below the translated catenoid, by
the maximum principle the graph of any of the functions un on Ω∩π(Ct) remains below this catenoid.
This gives uniform upper estimates for the sequence (un) on K.

Claim 2. The sequence (un) is strictly increasing on Ω. Consequently, u(pn)→ +∞ for any sequence
(pn) of Ω converging to an interior point of γ.

The first assertion is a consequence of the general maximum principle of H. Jenkins and J. Serrin [14],
adapted to the metric of Nil3 by A. L. Pinheiro [21, Theorem 2.1], because the boundary data of the
sequence (un) are not decreasing in n. The second assertion of the Claim follows easily.

One can use the barrier constructed in Section 4.2 in the same way as in [24, Theorem 3.4], to prove
that the function u extends continuously up to ∂Ω \ γ taking value u = ϕ on C \ ∂C.

Finally, uniqueness follows by the generalization of Jenkins-Serrin result [14, Section 6] to Nil3 by A.
L. Pinheiro [21, Theorem 4.2].
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Figure 5: The subset K

Remark 4.3. Theorem 4.2 also holds for functions ϕ : α ∪ β → R continuous except at a finite
number of points, where ϕ has finite left and right limits.

4.5 Existence on Unbounded Domains

In next theorem we prove that we can solve the Dirichlet problem for the minimal surface equation
on any convex unbounded domain, different from the half-plane, with arbitrary piecewise continuous
boundary data, and on a half-plane for bounded piecewise continuous boundary data.

Theorem 4.3.

(A) Let Ω ⊂ R2 be an unbounded convex domain different from a half-plane. Let ϕ be a function
on Γ = ∂Ω continuous except at a discrete and closed set Z ⊂ ∂Ω of points where ϕ has finite
left and right limits.

Then there exists a minimal extension of ϕ over Ω.

(B) Let Ω be a half-plane and let Γ the straight line that is the boundary of Ω. Let ϕ be a bounded
function on Γ continuous except at a discrete and closed set Z ⊂ Γ of points where ϕ has left
and right limits. Then there exists a 1-parameter family of minimal extension of ϕ over Ω.

In both cases, the boundary of the minimal extension is the union of the graph of ϕ over ∂Ω \ Z with
the vertical segment between the left and the right limit of ϕ at the discontinuity points.

Proof. (A) As Ω is convex and is not a half-plane, it is either contained in a wedge or it is a strip, (in
this case it has two boundary components.)

Case 1. Ω is contained in a wedge.
Assume that the wedge is contained in the half plane x1 > 0. Let Bn be the open ball of radius n,
centered at the origin in the x1-x2 plane and let Ωn = Bn ∩ Ω. Denote by Γn the boundary of Ωn
contained in ∂Bn. Let rn, sn be the intersection points between Γn and ∂Ω. Since Z is discrete, we can
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assume that ϕ is continuous at rn and sn. On the boundary of Ωn, we consider a piecewise continuous
function ϕn, continuous on Γn, with value between ϕ(rn) and ϕ(sn) on Γn such that

ϕn(q) =

 ϕ(q) if q ∈ ∂Ωn \ Γn
ϕ(rn) if q = rn
ϕ(sn) if q = sn

As Ωn is bounded and convex and ϕn is piecewise continuous, Theorem 4.1 guarantees the existence
of a minimal extension un of ϕn on Ωn. We recall that the boundary of the graph of each un contains
the vertical segment above any discontinuity point with endpoints the left and the right limit of ϕ
at the point. Moreover, there are no other points of the closure of the graph of un on the vertical
geodesic passing through the discontinuity points.

We want to prove that there is a subsequence of (un) converging to a minimal solution u on every
compact subset of Ω and such that

• u extends continuously up to Ω \ Z,

• the boundary of the graph of u consists in the graph of ϕ over ∂Ω \Z and the vertical segments
between the right limit and the left limit of ϕ at any point p ∈ Z.

By Remark 4.1, in order to prove the convergence, we only need to prove that uniform height estimates
hold for the sequence (un) on every compact subset of Ω.
Let K be a compact subset of Ω and let n0 be such that K ⊂ Ωn0

. Consider a horizontal catenoid

Cα(n0) such that Ωn0
⊂ π(Cα(n0)). Moreover let C̃α(n0) = Cα(n0)∩{(x1, x2, x3) ∈ R3, |x2| 6 B}, where

B is chosen such that π(C̃α(n0)) strictly contains K. Now, let N0 > n0 (depending only on n0) such

that π(C̃α(n0)) ∩ ΓN0 = ∅ (see figure 6).

As, ΩN0 is compact, ϕN0 is bounded there, so that it is possible to translate vertically upward C̃α(n0)

such that it is above ϕN0
(∂ΩN0

∩ ∂Ω). Notice that, for any n > N0, the graph of un|∂ΩN0
is below

the translation of C̃α(n0). This means that, for any n > N0, the boundary of the graph of un|ΩN0
stays

below the translation of C̃α(n0) and hence, by the maximum principle, the graph of un stays below it.
This gives the uniform height estimates from above on K for every un, n > N0.

It is clear that analogously, one finds height estimates from below on K, for every un, n > N0.

Now we prove that the function u, previously defined as the limit of a subsequence of (un), takes the
desired boundary values.
At any point of Γ \ Z, that is where ϕ is continuous, one can use the barrier that we constructed
before in the same way as in [24, Theorem 3.4], to prove that u extends continuously up to Ω \Z, by
setting u = ϕ on Γ \ Z.

Now, we show what happens at a discontinuity point. The proof is analogous to the one in [25,
Corollary 4.1, page 325]. Let p be a discontinuity point of ϕ. Let ϕ1(p) and ϕ2(p) be the left and the
right limit of ϕ at p. We assume that ϕ1(p) < ϕ2(p). We first prove that the vertical segment between
(p, ϕ1(p)) and (p, ϕ2(p)) is contained in the boundary of the graph of the function u. Let l be such
that ϕ1(p) < l < ϕ2(p).
Let pn, qn, distinct points of Γ at distance 1

n from p, such that pn and qn are not in the same component
of Γ \ {p}. One has that, for n large enough:

u(pn) = un(pn) = ϕ(pn) < l < ϕ(qn) = un(qn) = u(qn).

Let δn be a small arc contained in the intersection of Ω with an Euclidean disk centered at p of radius
2
n , with endpoints pn and qn. By the previous inequality and by the continuity of u, there exists a
point rn ∈ δn such that u(rn) = l. This means that, for n great enough, any point (rn, l) belongs to
the graph of u. Now, when n −→∞, one has that (p, l) belongs to the closure of the graph of u.
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0

Figure 6: Uniform bounds on K : the graph of ϕN0 over ∂ΩN0 ∩ ∂Ω is below the vertical translation
of Cα(n0).

Finally, we have to prove that there are no other points of the closure of the graph of u on the vertical
geodesic above p.
Let h be a real number such that h > max{ϕ1(p), ϕ2(p)}. Then, for any ε > 0 such that h − ε >
max{ϕ1(p), ϕ2(p)}, we construct a standard upper barrier on a triangle T with sides α, β, γ. Since
Ω is convex, we can choose the triangle such that the side γ touches Γ at the point p. We choose the
value h − ε on γ and the value M on α and β, such that M > supq∈T∩Ω,n∈N un(q) (observe that by

construction, the functions un are uniformly bounded on any compact subset of Ω). We denote by v
the function on T given by this upper barrier.
Then, by the maximum principle, we get that un(q) 6 v(q) for any q ∈ T ∩ Ω, q 6= p. Consequently
we have u(q) 6 v(q) for any q ∈ T ∩Ω, q 6= p. Since v|γ = h− ε, we obtain that the point (p, h) is not
in the closure of the graph of u.

We can show in the same way that any point (p, h) with h < min{ϕ1(p), ϕ2(p)} is not in the closure
of the graph of u.

Case 2. Ω is a strip.
The proof is analogous to the proof of the Case 1. We only describe what are Ωn and ϕn in this case.
We assume the strip is Ω = {(x1, x2) ∈ R2, 0 < x2 < d}. For each n ∈ N∗, let Ωn be the following
rectangle:

Ωn = {(x1, x2) ∈ R2, |x1| < n, 0 < x2 < d}. (8)

We choose ϕn : ∂Ωn −→ R to be a piecewise continuous function such that ϕn(q) = ϕ(q) if q ∈
∂Ω ∩ ∂Ωn and such that it is monotone on each vertical side of ∂Ωn.

(B) We can assume that the half-plane is Ω = {(x1, x2) ∈ R2, x2 > d}, d > 0. Let us consider a plane
x3 = ax2 + b, where a > 0, b > sup{x2=d} ϕ. For any n ∈ N, we consider the strip Ωn = {(x1, x2) ∈
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R2, d < x2 < n} and the piecewise continuous function ϕn : ∂Ωn −→ R defined as follows

ϕn(p) =

{
ϕ(p) if p = (x1, d)

an+ b if p = (x1, n)

We solve the Dirichlet problem on Ωn with boundary values equal to ϕn as in (A) and denote by
un the solution. Recall that each un is obtained as uniform limit on compact subsets of the strip, of
functions (un,k)k∈N defined on rectangles Rn,k exhausting the strip Ωn. Moreover, by the maximum
principle, comparing the graphs of un,k with the vertical translations of the plane x3 = ax2 + b, one
has that un,k(x1, x2) 6 ax2 + b, for all (x1, x2) ∈ Rn,k, for all n, k. Therefore the graph of un is below
the plane x3 = ax2 + b, for every n. This gives the desired estimate from above for the sequence (un).
We do the same with planes staying below the boundary values and we find uniform estimates from
below, as well.
As the solution that we find is contained between two planes, the existence of one parameter family of
solutions is easily achieved by changing the slope of the initial plane that one uses as supersolution.

Remark 4.4.

(A) The existence of solutions on a half-plane can be proved in a more general case. Assume
that the half-plane is x2 > 0 and let the boundary value ϕ be piecewise continuous and such
that ϕ(x1, 0) = cx1 for |x1| > n. The proof is analogous to the proof of Theorem 4.3(B), using
suitable tilted planes that do not contain the x1-direction.

(B) In the proof of Theorem 4.3-(A), Case 1, we can use, as barriers, the surfaces constructed
in Theorem 4.1.

(C) The proof of Theorem 4.3-(A) yields that, when the boundary value ϕ is bounded above
(respectively below) by a constant A, then the solution given by our proof is also bounded above
(respectively below) by the same constant A.

(D) The proof of Theorem 4.3-(B) yields that, when the boundary value ϕ is non negative, then
the solution given by our proof is non negative as well. Moreover, such solution has linear growth
(see Definition 4.2).

On the contrary, it will be clear from the examples below that there are many unbounded solutions
on a wedge, with zero boundary value. The existence of such surfaces means that, on a wedge,
the boundedness of the boundary value does not imply the boundedness of the extension. Two

questions arises about solutions on a strip.

(a) Is the minimal solution with zero boundary value on a strip, unique?

(b) Let u be any minimal solution on a strip with boundary value ϕ such that |ϕ| 6M for some
M > 0. Is |u| 6M?

Note that, by [16, Theorem 7], any non trivial solution of the minimal surface equation, with
zero boundary value on a strip has at least linear growth (see Definition 4.2). In the same article
Manzano and the first author prove that the growth of an entire minimal graph in Nil3 has order
at most three (Theorem 6).

Let us recall the definition of growth of a graph.

Definition 4.2. Let Ω be an unbounded subset of R2 and let ΩR be the intersection of Ω with the ball
of radius R centered at the origin. Let f : R −→ R+ be a continuous non decreasing function. The
graph of a continuous function u : Ω −→ R has growth at least f(R) (respectively at most f(R)) if

lim inf
R−→∞

sup∂ΩR
|u|

f(R)
> 0, (resp. lim sup

R−→∞

sup∂ΩR
|u|

f(R)
<∞)
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In particular we say that the growth is α > 0 if there exists a constant c > 0 such that

lim
R−→∞

sup∂ΩR
|u|

Rα
= c.

(linear if α = 1, and quadratic if α = 2)

In the following we describe some examples of minimal graphs on unbounded domain with linear and
quadratic growth.

1. Recall the examples by Figueroa, Mercuri and Pedrosa described in Section 2.2. The graph of
the function u0 : R2 −→ R, defined by u0(x1, x2) = τx1x2, is a complete minimal surface in
Nil3(τ) that is invariant by the isometry ϕ(x1, x2, x3) = (x1 + c, x2, x3 + cτx3), c ∈ R. The
function u0 over the wedge {(x1, x2) ∈ R2, x1 > 0, x2 > 0} has zero boundary value and
quadratic growth.

2. In [5, Corollary 3.8], S. Cartier proved that there exist non-zero minimal graphs on any wedge
with angle less than π, with zero boundary value. The growth of such graphs is linear.

In the following theorem we show a new example of minimal graph on a convex unbounded domain,
containing a wedge of angle θ = π

2 , with non negative boundary value and at least quadratic growth.

Theorem 4.4. Let Ω be a convex, unbounded domain, different from the half-plane, containing a
wedge Wθ with vertex at the origin and angle θ ∈ [π2 , π[ , and let ϕ be a non-negative, continuous
function on ∂Ω. Then, there exists a non-negative minimal extension of ϕ to Ω in Nil3(τ), τ 6= 0,
with at least quadratic growth.

Proof. Up to an isometry, we can assume that x2 > 0 on the wedge Wθ contained in Ω and that Wθ is
symmetric with respect to the x2 axis. Consider the graph Σ of the function v(x1, x2) = τx1x2 over

the wedge {(x1, x2) ∈ R2, x1 > 0, x2 > 0}. We rotate Σ in order to obtain a graph Σ̃ over the wedge

{(x1, x2) ∈ R2, x2 > |x1|} with zero boundary value. Moreover x3(p) > 0 for any p ∈ Σ̃.
For any n ∈ N∗ we denote by An and Bn the intersection points of the boundary of Ω with the
horizontal line {x2 = n}.
Let Ωn = Ω ∩ {(x1, x2), x2 6 n}. The set Ω is convex and bounded. Let Cn = ∂Ω ∩ ∂Ωn and
γn = ∂Ωn ∩ {x2 = n}. Observe that the sequence (Ωn) gives an exhaustion of the domain Ω.
Let ϕn : ∂Ωn → R be a continuous function such that:

• ϕn is positive and stays above Σ̃ along the open segment γn.

• ϕn|C = ϕ.

Let un be the minimal extension of ϕn to Ωn given by Theorem 4.1. Let hn be the function whose
graph is the Scherk-type surface with boundary value zero on Cn and with value +∞ on γn, given by
Theorem 4.2.

Finally let K ⊂ Ω be a compact subset and let n(K) ∈ N∗ such that K ⊂ Ωn(K)−1. Let Ln(K)−1 =
maxCn(K)−1

ϕ. By the maximum principle, for any n > n(K) we have un 6 hn(K) + Ln(K)−1 on K.
This gives uniform estimates from above for the sequence (un) on K. Moreover the sequence (un) is
bounded below by 0.

We deduce from Remark 4.1 that a subsequence of (un) converges to a non-negative function u on
Ω, satisfying equation (2). Furthermore, the function u extends continuously to ∂Ω with prescribed
value ϕ. This can be seeing by comparing with the barriers described in Section 4.2.

Observe that, for any n, by the maximum principle, the graph of un stays above Σ̃ , so the graph of
u also stays above Σ̃. Since the function whose graph is Σ̃ has quadratic growth, we have that u has
at least quadratic growth.
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As a consequence of Theorem 4.4, we have the following Corollaries.

Corollary 4.2. Let Wθ be a wedge with vertex at the origin and angle θ ∈ [π2 , π[ , and let ϕ be a
non-negative, continuous function on ∂Wθ. Then, there exists a non-negative minimal extension of ϕ
to Wθ in Nil3(τ), τ 6= 0, with at least quadratic growth.

The proof of Corollary 4.2 is an immediate consequence of Theorem 4.4, taking Ω = Wθ. Notice that,
when the boundary value is zero, the fact that the growth is at least quadratic yields that the examples
of Corollary 4.2 are different from those in [5].
Next Corollary show that, we are able to construct graphs with at least quadratic growth on any
wedge of angle θ ∈ [π, 2π[, provided the boundary data satisfies suitable conditions. Notice that,
when θ = π, the wedge is an half-plane.

Corollary 4.3. Let Wθ be the wedge with vertex at the origin and angle θ ∈ [π, 2π[, bounded by the
following two half-lines

L1 =

{
x2 = x1 tan

(
π − θ

2

)
, x1 > 0

}
L2 =

{
x2 = x1 tan

(
π + θ

2

)
, x1 6 0

}
.

Let ϕ : L1 ∪ L2 −→ R be a continuous function such that ϕ(x1, x2) = −ϕ(−x1, x2) and ϕ > 0 on L1.
Then, there exists a minimal extension of ϕ to Wθ in Nil3(τ) with at least quadratic growth.

Proof. Let Q = Wθ ∩ {(x1, x2) ∈ R2, x1 > 0}. We define the function ψ : ∂Q −→ R by ψ = ϕ on
∂Q ∩ {x2 = x1 tan

(
π−θ

2

)
}, ψ ≡ 0 on ∂Q ∩ {x1 = 0}.

Let v be the minimal extension of ψ over Q given by Corollary 4.2. Then, extend v to Wθ by the
Reflection Principle (as in [26, Lemma 3.6]) along ∂Q ∩ {x1 = 0}. As ϕ(x1, x2) = −ϕ(−x1, x2), the
extended function gives the desired solution with at least quadratic growth.

In the case of the half-plane, we have a further result.

Corollary 4.4. Let Π be the half-plane {(x1, x2) ∈ R2, x2 > 0}, and let ϕ : ∂Π −→ R an odd
function. Assume that ϕ is continuous except as a discrete and closed set Z ⊂ ∂Π, ϕ(x1) > 0 for
x1 > 0 and there exists a constant M such that |ϕ| 6M. Then, there exists a minimal extension of ϕ
to Π in Nil3(τ) (τ > 0, including the Euclidean 3-space), that is bounded in Π by the same constant
M. The boundary of the minimal extension is the union of the graph of ϕ over ∂Π\Z with the vertical
segment between the left and the right limit of ϕ at the discontinuity points.

Proof. Let Q be the subset of Π given by {(x1, x2) ∈ R2, x1, x2 > 0}. We define the function
ψ : ∂Q −→ R by ψ = ϕ on ∂Q ∩ {x2 = 0}, ψ ≡ 0 on ∂Q ∩ {x1 = 0}.
Let v be the minimal extension of ψ over Q given by Theorem 4.3(A). Notice that, by Remark 4.4,
the function v is bounded by the constant M. Then, extend v to Π by the Reflection Principle along
∂Q ∩ {x1 = 0}. The extended function gives the desired solution.
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