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ON THE GEOMETRY OF CONSTANT MEAN CURVATURE
ONE SURFACES IN HYPERBOLIC SPACE

RICARDO SA EARP AND ERIC TOUBIANA

Abstract. We give a geometric classification of regular ends with con-
stant mean curvature 1 and finite total curvature, embedded in hyper-

bolic space. We prove that each such end is either asymptotic to a
catenoid cousin or asymptotic to a horosphere. We also study sym-
metry properties of constant mean curvature 1 surfaces in hyperbolic
space associated to minimal surfaces in Euclidean space. We describe
the constant mean curvature 1 surfaces in H3 associated to the family

of surfaces in R3 that is isometric to the helicoid.

0. Introduction

The theory of constant mean curvature 1 surfaces in hyperbolic space was
created by Robert Bryant in a pioneering paper [Br], in which Bryant gave
a holomorphic parametrization of such (simply connected) surfaces, which
is a close analogue of the Weierstrass representation for minimal surfaces
in R3. Later, Umehara and Yamada, following Bryant’s idea, have made
important contributions to the theory. In particular, they introduced the
notion of regular ends (see Definition 2.1), and they gave some new examples
and techniques to construct complete constant mean curvature 1 surfaces with
regular and nonregular ends (see [U-Y1], [U-Y2], [U-Y3]).

In this paper we prove that if E is a regular embedded end into H3 with
constant mean curvature 1 and finite total curvature, then E is either asymp-
totic to a catenoid cousin (embedded or not embedded) or is asymptotic to
a horosphere. In the half-space model we prove that, up to an isometry, E
is asymptotic as a vertical Euclidean graph to a horosphere or to an end of a
catenoid cousin. Thus, we obtain a geometric classification in hyperbolic space
of embedded regular ends with finite total curvature. In fact, in the half-space
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model we derive the formulas which give this classification. Clearly, the clas-
sification in hyperbolic space does not depend on the model, but we believe
that the mentioned Euclidean asymptotic behavior in the half-space model
is very surprising. We remark that Lima and Rossman [L-R] independently
proved a similar result, but we emphasize that the formulas we derive from
the results and techniques of Umehara and Yamada are established in a more
explicit fashion.

Recently, Collin, Hauswirth, and Rosenberg [C-H-R] proved that a properly
embedded end in H3 with constant mean curvature 1 must be regular and has
finite total curvature. Using the main result of this paper, they deduced that
such an end must be asymptotic to a catenoid cousin or a horosphere end.

Here we introduce a new approach which we use to establish a basic result
that describes the helicoids in the half-space model. In fact, we show that, for
the half-space model H3 = {(u, v, w) ∈ R3, w > 0}, the family in H3 given
by constant mean curvature 1 surfaces associated to minimal catenoids in H3

contains the catenoid cousins, the helicoids, and a surface that is invariant
under a 1-parameter group of Euclidean horizontal translations. We believe
that the fact that this surface belongs to the family of surfaces associated to a
minimal catenoid in R3 is an unexpected result. This surface (see Example 1.8
with eiθ = −1 and λ = 1/4) will be shown to be an Enneper cousin dual. In
[R-U-Y] a natural geometric notion of “dual” was defined (see Remark 1.11).
The Enneper cousin dual has also been described in the thesis of Gomes [Go],
using a different terminology, and in a paper by Sato and Rossman [R-S]. We
note that the constant mean curvature 1 helicoids were classified by Ordóñes
(see [O]), as part of his Doctoral Thesis, by using a complete different method.

Rossman, Umehara, and Yamada [R-U-Y] gave examples of complete con-
stant mean curvature 1 surfaces in hyperbolic space with higher genus, many
symmetries, and embedded ends; see also the work of Galvão and Góes
[Ga-Go] for another approach on this subject. Finally, we remark that in
[SE-T] the authors gave some uniqueness results for constant mean 1 surfaces
in hyperbolic space. For instance, we showed that, if M is such a properly
embedded surface contained in the region inside a horosphere H and if ∂M
is a circle lying on H, then M is part of an embedded catenoid cousin. In
the same paper, we gave a Phragmèn-Lindelöf type theorem in the half-space
model for unbounded vertical graphs over a horosphere {w = 1}.

We now describe the results of this paper. The paper is divided into three
distinct sections. In the first section, we prove some basic results (see, for
instance, Proposition 1.7), and we give a simple description of the “helicoids”
examples (Example 1.8). In the second section we prove the following result
(Theorem 2.3):
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A regular embedded end in the half-space model H3 = {(u, v, w) ∈ R3, w >
0} with constant mean curvature 1 and finite total curvature is asymptotic to
an embedded or nonembedded catenoid cousin or a horosphere.

In fact, we derive an explicit formula for a vertical graph (see Definition
2.1), and we show that the above convergence holds in the hyperbolic and in
the Euclidean sense, as Euclidean vertical graphs. We introduce a notion of
“growth” for embedded vertical ends in H3 (that are regular with finite total
curvature).

In the final section of this paper we investigate the following problem:
Suppose that a simply connected minimal surface M in R3 is invariant by
a Euclidean isometry. Is the associated surface in H3 (with constant mean
curvature 1) also invariant under an isometry of H3? We will see that the an-
swer is positive if M has a plane of symmetry (see Proposition 3.2) or if M is
invariant under a rotation whose axis intersects transversally M (Proposition
3.6). The answer is negative when M is invariant under reflection about a
straight line that is contained (or a part of which is contained) in M (Propo-
sition 3.3). We also observe that the Schwarz Reflection Principle about a
geodesic, i.e., rotation by an angle π about a line inside a surface, does not
hold for a constant mean curvature 1 surface in H3; see, for instance, the
helicoidal surfaces containing a geodesic line in hyperbolic space (see Remark
3.4).

Acknowledgement. We wish to thank the referee for valuable suggestions
and for providing the figures in this paper.

1. Basic theory and examples

Let us consider the Lorentz space L4 defined as the positively oriented
vector space R4 equipped with the pseudo-metric of signature (−,+,+,+).
Then the Minkowski model for H3, denoted by H3, is defined by

H3 =
{

(t, x1, x2, x3) ∈ R4, −t2 + x2
1 + x2

2 + x2
3 = −1, t > 0

}
.

Let us denote by 〈 , 〉 the Riemannian metric induced on H3 by the pseudo-
metric. Let M be a Riemann surface and let z = x+ iy be a local coordinate
on M . Let Y : M → H3 be a smooth immersion whose mean curvature
vector is denoted by ~H. Assuming that ~H 6= ~0, we will assume in the fol-
lowing that (Y, Yx, Yy, ~H)(z) is a positive basis of L4 for each z ∈ M . Ob-
serve that H3 has a natural orientation defined by the map f : R3 → H3,
f(x1, x2, x3) = (

√
1 + x2

1 + x2
2 + x2

3, x1, x2, x3). In view of our convention on
Y , it then follows that (Yx, Yy, ~H)(z) is a positive basis of H3 for each z ∈M .

The following result follows from Theorem A in [Br] (see also Theorem 1.1
in [U-Y1]).
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Theorem 1.1. Let M be a Riemann surface and let A, B, C, and D be
meromorphic functions on M satisfying

AD −BC ≡ 1 and dA · dD − dB · dC ≡ 0.

Consider the smooth map Y : M → H3 defined by Y (z) = (t, x1, x2, x3)(z),
where

(1.1)

2t(z) = (AĀ+BB̄ + CC̄ +DD̄)(z),

(x1 + ix2)(z) = (AC̄ +BD̄)(z),

2x3(z) = (AĀ+BB̄ − CC̄ −DD̄)(z).

Then Y defines a conformal and constant mean curvature 1 immersion into
H3 of the open part of M defined by

|A · dC − C · dA|

(
1 +

∣∣∣∣dDdC
∣∣∣∣2
)
6= 0.

Furthermore, the induced metric on M is given by

ds2 =

[
|A · dC − C · dA|

(
1 +

∣∣∣∣dDdC
∣∣∣∣2
)]2

.

Conversely, suppose that M is simply connected, and consider a conformal
and constant mean curvature 1 immersion Y : M → H3. Then there exist
meromorphic functions A, B, C, and D on M with AD − BC ≡ 1, A′D′ −
B′C ′ ≡ 0, such that Y is given by (1.1).

Remark 1.2. With the notations of Theorem A in [Br], we have

F (z) =
(
A B
C D

)
(z),

and e0(F ) = F ·F̄ t, α = D ·dA−B ·dC, β = A·dC−C ·dA, γ = D ·dB−B ·dD.

Corollary 1.3. Consider the (oriented) half-space model of the hyper-
bolic 3-space H3 = {(u, v, w) ∈ R3, w > 0} with the hyperbolic metric 〈 , 〉2 =
|du|2+|dv|2+|dw|2

w2 . Let M be a Riemann surface and let A, B, C, and D be
meromorphic functions on M satisfying

AD−BC ≡ 1, dA·dD−dB·dC ≡ 0, and |A·dC−C ·dA|

(
1 +

∣∣∣∣dDdC
∣∣∣∣2
)
6= 0.

Consider the immersion Y : M → H3 defined in Theorem 1.1. Then Y gives
rise to a conformal immersion X̃ : M → H3 with constant mean curvature 1,
defined by X̃(z) = (u, v, w)(z), where

(1.2) (u+ iv)(z) =
ĀC + B̄D

|A|2 + |B|2
(z), w(z) =

1
|A|2 + |B|2

(z).
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Furthermore, the induced metric on H3 is given by

ds2 =

[
|A · dC − C · dA|

(
1 +

∣∣∣∣dDdC
∣∣∣∣2
)]2

,

and (X̃x, X̃y, ~H)(z) is a positive basis of TX̃(z)H
3, where ~H is the mean cur-

vature vector of X̃.

Proof. Let us equip the unit 3-ball B3 with the hyperbolic metric 〈 , 〉1 =
4 |dX|2

(1−|X|2)2 , where X = (X1, X2, X3) ∈ B3. Then the stereographic projection
F : (H3, 〈 , 〉)→ (B3, 〈 , 〉1) defined by F (t, x1, x2, x3) = (X1, X2, X3), where

X1 + iX2 =
x1 + ix2

1 + t
and X3 =

x3

1 + t
,

is an orientation preserving isometry. Thus one gets the geometrical image of
the surface Y (M) in the ball model of the hyperbolic 3-space. Now observe
that the map J : (B3, 〈 , 〉1)→ (H3, 〈 , 〉2), defined by

J(X1, X2, X3) = 2
(X1,−X2, X3 + 1)
|(X1, X2, X3 + 1)|2

− (0, 0, 1),

is an orientation preserving isometry. We conclude that

(J ◦ F )(t, x1, x2, x3) =
1

t+ x3
(x1,−x2, 1).

We then see that the constant mean curvature 1 immersion of M into H3,
X̃(z) = (J ◦ F ◦ Y )(z) = (u, v, w)(z), is given by (1.2). Moreover, as J ◦ F
is an orientation preserving isometry between H3 and H3, we deduce that
(X̃x, X̃y, ~H)(z) is a positive basis of TX̃(z)H

3 for each z ∈M . �

Remark 1.4.

(1) Suppose now that M ⊂ C is a simply connected domain. Let g (resp.,
ω) be a meromorphic function (resp., holomorphic form) on M such that for
any z0 ∈M , z0 is a pole of g if and only if z0 is a zero of ω with multiplicity
twice that of the pole of g at z0. Then (g, ω) defines a conformal and minimal
immersion X : M → R3 by setting

X(z) = Re
∫ ((

1− g2
)
ω, i

(
1 + g2

)
ω, 2gω

)
.

The pair (g, ω) is called the Weierstrass representation of the immersion X;
see [Os, Chapter 8]. The induced metric is ds2 =

[(
1 + |g|2

)
|ω|
]2. Consider

Π = −2 Re(ω dg), the second fundamental form of X. Setting Π̃ = Π + ds2,
it is easily seen that ds2 and Π̃ satisfy the Gauss and Codazzi equations in
H3. It follows that there exists a conformal immersion X̃ : M → H3 whose
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induced metric is ds2 and whose second fundamental form is Π̃. Furthermore,
X̃ has constant mean curvature 1.

Conversely, consider a conformal and constant mean curvature 1 immersion
X̃ : M → H3. Let ds2 be the induced metric and Π̃ the second fundamental
form of X̃. Setting Π = Π̃− ds2, the forms ds2 and Π satisfy the Gauss and
Codazzi equations in R3. Therefore, they define a conformal and minimal
immersion X : M → R3.

We will call the immersions X̃ and X (or the surfaces X̃(M) and X(M))
associated ; see [La].

(2) In the context of item (1), let A, B, C, and D denote the meromorphic
functions on M defining the immersion X̃ : M → H3. Consider the Weier-
strass representation (g, ω) of the associated immersion X : M → R3. Then
we have

(1.3) F−1 · dF =
(
g −g2

1 −g

)
ω,

where

F (z) =
(
A B
C D

)
(z).

In particular, we have g = A′D−BC′
AC′−A′C = −D

′

C′ and ω = AC ′ −A′C (see Section
1 of [U-Y1]). We call (g, ω) the Weierstrass representation associated to the
immersion X̃. Observe that, given A, B, C, and D, relation (1.3) shows
how we can find the Weierstrass representation of X̃. Using this relation and
setting ω = η dz, Umehara and Yamada showed that A and C are independent
solutions of the differential equation

(1.4) X ′′ − η′

η
X ′ − ηg′X = 0,

and that B and D are independent solutions of

(1.5) Y ′′ − (g2η)′

g2η
Y ′ − g′ηY = 0;

see [U-Y1, Lemma 2.1]. Observe that, if A and C were not independent, the
conditions on A, B, C and D would force A and C to be constant. Thus,
the associated minimal surface would be plane, since (1.4) implies that g is
constant. Hence, the constant mean curvature 1 surface in H3 is a horosphere.

Example 1.5. In [Br, Example 2, p. 341] Bryant called catenoid cousins
the constant mean curvature 1 surfaces in H3 defined by the functions A, B,
C, and D on C∗, where (writing µ for α and z for z−1 in [Br])

F (z) =
(
A B
C D

)
=

1√
2α+ 1

(
(α+ 1)z−α αzα+1

αz−α−1 (α+ 1)zα

)
,
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where α is a real number satisfying α > −1/2 and α 6= 0. This implies

(F−1 · F ′)(z) =
α(α+ 1)
2α+ 1

(
−z−1 z2α

−z−2α−2 z−1

)
.

Hence the Weierstrass representation of catenoid cousins is g(z) = zµ and
ω = 1−µ2

4µ z−1−µ dz, where z ∈ C∗ and µ = 1 + 2α. Observe that µ > 0
and µ 6= 1. It is known that the catenoid cousin is embedded if and only if
0 < µ < 1; see [Br] and [U-Y1]. To determine the minimal surface in R3 that
is locally associated to the catenoid cousin, we make the change of variable
u = zµ. Thus, in terms of the u-variable, g(u) = u and ω = 1−µ2

4µ2 u
−2 du.

Therefore, we get the Weierstrass representation of the Euclidean catenoid.
We conclude that catenoid cousins in H3 are locally associated to Euclidean
catenoids of R3. However, the converse is not true: in fact, consider the
Weierstrass representation g(u) = u and ω = au−2 du, where a < −1/4,
which gives catenoids in R3. We show in Example 1.8 that the constant
mean curvature 1 surfaces that are locally associated in H3 are not rotational
surfaces, but there are surfaces that are invariant under a one parameter group
of hyperbolic translations. Observe that 1−µ2

4µ2 assumes every real value a with
a > −1/4 and a 6= 0 (because µ > 0 and µ 6= 1). We know from [Br] and
[U-Y1] that catenoid cousins are rotational surfaces, and that there are no
other rotational surfaces in H3 with constant mean curvature 1.

Remark 1.6.

(1) If M is not simply connected we can still carry out the construction
given in Remark 1.4. However, in this case the functions A, B, C, and D
may be multi-valued, and so the immersion into H3 given by (1.1) also may
be multi-valued.

(2) Suppose M is simply connected, and suppose that A, B, C, D, and
(g, ω) on M satisfying (1.3) and AD−BC ≡ 1 are given. Choose any constant
matrix T ∈ SL(2,C) and set F̂ (z) = T · F (z). We call X̃ (resp., X̂) the
conformal and constant mean curvature 1 immersion of M into H3 defined
by F (resp., F̂ ). Observe that F−1 · dF = F̂−1 · dF̂ . Hence X̃ and X̂

have the same induced metric, ds2 =
[(

1 + |g|2
)
|ω|
]2, and the same second

fundamental form, Π̃ = −2 Re(ω dg) + ds2. Therefore the two immersions
are equal up to a global isometry of H3. That is, there exists an isometry
S : H3 → H3 such that X̂ = S ◦ X̃.

Proposition 1.7. Let M ⊂ C be a simply connected domain. Consider a
conformal and minimal immersion X : M → R3. Let (g, ω) be the Weierstrass
representation of X. Let A be any nonconstant solution of (1.4) (where ω =
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η dz) and let H be a meromorphic function on M satisfying H ′ = η/A2. Set

B = −gA+
A′

η
, C = HA, D =

1
A
− gHA+H

A′

η
.

Then A and C (resp., B and D) are independent solutions of (1.4) (resp., of
(1.5)). Furthermore A, B, C, and D satisfy AD−BC ≡ 1 and (1.3). In par-
ticular, the function X̃ : M → H3 defined by (1.2) is a conformal immersion
and has constant mean curvature 1.

Proof. Using the fact that A is a solution of (1.4) and using the definition
of the function H, we find

B′ = −gA′ and B′′ = −g′A′ − gA′′,

C ′ =
η

A
+HA′ and C ′′ =

η′

A
+HA′′,

D′ = −g η
A
− gHA′ and D′′ = −g′ η

A
− g η

′

A
− g′HA′ − gHA′′.

From this we deduce that A and C are two independent solutions of (1.4) and
that B and D are two independent solutions of (1.5). Also, a straightforward
computation shows that AD −BC ≡ 1. Furthermore, setting

F (z) =
(
A B
C D

)
(z),

we have

F−1 · F ′ =
(
A′D −BC ′ DB′ −BD′
AC ′ − CA′ AD′ − CB′

)
.

Hence the functions A, B, C, and D satisfy (1.3). The last assertion of the
proposition follows from Corollary 1.3. �

Example 1.8. We determine the constant mean curvature 1 surfaces in
H3 locally associated to the family of minimal surfaces of R3 that are isometric
to the helicoid. We know that the Weierstrass representation of the helicoids
and the isometric minimal surfaces is given by g(z) = ez, ω = λeiθ · e−z dz,
where z ∈ C, λ > 0 and θ ∈ [0, 2π[. When eiθ = ±1 we get the catenoids, and
when eiθ = ±i we get the helicoids. Let us find the functions A, B, C, and
D associated to g and ω. Remark 1.4(2) shows that A and C are solutions of
the second order differential equation:

(∗) X ′′ +X ′ − λeiθX = 0.

The characteristic equation of this differential equation is

(∗∗) γ2 + γ − λeiθ = 0.

Let γ be a solution of the characteristic equation. Then the function A(z) =
eγz is a solution of (∗).
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Suppose that 1+2γ 6= 0. In the notation of Proposition 1.7, we set H(z) =
− λeiθ

1+2γ e
−(1+2γ)z. Then,

A(z) = eγz, B(z) = − γ

1 + γ
e(1+γ)z,

C(z) = −γ(1 + γ)
1 + 2γ

e−(1+γ)z, D(z) =
(1 + γ)2

1 + 2γ
e−γz.

By (1.2) it follows that (with z = x+ iy)

(u+ iv)(z) = − e2γ2y · e−x(1+2γ1) · e−i(y+2Im(γz))

× (1 + γ)2

1 + 2γ
· γ̄(1 + γ)ex + γ (1 + γ̄) e−x

|1 + γ|2e−x + |γ|2ex

and

w(z) = |1 + γ|2 e2γ2y−2γ1x

|1 + γ|2 + |γ|2e2x
,

where γ = γ1 + iγ2.
If γ2 = 0, we easily verify that each vertical line {x = x0} is mapped under

the immersion onto a horizontal circle whose center lies on the geodesic line
{u = v = 0} of H3. Hence the whole surface is a rotational surface and
therefore is a catenoid cousin (embedded or non-embedded); see Example 1.5,
[Br] or [U-Y1].

On the other hand, suppose that γ2 6= 0. Then, for any real numbers y, t,
and x0 we have

(u+ iv, w)(x0, y + t) = e2γ2t(e−it(1+2γ1)(u+ iv), w)(x0, y).

Thus, each vertical line {x = x0} is mapped onto a helix (in the hyperbolic
sense) about the vertical geodesic line {u = v = 0} in H3. This means that
the associated surface M(λ, θ) is a helicoidal surface in H3 whose axis is the
geodesic line {u = v = 0}. Observe also that the axis stays on M(λ, θ)
if and only if the vertical line {x = 0} is mapped onto the geodesic line
{u = v = 0}; this occurs if and only if Re(γ̄(1 + γ)) = 0. In fact, there
exists a family of such surfaces containing the axis. We obtain an element of
this family of surfaces by choosing any real number γ1 ∈] − 1, 0[ and setting
γ = γ1 ± i

√
−γ1 (1 + γ1). We clearly have Re(γ̄(1 + γ)) = 0, and we then set

λ = |γ2 + γ| and θ = Arg(γ2 + γ).
Finally, by computing the discriminant of (∗∗), we find for the case 1 +

2γ 6= 0 that γ2 = 0 if and only if eiθ = 1 or eiθ = −1 and λ < 1/4. By
the change of variables u = ez (assuming γ2 = 0), we obtain, in terms of
the u-variable, g(u) = u and ω = au−2 du, where a = λeiθ ∈ R (since
eiθ = ±1). We recognize the catenoids, which we will denote by Ca. Hence
we conclude that, when a > −1/4, the constant mean curvature 1 surface in
H3 that is locally associated to the catenoid Ca is a catenoid cousin, and thus
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a rotational surface. When a < −1/4, the catenoid Ca is locally associated
to a (nonrotational) surface in H3 that is invariant under a one parameter
group of hyperbolic translations, with constant mean curvature 1; see Figure
1 for the case when λ = 1/2, eiθ = −1, and Figure 2 below for the case when
λ = 5/4, eiθ = −1. Observe that the remaining case a = −1/4 corresponds
to λ = 1/4 and eiθ = −1; that is, 1 + 2γ = 0. We will consider this case later.
Conversely, we see from Example 1.5 that the minimal surface of R3 that is
locally associated to a catenoid cousin is a catenoid Ca with a > −1/4.

Figure 1

Suppose now that 1 + 2γ = 0; that is, λ = 1/4 and eiθ = −1. We have
A(z) = e−z/2, and we choose H(z) = −z/4. From Proposition 1.7 we obtain
B(z) = ez/2, C(z) = (−z/4)e−z/2, and D(z) = (1− z/4)ez/2. We get

(u+ iv)(z) =
ex

ex + e−x
− x

4
− iy

4
,

w(z) =
1

ex + e−x
.

Now, each vertical line {x = x0} is mapped onto a (Euclidean) horizontal
straight line that is parallel to the v-axis. Hence the surface in H3 that is
locally associated to the catenoid C−1/4 is a complete and constant mean
curvature 1 surface that is invariant under the horizontal translations X →
X + (0, v, 0) for any v ∈ R, where X ∈ H3; see Figure 3 below.



CONSTANT MEAN CURVATURE ONE SURFACES 381

Figure 2

Figure 3

We now resume our discussion of the surfaces in Example 1.8. In the case
when eiθ = 1, or eiθ = −1 and λ < 1/4, the associated surface in H3 is
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rotational. We deduce from Example 1.5 that this surface is embedded in H3

if and only if eiθ = 1.
In the case when eiθ = −1 and λ = 1/4, the associated surface is invariant

under a Euclidean horizontal translation in H3 and is an Enneper cousin dual
(see Remark 1.11). (We observe that these Euclidean horizontal translations
are indeed parabolic isometries of hyperbolic space.)

When eiθ = −1 and λ > 1/4, the associated surface is invariant by a one
parameter group of hyperbolic translations. In all other cases, the associated
surface is a helicoidal surface.

Definition 1.9. Let M be a Riemann surface, and let X̃ : M → H3 be a
conformal immersion such that (X̃x, X̃y, ~H)(z) is a positive basis of TX̃(z)H

3

for any z ∈M , where ~H is the mean curvature vector of X̃. Geometrically, the
hyperbolic Gauss map, G, is constructed as follows (see [Br]): For a given point
p ∈ S = X̃(M), consider the geodesic through p orthogonal to S, oriented by
~H(p). Then G(p) ∈ ∂∞H3 is the limit point of this geodesic.

Under the assumption that S is not totally umbilic, Bryant showed that
G is meromorphic if and only if S has constant mean curvature 1; see [Br,
Proposition 1] and also [Ga-Go, Theorem 1]. We have:

Lemma 1.10. In the notation of Corollary 1.3 and its proof, the hyperbolic
Gauss map of X̃(M) is given by

G =
dC

dA
=
dD

dB
.

Proof. We recall that the Klein model D for the hyperbolic 3-space is ob-
tained fromH3 via the projection Φ:H3→D, Φ(t, x1, x2, x3) =

(
1, x1

t ,
x2
t ,

x3
t

)
.

Observe that D = {(1, a, b, c) ∈ R4; a2 + b2 + c2 < 1}. We equip D with the
metric and the orientation induced by Φ. Then I = J ◦ F ◦ Φ−1 : D → H3

is an orientation preserving isometry and we have I(1, a, b, c) = 1
1+c (a,−b, α),

where α2 = 1 − (a2 + b2 + c2). Clearly, we can extend I continuously to the
asymptotic boundary of D, by setting I∞ : ∂∞D → ∂∞H3 = C ∪ {∞}, with
I∞(1, a, b, c) = a−ib

1+c . (Observe that a2 + b2 + c2 = 1.)
Now, let Y : M → H3 be the conformal and constant mean curvature 1

immersion which gives rise to X̃; that is, X̃ = (J ◦F ) ◦ Y . Let n : M → ∂∞D
be the hyperbolic Gauss map of Φ ◦ Y . By [Ga-Go, Lemma 1] we have

n(z) =
Y +N

(Y0 +N0)
(z),

where Y = (Y0, Y1, Y2, Y3) and N = (N0, N1, N2, N3) is the unitary normal
field on Y (M) such that (Y, Yx, Yy, N)(z) is a positive basis of L4. As Y is a
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conformal immersion, we have

〈Yzz̄, Yx〉 = 〈Yzz̄, Yy〉 = 0, 〈Yzz̄, Y 〉 = −λ
2

2
,

where 〈 , 〉 is the pseudo-metric on L4 and λ2 = 〈Yx, Yx〉 = 〈Yy, Yy〉. Moreover,
as Y (M) has constant mean curvature 1 with respect to the normal orientation
given by N , we obtain

〈Yzz̄, N〉 =
λ2

2
.

We deduce

Y +N =
2
λ2
Yzz̄,

and hence

n(z) =
Yzz̄

(Y0)zz̄
.

In terms of the functions A, B, C, and D (defined in (1.1)), we obtain locally

G(z) = (I∞ ◦ n)(z) =
Ā′C ′ + B̄′D′

|A′|2 + |B′|2
(z),

where the dash denotes the derivative with respect to z. Using the relation
A′D′ −B′C ′ = 0, we conclude

G =
C ′

A′
=
dC

dA
=
dD

dB
. �

Remark 1.11.

(1) Our expression for the hyperbolic Gauss map G differs slightly from
that of Bryant (see [Br, page 339]) where, with our notations, G = [e0 + e3]
and A = F1, C = F3. This is due to different choices of the isometries. In
fact, in Bryant’s paper the surface is immersed in the Minkowski model of
hyperbolic space, while in Lemma 1.10, the surface is immersed in the half-
space model. Of course, the expression for G depends on the choice of the
immersion. For example, in H3 let I be the orthogonal reflection with respect
to the vertical plane {v = 0} composed with the reflection with respect to the
unit sphere centered at 0. Note that I is an orientation preserving isometry of
H3 and extends to ∂∞H3 = C ∪ {∞} as the map z → z−1. Then, if G = dC

dA

is the hyperbolic Gauss map of X̃, we deduce that the hyperbolic Gauss map
of the immersion I ◦ X̃ is GI = G−1 = dA

dC .
(2) Let X̃ : M → H3 be a constant mean curvature 1 immersion defined

by a matrix F , as in Remark 1.4(2). The immersion defined by the inverse
matrix F−1 is called the dual immersion, according to Rossman, Umehara,
and Yamada (see [R-U-Y]). Let (g, ω) be the Weierstrass representation of
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the minimal surface in R3 associated to F . Then, using (1.3) and letting
(g#, ω#) be the Weierstrass representation associated to F−1, we get

g# =
1
G
, ω# = − g′(

1
G

)′ω.
This expression differs from that of [R-U-Y] because our formula for G is
different; see Remark 1.11(1) above. Consider, for instance, Example 1.8
with eiθ = −1 and λ = 1/4. Using the formulas for the functions A, B, C,
and D given in this example, we find, via Lemma 1.10, that G(z) = 2−z

4 . The
Weierstrass representation for the dual surface then gives

g#(z) =
4

2− z
, ω# =

(2− z)2

16
dz.

Making the substitution ζ = 4
2−z , we obtain

g#(ζ) = ζ, ω# =
4
ζ4
dζ.

This is the Weierstrass representation of the Enneper minimal surface in R3.
To see this, let (x1, x2, x3) be the coordinates in R3, and consider a rotation by
an angle π with respect to the x1-axis. Setting z = 1/ζ, we obtain g#(z) = z
and ω# = 4 dz. Thus, the surface in Example 1.8 with eiθ = −1 and λ = 1/4
is an Enneper cousin dual.

2. Asymptotic behavior and classification of embedded regular
ends in H3 with mean curvature 1 and finite total curvature

Definition 2.1.

(1) Set D∗ = {z ∈ C, 0 < |z| < 1}. Let X̃ : D∗ → H3 be a conformal and
constant mean curvature 1 immersion. Suppose that, for each path γ : [0, 1[→
D∗ such that γ(t) → 0 when t → 1, the path X̃(γ) has infinite hyperbolic
length in H3. We then say that X̃ (or X̃(D∗)) is an end, and we will denote it
by E. In [U-Y1], Umehara and Yamada called an end regular if the hyperbolic
Gauss map G extends analytically to the puncture 0.

(2) We define a vertical graph in H3 as any surface such that the third
coordinate is a function of the two others, w = w(u, v).

Remark 2.2.

(1) Let us consider a regular end of H3 with finite total curvature which
is not part of a horosphere. According to Bryant (see [Br]) the associated
Weierstrass representation (g, ω) (see Remark 1.4(2)) has the following general
form, which may be compared with the Weierstrass representation of catenoid
cousins, given in Example 1.5:

(2.1) g(z) = zµ · f(z), ω = zν · h(z) dz.
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Here z ∈ D = {z ∈ C, |z| < 1}, f and h are holomorphic functions on D with
f(0), h(0) 6= 0, µ, ν ∈ R, µ > 0, ν ≤ −1, ν + µ ∈ Z, and ν + µ ≥ −1. For the
sake of completeness we give a proof of this result.

As the end has finite total curvature, it follows from [Br, Proposition 4]
that g has the form g(z) = zµf(z), where µ > 0 and f is a holomorphic
function on D, such that f(0) 6= 0. In the notation of Proposition 4 in [Br],
we have µ = 1 + β. Observe that the metric |ω|

(
1 + |g|2

)
is well defined on

D∗. Setting ω = η(z) dz, we see that |η| is well defined on D∗, although η
may not be defined. For any z ∈ D∗ we set

η̃(z) = lim
t→2π

η(etiz), 0 ≤ t ≤ 2π.

Note that η̃(z)
η(z) is locally defined and holomorphic on D∗. As

∣∣∣ η̃(z)
η(z)

∣∣∣ ≡ 1, we
see that this function is, in fact, defined on D∗ and is constant. Thus there
exists α ∈ R such that η̃(z)

η(z) ≡ e
i2πα. Hence η(z) has the form η(z) = zνh(z),

where h is a holomorphic function on D such that h(0) 6= 0 and ν ∈ R satisfies
ν − α ∈ Z. As the metric ds2 =

[
|ω|
(
1 + |g|2

)]2 is complete at 0, we deduce
that ν ≤ −1. Furthermore, by [Br, Proposition 5] we have ν + µ ∈ Z (since
the immersion is complete at 0 and has finite total curvature). Moreover, as
the end is regular, we deduce from [Br, Proposition 6] that ν + µ ≥ −1.

(2) We know from the work of Bryant that the end of the Enneper cousin
is not regular although the total curvature is finite (see [Br, Example 1]).
Conversely, consider Example 1.8 with eiθ = −1 and λ = 1/4. The hyperbolic
Gauss map in this case is G(z) = 2−z

4 . We deduce that the end of this surface
is regular. Also, as this surface is translationally invariant, the end has infinite
total curvature.

(3) In the sequel we shall need some results from ODE theory, which can
be found, for example, in [G-S, Chapters 15.1 and 15.2]. In the context of
(1), let A, B, C, and D denote the analytic (possibly multi-valued) functions
associated to the immersion (or to the end), and let f̃ = µf + zf ′. Then A
and C are independent solutions of

(2.2) X ′′ − (zνh)′

zνh
X ′ − hf̃zν+µ−1X = 0,

and B and D are independent solutions of

(2.3) Y ′′ − (zν+2µhf2)′

zν+2µhf2
Y ′ − hf̃zν+µ−1Y = 0,

satisfying AD − BC = 1 and A′D′ − B′C ′ = 0; see Section 1. We observe
that, since ν + µ ≥ −1 (because the end is regular), 0 is a regular singularity
for both equations. The indicial equation associated to (2.2) and (2.3) are

λ2 − (1 + ν)λ− q = 0 and r2 − (1 + ν + 2µ)r − q = 0,
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respectively, where

q =

{
0 if ν + µ ≥ 0,
µf(0)h(0) if ν + µ = −1.

We now state our main result, which we will prove by combining several
independent lemmas with Propositions 2.7, 2.8, and 2.10.

Theorem 2.3. Let E be a regular embedded end into H3 with constant
mean curvature 1 and finite total curvature. Then one of the following three
cases holds:

(i) E is asymptotic to an embedded catenoid cousin.
(ii) E is asymptotic to a nonembedded catenoid cousin.
(iii) E is asymptotic to a horosphere.

Furthermore, up to an isometry of H3, the end E is a vertical Euclidean
graph over an exterior domain in ∂∞H3. In this situation, E is asymptotic
to either an end of a catenoid cousin or a horosphere, regarded as vertical
Euclidean graphs. More precisely, if wE (resp., wC) is the function whose
graph is E (resp., the end of the catenoid cousin or the horosphere), then

lim
u2+v2→∞

(wE − wC)(u, v) = 0.

Moreover,

lim
u2+v2→∞

log
(
wE
wC

)
(u, v) = 0,

so E is also asymptotic in the hyperbolic sense.

We remark that it suffices to assume that E is a properly embedded end
since, by [C-H-R, Theorem 10], such an end must be regular and have finite
total curvature.

Proof. The Weierstrass representation (g, ω) associated to the end E is
given by (2.1). We first treat the case where ν+µ = −1 (see Lemmas 2.4 and
2.5 and Propositions 2.7 and 2.8), and then consider the case where ν+µ ≥ 0
(see Lemma 2.9 and Proposition 2.10). �

Lemma 2.4. Consider the Weierstrass representation (g, ω) on D∗, given
by (2.1), with µ > 0. Suppose that ν + µ = −1. Then (g, ω) determines an
embedding of D∗ (more precisely, a neighborhood of 0 in D∗) into H3 if and
only if

f(0)h(0) =
1− µ2

4µ
and (1 + µ)

h′

h
(0) = (2µh′f + 2(1 + µ)hf ′)(0).
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Furthermore, we have µ 6= 1, and the solutions of the indicial equations are

λ1 =
−1− µ

2
, λ2 =

1− µ
2

,

r1 =
µ− 1

2
, r2 =

µ+ 1
2

.

Proof. Let A and C (resp., B and D) be two independent solutions of
equation (2.2) (resp., (2.3)) satisfying AD − BC ≡ 1 and A′D′ − B′C ′ ≡ 0.
Let λ1 and λ2 (resp., r1 and r2) denote the solutions of the indicial equation
associated to (2.2) (resp., 2.3).

Suppose first that the functions u, v, and w in (1.2) define an embedding
of a neighborhood of 0 in D∗ into H3. Then, by [U-Y1, Theorem 5.2], we
have min(|λ1 − λ2|, |r1 − r2|) = 1. Hence the indicial equations become

λ2 + µλ− µf(0)h(0) = 0 and r2 − µr − µf(0)h(0) = 0.

Note that both equations have discriminant ∆ = µ2 + 4µf(0)h(0). Since we
necessarily have ∆ = 1, we obtain f(0)h(0) = 1−µ2

4µ . This yields the solutions
of the two indicial equations, as asserted in the lemma. Since f(0)h(0) 6= 0,
we have µ 6= 1.

A basis of solutions to the differential equation (2.2) has the form

X2(z) = zλ2f2 and X1(z) = λ log z ·X2 + zλ1f1,

where λ ∈ C is a complex number and f1 and f2 are analytic functions on D
such that fi(0) = 1. Substituting the formula for X1 into the equation (2.2),
we get (after multiplication by z

5+µ
2 ),

(µh(0)f(0)− hf̃)f1 + (λf2 − λ1
h′

h
f1)z + (2λf ′2 + f ′′1 − λ

h′

h
f2 −

h′

h
f ′1)z2 = 0.

In particular, the derivative of the function on the left side vanishes for z = 0,
and so

(∗) λ−
(

(hf̃)′ + λ1
h′

h

)
(0) = 0.

Now, as the immersion associated to (g, ω) is single-valued, the hyperbolic
Gauss map G also must be single-valued. On the other hand, by Lemma 1.10,
we have G = C ′/A′, where A and C are independent solutions of (2.2). Thus
we must have λ = 0. By (∗) we deduce that

(
(hf̃)′ + λ1

h′

h

)
(0) = 0. Using

the expressions of λ1 and f̃ , this yields

(1 + µ)
h′

h
(0) = (2µh′f + 2(1 + µ)hf ′)(0),

as desired.
Conversely, assume that f(0)h(0) = 1−µ2

4µ and (1 + µ)h
′

h (0) = (2µh′f +
2(1 + µ)hf ′)(0). We deduce that |λ1 − λ2| = |r1 − r2| = 1. Furthermore, by
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(∗) we have λ = 0. That is, the function X1 has no logarithmic term; hence, A
and C have no logarithmic term either. Since C′

A′ = D′

B′ , the same holds for B
and D. This shows that the coordinate functions t(z), x1(z), x2(z), and x3(z)
defined in (1.1) are single-valued. Hence, the immersion is also single-valued.
Finally the immersion is one-to-one because min(|λ1 − λ2| , |r1 − r2|) = 1. �

Lemma 2.5. Consider the Weierstrass representation (g, ω) on D∗ given
by (2.1) with µ > 0. Suppose that ν+µ = − 1, f(0)h(0) = 1−µ2

4µ , and (1+

µ)h
′

h (0) = (2µh′f + 2(1 + µ)hf ′)(0). Let A, B, C, and D be the functions
giving the embedding (1.2) associated to (g, ω). Then, up to an isometry of
H3, we can choose A, B, C, and D as follows:

A(z) = zλ2f2, B(z) = f(0)
µ− 1
µ+ 1

zr2g2,

C(z) =
µ2 − 1
4µf(0)

zλ1f1, D(z) =
(1 + µ)2

4µ
zr1g1,

Here z ∈ D∗, and fi and gi are analytic functions near 0 satisfying fi(0) = 1,
and gi(0) = 1.

Proof. The argument is similar to the proof of Lemma 5.3 in [U-Y1]. By
Lemma 2.4 the Weierstrass representation (g, ω) defines a single-valued em-
bedding of a neighborhood of 0 in D∗ into H3. Furthermore, A and C are
independent solutions to (2.2), and B and D are independent solutions to
(2.3). Then Lemma 2.4 and the theory of ordinary differential equations show
that A and C are linear combinations of

X1(z) = zλ1f1(z), X2(z) = zλ2f2(z),

and B and D are linear combinations of

Y1 = zr1ρ(z), Y2(z) = zr2g2(z),

where f1(z), f2(z), g2(z), and ρ(z) are analytic functions near 0 such that
f1(0) = 1, f2(0) = 1, g2(0) = 1, and ρ(0) = 1. Hence

A(z) = a1z
λ1f1 + a2z

λ2f2, B(z) = b1z
r1ρ+ b2z

r2g2,

C(z) = c1z
λ1f1 + c2z

λ2f2, D(z) = d1z
r1ρ+ d2z

r2g2.

Consider any matrix P ∈ SL(2,C), define

F (z) =
(
A B
C D

)
(z),

and set F1(z) = (P · F )(z). Since F−1 · dF = F−1
1 · dF1, the two matrices

F and F1 define the same Weierstrass representations; see Remark 1.4(2).
This means that F1 and F define the same immersion into H3, up to a global
isometry.
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Now let α, β, γ, and δ denote the complex entries of P , with αδ− βγ = 1.
We have

F1 =
(
α β
γ δ

)
·
(
A B
C D

)
=
(
Ã B̃

C̃ D̃

)
with

Ã = (αa1 + βc1)zλ1f1 + (αa2 + βc2)zλ2f2,

B̃ = (αb1 + βd1)zr1ρ+ (αb2 + βd2)zr2g2,

C̃ = (γa1 + δc1)zλ1f1 + (γa2 + δc2)zλ2f2,

D̃ = (γb1 + δd1)zr1ρ+ (γb2 + δd2)zr2g2.

Since AD−BC ≡ 1, we have a1d1−b1c1 = 0. Also, a1c2−a2c1 6= 0 since A
and C are two independent functions. For the same reason, b1d2 − b2d1 6= 0.
Therefore we can find complex numbers α, β, γ, and δ such that αa1 +βc1 =
αb1 + βd1 = γa2 + δc2 = 0 and αδ − βγ = 1. This shows that, up to an
isometry in H3, we can assume

A(z) = azλ2f2, B(z) = bzr2g2,

C(z) = czλ1f1, D(z) = dzr1g1,

where a, b, c, d ∈ C∗, ad − bc = 1, and g1 is a linear combination of ρ and
zr2−r1g2 with g1(0) = 1. However, by (1.3) we have g ·zν ·h(z) = A′D−BC ′(=
gη) and zν · h(z) = AC ′ −A′C(= η). From the first equality we get

ad(λ2g1f2 + zg1f
′
2)− bc(λ1g2f1 + zg2f

′
1) = h(z)f(z).

Setting z = 0, we obtain λ2ad − λ1bc = h(0)f(0). Substituting the values
of h(0)f(0), λ1, and λ2 in the function of µ and using ad − bc = 1, we get
d = (1+µ)2

4µa . Similarly, using the other equality we get c = µ2−1
4µaf(0) . Also, since

ad− bc = 1, we have b = af(0)µ−1
µ+1 .

Finally, by considering the matrix F1 = P · F , where

P =
(
a−1 0
0 a

)
,

we can assume that a = 1. �

Remark 2.6. A calculation shows that under the conditions of Lemma
2.5 (and using equations (1.2)) the embedding into H3 has the following co-
ordinates:

(u+ iv)(z) =
1
z

µ2 − 1
4µf(0)

f1f̄2 + g1ḡ2|z|2µ|f(0)|2

|f2|2 + |f(0)|2
(
µ−1
µ+1

)2

|g2|2 |z|2µ
,

w(z) = |z|µ−1 1

|f2|2 + |f(0)|2
(
µ−1
µ+1

)2

|g2|2 |z|2µ
.
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Proposition 2.7. Consider the Weierstrass representation (g, ω) on D∗

given by (2.1). Suppose that ν + µ = −1, f(0)h(0) = 1−µ2

4µ , (1 + µ)h
′

h (0) =
(2µh′f + 2(1 +µ)hf ′)(0), and 0 < µ < 1. Then, up to an isometry of H3, the
asymptotic boundary of the end, given by (1.2), is the point ∞, and the end
E is asymptotic (in both the Euclidean and the hyperbolic sense) to an end
C of an embedded catenoid cousin. More precisely, E is a vertical graph over
the complement of a disk in the plane {w = 0}. The function whose graph is
E is given by

w(u+ iv) = γ1r
1−µ + γ3r

1−3µ + · · ·+ γ2k+1r
1−(1+2k)µ + o(1),

where γ1 > 0, γ2i+1 ∈ R (i = 0, . . . , k) depend only on µ, k is the greatest
integer such that 2kµ < 1, r = |u+ iv|, and o(1) is a real smooth function of
u and v such that o(1) → 0 when |u + iv| → ∞. Furthermore, if wC is the
function whose graph is C, we have

lim
u2+v2→∞

(w − wC)(u, v) = 0 and lim
u2+v2→∞

log
(
w

wC

)
(u, v) = 0.

Proof. Since 0 < µ < 1, the formula for (u + iv)(z) given in Remark 2.6
gives

(u+ iv)(z) =
1
z
· µ

2 − 1
4µf(0)

· 1 + f1f̄2 − 1 + g1ḡ2|z|2µ|f(0)|2

1 + |f2|2 − 1 + |f(0)|2
(
µ−1
µ+1

)2

|g2|2 |z|2µ

=
1
z
· µ

2 − 1
4µf(0)

· 1 + |f(0)|2|z|2µ +O(z)

1 + |f(0)|2
(
µ−1
µ+1

)2

|z|2µ +O(z)

=
1
z
· µ

2 − 1
4µf(0)

·
(
1 + |f(0)|2|z|2µ +O(z)

)
×

(
k∑
p=0

(−1)p(|f(0)|2
(
µ− 1
µ+ 1

)2

|z|2µ)p +O(z)

)
,

and hence

(∗) (u+ iv)(z) =
1
z
· µ

2 − 1
4µf(0)

·
(
1 + β1|z|2µ + · · ·+ βk|z|k·2µ +O(z)

)
,

where the coefficients β1, . . . , βk ∈ R depend only on f(0) and µ, and k is the
greatest integer such that k · 2µ < 1.

Set r = |u+ iv|. We claim that

(∗∗) |z| = 1
r
· 1− µ2

4µ|f(0)|

(
1 + b1r

−2µ + · · ·+ bkr
−k·2µ +O

(
1
r

))
,

where b1, . . . , bk ∈ R depend only on f(0) and µ, and O (1/r) is a smooth real
function such that r ·O (1/r) is bounded when r = |u+ iv| → +∞.
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Indeed, by (∗) we have z → 0 if and only if r → +∞. Now, suppose that,
for some integer p such that 0 ≤ p < k, we have

(∗ ∗ ∗) |z| = 1
r
· 1− µ2

4µ|f(0)|

(
1 + c1r

−2µ + · · ·+ cpr
−p·2µ +O

(
r−2(p+1)µ

))
,

where c1, . . . , cp ∈ R depend only on f(0) and µ. Then, substituting this
expression of |z| in (∗), we get

|z| = 1
r
· 1− µ2

4µ|f(0)|

(
1 +

k∑
q=1

βq

[
α

r

(
1 + c1r

−2µ + · · ·

+ cpr
−p·2µ +O

(
r−2(p+1)µ

))]2qµ

+O

(
1
r

))

=
1
r
· 1− µ2

4µ|f(0)|

(
1 + c̃1r

−2µ + · · ·

+ c̃p+1r
−2(p+1)µ +O

(
r−2(p+2)µ

)
+O

(
1
r

))
,

where α = 1−µ2

4µ|f(0)| and c̃1, . . . , c̃p+1 ∈ R depend on only f(0) and µ. If
p + 1 = k, then r · O

(
r−2(p+2)µ

)
= r1−2(k+1)µ · r2(k+1)µO

(
r−2(k+1)µ

)
is a

bounded function as r → +∞ (because 2(k + 1)µ ≥ 1). Hence (∗∗) follows
in this case. If p + 1 < k, then r2(p+2)µO (1/r) = r−1+2(p+2)µ · r O (1/r) is a
bounded function when r → +∞, so in this case we have

|z| = 1
r
· 1− µ2

4µ|f(0)|

(
1 + c̃1r

−2µ + · · ·+ c̃p+1r
−2(p+1)µ +O

(
r−2(p+2)µ

))
.

Therefore, by induction on p, we see that to prove (∗∗) for 0 ≤ p < k, it
suffices to show (∗ ∗ ∗) for some p with 0 ≤ p < k. Finally, using (∗), it is
easily seen that (∗ ∗ ∗) is true for p = 0. This proves the claim.

By the same argument as in the proof of (∗), Remark 2.6 implies

w(z) = |z|−1+µ
(
1 + δ1|z|2µ + · · ·+ δk|z|k·2µ +O(z)

)
,

where the coefficients δ1, . . . , δk ∈ R depend on only f(0) and µ. Now observe
that, up to a change of coordinates in D∗, we may assume that f ≡ 1, without
changing the values of µ and ν. Hence in (∗∗) and the last equality we can
assume that the constants bj and δj depend only on µ. Substituting for |z|
the expression given by (∗∗), we obtain from the last equality w as a function
of u and v, as asserted, with γ1 =

(∣∣µ2 − 1
∣∣ /(4µ)

)−1+µ.
On the other hand, consider the Weierstrass representation of catenoid

cousins given in Example 1.5. The above argument shows that a neighborhood
of 0 is an end and is a vertical graph whose expression, wC , is completely
determined by µ, up to an additive function vanishing at infinity. This shows
that the graphs of the two ends (i.e., the general end E and the catenoid
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cousin end) are equal, up to an additive smooth real function vanishing at∞.
Hence those two ends are asymptotic (as vertical graphs) in the Euclidean
sense. Furthermore, since

wC(u+ iv) = γ1r
1−µ + γ3r

1−3µ + · · ·+ γ2k+1r
1−(1+2k)µ + o(1),

we get

lim
u2+v2→∞

log
(
w

wC

)
(u, v) = 0,

so the two ends are also asymptotic in the hyperbolic sense. �

Proposition 2.8. Consider the Weierstrass representation (g, ω) on D∗

given by (2.1). Suppose that ν + µ = −1, f(0)h(0) = 1−µ2

4µ , (1 + µ)h
′

h (0) =
(2µh′f + 2(1 + µ)hf ′)(0), and µ > 1. Then the end E is asymptotic (in the
Euclidean and the hyperbolic sense) to the end C of a nonembedded catenoid
cousin. More precisely, up to an isometry in H3, the end is a vertical graph
over the complement of a disk in the plane {w = 0} and is asymptotic (as
a vertical graph) to a nonembedded catenoid cousin. Moreover, the function
whose graph is E is given by

w(u+ iv) = r1−µ ·
(
µ2 − 1

4µ

)µ−1(
1 +O

(
1
r

))
,

where r = |u + iv| and O
(

1
r

)
is a smooth real function such that r · O

(
1
r

)
is

bounded when r = |u + iv| → +∞. In particular, w → 0 as |u + iv| → +∞.
Furthermore, if wC is the function whose graph is C, we have

lim
u2+v2→∞

(w − wC)(u, v) = 0 and lim
u2+v2→∞

log
(
w

wC

)
(u, v) = 0.

Proof. The proof is analogous to that of Proposition 2.7, so we give only
an outline.

Since µ > 1, it follows from Remark 2.6 that

(u+ iv)(z) =
1
z
· µ

2 − 1
4µf(0)

(1 +O(z)) ,

w(z) = |z|µ−1 (1 +O(z)) .

This implies

|z| = 1
r

µ2 − 1
4µ|f(0)|

(
1 +O

(
1
r

))
,

with r = |u+ iv|. It follows that

w(u+ iv) = r1−µ ·
(
µ2 − 1

4µ|f(0)|

)µ−1(
1 +O

(
1
r

))
.
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Note that, up to a change of coordinates in D∗, we can assume that f ≡ 1.
It follows that

w(u+ iv) = r1−µ ·
(
µ2 − 1

4µ

)µ−1(
1 +O

(
1
r

))
.

To complete the proof, it suffices to compare this representation with that of
the catenoid cousin given in Example 1.5, for the same value of µ > 1. �

We now turn to the case when ν + µ ≥ 0.

Lemma 2.9. Consider the Weierstrass representation (g, ω) on D∗ given
by (2.1) with µ > 0, ν ≤ −1, and µ+ ν ∈ Z. Suppose ν + µ ≥ 0. Then (g, ω)
defines a single-valued embedding if and only if ν = −2, µ ∈ N, µ ≥ 2, and

(i) h′(0) = 2h2(0)f(0) if µ = 2,
(ii) h′(0) = 0 if µ ≥ 3.

Furthermore, the solutions of the indicial equations are

λ1 = −1, λ2 = 0,
r1 = 0, r2 = 2µ− 1.

Proof. The proof is analogous to the proof of Lemma 2.4. Let A and C
(resp., B and D) be two independent solutions of equation (2.2) (resp., (2.3))
satisfying AD − BC ≡ 1 and A′D′ − B′C ′ ≡ 0. The indicial equations are
λ2− (1+ν)λ = 0 and r2− (1+ν+2µ)r = 0, whose solutions are, respectively,
λ1 = 1 + ν, λ2 = 0 and r1 = 0, r2 = 1 + ν + 2µ. Observe that λ1 ≤ λ2 and
r1 ≤ r2.

Suppose first that the functions u, v, and w in (1.2) define an embedding
of a neighborhood of 0 in D∗ into H3. By [U-Y1, Theorem 5.2] we have
min(|λ1 − λ2| , |r1 − r2|) = 1. Since ν + µ ≥ 0 and µ > 0, we have ν = −2,
and hence µ ∈ Z and µ ≥ 2. Therefore, we get λ1 = −1, λ2 = 0, r1 = 0, and
r2 = 2µ− 1.

A basis of solutions to the differential equation (2.2) is

X2(z) = f2(z) and X1(z) = λ log z ·X2 +
f1(z)
z

,

where λ ∈ C and fi are analytic functions on D such that fi(0) = 1. Substi-
tuting the function X1 in the equation (2.2) gives

λf2 +
h′

h
f1 +

(
2λf ′2 + f ′′1 − λ

h′

h
f2 −

h′

h
f ′1

)
z − hf̃f1z

µ−2 = 0.

In particular, setting z = 0 in the last relation we get

(i) λ+ h′

h (0)− 2(hf)(0) if µ = 2,
(ii) λ+ h′

h (0) if µ ≥ 3.
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Now, recall that A and C are independent linear combinations of X1 and
X2. Furthermore, the hyperbolic Gauss map G(z) = C′

A′ is well defined. This
forces λ = 0. Using (i) and (ii) we obtain h′(0) = 2h2(0)f(0) if µ = 2, and
h′(0) = 0 if µ ≥ 3.

Conversely, suppose that ν = −2 and that h′(0) = 2h2(0)f(0) if µ = 2
and h′(0) = 0 if µ ≥ 3. Then, as in the proof of Lemma 2.4, we see that the
immersion (1.2) defined by (g, ω) is an embedding. �

Proposition 2.10. Consider the Weierstrass representation (g, ω) on D∗

given by (2.1). Suppose ν = −2, µ ≥ 2, µ ∈ N, and

(i) h′(0) = 2h2(0)f(0) if µ = 2,
(ii) h′(0) = 0 if µ ≥ 3 (see Lemma 2.9).

Then the constant mean curvature 1 end E defined by (g, ω) in H3 is asymp-
totic to a horosphere in both the Euclidean and the hyperbolic sense. More
precisely, up to an isometry in H3, E is a vertical graph over the complement
of a disk in the plane {w = 0}, and the function whose graph is E has the
form

w(u+ iv) = 1 +O
(
r1−µ) .

where r = |u+ iv|.

Proof. As A and C are solutions to (2.2), these functions are linear com-
binations of solutions X1(z) = z−1f1 and X2 = f2(z), where the functions fi
are analytic near 0 and satisfy fi(0) = 1 (see Lemma 2.9). Similarly, since
B and D are solutions to (2.3), these functions are linear combinations of
Y1(z) = ρ(z) and Y2(z) = z2µ−1g2(z), where ρ and g2 are analytic near 0 and
satisfy ρ(0) = g2(0) = 1. As in Lemma 2.5, we can choose A, B, C, and D by

A(z) = f2(z), B(z) = bz2µ−1g2(z),

C(z) = cz−1f1(z), D(z) = g1(z),

where b, c ∈ C∗, and g1 is a linear combination of ρ and z2µ−1g2 such that
g1(0) = 1. By the formulas for the coordinate functions given in (1.2), we
deduce

(u+ iv)(z) =
c

z
· (1 +O(z)),

w(z) = 1 +
∑
n≥1

(
1− |f2|2 +O(|z|4µ−2)

)n
.

Now f2 has the form f2(z) = 1 + apz
p + O(zp+1), where ap ∈ C∗ and

p ∈ N∗. But since f2 is a solution to (2.2), we have

p(p+ 1)apzp−2 − hf̃zµ−3 +O(zp−1) = 0.
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Hence p − 2 = µ − 3 and p(p + 1)ap = (hf̃)(0); that is, p = µ − 1 and
ap = h(0)f(0)

µ−1 . So we have

w(z) = 1− 2 Re
(
h(0)f(0)
µ− 1

zµ−1

)
+O(|z|µ).

This implies that the end is a vertical graph, as claimed. This completes the
proof of Proposition 2.10 as well as that of Theorem 2.3. �

Remark 2.11. The proof of Proposition 2.10 shows that the end crosses
the horosphere {w = 1} exactly 2(µ− 1) times.

Definition 2.12. The power (1−µ) of |u+iv|, which appears in the graph
of an end E (that is embedded, regular, and with finite total curvature) is
called the growth rate of the end.

We easily obtain the following corollary:

Corollary 2.13. Let E1 and E2 be two regular embedded ends in H3

with constant mean curvature 1 and finite total curvature whose asymptotic
boundary is the point ∞. Suppose that E1 and E2 have the same growth.
Then, up to a Euclidean homothety (which is a hyperbolic isometry), E1 is
asymptotic to E2, as vertical graphs, in both the Euclidean and the hyperbolic
sense.

3. Symmetries of constant mean curvature 1 surfaces in H3

In this section, we relate the symmetries of a simply connected minimal
surface in R3 to those of the associated constant mean curvature 1 surface in
H3. We will need the following basic result.

Lemma 3.1. Let M ⊂ H3 be a surface in H3. Let α : ] − 1, 1[→ M be a
geodesic curve of M , which is a curvature line. Then α is a planar curve;
that is, α stays on a geodesic plane in H3. Furthermore, M is orthogonal to
this geodesic plane along α.

Proof. We suppose that α is parametrized by the arc length. Let n(t) be
a unit co-normal field along α, and let N be a unit normal field on M . We
make the following assumptions (without loss of generality):

α(0) = (0, 0, 1); α′(0) = (1, 0, 0) and n(0) = (0, 1, 0).

We want to prove that α stays on the geodesic plane {x2 = 0}.
To show this, we consider the vector fields e1 = (1, 0, 0), e2 = (0, 1, 0), and

e3 = (0, 0, 1), and we denote by ∇ the Riemannian connection in H3. As n(t)
is a unit vector field along α, we have 〈∇α′n, n〉 = 0, where 〈 , 〉 is the inner
product in H3. We also have

〈∇α′n, α′〉 = −〈n,∇α′α′〉 = 0.
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The last equality holds since α is a geodesic on M and n is a tangent field on
M . Furthermore,

〈∇α′n,N〉 = −〈n,∇α′N〉 = 0

since α is a curvature line on M . From this we obtain ∇α′n = 0. On the
other hand, setting n = (n1, n2, n3), a computation gives

∇α′n = n′(t) + n1(t)∇α′e1 + n2(t)∇α′e2 + n3(t)∇α′e3

= n′(t) +
1

α3(t)
(−α′3n1 − α′1n3)e1 +

1
α3(t)

(−α′3n2 − α′2n3)e2

+
1

α3(t)
(α′1n1 + α′2n2 − α′3n3)e3.

Since α′ and n are orthogonal fields along α and ∇α′n = 0 (as we showed
above), we obtain the differential system

n′1 =
α′1n3 + α′3n1

α3
, n′2 =

α′2n3 + α′3n2

α3
, n′3 = 2

α′3n3

α3
,

with initial conditions n1(0) = n3(0) = 0 and n2(0) = 1. It is easy to see that
this system has a unique solution given by n1 = n3 = 0 and n2 = α3, that is,
n(t) = α3(t)e2. Since 〈n(t), α′(t)〉 = 0, we deduce that α′2 = 0. Hence α stays
on the geodesic plane {x2 = 0}. Furthermore, M is orthogonal to this plane
along α because n(t) is a tangent field of M along α, which is orthogonal to
this plane. �

Proposition 3.2. Let X : U → R3 be a nonplanar minimal immersion,
where U is a simply connected planar domain. Let R : R3 → R3 be an or-
thogonal symmetry with respect to a plane such that R(X(U)) = X(U). Then
the associated constant mean curvature 1 surface in H3 is invariant under an
orthogonal symmetry with respect to a geodesic plane of H3.

Proof. Let X̃ : U → H3 be the associated immersion and S : U → U the
intrinsic isometry induced by R.

It is known that the intersection between the plane of symmetry of R and
X(U) is a geodesic and a curvature line of X(U). Let γ ⊂ U be the curve
whose image under R is this geodesic. As X(U) and X̃(U) are isometric
surfaces, we deduce that X̃(γ) is also a geodesic of X̃(U). Moreover, since
X(U) is a minimal surface in R3 and X̃(U) is a constant mean curvature
1 surface in H3, it follows that X̃(γ) is also a curvature line of X̃(U). By
Lemma 3.1, X̃(γ) stays on a geodesic plane of H3 and the surface X̃(U) is
orthogonal to this plane. Using this and the fact that X̃(U) is an analytic
surface, we conclude that X̃(U) is symmetric with respect to this geodesic
plane. �
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The following result holds only for surfaces which are associated to minimal
surfaces containing a straight line, as the statement shows.

Proposition 3.3. Let X : U → R3 be a nonplanar minimal immersion,
where U is a simply connected planar domain. Suppose that X(U) contains a
piece of a straight line L, and let R be the rotation by the angle π about L (i.e.,
the reflection about L) in R3. (Note that X(U) is invariant under R.) Also,
let S : U → U be the intrinsic isometry induced by R. Then the associated
constant mean curvature 1 surface in H3 does not admit an isometry extending
S (that is, the Euclidean isometry R in R3 does not extend to a hyperbolic
isometry in H3).

Proof. Let α ⊂ U be the curve on U such that X(α) = L, and let X̃ : U →
H3 be the constant mean curvature 1 immersion associated to X. Suppose
there exists an isometry R̃ of H3 such that R̃(X̃(U)) = X̃(U), that is, R̃◦X̃ =
X̃ ◦ S. Then, as each point of α is fixed by S, we deduce that each point of
γ = X̃(α) is fixed under R̃. If there is no geodesic plane of H3 containing
γ, then R̃ has a geodesic plane of fixed points and a fixed point outside this
geodesic plane. Thus, we easily obtain that R̃ is the identity map. Hence S
is the identity map of U , which leads to a contradiction. We conclude that
γ stays in a geodesic plane Π. If γ ⊂ Π is not a geodesic line (of H3), we
conclude that each point of Π is fixed under R̃. Therefore, R̃ is the reflection
about Π, and γ is a curvature line of the surface. This implies that L = X(α)
is a curvature line of X(U) and that the Gauss curvature vanishes along L.
However, this is impossible, since X(U) is a nonplanar minimal surface in R3.
Hence, γ must be a piece of a geodesic line of H3. Now consider any point
p ∈ γ and denote by P the geodesic plane through p orthogonal to γ. The
plane P is globally fixed under R̃ and R̃(p) = p.

Suppose that the restriction of R̃ to P preserves the orientation. Then R̃ is
a rotation about the geodesic line γ. As the surface is globally fixed under this
rotation, the angle of rotation is π. This implies that the geodesic curvature at
p of the curve X̃(U)∩P is 0, but this is a normal curvature of X̃(U) at p. As
the orthogonal direction of this curve at p is given by γ, the mean curvature of
X̃(U) at p is 0, which, however, is impossible. We conclude therefore that the
restriction of R̃ to P does not preserve the orientation. Hence this restriction
must be a reflection of a geodesic β ⊂ P orthogonal to the curve X̃(U) ∩ P .
Therefore, R̃ is the reflection about the geodesic plane generated by γ and
β. This plane must be orthogonal to X̃(U) along γ. This implies, as before,
that γ is a curvature line of X̃(U). This, however, is impossible, as we have
shown above. We conclude that there exists no isometry R̃ of H3 such that
X̃ ◦ S = R̃ ◦ X̃. �
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Remark 3.4.

(1) In connection with Proposition 3.3, we have the following result:
Let S ⊂ H3 be a constant mean curvature H surface in H3, bounded by a

piece of a geodesic line L of H3. Then S can be extended to a constant mean
curvature surface that is symmetric with respect to L if and only if H = 0,
that is, if and only if S is a minimal surface of H3.

Note that this result shows that the equivalent property for minimal sur-
faces in R3 does not extend to constant mean curvature 1 surfaces in H3,
but only to minimal surfaces in H3. This contradicts the assertion that most
properties of minimal surfaces of R3 extend to constant mean curvature 1
surfaces in H3.

To see this, we note first that, by a result of B. Lawson (see [La]), a minimal
surface S can be symmetrized with respect to L. That is, if R is the hyperbolic
rotation by angle π about L, then S ∪ R(S) is a smooth minimal surface in
H3. Conversely, let p ∈ L be a point on L, and let P be the geodesic plane
through p orthogonal to L. Let γ = S∩P be the intersection curve between S
and P . On P consider the curve γ̃ obtained by symmetrizing γ with respect
to p; that is, γ̃ = γ ∪ R(γ). Note that γ̃ is a C2 curve whose curvature at p
is 0. Varying p on L, we obtain a C2 surface with constant mean curvature
0 along L. This shows that H = 0. We conclude that the Schwarz reflection
principle does not hold for constant mean curvature 1 surfaces in H3 (but it
holds for minimal surfaces).

(2) We observe that the helicoidal surfaces given in Example 1.8 with
Re(γ̄(1 + γ)) = 0 and γ2 6= 0 contain the geodesic line L = {u = v = 0}
(the axis of the helicoidal motion). It can easily be verified from the formula
given in Example 1.8 that those surfaces are not symmetrical with respect
to L.

We will need the following result, which we state for immersions in H3,
although it also holds for immersions in R3; see [Sp] or [Ke].

Lemma 3.5. Let U ⊂ R2 be a simply connected planar domain and let
X1, X2 : U → H3 be two immersions with the following properties:

(a) There exists p ∈ U with X1(p) = X2(p), ∂X1
∂x (p) = ∂X2

∂x (p) and
∂X1
∂y (p) = ∂X2

∂y (p), where (x, y) are the coordinates on U .
(b) Let Ni be a unit normal vector field on Xi(U), i = 1, 2, such that

N1(p) = N2(p). Let ds2
i be the first fundamental form and let Πi be

the second fundamental form with respect to the normal field Ni of Xi

(i = 1, 2), and assume that ds2
1 = ds2

2 and Π1 = Π2.
Then the two immersions X1 and X2 are the same, i.e., X1 = X2.

Proposition 3.6. Let X : U → R3 be a conformal and nonplanar mini-
mal immersion, where U is a simply connected planar domain. Let Rk : R3 →
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R3 be a rotation with respect to a straight line L, whose argument is 2π
k ;

k ∈ N, k 6= 0. Suppose that L intersects transversally X(U) and that X(U)
is invariant by Rk. Then the associated surface in H3 is also invariant by a
rotation with respect to a geodesic whose argument is exactly 2π

k .

Proof. Suppose first that X is one-to-one. Then S, the induced isometry
of U , has a unique fixed point p ∈ U . Since X is conformal and X ◦ S =
R ◦ X, DpS is a rotation whose argument is 2π

k . Let X̃ : U → H3 be the
conformal and constant mean curvature 1 immersion associated to X. Let R̃k
be the rotation in H3 with respect to the geodesic line through X̃(p) that is
orthogonal to X̃(U) and whose argument is 2π

k . By construction we have

(X̃ ◦ S)(p) = (R̃ ◦ X̃)(p),

∂X̃ ◦ S
∂x

(p) =
∂R̃ ◦ X̃
∂x

(p),

∂X̃ ◦ S
∂y

(p) =
∂R̃ ◦ X̃
∂y

(p).

The conditions of Lemma 3.5 are therefore satisfied, and we conclude that
X̃ ◦ S = R̃ ◦ X̃.

If X is not one-to-one, we apply the above argument to a neighborhood of
a fixed point of S in U . Then a piece of X̃(U) is invariant under the action of
a rotation with respect of a geodesic line whose argument is 2π

k . Since X̃(U)
is an analytic surface, it follows that the whole surface is invariant under the
rotation. �

Remark 3.7. Proposition 3.6 fails to hold if U is not simply connected
and if the axis of the rotation in R3 does not intersect X(U). Indeed, we
saw in Example 1.8 that the surface in H3 that is locally associated to the
catenoid C−1/4 of R3 (defined by g(u) = u and ω = (−1/4)u−2 du, u ∈ C∗)
is not a rotational surface in H3, but a surface that is invariant under some
horizontal translations.

Added in proof. Kenmotsu (Math. Ann 245 (1979), 89-99) showed that
any C2 solution E on a simply-connected domain U of the equation

Ezz = 2
E

1 + EE
EzEz

produces a conformal immersion X : U∗ → R3 of constant (non-zero) mean
curvature, where U∗ := U \ {z, Ez = 0}. He also proved a similar result
for prescribed mean curvature. As far as we know, no explicit (non-trivial)
solutions of this equation are known, and the equation is still unsolved.
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Recently, we derived a similar equation, namely

(∗) Ezz =
E

1 + EE
EzEz,

for which every solution gives rise to a mean curvature one conformal immer-
sionX : U∗ → H3 into hyperbolic space. In contrast to the above equation, we
can give a complete description of the C2 solutions of (∗). Indeed, any solution
of (∗) can be expressed in terms of meromorphic data (h, T ). Conversely, given
any non constant meromorphic data (h, T ) with h 6= 1/(αT + β), α, β ∈ C,
there is a natural way to describe explicitly a conformal parametrization of a
piece of a surface with mean curvature one into hyperbolic space, which in-
volves just one integration,

∫
h2Tzdz. In particular, we obtain a deformation

of a surface discovered by Poleni in 1729. This work will appear in a forthcom-
ing paper, Meromorphic data for mean curvature one surfaces in hyperbolic
space.

Any conformal immersion in the half-space model of hyperbolic space can
be expressed in terms of the standard Euclidean Gauss E map and the hy-
perbolic Gauss map G. In another forthcoming paper, Meromorphic data for
mean curvature one surfaces in hyperbolic space, II, we make this more precise
by showing how to control the branch points. The branch points, if there are
any, are isolated; in any case, it is possible to handle the branch points and
obtain many complete such surfaces. Thus, it is possible to compute the coor-
dinate maps of the immersion and its geometric quantities by the means of E
and G. We emphasize that for mean curvature one immersion any geometric
quantity can be expressed in terms of the Euclidean Gauss map E alone.

Finally, we have obtained a Weierstrass-Kenmotsu type theorem for pre-
scribed mean curvature surfaces in hyperbolic space; see our paper in Séminaire
de théorie spectrale et géométrie de Grenoble, 19 (2001), 9–23, http://www-
fourier.ujf-grenoble.fr/.

References

[Br] R. Bryant, Surfaces of mean curvature one in hyperbolic space, Astérisque 154–
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