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Abstract

In this paper we describe all rotation H-hypersurfaces in Hn×R and use them as
barriers to prove existence and characterization of certain vertical H-graphs and
to give symmetry and uniqueness results for compact H-hypersurfaces whose
boundary is one or two parallel submanifolds in slices. We also describe exam-
ples of translation H-hypersurfaces in Hn × R. In particular, for H < n−1

n , we
obtain a complete non-entire vertical graph taking infinite boundary value data.
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1 Introduction

Rotation and translation surfaces with constant mean curvature in H2×R have been
studied in details in [9, 8, 10] together with applications. We have studied rotation
and translation minimal hypersurfaces with applications in [2].

In this paper, we consider constant non-zero mean curvature hypersurfaces in Hn×R.

We consider rotation H-hypersurfaces in Section 2.1. For H > n−1
n

, we find the con-
stant mean curvature sphere-like hypersurfaces obtained in [4] and the Delaunay-like
hypersurfaces obtained in [7]. When 0 < H ≤ n−1

n
, we obtain complete simply-

connected hypersurfaces SH which are entire vertical graphs above Hn, as well as
some complete embedded or complete immersed cylinders which are bi-graphs (The-
orems 2.1 and 2.2). When H = n−1

n
, the asymptotic behaviour of the height function

of these hypersurfaces is exponential, and it only depends on the dimension when
n ≥ 3. In Section 3, we give geometric applications using the simply-connected ro-
tation H-hypersurfaces SH (0 < H ≤ n−1

n
) mentioned above as barriers. We give

existence and characterization of vertical H-graphs (0 < H ≤ n−1
n

) over appropriate
bounded domains (Proposition 3.2) as well as symmetry and uniqueness results for
compact hypersurfaces whose boundary is one or two parallel submanifolds in slices
(Theorems 3.3 and 3.4). These results generalize the 2-dimensional results obtained
previously in [6].

We treat translation H-hypersurfaces in Section 2.3 (Theorem 2.4). When n ≥ 3 and
H = n−1

n
, we in particular find a complete embedded hypersurface generated by a

compact, simple, strictly convex curve.

When 0 < H < n−1
n

, we obtain a complete non-entire vertical graph over the non-
mean convex domain bounded by an equidistant hypersurface Γ. This graph takes
infinite boundary value data on Γ and it has infinite asymptotic boundary value data.

The authors would like to thank the Mathematics Department of PUC-Rio (PB) and
the Institut Fourier – Université Joseph Fourier (RSA) for their hospitality. They
gratefully acknowledge the financial support of CNPq, FAPERJ (in particular Pronex
and Cientistas do nosso Estado), Acordo Brasil - França, Université Joseph Fourier
and Région Rhône-Alpes.

2 Examples of H-hypersurfaces in Hn × R
We consider the ball model for the hyperbolic space Hn,

B := {(x1, . . . , xn) ∈ Rn | x2
1 + · · ·+ x2

n < 1},
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with the hyperbolic metric gB,

gB := 4
(
1− (x2

1 + · · ·+ x2
n)
)−2(

dx2
1 + · · ·+ dx2

n

)
,

and the product metric

ĝ = gB + dt2

on Hn × R.

2.1 Rotation H-hypersurfaces in Hn × R

The mean curvature equation for rotation hypersurfaces,

nH(ρ) sinhn−1(ρ) = ∂ρ

(
sinhn−1(ρ)λ̇(ρ)(1 + λ̇2(ρ))−1/2

)
can be established using the flux formula, see Appendix A. We consider rotation
hypersurfaces about {0}×R, where ρ denotes the hyperbolic distance to the axis and
the mean curvature is taken with respect to the unit normal pointing upwards.

Minimal rotation hypersurfaces in Hn × R have been studied in [9] in dimension 2
and in [2] in higher dimensions. In this Section we consider the case in which H is a
non-zero constant. We may assume that H is positive.

Integrating the above differential equation, we obtain the equation for the generating
curves of rotation H-hypersurfaces in Hn × R,

(2.1) λ̇(ρ)
(
1 + λ̇2(ρ)

)−1/2
sinhn−1(ρ) = nH

∫ ρ

0

sinhn−1(t) dt+ d

for H > 0 and for some constant d.

This equation has been studied in [5, 6, 9] in dimension 2 (with a different constant
d).

Notations. For later purposes we introduce some notations.

• For m ≥ 0, we define the function Im(t) by

(2.2) Im(t) :=

∫ t

0

sinhm(r) dr.

• For H > 0 and d ∈ R, we define the functions,
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(2.3)


MH,d(t) := sinhn−1(t)− nHIn−1(t)− d,
PH,d(t) := sinhn−1(t) + nHIn−1(t) + d,

QH,d(t) :=
[
nHIn−1(t) + d

][
MH,d(t)PH,d(t)

]−1/2
,

when the square root exists.

We see from (2.1) that λ̇(t) has the sign of nHIn−1(t) + d. It follows that λ is given,
up to an additive constant, by

λH,d(ρ) =

∫ ρ

ρ0

nHIn−1(t) + d√
sinh2n−2(t)−

(
nHIn−1(t) + d

)2
dt

or, with the above notations,

(2.4) λH,d(ρ) =

∫ ρ

ρ0

nHIn−1(t) + d√
MH,d(t)PH,d(t)

dt =

∫ ρ

ρ0

QH,d(t) dt

where the integration interval [ρ0, ρ] is contained in the interval in which the square-
root exists. The existence and behaviour of the function λH,d depend on the signs of
the functions nHIn−1(t) + d, MH,d(t) and PH,d(t).

Up to vertical translations, the rotation hypersurfaces about the axis {0} × R, with
constant mean curvature H > 0 with respect to the unit normal pointing upwards,
can be classified according to the sign of H− n−1

n
and to the sign of d. We state three

theorems depending on the value of H.

Theorem 2.1 (Rotation H-hypersurfaces with H = n−1
n

)

1. When d = 0, the hypersurface Sn−1
n

is a simply-connected entire vertical graph

above Hn × {0}, tangent to the slice at 0, generated by a strictly convex curve.
The height function λ(ρ) on Sn−1

n
grows exponentially.

2. When d > 0, the hypersurface Cn−1
n

is a complete embedded cylinder, symmetric

with respect to the slice Hn×{0}. The parts C±n−1
n

:= Cn−1
n
∩Hn×R± are vertical

graphs above the exterior of a ball B(0, a), for some constant a > 0 depending
on d. The height function λ(ρ) on C±n−1

n

grows exponentially. When n = 2, the

solution exists when 0 < d < 1 only.

3. When d < 0, the hypersurface Dn−1
n

is complete and symmetric with respect to

the slice Hn × {0}. It has self-intersections along a sphere in Hn × {0}. The
parts D±n−1

n

:= Dn−1
n
∩ Hn × R± are vertical graphs above the exterior of a ball

B(0, a), for some constant a > 0 depending on d. The height function λ(ρ) on
D±n−1

n

grows exponentially.
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The asymptotic behaviour of the height function when ρ tends to infinity is as follows.
For n = 2, λ(ρ) ∼ eρ/2√

1−d .

For n = 3, λ(ρ) ∼ 1
2
√

2

∫ ρ et√
t
dt.

For n ≥ 4, λ(ρ) ∼ a(n)eb(n)t, for some positive constants a(n), b(n).

The generating curves are obtained by symmetries from the curves (=) (standing for
H = n−1

n
) which appear in Figures 1-3.

Remark. When n = 2 the asymptotic growth depends on the value of the integration
contant d. This has been used in [5] to prove existence and uniqueness results for
complete embedded annulus ends. To generalize these results to higher dimensions is
an open question.

Theorem 2.2 (Rotation H-hypersurfaces with 0 < H < n−1
n

)

1. When d = 0, the hypersurface SH is a simply-connected entire vertical graph
above Hn × {0}, tangent to the slice at 0, generated by a strictly convex curve.
The height function λ(ρ) on SH grows linearly.

2. When d > 0, the hypersurface CH is a complete embedded cylinder, symmetric
with respect to the slice Hn × {0}. The parts C±H := CH ∩Hn × R± are vertical
graphs above the exterior of a ball B(0, a), for some constant a > 0 depending
on H and d. The height function λ(ρ) on C±H grows linearly.

3. When d < 0, the hypersurface DH is complete and symmetric with respect to the
slice Hn × {0}. It has self-intersections along a sphere in Hn × {0}. The parts
D±H := DH ∩ Hn × R± are vertical graphs above the exterior of a ball B(0, a),
for some constant a > 0 depending on H and d. The height function λ(ρ) on
D±H grows linearly.

The asymptotic behaviour of the height function when ρ tends to infinity is given by

λ(ρ) ∼
nH
n−1√

1− ( nH
n−1

)2
ρ.

The generating curves are obtained by symmetries from the curves (<) (standing for
H < n−1

n
) which appear in Figures 1-3.
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Theorem 2.3 (Rotation H-hypersurfaces with H > n−1
n

)

1. When d = 0, the hypersurface KH is compact and diffeomorphic to an n-
dimensional sphere. It is generated by a compact, simple, strictly convex curve.

2. When d > 0, the hypersurface UH is complete, embedded and periodic in the
R-direction. It looks like an unduloid and is contained in a domain of the form
B(0, b) \B(0, a)× R, for some constants 0 < a < b, depending on H and d.

3. When d < 0, the hypersurface NH is complete and periodic in the R-direction.
It has self-intersections, looks like a nodoid and is contained in a domain of the
form B(0, b) \ B(0, a) × R, for some constants 0 < a < b depending on H and
d.

The generating curves are obtained by symmetries from the curves (>) (standing for
H > n−1

n
) which appear in Figures 1-3.

Remarks

1. Constant mean curvature rotation hypersurfaces with H > n−1
n

were obtained in
[4] and [7].

2. The hypersurfaces SH and the upper (lower) halves of the cylinders CH in Theo-
rems 2.1 and 2.2 are stable (as vertical graphs).

2.2 Proofs of Theorem 2.1 - 2.3

The proofs follow from an analysis of the asymptotic behaviour of Im(t) (Formula
(2.2)) when t goes to infinity and from an analysis of the signs of the functions
nHIn−1(t) + d, MH,d(t) and PH,d(t) (Formulas (2.3)), using the tables which appear
below.

When d = 0, using (2.1) one can show that λ̈ > 0 and conclude that the generating
curve is strictly convex. When d ≤ 0, the formula for λ̈ also shows that the curvature
extends continuously at the vertical points.

Proof of Theorem 2.1

Assume H = n−1
n

.

When d = 0, the functions MH,0 and PH,0 are non-negative and vanish at t = 0. Near
0 we have QH,0(t) ∼ Ht and hence λH,0(ρ) =

∫ ρ
0
QH,0(t) dt ∼ H

2
ρ2.

When d > 0, the function QH,d exists on an interval ]aH,d,∞[ for some constant
aH,d > 0 and the integral

∫ ρ
aH,d

QH,d(t) dt converges at aH,d.
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When d < 0, the function QH,d exists on an interval ]αH,d,∞[ for some constant
αH,d > 0, changes sign from negative to positive, the integral

∫ ρ
αH,d

QH,d(t) dt converges

at αH,d and the curve has a vertical tangent at this point. The generating curve can
be extended by symmetry to a complete curve with one self-intersection.

Using the recurrence relations for the functions Im(t) one can determine their asymp-
totic behaviour at infinity and deduce the precise exponential growth of the height
function λ(ρ). 2

Proof of Theorem 2.2

Assume 0 < H < n−1
n

.

When d = 0, the functions MH,0 and PH,0 are non-negative and vanish at t = 0. Near
0 we have QH,0(t) ∼ Ht and hence λH,0(ρ) =

∫ ρ
0
QH,0(t) dt ∼ H

2
ρ2.

When d > 0, the function QH,d exists on an interval ]aH,d,∞[ for some constant
aH,d > 0 and the integral

∫ ρ
aH,d

QH,d(t) dt converges at aH,d.

When d < 0, the function QH,d changes sign from negative to positive, exists on an
interval ]αH,d,∞[ for some constant αH,d > 0, the integral

∫ ρ
αH,d

QH,d(t) dt converges

at αH,d and the generating curve has a vertical tangent at this point. The generating
curve can be extended by symmetry to a complete curve with one self-intersection.

Using the recurrence relations for the functions Im(t) one can determine their asymp-
totic behaviour at infinity and deduce the precise linear growth of the height function
λ(ρ). 2

Proof of Theorem 2.3

Assume H > n−1
n

.

When d = 0, QH,0(t) exists on some interval ]0, aH,0[ for some positive aH,0 and the
integral λH,0(ρ) =

∫ ρ
0
QH,0(t) dt converges at 0 and at aH,0. The generating curve

has a horizontal tangent at 0 and a vertical tangent at aH . It can be extended by
symmetries to a closed embedded convex curve.

When d > 0, the function QH,d(t) exists on an interval ]bH,d, cH,d[ for some constants
0 < bH,d < cH,d and the integral converges at the limits of this interval. The generating
curve at these points is vertical. It can be extended by symmetry to a complete
embedded periodic curve (unduloid).

When d < 0, the function QH,d(t) exists on an interval ]βH,d, γH,d[ for some constants
0 < βH,d < γH,d, changes sign from negative to positive and the integral converges
at the limits of this interval. The generating curve at these points is vertical. The
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generating curve can extended by symmetries to a complete periodic curve with self-
intersections (nodoid). 2

Remark. We note that the integrand QH,d(t) in (2.4) is an increasing function of
H for t and d fixed. This fact provides the relative positions of the curves λH,d(ρ)
when ρ and d are fixed. The curve corresponding to H > n−1

n
is above the curve

corresponding to H = n−1
n

which is above the curve corresponding to H < n−1
n

. See
Figures 1 to 3.

The above sketches of proof can be completed using the details below.

• We have the following relations for the functions Im,

(2.5)


m = 0 I0(t) = t,
m = 1 I1(t) = cosh(t)− 1,
m = 2 2I2(t) = sinh(t) cosh(t)− t,
m = 3 3I3(t) = sinh2(t) cosh(t)− 2(cosh(t)− 1),
m ≥ 2 mIm(t) = sinhm−1(t) cosh(t)− (m− 1)Im−2(t).

For m ≥ 5, the asymptotic behavior of Im(t) near infinity is given by,

(2.6)

{
mIm(t) = sinhm−3(t) cosh(t)

(
sinh2(t)− m−1

m−2

)
+O(e(m−4)t),

mIm(t) = sinhm−1(t) cosh(t)
(
1 +O(e−2t)

)
.

The same holds for m = 4 with remainder term O(t) in the first relation.

• The derivative of PH,d is positive for t positive. The behaviour of the function
PH,d(t) is summarized in the following table.

n ≥ 2 0 < H
t 0 ∞

∂tPH,d +
PH,d(t) d ↗ ∞

• The derivative of MH,d is given by ∂tMH,d(t) = (n − 1) sinhn−1(t)
(

coth(t) − nH
n−1

)
.

For H > n−1
n

, we denote by CH the number such that coth(CH) = nH
n−1

. The behaviour
of the function MH,d(t) is summarized in the following tables.
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n = 2 0 < H ≤ 1
2

H > 1
2

t 0 ∞ 0 CH ∞
∂tMH,d + + 0 −

MH,d(t) −d ↗

{
∞, H < 1

2

1− d, H = 1
2

−d ↗ fH(d) ↘ −∞

n ≥ 3 0 < H ≤ n−1
n

H > n−1
n

t 0 ∞ 0 CH ∞
∂tMH,d + + 0 −
MH,d(t) −d ↗ ∞ −d ↗ fH(d) ↘ −∞

where fH(d) := MH,d(CH) = sinhn−1(CH)− nHIn−1(CH)− d.

The signs and zeroes of the functions MH,d(t) and PH,d(t) when d 6= 0 are summarized
in the following charts, together with the existence domain of the function QH,d.

When d > 0, we have

n = 2
0 < H < 1

2
,

H = 1
2
,

0 < d
0 < d < 1,

n ≥ 3
0 < H ≤ n−1

n

0 < d
t 0 aH,d ∞

MH,d − 0 +
PH,d + + +
QH,d 6 ∃ +∞ ∃

n ≥ 2
H > n−1

n

0 < d < DH

t 0 bH,d CH cH,d ∞
MH,d − 0 + 0 −
PH,d + + +
QH,d 6 ∃ +∞ ∃ +∞ 6 ∃

where DH := sinhn−1(CH)− nHIn−1(CH).
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Figure 1: Case d = 0 Figure 2: Case d > 0 Figure 3: Case d < 0

When d < 0, we have the following tables.

n ≥ 2
0 < H ≤ n−1

n

d < 0
t 0 αH,d ∞

MH,d + +
PH,d − 0 +
QH,d 6 ∃ −∞ ∃

Note that the function QH,d changes sign from negative to positive when t goes from
αH,d to infinity.

n ≥ 2
H > n−1

n

d < 0
t 0 γH,d βH,d ∞

MH,d + + + 0 −
PH,d − 0 + + +
QH,d 6 ∃ −∞ ∃ +∞ 6 ∃

Note that the function QH,d changes sign from negative to positive when t goes from
γH,d to βH,d.

2.3 Translation invariant H-hypersurfaces in Hn × R

2.3.1 Translation hypersurfaces

• Definitions and Notations. We consider γ a geodesic through 0 in Hn and the
totally geodesic vertical plane V = γ ×R = {(γ(ρ), t) | (ρ, t) ∈ R×R} where ρ is the
signed hyperbolic distance to 0 on γ.
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Take P a totally geodesic hyperplane in Hn, orthogonal to γ at 0. We consider the
hyperbolic translations with respect to the geodesics δ through 0 in P. We shall refer
to these translations as translations with respect to P. These isometries of Hn extend
“slice-wise” to isometries of Hn × R.

In the vertical plane V, we consider the curve c(ρ) :=
(

tanh(ρ/2), µ(ρ)
)
.

In Hn × {µ(ρ)}, we translate the point c(ρ) by the translations with respect to P ×
{µ(ρ)} and we get the equidistant hypersurface Pρ passing through c(ρ), at distance
ρ from P× {µ(ρ)}. The curve c then generates a translation hypersurface M = ∪ρPρ
in Hn × R.

• Principal curvatures. The principal directions of curvature of M are the tangent
to the curve c in V and the directions tangent to Pρ. The corresponding principal
curvatures with respect to the unit normal pointing upwards are given by{

kV = µ̈(ρ)
(
1 + µ̇2(ρ)

)−3/2
,

kP = µ̇(ρ)
(
1 + µ̇2(ρ)

)−1/2
tanh(ρ).

The first equality comes from the fact that V is totally geodesic and flat. The second
equality follows from the fact that Pρ is totally umbilic and at distance ρ from P ×
{µ(ρ)} in Hn × {µ(ρ)}.

•Mean curvature. The mean curvature of the translation hypersurface M associ-
ated with µ is given by

(2.7) nH(ρ) coshn−1(ρ) = ∂ρ

(
coshn−1(ρ)µ̇(ρ)

(
1 + µ̇2(ρ)

)−1/2
)
.

2.3.2 Constant mean curvature translation hypersurfaces

We may assume that H ≥ 0. The generating curves of translation hypersurfaces with
constant mean curvature H are given by the differential equation

(2.8) µ̇(ρ)
(
1 + µ̇2(ρ)

)−1/2
coshn−1(ρ) = nH

∫ ρ

0

coshn−1(t) dt+ d

for some integration constant d.

Minimal translation hypersurfaces have been studied in [8, 10] in dimension 2 and in
[2] in higher dimensions. Constant mean curvature (H 6= 0) translation hypersurfaces
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have been treated in [8] in dimension 2. The purpose of the present section is to
investigate the higher dimensional translation H-hypersurfaces.

Notations. For later purposes, we introduce some notations.

• For m ≥ 0, we define the functions

(2.9) Jm(r) :=

∫ r

0

coshm(t) dt.

• For H > 0 and d ∈ R, we introduce the functions,

(2.10)


RH,d(t) = coshn−1(t)− nHJn−1(t)− d,
SH,d(t) = coshn−1(t) + nHJn−1(t) + d,

TH,d(t) =
[
nHJn−1(t) + d

][
RH,d(t)SH,d(t)

]−1/2
.

We note from (2.8) that µ̇(t) has the sign of nHJn−1(t) + d. It follows that µ is given
(up to an additive contant) by

µH,d(ρ) =

∫ ρ

ρ0

[
nHJn−1(t) + d

][
cosh2n−2(t)−

(
nHJn−1(t) + d

)2]−1/2
dt

or, using the above notations,

(2.11) µH,d(ρ) =

∫ ρ

ρ0

[
nHJn−1(t) + d

][
RH,d(t) SH,d(t)

]−1/2
dt =

∫ ρ

ρ0

TH,d(t) dt ,

where the integration interval [ρ0, ρ] is contained in the interval in which the square
root exists. The existence and behaviour of the function µH,d depend on the signs of
the functions nHJn−1(t) + d, RH,d(t) and SH,d(t).

For H = n−1
n

, we give a complete description of the corresponding translation H-
hypersurfaces. For 0 < H < n−1

n
, we prove the existence of a complete non-entire

H-graph with infinite boundary data and infinite asymptotic behaviour. The other
cases can be treated similarly using the tables below.

Theorem 2.4 (Translation H-hypersurfaces, with n ≥ 3 and H = n−1
n

)

1. When d = 0, T0 is a complete embedded smooth hypersurface generated by a
compact, simple, strictly convex curve. The hypersurface is symmetric with
respect to a horizontal hyperplane and the parts above and below this hyperplane
are vertical graphs. The hypersurface also admits a vertical symmetry. The
asymptotic boundary of T0 is topologically a cylinder.
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2. When 0 < d < 1, the hypersurface Td is similar to T0 except that it is not
smooth.

3. When d ≤ −1, Td is a smooth complete immersed hypersurface with self-
intersections and horizontal symmetries. The asymptotic boundary of Td is
topologically a cylinder.

4. When −1 < d < 0, the hypersurface Td looks like T−1 except that it is not
smooth.

Remark. When d ≥ 1, the differential equation (2.8) does not have solutions.

Theorem 2.5 (Complete H-graph with infinite boundary data)

There exists a complete translation hypersurface TH , with 0 < H < n−1
n

, such that

1. TH is a complete monotone vertical H-graph over the non mean convex side of
an equidistant hypersurface Γ ⊂ Hn with mean curvature nH

n−1
,

2. TH takes infinite boundary value data on Γ and infinite asymptotic boundary
data.

Figure 4: n ≥ 3, H =
n−1
n
, d = 0

Figure 5: n ≥ 3, H =
n−1
n
, d < −1

Figure 6: n ≥ 3, H =
n−1
n
, d = −1

Remark. The situation when n = 2 is similar although the generating curves are
defined on infinite intervals. The corresponding surfaces have height functions tending
to infinity when ρ tends to infinity. In particular, the surface T0 is a complete smooth
entire graph above H2.
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Figure 7: n ≥ 3, H =
n−1
n
, 0 < d < 1

Figure 8: n ≥ 3, H =
n−1
n
,−1 < d < 0

Figure 9: n ≥ 2, H <
n−1
n

2.4 Proof of Theorem 2.4

The proof of Theorem 2.4 follows from an analysis of the asymptotic behaviour of
the functions Jm(t) (Formula (2.9)) when t goes to infinity and from an analysis of
the signs of the functions RH,d and SH,d (Formulas (2.10)) depending on the signs of
H − n−1

n
and d.

• We have the relations

(2.12)


J0(t) = t,
J1(t) = sinh(t),
2J2(t) = sinh(t) cosh(t) + t,
3J3(t) = sinh(t) cosh2(t) + 2J1(t),
mJm(t) = sinh(t) coshm−1(t) + (m− 1)Jm−2(t), for m ≥ 3.

These relations give us the asymptotic behaviour of the functions Jm(t) when t tends
to infinity. In particular,

mJm(t) = sinh(t) coshm−1(t) +
m− 1

m− 2
sinh(t) coshm−3(t) +O(e(m−4)t), for m ≥ 5

with the remainder term replaced by O(t) when m = 4.

• The function SH,d(t)

For all H > 0, the function SH,d increases from 1 + d to +∞. Its behaviour is
summarized in the following table.
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(2.13)

Case 0 < H d ≥ −1
t 0 +∞

SH,d(t) 1 + d ≥ 0 ↗ +∞
Case 0 < H d < −1

t 0 αH,d +∞
SH,d(t) 1 + d < 0 ↗ 0 ↗ +∞

• The function RH,d(t)

The derivative of RH,d(t) is given by ∂tRH,d(t) = (n − 1) coshn−1(t)[tanh(t) − nH
n−1

].

For 0 < H < n−1
n

, let tH be the value such that tanh(tH) = nH
n−1

.

When H 6= n−1
n

,

(2.14) RH,d(t) ∼
1

2
(1− nH

n− 1
) coshn−2(t)et near t = +∞.

When H = n−1
n

and when t tends to +∞, RH,d(t) tends to −∞ for n ≥ 3 and to −d
for n = 2.

The behaviour of the function RH,d(t) is summarized in the following table.

(2.15)

Case 0 < H < n−1
n

t 0 tH +∞
RH,d(t) 1− d ↘ RH,d(tH) ↗ +∞

Case H = n−1
n

t 0 +∞

RH,d(t) 1− d ↘
{
−∞, n ≥ 3
−d, n = 2

Case H > n−1
n

t 0 +∞
RH,d(t) 1− d ↘ −∞

Proof of Theorem 2.4, continued

We now investigate the behaviour of the solution µ to Equation (2.8) when n ≥ 3
and H = n−1

n
(for n = 2, see [8]).
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According to Table (2.13), the function SH,d increases from 1 +d to +∞ and we have
to consider two cases, (i) d ≥ −1, in which case SH,d is always non-negative and (ii)
d < −1, in which case SH,d has one zero αH,d such that

coshn−1(αH,d) + nHJn−1(αH,d) + d = 0.

According to Table (2.15), the function RH,d decreases from 1−d to

{
−∞, n ≥ 3
−d, n = 2

,

depending on the value of n. It follows that we have two cases, (i) d ≥ 1, in which
case the function RH,d is always non-positive and (ii) d < 1, in which case it has one
zero cH,d for n ≥ 3. When it exists, the zero cH,d satisfies

coshn−1(cH,d)− nHJn−1(cH,d)− d = 0.

Looking at the equations defining αH,d and cH,d we see that αH,d < cH,d when they
both exist.

The behaviour of the function µ is described in the following tables, see also Figures 4
to 8.

(2.16)

Case 1 H = n−1
n

d < −1 n ≥ 3
t 0 αH,d cH,d +∞

RH,d + + + 0 −
SH,d − 0 + + +
TH,d 6 ∃ −∞ ∃ +∞ 6 ∃

The function µ is given by

µ(ρ) =

∫ ρ

ρ0

TH,d(t) dt

for ρ0, ρ ∈ [αH,d, cH,d] and the integral exists at both limits. Note that the integrand
is negative near the lower limit while it is positive near the upper limit.

When d = 0, using (2.8) one can show that µ̈ > 0 and conclude that the generating
curve is strictly convex. The formula for µ̈ also shows that the curvature extends
continuously at the vertical points.

The generating curve can be extended by symmetry and periodicity to give rise to a
complete immersed hypersurface with self-intersections.
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(2.17)

Case 2 H = n−1
n

−1 ≤ d < 1 n ≥ 3
t 0 cH,d +∞

RH,d + 0 −
SH,d + + +
TH,d ∃ +∞ 6 ∃

The function µ is given by

µ(ρ) =

∫ ρ

0

TH,d(t) dt

for ρ0, ρ ∈ [0, cH,d] and the integral exists at both ends. Note that the integrand has
the sign of d near 0, with µ̇(0) = d/

√
1− d2 ; it is positive near the upper bound with

µ̇(cH,d) = +∞.

When d = −1, the original curve has a vertical tangent at 0. It can be extended
by symmetry and periodicity to give rise to a complete immersed hypersurface with
self-intersections.

When d = 0, the curve has a horizontal tangent and is strictly convex (use (2.8)).
It can be extended by symmetry as a topological circle and gives rise to a complete
embedded surface.

When d ≥ 1, Equation (2.8) has no solution.

2.5 Proof of Theorem 2.5

Given n and H, such that 0 < H < n−1
n

, consider the function RH,d(t) and choose
dH such that RH,dH (tH) = 0, where tH is defined by tanh(tH) = nH

n−1
, i.e. dH :=

coshn−1(tH)− nHJn−1(tH).

It follows that RH,dH (t) > 0 for t > tH and hence the quantity nHJn−1(t) + dH does
not change sign for t > tH and the same is true for TH,dH (t).

Taking (2.10) into account, we choose ρ0 > tH and define the generating curve by
Formula (2.11).

We conclude that µ(ρ) is well-defined and strictly increasing for ρ > tH . Moreover,
µ(ρ) goes to −∞, if ρ → t+H . Notice that the mean curvature of the equidistant
hypersurface at distance tH to P is tanh(tH) = nH

n−1
, by the choice of tH .

Now recall that if 0 < H < n−1
n
, then RH,d(t) ∼ 1

2
(1 − nH

n−1
) coshn−2(t)et, as t → ∞.

From this it follows that TH,d(t) = O(1), as t→∞. Thus µ(ρ)→ +∞, if ρ→∞. 2
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3 Applications, embedded minimal hypersurfaces

with boundary contained in a slice

In this section we give some results in which we use the H-hypersurfaces constructed
in Section 2 as barriers.

Recall from Section 2 that for 0 < H ≤ n−1
n

and for d = 0, there exist simply-
connected rotation H-hypersurfaces SH which are entire vertical graphs going to
infinity at infinity. The unit normal of SH points upwards. We call ŠH the symmetric
of SH with respect to the slice Hn × {0}. Its unit normal points downwards. We call
C(SH) the mean convex side of SH (i.e. the connected component of the complement
of SH into which the unit normal points). We consider the set R of hypersurfaces
obtained from SH and ŠH by vertical or horizontal translations in Hn×R. We denote
by C(S) the mean convex side of a hypersurface S ∈ R.

The following Proposition generalizes to higher dimensions the convex hull lemma
given in [5], Lemma 2.3.

Proposition 3.1 (Convex hull lemma) Given K a compact subset in Hn × R,
let FHK denote the subset of domains B in Hn × R which contain K and such that
B = C(S) for some S ∈ R. Let M be a compact immersed hypersurface in Hn × R
with mean curvature H.

1. If H is a constant in ]0, n−1
n

], then M ⊂ FH∂M .

2. If 0 < H(x) ≤ n−1
n

for all x ∈M , then M ⊂ F (n−1)/n
∂M .

Proof. Because M is compact, taking into account the asymptotic behaviour of
SH (see Theorems 2.1-2.2), there exists some vertical translation τ such that M ⊂
C(τ(SH)) so that the set of hypersurfaces in R such that M ⊂ C(S) is non empty.
Take any S ∈ R such that M ⊂ C(S) and translate S horizontally along some geodesic
until it touches M at some point p. We claim that p cannot be an interior point.
Indeed, assume that p is an interior point and let p0 denote the projection of p onto
Hn. Both hypersurfaces S and M would be vertical graphs near p0, corresponding
respectively to functions u, v such that u(p0) = v(p0) and u ≤ v in a neighborhood of
p0. By the maximum principle, this would imply that M = S a contradiction. The
Proposition follows. 2

In the applications below, we consider a hypersurface Γ in Hn with the following
properties.

(3.18)


Γ is smooth, compact, embedded,
Γ = ∂Ω, Ω a bounded domain in Hn,
Γ has all its principal curvatures > 1,
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where the principal curvatures are taken with respect to the unit normal to ∂Ω point-
ing inwards.

Given a hypersurface Γ satisfying Properties (3.18), there exists some radius R such
that for any point p, the ball Bp,R ⊂ Hn with radius R is tangent to p at Γ and
Γ ⊂ Bp,R. We denote by

(3.19) Sp,+ and Sp,−

the two hypersurfaces in R passing through the sphere ∂Bp,R and symmetric with
respect to the slice Hn × {0}.

We first prove an existence result for a Dirichlet problem.

Proposition 3.2 Let Ω ⊂ Hn × {0} be a bounded domain with smooth boundary
Γ satisfying (3.18). Then, for any H, 0 < H ≤ n−1

n
, there exists a vertical graph

MΓ over Ω in Hn × R, with constant mean curvature H with respect to the upward
pointing normal. This means that there exists a function u : Ω → R, smooth up to
the boundary, such that u|Γ = 0, and whose graph {(x, u(x)) | x ∈ Ω} has constant
mean curvature H with respect to the unit normal pointing upwards.

Remark. The graph MΓ having positive mean curvature with respect to the upward
pointing normal, must lie below the slice Hn × {0}. The symmetric M̌Γ with respect
to the slice lies above the slice and has positive mean curvature with respect to the
normal pointing downwards.

Proof of Proposition 3.2

• We first consider the case H = n−1
n

.

By our assumption on Γ, using the hypersurfaces (3.19) and the Convex hull lemma,
Proposition 3.1, any solution to our Dirichlet problem must be contained in C(Sp,−)∩
C(Sp,+). This provides a priori height estimates and boundary gradient estimates on
the solution.

We could use [11] and classical elliptic theory [3], to get existence for our Dirichlet
problem when H = n−1

n
. We shall instead apply [11] directly. Indeed, in our case,

the mean curvature HΓ of Γ satisfies HΓ > 1 = H n
n−1

, and the Ricci curvature of Hn

satisfies Ric = −(n − 1) ≥ − n2

n−1
H2. Theorem 1.4 in [11] states that under theses

assumptions there exists a vertical graph over Ω with boundary Γ and constant mean
curvature H = n−1

n
.



20

• We now consider the case 0 < H ≤ n−1
n

.

We use the graphs constructed previously as barriers to obtain a priori height esti-
mates and apply the interior and global gradient estimates of [11] to conclude.

We consider the Dirichlet problem (Pt) for 0 ≤ t ≤ 1, div
(∇u
W

)
= t (n− 1) in Ω

u = 0 on Γ

where u ∈ C2(Ω) is the height function, ∇u its gradient and W = (1 + |∇u|2)1/2, and
where the gradient and the divergence are taken with respect to the metric on Hn.
This is the equation for vertical H-graphs in Hn×R. It is elliptic of divergence type.

By the first step, we have obtained the solution u1 for the Dirichlet problem (P1).
The solution for (P0) is the trivial solution u0 = 0. By the maximum principle, using
the fact that vertical translations are positive isometries for the product metric, and
the existence of the solutions u1 and u0, we have that any C1(Ω) solution ut of the
Dirichlet problem (Pt) stays above u1 and below u0. This yields a priori height and
boundary gradient estimates, independently of t and ut. Global gradient estimates
follow Theorem 1.1 and Theorem 3.1 in [11]. We have therefore C1(Ω) a priori
estimates independently of t and ut. The existence of the solution ut for 0 < t < 1
now follows from classical elliptic theory, see [3] or Theorem A.7 in [1].

This completes the proof of Proposition 3.2. 2

We now generalize to higher dimensions results obtained in [6].

Theorem 3.3 Let M be an embedded compact H-hypersurface in Hn × R, with
0 < H ≤ n−1

n
. Assume that the boundary Γ is an (n − 1)-submanifold in Hn × {0}

satisfying (3.18).

1. The hypersurface M is either the graph MΓ given by Proposition 3.2 or its
symmetric M̌Γ.

2. Assume furthermore that Γ is symmetric with respect to some hyperbolic hyper-
plane P in Hn × {0} and that each connected component of Γ \ P is a graph
above P . Then M is symmetric with respect to the vertical hyperplane P × R
and each connected component of M \P×R is a horizontal graph. In particular,
if Γ is an (n−1)-sphere, the hypersurface M is part of the rotation surface given
by Theorem 2.1.
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Proof of Theorem 3.3.

Let Ω be the bounded domain such that Γ = ∂Ω and let C = Ω × R be the vertical
cylinder above Ω. We claim that M ⊂ C and that M ∩C = Γ. Indeed, at each p ∈ Γ,
we have the hypersurfaces Sp,+ and Sp,− given by (3.19). It follows from the Convex
hull lemma, Proposition 3.1, that M is in the convex hull of such hypersurfaces and
hence that M ⊂ C and M ∩ C = Γ.

By Proposition 3.2, we have two vertical graphs above Ω, M+ ⊂ Hn×R+ with constant
mean curvature H with respect to the normal pointing downwards and M− ⊂ Hn×R−
with constant mean curvature H with respect to the normal pointing upwards.

We claim that M is a vertical graph contained either in Hn × R+ or in Hn × R−. If
not, making reflexions with respect to slices Hn × {t} starting from t+ the highest
height on M we would obtain a contradiction by the maximum principle. If M were
not contained in one of the half-spaces, we would have highest and lowest interior
points at which the normal would point downwards, resp. upwards by the maximum
principle.

We claim that M = M+ or M = M−. Assume that M ⊂ Hn×R+ (the proof is similar
if M is contained in the lower half-space). Translating M+ vertically upwards very
far and then coming down, we see that τ(M+) cannot touch M before the boundaries
coincide (maximum principle). It follows that M must be below M+. Doing the same
thing with M , we see that M must be above M+. It follows finally that M = M+.
Assume now that Γ is symmetric with respect to a hyperbolic hyperplane P and
assume that each connected component of Γ \ P is a horizontal graph. We can then
use Alexandrov Reflection Principle in vertical hyperplanes Pt ×R in ambient space,
obtained by applying horizontal translations along geodesics orthogonal to P , to the
vertical hyperplane P × R of symmetry of Γ, and conclude that M is symmetric
with respect to P × R. Moreover, Alexandrov Reflection Principle ensures that each
connected component of M \ P × R is a horizontal graph.

When Γ is an (n − 1)-sphere, we can apply the preceding result to prove that M is
rotationally symmetric. 2

Recall from [2] that the height of the family of minimal catenoids in Hn × R is π
n−1

.

Theorem 3.4 Let Γ satisfy (3.18). Consider two copies of Γ in different slices Γ+ =
Γ × {a} and Γ− = Γ × {−a} for some a > 0. Let M be a compact embedded H-
hypersurface such that ∂M = Γ+ ∪ Γ−, with 0 < H ≤ n−1

n
. Assume that 2a ≥ π

n−1
.

1. Assume that Γ is symmetric with respect to a hyperbolic hyperplane P and that
each connected component of Γ \ P is a graph above P . Then M is symmetric
with respect to the vertical hyperplane P × R and each connected component of
M \ P × R is a horizontal graph.
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2. Assume that Γ is an (n− 1)-sphere. Then M is part of the complete embedded
rotation hypersurface given by Theorem 2.1 and 2.2 and containing Γ. It follows
that M is symmetric with respect to the slice Hn×{0} and the parts of M above
and below the slice of symmetry are vertical graphs.

Proof of Theorem 3.4.

Let Ω+ = Ω × {a} and Ω− = Ω × {−a}. By the Convex hull Lemma, Proposition
3.1, using the hypersurfaces given by (3.19) we have that M ∩ ext(Ω+) = Γ+ and
M ∩ ext(Ω−) = Γ−.

We claim that M ∩ (Ω× R) = Γ+ ∩ Γ−. Let MΓ,a be the graph above Ω+ contained
in Hn × [a,∞[ and MΓ,−a be the graph below Ω− contained in Hn×] −∞, a], given
by Theorem 3.3.

Consider M̃ = MΓ,a ∩M ∩MΓ,−a oriented by the mean curvature vector of M by
continuity. Take the family of (minimal) catenoids symmetric with respect to Hn×{0}
with rotation axis some {•}×R. Coming from infinity with such catenoids, using the
assumption that 2a ≥ π

n−1
and the fact that the catenoids have height < π

n−1
, we see

that one catenoid will eventually touch M̃ at some interior point in M . This implies
that the normal to M at this point is the same as the normal to the catenoid at the
same point (maximum principle) and hence that the normal to M points inside M̃ .

Assume that M ∩ (Ω × {a}) 6= ∅ (resp. that M ∩ (Ω × {−a}) 6= ∅). Then at the
highest point of M the normal would be pointing upwards (resp. downwards) and we
would get a contradiction with the maximum principle by considering the horizontal
slice (a minimal hypersurface) at this point.

Finally, M ∩ (Ω× R) = Γ+ ∩ Γ− and the normal to M points inside M ∪ Ω+ ∪ Ω−.

To conclude, we use Alexandrov Reflection Principle in vertical hyperplanes Pt × R
in ambient space, obtained by applying horizontal translations along the horizontal
geodesic orthogonal to P, to the hyperplane P × R of symmetry of Γ. We conclude
that M is symmetric about P ×R and that each connected component of M \P ×R
is a horizontal graph. This complete the proof of the first statement in the theorem.

If Γ is spherical then M is a rotation hypersurface. As the mean curvature vector
points into the region of ambient space that contains the axes, by the geometric
classification of the rotation H-hypersurfaces with constant mean curvature H ≤
(n − 1)/n given by Theorems 2.1 and 2.2, it follows that M is part of a complete
embedded rotation hypersurface M . It follows that M has a slice of symmetry at
Hn × {0} and each connected component of M above and below t = 0 is a complete
vertical graph over the exterior of a round ball in t = 0. 2
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A Vertical flux formula in Hn × R
Let f : M # M̂ := Hn × R be an isometric immersion. Let h denote the function
h : M̂ → R, such that h(x, t) = t and let hM = h|M be the restriction of the function
h to the hypersurface M , i.e. the height function of M . We let ĝ be the (product)

metric on M̂ and ∆M be the (non-positive) Laplacian on M , for the induced metric
g := f ∗ĝ.

Proposition A.1 With the above notations we have

∆MhM = nĝ(
−→
H, ∂t)

where
−→
H is the (normalized) mean curvature vector of the immersion and ∂t the

vertical vector-field along R.

Remark. When f admits a unit normal field NM the above formula boils down to
∆MhM = nHvM where H is the (normalized) mean curvature in the direction NM

and vM the vertical component of NM , vM := ĝ(NM , ∂t).

Proof. Take a local orthonormal frame {Ei}ni=1 for M near a point m ∈ M and

extend it locally in a neighborhood of m in M̂ . Then

∆MhM =
n∑
i=1

{(
Ei · (Ei · hM)

)
− (DEiEi) · hM

}
=

n∑
i=1

{
Ei ·

(
dhM(Ei)

)
− dhM(DEiEi)

}
=

n∑
i=1

{
Ei ·

(
dh(Ei)

)
− dh(DEiEi)

}
=

n∑
i=1

{
(D̂Eidh)(Ei) + dh(D̂EiEi)− dh(DEiEi)

}
.

In the product space M̂ = Hn × R, we have D̂Edh = 0 for all E ∈ X (M̂). It follows
that

∆MhM =
n∑
i=1

dh(D̂EiEi −DEiEi) =
n∑
i=1

dh(A(Ei, Ei))

where A is the second fundamental form of the immersion. Finally,

∆MhM = dh(Tr(A)) = ndh(
−→
H )

which is the formula in the Theorem. 2
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Corollary A.2 Let Ω be a compact domain on M with unit inner normal ν∂Ω to ∂Ω
in Ω. Then ∫

Ω

∆MhM dµM = −
∫
∂Ω

dhM(ν∂Ω) dσ∂Ω = n

∫
Ω

ĝ(
−→
H, ∂t) dµM .

Proof. Divergence Theorem. 2

Applications to rotation H-hypersurfaces

Let us consider a rotation hypersurface M given by the parametrization

X(ρ, ξ) =
(

tanh(ρ/2)ξ, λ(ρ)
)

with ρ > 0 and ξ ∈ Sn−1 and choose the unit normal pointing upwards.

Consider the domain

Ω(ρ0, ρ) := X([ρ0, ρ]× Sn−1) ⊂M.

We have

Xρ(ρ, ξ)
( ξ

2 cosh2(ρ/2)
, λ̇(ρ)

)
,

vM(ρ, ξ) = (1 + λ̇2(ρ))−1/2,

dµM = (1 + λ̇2(ρ))1/2 sinhn−1(ρ) dρ dµS,

ν∂Ω(ρ0,ρ)(X(ρ,ξ)) = (1 + λ̇2(ρ))−1/2Xρ(ρ, ξ),

dσX({ρ}×Sn−1) = sinhn−1(ρ) dµS.

The above Corollary applied to Ω(ρ0, ρ) gives

−Vol(Sn−1) sinhn−1(t)λ̇(t)(1 + λ̇2(t))−1/2
∣∣∣ρ
ρ0

= −nVol(Sn−1)

∫ ρ

ρ0

H(t) sinhn−1(t) dt.

Looking for rotation surfaces with constant mean curvature H we find

sinhn−1(ρ)λ̇(ρ)(1 + λ̇2(ρ))−1/2 = nH

∫ ρ

ρ0

sinhn−1(t) dt+ F (ρ0)

where the constant F (ρ0) := sinhn−1(ρ0)λ̇(ρ0)(1 + λ̇2(ρ0))−1/2 is the flux through
X({ρ0} × Sn−1).
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