EXISTENCE AND UNIQUENESS OF
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ABsSTRACT. In this paper we prove general existence and uniqueness theorems for
minimal vertical graphs in hyperbolic space.
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Introduction

In this paper we shall prove general existence and uniqueness results for vertical
minimal graphs in the hyperbolic space H® = {(x1,22,23) € R?, 23 > 0} over
bounded and unbounded domains in O H? (see Eq. 1-1). We solve the Dirichlet
problem for the minimal equation (Problem (P) in §1) in two variables w1, x5 over
bounded C° convex domains, given arbitrary non negative continuous boundary
value data (see Theorem 2-3). If the boundary data and the domain are smooth
enough an analogous result also holds in every dimension (See Theorem 2-2).

The main result of this paper is the derivation of the Perron process for the
minimal vertical equation in the upper halfspace model of hyperbolic three space
(see Problem (P) in §1). More precisely, we shall infer that existence of a super-
solution yields a solution for the Dirichlet Problem (P). When the boundary 0
is C° convex at p, or the boundary data f vanish at p, and p has a barrier (see
Definition 1-6) then the solution given by Perron process is continuous up to p and
takes the given boundary data at p. In particular, in any convex arc I' C 02 such
a solution is continuous up to I'. Moreover, if p has a barrier and f > a > 0
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then the solution given by Perron process is continuous up to the boundary and
takes the prescribed boundary value f at p (see Theorem 3-4). We shall infer by
Perron process, several existence and uniqueness results for minimal complete and
non complete graphs over C° unbounded convex and non convex domains, namely
complete minimal graphs, invariant by a given l-parameter group of hyperbolic
or parabolic isometries of H? (see Propositions 3-9 and 3-12). We shall also infer
from Perron process the existence of the Dirichlet problem for the minimal vertical
equation over a band, given arbitrary non negative continuous boundary data (see
Theorem 4-1). Theoretically, this result can be viewed as an example of application
of Perron process. For a convex unbounded domain in a band €2, we shall prove
the following uniqueness result: if the prescribed boundary data f is bounded,
non negative and uniformly continuous then the Dirichlet problem for the minimal
vertical equation admits at most one solution. Moreover, any such a solution is
bounded and uniformly continuous. In fact this result holds in higher dimensions
(see Corollary 1-11 and Remark 1-9). From Perron process we shall deduce a max-
imum principle for domains in a proper sector (see Theorem 4-3) that gives rise to
an existence result for the Dirichlet problem (P) over convex domains in a proper
sector (see Theorem 4-5 and Remark 4-7). Next, we explain the main tools.

Throughout this paper, we use L. Simon interior estimates for mean curvature
type equations in two variables as a major tool, see [Si], together with the control at
the boundary that we have succeeded (see Theorem 1-7) to establish the mentioned
Perron process, see §3, for the minimal vertical equation, Eq. 1-1. Of course, we
also make use of the geometry of hyperbolic space to get some useful boundary and
interior a priori estimates.

There are earlier results related to this article that we now mention. Firstly,
we must note the pioneer work of Anderson about existence results for complete
minimal varieties in hyperbolic space with preassigned asymptotic boundary, see for
instance [An, 1] and [An, 2]. In [An, 1], Anderson solved for a C'* bounded mean
convex domain €2 in R", n > 2, the Dirichlet problem for the minimal vertical
equation (Problem (P)) with zero boundary data. Secondly, it is worth mentioning
that Lin in [Li, 1] gave a short proof of Anderson’s existence result cited above using
PDE methods. He also proved in the same paper uniqueness, and he achieved his
main result about regularity of the solution up to the boundary; that is, if the
boundary 0f2 is smooth then the graph is smooth as 02 up to the boundary. In
[Li, 2] Lin studied the asymptotic behavior of area-minimizing locally rectifiable
currents in hyperbolic space. Recently, the authors have carried out an existence
result about minimal vertical graphs over an annular domain, see [SE-To, 1].

Now, by way of conclusion, we are going to state two open questions arising from
this work. An interesting question is related to the maximum principle at infinity
for minimal surfaces in Euclidean space inferred by Langevin and Rosenberg in
[La-Ro], Meeks and Rosenberg in [Me-Ro] and Soret in [So]. Is it true that if M,
and My are two minimal vertical graphs over an unbounded domain €2 such that
dist(OMy, M3 ) > 0 and dist(OMy, My) > 0 then dist(Ms, M7) >0 ?

Bers showed that the classical minimal surface equation in Euclidean space can-
not have an isolated singularity (see [Be]). It is not difficult to show that if u is a
solution of the minimal vertical equation (Eq. 1-1) over a puncture disk then w is
bounded from above (on a possible smaller puncture disk) by a positive constant b
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and bounded from bellow by a positive constant a. The proof of this assertion uses
minimal hyperbolic catenoids as suitable barriers. Thus one can naturally ask if u
extends smoothly to the puncture ?

61 Basic results

In this section we give some technical tools and we prove some basic results that
we shall need throughout this paper. We choose the half-space model of hyperbolic
space. Namely

Ho L — {(1}1, . 7$n—|—1) S Rn+17 Tpt1 > 0}

equipped with the hyperbolic metric

dﬁ;dw%—l—”'dx’z”“"l_

2
Tp+1

We are concerned with positive C'? functions u defined on domains €2 of

R" = {241 = 0} (considered as asymptotic boundary of H**1) whose graph

S ={(z1,.. ., xp,ul(er,. ..., 20)), (21,...,2,) € Q} is a minimal hypersurface of
H"*™1, We say that S is a vertical graph. That is, we consider C'? functions u on
satisfying the following strictly elliptic quasilinear PDE:

a Ui n
Eq.1-1 D(u) = §ij — ——=— |uij + —=0
(Eq ) (u) l;1< J (1—|—|Du|2)>u‘7 + »
in 2. We will allow that u takes zero value boundary data on a part of 9). Notice

n
that D(u) — — = 0 is the minimal hypersurface equation in euclidean space R"*!,
u

Theorem 1-1. Let @ C R" be a bounded domain such that 0§} € C%,  Let
¢ € C**(Q) and let Q be a quasilinear strictly elliptic operator in ). Consider the
Dirichlet problem

(%) Qu=0 mnQ andu=¢ on 0f.
For t € [0,1] consider the family of Dirichlet problems:

Qu = a;j(x,u, Du)D;ju+ b(x,u, Du,t) =0, mn Q
u=1to on 0N

satisfying:
(1) @1 =Q and b(x,u, Du,0) =0;
(1) The operators Qy are strictly elliptic on Q for all t € [0,1];
(133) The coefficients a;j € CH(QA xR xR"), b € C*(Q x R x R") for each t and
considering as mapping from [0,1] into C*(Q x R x R"), the function b is
continuwous.
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Suppose there exists a constant A such that for each t and for each C*%(Q) solution
u of the Dirichlet problem Quu =0 in Q and u =td on 082, 0 <t <1, we have :

|u|cl(§) = sup |u| + sup |Du| < A,
Q Q
(A independent of u and t). Then the Dirichlet problem (x) is solvable in C*(Q).

The above existence theorem is a consequence of Schauder theory and the global
Holder estimate of Ladyzhensaya and Ural’tseva, see [Gi-Tr, Theorem 13.7], and
[Gi-Tr, Theorem 11.8].

The next Lemma is an adaptation of a result of L. Simon, see [Si, Theorem 27].

Lemma 1-2. Let Q C R? be a domain and let u : Q —]0,+oo| be a C* solution
of (Eq. 1-1) (that is the graph of u is a minimal surface in H*). Let p € Q. Then
there exists p > 0 such that D,(p) C Q (where D,(p) is the euclidean open disk of
radius p centered at p), and there exist two real constants c1, ¢z depending only of

p and infp () u(x) such that:

(%) |Du(p)| < 1 exp(czufop)).

Consequently for each compact part K C S there exists a real number M > 0
depending only of inf i (u) and supy (u) such that:

|Du(p)| < M

for each p € K.

Proof. We are going to use results and notations of L. Simon [Si]. The function u
satisfies (Eq.1-1) on . For any point (z,z,p) € @ x R x R?, we define a;;(z,z,p) =
8ij — pip; /(L +pf +p3), 4,5 =1,2. Let § > 0 be such as the conditions (3.2) of
[Si] are satisfied where the functions a}; are defined by (2.1) of [Si]. Note that they
are the same functions which appear in the equation of minimal surface of R?. Let
p € Q@ and let » > 0 such that D.(p) C Q. Let a = infp ¢,y u(z), observe that
a>0. Let h: R — R™ be any C! positive function such that:

(1) h(z) = % for any z > a,

(2) A’ <0,
(3) h< 2.
Then u satisfies on D,(p) the PDE
(%) 1+ u? UqUs 4 14 u? () = b Du)
— Uy —2—————u —————— U39 = —2h(u) = b(x,u, Du).
1—|—u%—|—u§ 1 1—|—u%—|—u§ 12 1—|—u%—|—u§ 22 B

Now b(x,z,p) is a C'! function on D,(p) x R x R* and we can apply Theorem 2"
of [Si]. For this observe that setting b* = (1 + |p|?)~'/?b, the condition (3.10) of
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*

[Si] is satisfied provide that 2h(u) < 0 (since A’ < 0 and gb‘ =0, j=1,2). Then

r Ty

for any positive p < r such that % < %, Theorem 2" of [Si] shows the existence of

constants ¢; and ¢y such that (*) holds. Note that the condition (1.3) of [Si] holds
on D,(p) with p = %. The other assertion follows immediately. O

Theorem 1-3. Compactness theorem: Let Q C R? be a domain and let (up)neN
be a sequence of C* functions on S satisfying (Eq. 1-1). Suppose that for each com-
pact part I{ C §Q, there exist two positive real numbers a, b (depending only of K )
such that 0 < a < up(x) <b for every x € K and every n.

Then there exists a subsequence of (uy) converging on K, in the C* topology, to
a C? function u satisfying (Eq.1-1) on K. Consequently there exists a subsequence
of (uy) converging on Q, in the C* topology, to a C? function u satisfying (Eq.1-1)
on €.

Proof. Let K C ) be a compact part. We infer from Lemma 1-2 the existence of a
real number M > 0 such that

Dua(a)] < M

for every x € K and every n. Then using interior Holder estimate of Ladyzhenskaya
and Ural’tseva, see Theorem 13.1 of [Gi-Tr], we get uniform C'1® estimate for the
sequence u, on I{. At last, using Schauder theory ([Gi-Tr] Corollary 6.3) we have
uniform C% estimate on K. Therefore the sequence u,, with their first and second
derivatives on K give rise to a normal family. Then there exists a subsequence
converging on K to a C? function in the C? topology. By a continuity argument,
this function satisfies (Eq.1-1). Considering a compact exhaustion of € and using
the standard diagonal process, we infer the existence of a subsequence converging
on  in the C? topology to a solution of (Eq.1-1). O

Now we write down the well-known Mazimum Principle.

Proposition 1-4 : Maximum Principle. Let @ C R" be a bounded domain.
Let u, v € C*(Q) N COQ) be two positive functions. Assume that ujan < vjaq and
that D(u) > D(v) on Q.

(7) Interior Maximum Principle: Then we have u < v on Q and equality occurs
at an interior point if and only if u = v.

(i) Boundary Maximum Principle: Let p € 0 be such that u(p) = v(p). Sup-
pose that p lies on the boundary of a round ball contained in Q. Assume

that the outward derivative w exists at p. Then we have
v
O(u —v)
0
5, P>

unless u = v on 1.
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Proof. We will proceed the proof for the sake of completeness. A straightforward

computation shows that:

7

(14| Du)*YD(u) — (1 + | Dv|*)D(v) = Z [51‘]‘(1 + |Dul?) — uin] (uij — vij)

i j=1
Y TN ) =S s o) n(1+ |Du?)
+ Z (uk + Uk)(; + Z 51]Uz]) - Z(uz + Uz)vzk (Uk - Uk) - T(u - U)-
k=1 1,7=1 =1

We define a linear operator £ setting:

Lf) =Y [6:5(1 + [Dul’) = usuy] fi;

i j=1
- (1+[Duf?)

—I-Z (Uk+vk)(%‘|‘ Z 5ijUij)—Z(Ui‘|‘Ui)Uik fr— = I
k=1

ij=1 i=1

uv

for every C? positive function f on Q. Let us observe that £ is an uniformly elliptic
linear operator of the following form: Ei,j a;j(2)Dij f+> 4 be(a) Dy f+h(x) f where
h(z) <0 on Q. It follows that £ satisfies the Maximum Principle as stated in [Pr-
We, Theorem 6 p.64]. As L(u —v) > 0 on Q and ujaq —vjaq < 0 we conclude that
u—v < 0 on {2 with equality at an interior point if and only if v = v. This shows
the Interior Maximum Principle.

Furthermore observe that in the conditions of (i7) we can apply Theorem 8, p.
67 in [Pr-We] to infer the Boundary Maximum Principle. O

Remark 1-5.

1) In the same way, differentiating (Eq.1-1) with respect to x,, we find that u,
satisfies an uniformly elliptic linear operator of the following form: Ei,j a;;(x)Dyjug+
Y 1 be(x)Drug+h(x)uy where h(z) < 0 on . We conclude that |u,| and then |Du|
has not an interior maximum. In particular if a solution u of (Eq 1-1) is C'' up to
the boundary, the maximum of |Du/|, if any, is assumed on 0f).

2) As a direct consequence we get that, in the same conditions of Proposition
1-4, if u = v on 9 and D(u) = D(v) = 0 on Q then u = v on Q. That is the
Dirichlet problem for vertical minimal graph in H* ! admits at most one solution
on bounded domains.

3) Let © C R"™ be a compact domain. Consider My, My C H"™! two hy-
persurfaces which are graph over . Suppose that M; is an euclidean minimal
hypersurface, M5 is a hyperbolic minimal hypersurface and OM; stays below OMs.
Then it immediately follows from the Maximum Principle that M, stays below My
without any interior contact point. Note that dM; and OMs can have contact.

4) Let © C R"™ be a C'* domain and consider two positive C? functions u and v
on ) satisfying (Eq.1-1) and such that v < v. Let p € 9Q be a boundary point such
that u(p) = v(p), v and v are C''-continuous up to p and such that w;(p) = v;(p)
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for + = 1,...,n. Then the Boundary Maximum Principle implies that « = v on
Q2. Geometrically this means the following. Let M;, M, C H"™! be two minimal
hypersurfaces with C? boundaries. Assume that M; and M, are C'! up to a common
boundary point p. Suppose that M; and M, are tangent at p, My stays above M,
in a neighborhood V' C H"*! of p and the tangent spaces of the two boundaries

OM; and OM> agree at p. Then the two hypersurfaces are equal in a neighborhood
V of p.

Definition 1-6. Let Q C R" be a domain. Let f: 9Q — [0, +oo[ be a continuous
function. Consider the following Dirichlet problem (P):

n U, U4 22
51“_71 J g+ —= Q)
;1(1 T+ |Dap M T T 0om
(P) e
ujpg = f
w e Q) N CO(Q)

1) Let p € 0 be a boundary point. Assume first that f(p) > 0. Suppose that
there is an open neighborhood A of p in R" such that for any M > 0 (resp. n € N*)

there exist a sequence of functions w,': (resp. wy ) in CHN NQ)NCON N Q) such
that

(1) wif (2)jpenn > f(z) and wif (2)joxne > M
(resp. wi (e)jpany < f(x) and wy (Dona < )
(42) 'D(w,j) <0 (resp. D(wy ) > 0 in the part where w, > 0) in ' NQ,
(#41) limg—teowy (p) = F(p) (resp. limgtoowy (p) = F(p)).
If f(p) =0 we substitute w, (z) for the vanishing function on V.
Then we say that p admits a superior (resp. inferior) barrier for the problem

(P). If p admits a superior and an inferior barrier we say more shortly that p admits
a barrier.

2) Let u : © — RT be a solution of the problem (P), u € C*(Q) N C°(Q). We
say that u has a modulus of continuity along 02 if for every e > 0, there is § > 0
such that if |p — x| < d, p € 0Q, x € Q, then |u(p) — u(x)| < e.

Theorem 1-7. Let Q C R? be a C° convex domain in a band (a band is a domain
bounded by two parallel straight lines of R?). Let f be a non negative and bounded
function on 02. Then there exist a real number B > 0 such that 0 < u < B on €
for any solution of the problem (P ). Furthermore, if f is also uniformly continuous,
then any solution of (P) has a modulus of continuity along OS2.

Proof. Let A > 0 be an upper bound for f. Consider a hyperbolic catenoid C' in H?
such that 0.C (which is composed of two circles) has a component on each side of
the band in R?. Up to a homothety with respect to a point of d,cH?> = R?, which
is a hyperbolic isometry, we can assume that the height of C' above the boundary of
the band is greatest than A. Therefore C' is above the graph of f along 0€2. Observe
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that if v is a C'? function satisfying D(v) = 0, then D(v + a) < 0 for any a > 0. By
the Maximum Principle (Proposition 1-4), using euclidean vertical translations on
C, we deduce that C is above the graph of any solution of (P). Using the horizontal
translations parallel to the band (they are hyperbolic isometries), we conclude that
each translated of C is above the graph of any solution of (P). Therefore there
exists a real number B > 0 such that v < B for any solution of (P). Next we will
construct a barrier at any point of 9 using a construction done in [Ro-SE].

Let p € 092 and let L be any straight line through p keeping €2 on one side of L.
Let £ > 0 and let 6o > 0 be such that |f(p) — f(q)| < /3 il |p—q|] < o, p, ¢ € ON.

Define
log(1+ |p — z*)

plz) = flp)+ 5 +2B

We have f < ¢ on 9Q and |Dy|, | D*p| are bounded where |D?*¢| = > 8up, [Dije(a)].
1 2Bb
Define d(z) = d(x, L) and v(z) = ¢(d(x)) = i log(1 + er(l')) where z € )
1

and b and ¢; are two positive real numbers to be defined later. In order to evaluate
D(p+v)weset A =A(x) =1+ | Dy + Dv|* and a;j(x) = 6 ;A—Di(p+v)Dj(p+v).
Note that for any vector £ = (&1, &2) and for any C? function h we have:

€1 <) @&l < AJEP, and ) ayDih < A|D*h|.

i35 2%

Define F = Eij a;jD;vDjv. As ¢ is C! bounded and C? bounded there is o, 3 > 1
1

such that A < oF and A|D?p| < BF whenever |[Dv| > 1. Observe that (Z/f’)z = —b,

D;v = ¢/'(d)D;d and D;;v = ¢"(d)D;dD;d since D;jd = 0. From this we infer that

2
Y+

A

2

AD(p +v) = Y aij(z)Dijo+ Y aij(x)Dije +
i

1"

(0 6
< Zaij(x)WDiijv + A|D?*p| + gA

whenever |Dv| > 1. Now we choose b and 4; such that

(1) b=p+°2>1

(2) 51626231) S eZBb -1
We define N = {z € Q,d(z) < &1} where ¢; is sufficiently small. With those choices
we have that |Dv| = ¢'|Dd| > 1 on N since |Dd| = 1 (we have used (1) and (2)).
Clearly, taking into account (1), we deduce D(p + v) <0 on N.

Let u be any solution of the problem (P). We get u < ¢ + v on N N (since
v(81) = 2B) and on N N 92 we have also u < ¢ + v because u = f on 9. By the
Maximum Principle we deduce that u < ¢ +v on N N Q.

Now choose § < dg, d1, 6 > 0, such that:

log(1 + [p — )

&
2B :
log(1+d) =3

and |v(a)| < %
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whenever |p — x| < §. Then we get u(x) — u(p) < ¢ whenever |p — x| < 4.
Consider the function ¢(x) = f(p)— g—2310g(1 +lp—2[*) on N'NQ. Let U be a
3 10g(1 + (So)
connected component of N'NQ where p—v > 0. Let a > 0 be such that [D*¢(z)| < a
for any * € R*. Now set a;j(z) = §;;(1 + |Dp — Dv|?) — Di(p —v)D;(¢ —v). On

U we have:

) ) N N _ . 2(14|Dp — Dv]?
(14 |Dg = Do’ )D(p —v) = = Y ai;Dijo + Y ai;Dijp + U+ 1De— D)

— — -V
2 2 v

. N ~ 2(1+|Dg — Dvl?
:bZaijDiijU—l—ZaijDijgo—l— ( |7SO | )
] ]

Y —v
> bz aijDiUD]‘U + Z&i]‘Di]‘@
)] )]

> b{Du? — [D?5|(1 + D — Dof)
> b|Dv|* — a(l + |Dp — Dvl?)

> b|Dv|* — a(2|Dp|? + 2|Dv]? + 1)
> (b—2a)|Dv|* — a(1 + 2|Dg|?).

As |D¢p| is bounded (on R?), and |Dv| > 1 on A" we will have D(¢ — v) > 0 if we
choose b big enough in (1). Therefore the Maximum Principle shows that ¢ —v < u
on U for any solution of (P). Thus ¢ —v < v on N'NE for any solution u. Therefore
for any solution u and for any p € 02, and any x € Q such that |[p — 2| < § we
have:

u(x) —u(p)| <e

and this shows the modulus of continuity as desired. [

Corollary 1-8. Consider problem (P) where Q C R? is a convezr domain in a
band and f is bounded, uniformly continuous and non negative on 0§2. Then any
solution of (P) is uniformly continuous on €.

Proof. Let ¢ > 0, then Theorem 1-7 shows the existence of § > 0 such that

lu(p) — u(z)| < e for any solution u of (P), any p € 9Q and = € Q such that
|# — p| < 6. On the other hand for any a > 0 the Lemma 1-2 shows that |Du] is
bounded on Q, = {x € Q,d(x,0Q) > a} (as u is bounded on €2, see Theorem 1-7).
This implies that u is uniformly continuous on {2, for any a > 0. Therefore, u is
uniformly continuous on 2. [

Remark 1-9.
1) Let us consider again problem (P) for any domain Q C R?. Let p € 9§ and

suppose that 9Q is C° convex at p (that is, there exists a straight line L through
p, L C R?, such that LN Q = (). Then the proof of Theorem 1-7 shows that p
admits a barrier.
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2) In fact the Theorem 1-7 holds for any dimension. More precisely consider any
convex domain of R" contained in a slab (that is a domain bounded by two parallel
hyperplanes of R™). Then if f is bounded and uniformly continuous it follows that
any solution of (P) admits a modulus of continuity. The proof is the same, working
with n-dimensional hyperbolic catenoids. Also if we just assume that 0f is locally
convex at p € 0f) then the proof of Theorem 1-7 shows the existence of a barrier
at p.

3) Theorem 1-7 does not hold for domain in a proper sector. We will see in the
Appendix (Proposition A-1) that there exists a (unique) minimal graph over any
proper sector taking zero value boundary data. Moreover, this graph is invariant
under homotheties with respect to the vertex of the sector. We deduce that this
graph is neither bounded nor uniformly continuous.

Now we state a straightforward generalization of a Phragmen-Lindelof type the-
orem as founded in 6.1. of [Ro-SE]. The unique difference comparing with [Ro-SE]
is that our operator has a term in the form "h(x)u” where h < 0. Since the proof
there applies with minor modifications we will omit it here.

Lemma 1-10. Let Q C R™ be a domain in a slab. Let L(u) =
Y 1 bi(x)Dru 4 h(z)u be a linear elliptic operator on Q with h <
Let w € C°(Q) N C%(Q) be a function such that:
(1) L(w) >0 on Q.
(2) For each 6 >0, § sufficiently small, L 1s uniformly elliptic on
Qs = {z € Q, d(x,00) > 4}, and the coefficients of L are uniformly
bounded on Q.
(3) w has a modulus of continuity along OS2.

Then if w < A on 0Q and w < B on it follows that w < A on €.

Ei]‘ aij(z)Diju +
0.

Corollary 1-11. Let Q C R" be a convex domain in a slab and let f be a bounded
function on 02, non negative and uniformly continuous. Then problem (P) admats
at most one solution.

Proof. Let u and v be two solutions of (P). Observe that u and v are uniformly
bounded, see Theorem 1-7. The Theorem 1-7 also shows that u and v have a
modulus of continuity. It follows that the function w = u — v has also a modulus of
continuity. Furthermore we have £(w) = 0 where £ is the operator defined in the
proof of the Proposition 1-4. Note that £ and w satisfy the hypothesis of Lemma
1-10 with A = 0. It follows that w = u — v < 0 on 2. Setting now w = v — u and
using the same argument we get that u = v on Q. O

Remark 1-12. Observe that Theorem 1-7 and Corollary 1-8 and 1-11 hold in the
case where () is a proper band. In fact they also hold for more general domains.
Namely we can consider domains 2 C R? such that outside a compact part K C R?,
Q) — K is a finite union of convex domains in a band.
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62 Existence and uniqueness of graphs over convex bounded domains

Definition 2-1. Let @ C R" be a bounded domain such that 99 is C?. We say
that € is strictly convex if for every p € 02 all the principal curvatures of 992 at p
(with respect to the inward normal orientation) are positive.

Theorem 2-2. Let Q C R™ be a bounded strictly conver domain where 02 1s C*®
for some real number o €]0,1[. Let f : 00 —]0, +oo[ be a C** function. Then,
problem (P) is uniquely solvable. More precisely there exists an unique positive
function u € C*%(Q) satisfying (Eq. 1-1) and such that ujpq = f.

Proof. Observe that the Remark 1-5 shows the uniqueness of solutions, if any.
Hence it suffices to prove the existence part in the statement. Let a = infsq f(p),
we have a > 0. Let h: R — R™ be a ' function such that:

(1) h(z) = L for z > 0,
z+a
(2) K <0
2
(3) h < —
a

We wish to use Theorem 1-1, for that we define the following family of Dirichlet
problems, parametrized by ¢ € [0, 1]:

7

VU
(P Z (0;5 — W)v” +tnh(v) =0 on §2
t ij=1

U|BQ = t(f — CL)

As f admits an euclidean minimal extension (see [Je-Se]) we can suppose that
f € C*%(Q). Note that for any t € [0,1], the euclidean mean curvature (with
respect to the upward normal orientation) of the graph of any solution v, of (P;) is
negative. It follows that for any ¢t € [0, 1], any solution v; attains its minimum value
at the boundary and then it is non negative. Note that this also follows from the
Maximum Principle (Proposition 1-4). Therefore any solution v, for any ¢ satisfies:

7

V05 n
§ii — ——2 Y+ t—— =0 Q0
Z( J 1—|—|Dv|2)v‘7+ v+ a ot

1,7=1
U|BQ = t(f — CL)

Hence, for ¢t = 1 and for any solution v of (P;) the function v = v 4 a is a solution

of the problem (P). Then to find a C%*%(Q) solution of (P) it suffices to find a
C%2(Q) solution of the problem (P;). To accomplish this note that the family ()
satisfies the hypothesis of Theorem 1-1. It follows that to solve (P;) (and then to
prove Theorem 2-1) it suffices to get a real number A > 0 such that

sup vy + sup | Doy | < A
Q Q
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for every t € [0,1] and every C'%2() solution v, of (P;). Observe that for each ¢

and any solution vy of (P;) we have D(vy + a) = (1 — t) Z_ > 0. Observe also
UVt a

that the graph of a +t(f — a) on 0 stays below the graph of f. Consider now any
totally geodesic hyperplane (more shortly geodesic hyperplane) II of H"*! which
stays above the graph of f. Namely II is a hemisphere orthogonal to R" = 0, H**1
above the graph of f (which is compact). Using the Maximum Principle, we deduce
that for every t the graph of v; 4 a stays below II for any C'%%(Q) solution of (P;).
Then using II we get a real number B > 0 such that vy < B for every C*%(Q)
solution vy of (P;) and every t € [0, 1].

Now we look for C'! apriori estimates. First, note that Vtaq 18 C! uniformly
bounded. Moreover, observe that the same argument as used at Remark 1-5
shows that for each ¢ € [0,1] and every solution v; of (P;), the maximum of
|Dvy| is achieved at the boundary of Q. Therefore it suffices to give uniform
C! estimates on the boundary. We begin to give (uniform) lower C'' boundary
estimates. Let C'T be the (half) vertical cylinder over 9. That is we set:
Ct =00 x [0, +00[C H""!. Let us call T'y the graph of the function t(f — a) + a
on 9. Observe that each I'; is a C? hypersurface of C*. Moreover each I'; is
contained in the following compact part of H*™1: C* N {a < 2p41 < supyq f1-

Now consider a point p € I';. Let P be the euclidean tangent hyperplane of C"
at p. Let L, be the codimension 2 euclidean plane through p, tangent to I';. For
any 6 <0, let us define Py to be the hyperplane P rotated by 6 with respect to L,,.
That is, we require that Py N C't stays below the euclidean hyperplane orthogonal
to Ct at p containing L, and the angle between Py and the vertical hyperplane P is
6. Observe that when § = 0 we have Py = P and C*t N P is the vertical line through
p. Clearly when |6] is small enough Ct N Py is a hypersurface of CT which is a
vertical graph, over a part of 082, staying below I';. Now as all the hypersurfaces
Iy, t € [0,1] are uniformly bounded up to the C? topology, and they stay in a
compact part of H**!, there exists an uniform 6 < 0 such that for each t € [0, 1]
and each p € Ty we have that CT N Py stays below I'; and (CT N Py) N T, = {p}.
Now we show that for any t € [0, 1], for any solution v; of (P;) and any point p € I'y,
the graph of v; + a stays above the compact part of Py bounded by C'*. Then this
will give a lower C! estimate of v; at p, independent of p, t and v;. Indeed, choose
t, Iy and p € T; as above and call u;, the C? function on  such that its graph is
precisely the euclidean hyperplane Py. Observe that we have (v¢+a)jaq > (ur,p)j00-
Suppose it is not true that u;, < v; + a. Then there exists a real number b > 0
such that u;, < vy + a + b with equality occuring at an interior point of 2. But
this gives a contradiction with the Maximum Principle since on the part of €2 where
ug,p > 0 we have:

n n(l—t)
D = > =D b).
(ue,p) vy vitath (ve +a+b)

Now we look for upper C'! apriori boundary estimates. We begin as before but
now we consider the positive rotated hyperplanes P,, a > 0. That is P, NC™T stays
above I';. The same argument shows there exists a > 0 such that the latter is true
for each t € [0, 1], for every solution v; of (P;) and each p € I';. Unfortunately,
we cannot apply the Maximum Principe to conclude the proof (because there is no
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contradiction to the fact that P, stays over the graph of v, + a with a tangent point
of contact). But observe that this situation is not possible substituting (euclidean)
hyperplanes by (hyperbolic) geodesic hyperplanes. Observe also that if o > 0
is small enough, the euclidean hyperplane P, is almost vertical. Therefore, the
(unique) geodesic hyperplane S, of H"™! through p € T'; tangent at P, is C? close
to P, in a compact part of H**!. Now choose a compact part K of H*™! including
in its interior the set CT N {a < 41 < supyq f}. That is S, N CT is C? close of
P,NCT in K. We infer that if o > 0 is small enough each intersection S, N C™T
stays over I';, for each t € [0, 1], each solution v; of (P;) and each p € I'y. Using
the Maximum Principle as in the proof of the lower C'! apriori estimates, we get
that the graph of S, over Q stays over the graph of vy 4+ a, with intersection at
the boundary point p. This gives upper C'! boundary estimates and concludes the
proof. [

Theorem 2-3. Let @ C R? be a compact C° conver domain and let
f 09 — [0,400[ be a continuous function. Then problem (P) admits an unique
solution.

Proof. When f = 0 the result follows from Theorem 3-4. We will proceed the proof
for f # 0. In view of Remark 1-5 it suffices to prove the existence of a solution. Let
F :Q — [0, +o0[ be the (unique) euclidean minimal extension of f over Q. Note
that the usual maximum principle for minimal surface of R* shows that F(a) > 0
(as Flag = f > 0) for any € Q. This can be shown also using the Maximum
Principle in Proposition 1-4. Consider now a compact exhaustion (£, ), n € N, of
Q such that for each n, K, C Qis a compact part of €, homeomorphic to a closed
disk, and 0K, is a C? strictly convex Jordan curve. Let us call u, : K, —]0, +oo]
the unique hyperbolic minimal extension of Fyg,, given by the Theorem 2-2. Hence
D(u,) = 0inInt(K,) and u, = F on 0K,,. Moreover the Maximum Principle shows
that u, > F on Int(K,) for each n. Let II be any geodesic plane above the graph
of f on 0. Namely II is a half-sphere orthogonal to d,.H® = R? containing the
graph of f in its "interior”. Now choose K, where ng € N is a fixed integer and
consider the functions u,, for n > ng. The above observations show the existence
of two positive numbers a, b such that 0 < a < u,, < b on K, for any n > nyg.
The Compactness Theorem 1-3 gives rise to a subsequence of (u,) converging in
the C?-topology to a positive C'? function u on § satisfying (Eq. 1-1). By abuse of
notation we continue to call (u,) this subsequence. It remains to prove that wu is
continuous in Q and ujp = f-

Observe that by construction we have F' < u on ). Furthermore, the graph of
u stays below the geodesic plane II as this is true for each u,,. Let B > 0 be the
maximum height of II, then v < B on Q. For each n let U, : Q@ — [0, +oc[ be the
continuous function defined by

Up(x) for xeK,
Up(z) = _
(z) F(z) for x€Q-K,.

Clearly U, converges to u on . Let p € 02 be any fixed point, as 0f is
convex p admits a superior barrier, see Remark 1-9. Therefore there exists an open
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neighborhood A of p in R? and a sequence of functions w,': in C2(NNQ)NCY(N N Q)
satisfying conditions (i), (i¢) and (7i7) of Definition 1-6, where M is substituted by
B. The Maximum Principle implies that w,': > F on (N NQ)) for each k. This
proves that w,': > U, on NNOK,, for each k and n. Observe also that w,': >B>U,
on ON N K,,. The latter and the Maximum Principle yield w,': > U, on (N NK,).
Finally we get w,': > U, on (N NQ) for any k and n. Let any x € NN Q, we have
F(z) <ulzx) < w;(:p) and then F(x) — f(p) <wu(x) — f(p) < w;(:p) — f(p). When
x converges to p and k — 400 we get that u(x) converges to f(p). That is u is
continuous up to p and u(p) = f(p). O

The next result shows that the vertical graphs constructed in Theorem 2-3 are
unique in the class of minimal surface with the same boundary.

Theorem 2-4. Let Q C R™ be a strictly C* convex domain and let M C H" ! be a
compact (hyperbolic) minimal hypersurface continuous up to the boundary. Suppose
that I' = OM is a continuous vertical graph over 0S). Then the whole hypersurface
M is a C? vertical graph over Q. Furthermore M is the unique connected and
compact immersed minimal hypersurface whose boundary 1s I'. The same statement
hold when n = 2 and 0% is only supposed to be a C° conver domain.

Proof. Let CT = 00x]0, +oc[C H"T! be the (half) cylinder over 9Q. Then I' =
OM C C7T and by the Maximum Principle the whole hypersurface M stays inside
the solid cylinder bounded by CT, that is in €x]0,4-00[. To see this observe that
the vertical (euclidean) hyperplanes are geodesic hyperplanes, and then are minimal
hypersurfaces of H* !, For the same reason, M cannot have any interior point on
the cylinder C*. Let z € Q be any point. Consider the A-homotheties, hy, with
respect to z, with A > 0 and recall that they are hyperbolic isometries. More
precisely we have hy(X) = MX — 2) + @ for any X € H*!. As 9Q is strictly
convex, I' is a radial graph with respect to x, that is hx(I') N T' = () for any positive
A # 1. We have also that ha(I')N M = ) for any A > 1 since M stays in the convex
closure of C'T.

Suppose now that M is not a radial graph with respect to . Hence, there exists
A > 1 such that hx(M) N M # 0. But the last implies the existence of \g > A
such that hy, (M) and M are tangent at some interior point and hy,(M) stays
7above” M in the sense of radial graph (with respect to ). Now the Maximum
Principle applies to induce that hx, (M) = M which is absurd since Ao > 1 and
then hy,(0M) N IM = (. Therefore we conclude that the whole hypersurface is a
radial graph with respect to x. In particular, the intersection between M and the
vertical line through = is reduced to a single point. Since the previous argument
holds for any = € Q, we deduce that M is a vertical graph over Q. It remains to
prove that this vertical graph is C?. That is M no has interior point with vertical
tangent space. Suppose there exists an interior point X € M such that the tangent
space of M at X 1is vertical. Let us call z € {2 the orthogonal projection of X on
R" = 0, H"™!. We know that M is a radial graph with respect to x. Consider
the following family II;, ¢ > 0, of geodesic hyperplanes of H™: for each ¢t > 0, II;
is the hemisphere centered to x with (euclidean) radius t. When ¢ is big enough
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II; no has intersection with M and M stays below II;. When t decreases to 0
we get a first contact point between M and a hemisphere II;;. Now we use the
Alexandrov reflection to conclude. Namely for ¢t < tq, we call M;" the part of
M being above II; and M, the part being below II;. Furthermore we call M}
the reflected of M with respect to II;. Recall that reflections with respect to
hemispheres orthogonal to 0, H™ are hyperbolic isometries. Hence M} is again a
hyperbolic minimal hypersurface. As M is a radial graph (with respect to ) the
intersection between M, and M/ only occurs on their common boundary, that is
on II;. It follows from the boundary Maximum Principle (see Remark 1-5 (4)) that
M; and M} cannot be tangent on their common boundary. But when we choose
IT; to be the hemisphere containing X we get:

X € OM; N OM;, M; N M} = oM, = OM;.

Furthermore the tangent spaces of M, and M/ at X are the same since the tangent
space of M at X is vertical. We deduce from the boundary Maximum Principle
that M, = M}, that is M 1s symmetric with respect to II;. But this is absurd
since OM is not symmetric.

The uniqueness of M comes from the uniqueness of vertical graph with fixed
continuous boundary data, see the Remark 1-5.

Clearly the whole construction is valid when n = 2 and 912 is only supposed C©
convex. [

Remark 2-5. Note that Theorems 2-3 and 2-4 do not hold any longer if € is
neither convex neither connected. Indeed, consider two positive real numbers
0 <r <1< R Let U C H? be the region delimited by the two hemispheres
(geodesic hyperplanes) centered at 0 whose radius is respectively r and R. It is
known that for r, R properly chosen, the region U contains a family F of hyperbolic
catenoids whose axis of rotation is the vertical axis {x1 = 22 = 0}. Furthermore
each catenoid of this family is symmetric with respect to the hemisphere I centered
at 0 whose radius is 1. For every point P € II, P # (0,0, 1), there is a catenoid of
F intersecting orthogonally II at P.

Now we choose @ C R? = 0,,H? to be an annular domain bounded by two
circles centered at 0 with radius r < r;1 < 1 < ro < R. If r{ and ry are closed
enough of 1, one of the catenoid of F contains a part S bounded by two horizontal
circles, one of those circles is a graph over the circle of radius r; and the other is
a graph over the circle of radius ro. But S is not a graph, thus Theorem 2-4 does
not hold for the domain 2.

Now we choose r1 < r < R < ry. Then the Dirichlet problem (P) with f =0
has no solution. Indeed, suppose M C H? is a minimal surface, which is a graph
over £ and such that 0, M = 0f2. Then by an argument of continuity, we could
get a catenoid C' of F tangent to M and staying below M. But the latter yields
a contradiction with the Maximum Principle. We conclude that Theorem 2-3 does
not hold for the domain 2.
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63 Perron process, elliptic, hyperbolic and parabolic surfaces

Now we describe the Perron process (see [Co-Hi], chapter IV, §4), for minimal
surfaces of H3. The Perron process was applied in the theory of minimal surfaces

in R®. See, for instance, [Je-Se, 1], [Je-Se, 2] and [SE-To, 1].

Definition 3-1. Consider problem (P) where Q is any domain of R?* and f is
any non negative continuous function on 92.

1) Let u : Q — [0, +o0[ be a continuous function. Let U C Q be a closed round
disk. It follows from Theorem 2-3 that u sy has an unique minimal extension @ on
U, continuous up to OU. We then define the continuous function My (u) on Q by:

Mo (a)(r) = { ulo) Heen oo
u(z) ifaelU

2) Let u : Q — [0, 4+00[ be a continuous function. We say that u is a subsolution
(resp. supersolution) of (P) if:

(4) ujpq < f (resp. ujaq > f).
(i) For any closed round disk U C 2 we have u < My (u) (resp. u > My (u)).

Remark 3-2. We now give some classical facts about subsolutions and superso-
lutions, see [Co-Hi].

1) It is easily seen that if u is C% on £ and if u > 0, the condition (4) in Definition
3-1 is equivalent to D(u) > 0 for subsolution or D(u) < 0 for supersolution.

2) As usual if v and v are two subsolutions (resp. supersolutions) of (P) then
sup(u,v) (resp. inf(u,v)) again is a subsolution (resp. supersolution).

3) Also if u is a subsolution (resp. supersolution) and U C 2 is a closed round
disk then My (u) is again a subsolution (resp. supersolution).

4) Let @ C R? be a bounded domain and let u, v : @ — [0,4+o00] be two
continuous functions such that My (u) > u and My(v) < v for any closed round
disk U C Q. Suppose that ujsq < vjsq, then we have u < v on ). Roughly
speaking, a supersolution is greater than a subsolution.

Example 3-3.

1) For any domain Q C R?, if f is any continuous positive function on 92, then
the vanishing function v = 0 on Q is a subsolution for (P). Observe that for every
x € ) there exists a subsolution u of (P) with u(x) > 0. Indeed let II be any
hemisphere centered at @ such that 0. II C 2. Then II is the graph of a continuous
function v defined on a closed round disk U C €. Then set u = v on U and u =0
on  — U. One easily verify that the function u is a subsolution.

2) Choose Q to be a proper sector of R*. That is a region of R? bounded by
two rays issue from the same point * € R? and making an angle 6§ €]0, x| at x.
In the Appendix, Proposition A-1, it is shown that there exists a solution ug for
problem (P) where f = 0 is the null function. In fact the graph of ug is invariant
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by any homotheties h, » with center x and ratio A > 0. More precisely, we have
wg(he 2 (p)) = Aug(p) for any p € Q. We deduce that uy is a supersolution for (P)
(with f = 0). In fact, we will prove in §4 (Corollary 4-6) that ug is the unique
solution of (P).

In the same way let 2 be a band of R2. Up to an isometry of H?, we can suppose
that Q = {(z,y) € R?, 0 <y < 1}. Consider problem (P) where f = 0 is again
the null function. Also in the Appendix, Proposition A-2, it is proved that problem
(P) has a solution up. Again we deduce that up is a supersolution for (P). In
fact the graph of up is invariant under any horizontal translation fixing the band
Q2. That is we have ug(p + (2,0)) = up(p) for any p € Q and any + € R. We will
prove that up is the unique solution of (P) in §4 (see Corollary 4-2).

3) Let Q C R? be an unbounded domain in a band. Let f be any non negative
and bounded continuous function on 9€2. Then using again the hyperbolic catenoids
and the horizontal translations parallel to the band, in the same way as in the proof
of Theorem 1-7, we can show that any solution for the problem (P) is bounded.
Therefore, using a well chosen band B containing €2, such that the solution upg
(see item 2 above) envolves f, that is such that ugjaq > f, we get a supersolution
for problem (P), invariant under any horizontal translations parallel to the band.
Namely, the supersolution is Upg-

4) Now let @ C R? be any bounded domain and let f : 9Q — [0, +oo[ be
any continuous function. It is easy to construct a supersolution for problem (P).
Indeed, let C' C H? be a hyperbolic catenoid such that its orthogonal projection,
Cy, on R? has a non empty intersection with Q. Let € Q be an interior point of
Co. Consider the homotheties hy , with respect to z, A > 0. Clearly, for A > 1 big
enough, a piece of hy ,(C) is a vertical graph v over a domain containing  and
vjaq > sup(f). That is, v is a supersolution for (P).

Theorem 3-4: Perron process. Let @ C R? be a domain and let
f 00 — [0,400[ be a continuous fonction. Suppose that problem (P) has a
supersolution ¢. Set Sy = {u, subsolution of (P), u < ¢}. We define for each
z €N
v(x) = sup u(x).
u€Sy
Then the function v is C* on Q and satisfies (Eq. 1-1).

Furthermore, consider p € 02 and suppose that either one of the following cases

holds:
(1) O is C%-convez at p.
(i) p has a barrier and f > o >0 on 09.
(i¢) p has a barrier and f(p) = 0.

Then v is continuous up to p and v(p) = f(p). In particular if Q is C° convez, the
function v is continuous up to O0S).

Proof. First observe that S, # 0 since the vanishing function belongs to Sy. By
construction we have v < ¢ on Q. Let u € Sy and let U C Q be a closed round disk.
Note that My (u) € S. Indeed we know that M (u) is a subsolution. Furthermore
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the graphs of My (u) and My (¢) over U are two minimal surfaces such that the
graph of My(u) = w on OU is below the graph of My (¢) = ¢ over OU. The
Maximum Principles induces that My (u) < My (¢). But by the very definition of
supersolution we have My (¢) < ¢ and then My (u) < ¢.

Now we show that v is C? on Q and satisfies (Eq. 1-1). Let 2 € Q be any
point. Consider a sequence (uy) in Sy such that u,(z) — v(z) when n — +oo.
Let U C Q be any closed round disk centered at x. We can assume that for each
n and each y € OU we have u,(y) > 0. Define for each n the function v,(p) =
sup{ui(p),...,un(p)}, p € Q. By construction we have also My (v,)(z) — v(x)
when n — 4o00. Set V,, = My(v,). Therefore V,, is an increasing sequence of
functions bounded above by ¢, satisfying (Eq. 1-1) on U. We deduce the existence
of two real numbers 0 < a < b such that a < V,,(p) < b for each n and every
p € U. Now we get with Theorem 1-3 that a subsequence of (V},) converges to a C*
function V on Int(U) satisfying (Eq. 1-1). Let us call again (V},) this subsequence
by an abuse of notation. By construction we have V() = v(x). It remains to prove
that V(p) = v(p) for any p € Int(U). Let y € Int(U) be a fixed point. Let (uy)
in Sy such that @, (y) — v(y) when n — 4+o00. Set v,, = sup(V,,, u,). As above we
can assume that (v,) is an increasing sequence. Set V,, = M (v,), then there exist
two real numbers 0 < @ < b such that a < V,(p) < b for any p € U and any n. It
follows from the Compactness Theorem (Theorem 1-3) that a subsequence of (V},)
converges on U in the C? topology to a C? function V on U satisfying (Eq. 1-1).
We have u,(y) < Va(y) < v(y), we infer that V(y) = v(y). Also by construction
we have V,, < 0, < V,,, the last inequality holds since ©,, is a subsolution of (P).
Therefore we get V < V., from which we deduce V(z) = v(z) (because V < v).
Now, observe that V and V are C? functions on Int(U) satisfying (Eq. 1-1) such
that ¥V < V with equality at an interior point z. The Maximum Principle applies
here to deduce that V =V on Int(U). In particular V(y) = v(y), as this is true for
any y € Int(U) we conclude that v =V on Int(U). This shows the first part of the
theorem.

Let p € 02 be a boundary point. Observe that for each of the three cases
p admits a superior barrier. Therefore, there exist a neighborhood N of p and
a sequence of functions w,j, as in Definition 1-6 where M > 0 is chosen so that
M > supyano(@(x)). For each k and any v € Sy we have w,j(:z;) > u(x) for every
r € AN N Q). We infer that w,': > v on N NQ for each k, see Remark 3-2 (4).

Now, suppose that case (i) occurs. We define for = € Q,

2b

hife) = f(p) = 5 —log(L + p — a*) = log(1 + ——d(x).
where (gf) and (d;) are monotonous sequences of positive real numbers such that:
er =+ 0, 0 = 0 when k — +oo, ¢(x) > f(p) — F if [p — 2| < o and hg(z) <0
if |[p— x| > 8. Furthermore, we want that §ze® < ¢® — 1 and D(hg) > 0 in the
part where hg(x) > 0 and d(x) < 0k, see the proof of Theorem 1-7. Therefore, we
can choose w () = max(0,hx(x)) for x € Q. In fact, note that for every k € N,
we have that w; () < ¢(z) on @ and My(wy ) > wy, that is w; € Sy for every k.
Therefore w, < v. We infer that

wi (z) — f(p) <v(z) — f(p) <wi(x)— F(p)
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for every k and every x € NN Q. When z converges to p and k converges to +o0o
we get that v(x) converges to f(p) as desired.

Suppose now that case (i7) holds. In particular p has an inferior barrier. Let N
be a neighborhood of p and w; a sequence of functions as in Definition 1-6, where
n > 0 is choosen so that 1/n < a. Set i = supgang wy (¢), we have B < «a
since w, < 1/n on N N Q. We define uy on Q setting ug(z) =max(w, (), ) for
v e NNQand ug(z) = B for x € Q—N. Observe that uy is a continuous function
on  and is a subsolution for problem (P). We infer that up < v < w,j on N NQ
for every kK € N. We deduce that when x converges to p and k converges to +oo,
then v(z) converges to f(p).

Finally assume that case (i7¢) holds. Consequently, we get 0 < v < w,': on N'NQ.
We conclude that v(x) converges to 0 = f(0) when x converges to p. O

The following result is a straightforward consequence of Theorem 3-4.

Corollary 3-5. Let Q C R? be an unbounded domain and let f be any non negative
continuous function on 0§). Suppose there exists a supersolution ¢ for problem
(P). Let I' C 0 be a convex arc, if any, with respect to the interior transversal
orientation of 0. Then the solution v of Perron, relative to ¢, given in Theorem
3-4 is continuous up to I' and v(p) = f(p) for any p € T.

Remark 3-6.

1) The same holds for any bounded domain. Namely consider problem (P)
where € is a bounded domain and f is any non negative function on 92. Note that
problem (P) admits always a supersolution ¢, see Example 3-3 (4). Let I' C 992 be
a convex arc, if any. Therefore the solution of Perron v relative to ¢ is continuous
up to I' and v(p) = f(p) for any p € I.

2) We remark that in order to proof Theorem 3-4 (Perron process), we just need
to applied Theorem 2-3 when 052 is a round circle.

Now we show that for each type of positive isometry of H? (namely elliptic,
hyperbolic and parabolic isometries), there exists a complete minimal vertical graph
in H? invariant by the action of a discrete group of such isometries of H3.

Proposition 3-7: Elliptic Surfaces. Let n € N, n > 0, be any integer and set
0, = 27” Let R, be the rotation with respect to the xs-axis whose argument is 0.

Then there exist a complete and a non complete minimal surfaces in H? invariant
by the rotation R, .

Proof. Recall that R, (p) = ¢'».p for any p € R%. Let I';, C R? be a regular
polygon centered at the origin 0, with n sides. Let @ C R? be the domain whose
boundary is I',,. Consider f : ', — [0, 4o0[ any continuous function invariant by
R,. That is f(R,(p)) = f(p) for every p € I',. We know that problem (P) has a
supersolution ¢ (see Example 3-3 (4)). Therefore, as 99 is C° convex we conclude
with Remark 3-6 that the solution of Perron v (relative to ¢) given in Theorem 3-4
is continuous up to the boundary and v(p) = f(p) for any p € I',,. Furthermore
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as € is a bounded domain, the problem (P) has at most one solution, see Remark
1-5 (2). Thus v is invariant under action of R,,. Namely we have v(R,(z)) = v(x)
for every x € Q. In particular if we choose f = 0 to be the null function, then
the graph of v will be a complete minimal surface of H?. Note that we could also
invoke Theorem 2-3 to insure existence and uniqueness of solution of the problem

(P). O

Lemma 3-8. Let Q C R? be an unbounded domain. Suppose that O is embedded
and there exist a point p € O and a real number X > 1 such that hy ,(0Q) = 04,
where hy , is the homothety with respect to p, of ratio N. Suppose also that Q
is contained in a proper sector of R? whose vertex is p. Consider problem (P)
where f = 0 is the null function. Let ¢ be any supersolution for (P) such that
d(hrp(z)) = N+ d(z), z € Q, see Example 3-3 (2). Assume that the solution of
Perron v of (P) relative to ¢ is continuous up to the boundary. Then, it follows that
v(hap(z)) = X-v(x) for every x € Q. Consequently, the graph S of v is a complete
minimal surface of H* invariant by the hyperbolic isometry hy ,: hy p(S) = S.

Proof. Observe that v(x) = 0 for each 2 € 9. We can assume that p = 0 and then

hap(X) = hi(X) = XX forevery X € H3. Let us call Sy the family of subsolutions
u of (P) such that u < ¢. By construction we have v(z) = sup{u(z), v € Ss}

for any = € ). Now observe that the minimal surface \.S is the vertical graph

of the function vy(x) = /\v(i

any * € 0. We deduce that vy is a subsolution for (P) and vy < ¢ (since
va(x) = /\v(i) < /\qb(i) = ¢(x)). Tt follows that vy(z) < v(x), x € Q, from the
very definition of v. On the other hand, the same argument applied with 1/ instead
A shows that vy/\(z) < v(x), * € Q. From which we deduce that vi(z) = v(x),
ref O

), € Q. By construction we have vy(x) = 0 for

Proposition 3-9: Hyperbolic Surfaces. Let Q C R? be an unbounded domain
with 0 embedded. Suppose that:

(1) 0 € 9Q and there exists A > 1 such that Q is invariant by the homothety hy
with respect to O whose ratio is .

(i) For any p € 00, p # 0, there exists a hyperbolic catenoid C such that
0xCNQ =10, p€ 0cC and such that the segment joining the centers of
the two components of O C intersects €.

(133) Q is contained in a proper sector of R* whose vertex is 0.

Consider problem (P) where f is the vanishing function on 02. Then (P) has a
solution v which s mvariant under the homothety hy. Consequently, the graph S
of v is a complete minimal surface of H? invariant under the discrete group of
hyperbolic isometries {h, q € Z}.

Proof. Observe that as Q is contained in a proper sector, the problem (P) admits
a supersolution ¢, such that ¢(\z) = - é(x), © € Q, see Example 3-3 (2). Fur-
thermore the condition (u7) implies that each point p € 92, p # 0, has a superior
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barrier (for (P)). As 0f) is convex at the origin 0, we know that 0 has a barrier for
(P), see Remark 1-9 (1). Note that the null function is an inferior barrier for any
point p € 9. We conclude that any point p € 92 has a barrier for (P). Therefore,
if v is the solution of Perron (relative to ¢) of (P) it follows that v is continuous up
to the boundary and vjpq = 0, see Theorem 3-4. Furthermore, Lemma 3-8 shows

that v(A-2) = X\ - v(x) for any x € Q. O

Remark 3-10. In the context of Proposition 3-9, suppose that Qis 2. Let R > 0
and set I' = {p € 09, R < |p| < A\.R}. Let k(x) be the euclidean curvature of
I’ with respect to the interior normal orientation. Let 6 €]0,7[ be the angle of
any proper sector containing € whose vertex is 0. Suppose that 6 is small enough
so that the condition (i7) is satisfied for Sy. Consequently, the condition (u7) is
achieved (for Q) if it is assumed that |k(x)| is small enough.

In the same way, we can prove analogous statements for parabolic minimal sur-
faces, the arguments are essentially the same. For this reason we just state the
results without give a proof.

Lemma 3-11. Let Q C R? be an unbounded domain. Suppose that O is embedded
and there exists a non null vector ¢ € R? such that T(Q) = Q, where T is the
euclidean translation T(z) = v + &, * € R2 Suppose also that Q0 is contained in
a band of R? invariant under T. Consider problem (P) where f = 0 is the null
function. Let ¢ be any supersolution for (P) such that ¢(T(z)) = ¢(x), v € Q (see
Ezample 3-8 (2) or (3)). Assume that the solution of Perron v of (P) relative to ¢
is continuous up to the boundary. Then we have v(T(x)) = v(x) for every x € .

Consequently, the graph S of v is a complete minimal surface of H? invariant by
the parabolic isometry T: T(S) = S.

Proposition 3-12 : Parabolic Surfaces. Let Q C R? be an unbounded domain
with 0 embedded. Suppose that:

(1) There exists a non null vector & € R? such that Q is invariant by the
horizontal translation T(x) = x + &
(1) Q is contained in a band invariant under T.
(i2) For any p € 0, p # 0, there exists a hyperbolic catenoid C such that
0xCNQ =10, p€ 0cC and such that the segment joining the centers of
the two components of O C intersects €.

Consider problem (P) where f is the vanishing function on 02. Then (P) has a
solution v which 1s nvariant under the horizontal translation T. Consequently, the
graph S of v is a complete minimal surface of H? invariant under the discrete group
of parabolic isometries {TY, q € Z}.
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84 Graphs over unbounded domains

For the whole section we design by B the open band
B = {(z,y) € R?, 0 <y < 1}. Observe that for any open band C' in R* = 9., H?
there exists an isometry of H?® sending C' on B. Therefore there is no loss of
generality in just consider the band B.

Theorem 4-1. Let Q C B be a convex domain. Let f: 9Q — [0,+oc0[ be a C°
function. Then problem (P) has a solution. That is f admits a minimal extension

on ).

Proof. For any n € N set Q, = {(z,y) € ,—n < x < n}. Note that Q, is a
bounded and convex domain. Let f, : 9, — [0, +00] be any continuous function
such that (fn)aq = f. Let us call u, the unique minimal extension of f, on Q,,
see Theorem 2-3. Consider now a hyperbolic catenoid C,, such that 0.,C, has
a component on each side of the band B. Up to a homothety, we can assume
that the vertical projection of C, on R? = 9, H?, contains 2, in its interior.
Observe that there exists a positive number ¢,, such that the vertical translated
C, = Cn + (0,0,t,) stays strictly above the graph of f. We deduce with the
Maximum Principle that if & >> n is sufficiently big, the graph of uy over Q,, stays
below C,. This gives uniform upper estimate for the sequence (ug) over £, (at
least for k big enough). Now, for any ¢ > 0 set Q, . = {p € Q,, d(p,02,) > c}.
Let p € Q,, . be any point and let II,, be any hemisphere in H* centered at p such
that O.II, C Q.. As II, is a minimal surface in H3, the Maximum Principle
shows that the graph of any function uy stays above II, for £ >> n big enough.
This gives uniform lower C° estimate for the sequence (ug) on Qp .. As the family

¢ 1s a compact exhaustion of ), we infer, according to Theorem 1-3, that there
is a subsequence of (uy) which converges on 2 for the C? topology to a C? function
u satisfying (Eq 1-1). As  is convex we know that each point of 992 has a barrier,
see Remark 1-9 (1). From which we deduce that u is C° up to dQ and u = f on
0N} as in the proof of Theorem 3-4. [

Corollary 4-2. Let  C B be a conver domain. Let f : 00 — [0,400[ be a
CO function. Assume that f is bounded and uniformly continuous. Then problem
(P) admaits an unique solution u. Furthermore u is also bounded and uniformly
continuous on §2.

Proof. We know by Theorem 4-1 that problem (P) admits a solution. The unique-
ness arises from Corollary 1-11. Furthermore, Theorem 1-7 shows that u is bounded.
Finally, we deduce from Corollary 1-8 that u is uniformly continuous. 0O

Theorem 4-3: Maximum Principle in a band. Let Q C B be a domain and
let f:0Q — [0,+00] be a continuous function such that f(p) < up(p) for every
p € 09 (see Example 3-8 (2) for the definition of up). Then any minimal extension
F over Q, Flaoq = f, satisfies F < up.
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Proof. Let us consider the following problem (]5)

7

Ui no_
Z(5i1—m)uu+;—00n3

() 1
U|aB =0

u € C*(B)N C°B)

Define v(p) = sup(F(p),up(p)), p € Q and v(p) = up(p) for any p € B — Q. As the
graph of f stays below the graph of up we deduce that v is a continuous function
on B with vipp = 0. It is easy to see that v is a subsolution for problem (]5)
Furthermore, using a hyperbolic catenoid as in Example 3-3 (3) we can construct
a supersolution ¢ for (]5) whose graph stays above the graphs of ugp and F. We
deduce that v < ¢. Set Sy = {u € CY(B), subsolution of (]5), u < ¢}. Asin

~

Theorem 3-4 we get that U(p) = sup,cs,{u(p)} is a solution of (P). As problem

(P) has an unique solution, see Corollary 4-2, we deduce that U = up. From which
we conclude that F' < up for any minimal extension F of f on Q2. O

Definition 4-4. For every 6 €]0, n[ we will design by Sy any open sector of
R? = 0,,H?® whose angle at the vertex is 6.

Theorem 4-5: Maximum Principle in a proper sector. Let ug € C°(Sy) N
C?(Sy) be a function satisfying D(ug) = 0 and ug = 0 on 8Sy. Let Q C Sy be a
domain and f: 0Q — [0,4+0o0[ be a continuous function such that f(p) < ug(p) for
every p € 0S2. Then any minimal extension F of f on Q satisfies F < ug.

Proof. We can assume that Sy = {p € R?, 0 < arg(p) < 0} (up to an isometry of
H?). Let pg € R? be any point such that arg(pg) = g + 7. That is py ¢ Ss and
po lies on the median line of Sg. Let IIy C H? be a hemisphere centered at py such
that OsoIlg N Sy = (. Observe that I is a geodesic plane of H® and that reflection
with respect to Ily is an isometry of H?. If N is any part of H® or R? we design
by N* the reflected of N with respect to Ilj.

Note that Sy is a compact and C%-convex domain in R?. Let M C H? be the
graph of ug over Sy. Therefore M* is a minimal surface in H®> whose asymptotic
boundary (85_9*) is compact and convex. We infer from Theorem 2-4 that M™* is
a vertical graph. Now let N C H?® be the graph of F, where F is any minimal
extension of f on €. It follows from hypothesis that N* is a minimal surface whose
boundary stays in the closure of the "bounded” component of H*> — M*. Suppose,
by absurd, that N* does not stay in this bounded component. Let p € S be any
point. Consider the homotheties h, x from p, where A > 0. As M* and N* are
compact in H? there is a real number A > 1 such that hp A(M*) and N* are tangent
at some point and h, x(M*) stays above N*. But this gives a contradiction with
Maximum Principle since both surfaces are minimal in H?®. We deduce that N*
stays below M*. Reflecting with respect to Ilg we conclude that F' < ug for any
minimal extension F of f on 2. O
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Proposition 4-6. For ecvery 6 €]0,x|, there is at most one connected complete
manimal surface M in H? which is properly immersed such that its asymptotic
boundary is 0Se U {oo}.

In particular if Q@ = Sp and f = 0 is the null function on 092, the problem (P)
has at most one solution.

Proof. We use the same notations and constructions as in the proof of Theorem 4-5.
Let M and N two minimal surfaces in H? satisfying the hypothesis of Proposition
4-6. We get that M* and N* are graphs over the convex and bounded domain 5.
Then using the homotheties h,  as in the proof of Theorem 4-5, we can show that
M™ stays below and above N*. We deduce that M* = N*. Reflecting with respect
to Ilp we get M = N. O

Remark 4-7.

1) We will see in the Appendix that it does exist for any 6 €]0, 7[ a solution wug
for problem (P), where 2 = Sy and f = 0 is the null function on 9. It follows
from Proposition 4-6 that (P) has an unique solution. Furthermore we will see that
the graph of ug has an important geometric property.

2) Let Q C Sg be a C%convex domain in a proper sector, § €]0, [. Let f : 90 —
[0, +00[ be a continuous function such that f < ug on 992. Observe that ug is a
supersolution for problem (P). We can deduce, using Perron process as in Theorem
3-4, that problem (P) admits a solution. That is f has a minimal extension on .
Also, let Q = Sy be a proper sector and let f : Sy — [0, +00[ be a continuous
bounded function. Then, there exists a positive constant ¢ such that f < wug+ c on
0Sp. Therefore the function ugy + ¢ is a supersolution for the problem (P) and we
deduce in the same way that (P) admits a solution.

3) Consider the limit case where § = x, that is S is a half-plane. let f: 0 —
[0, +00[ be any continuous function. Then problem (P) admits no solution. Indeed,
let p € S, be any point. Let II C H?® be any geodesic plane such that d,,II C S,
is a circle in S and p belongs to the open disk bounded by 0, II. We get from the
Maximum Principle that IT stays below any minimal extension F of f. Therefore,
as the radius of II can be made as large as we want, we deduce that F(p) = +oo
for any p € Sr and any solution F of (P), which is absurd. In fact, this argument
holds for any dimension.

Appendix

For sake of completeness, we give a proof for existence of some minimal surfaces
in H3. There were studied in the paper of M. Gomes, J. Ripoll and L. Rodriguez
entitled: On surfaces of constant mean curvature in hyperbolic space, preprint 1985,

IMPA.

From now on, we design by Sg, 8 €]0, 7[, the open sector of R* whose vertex is
g =(—1,0,0), with angle § and whose median line is the real ray [—1, +o0].
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That is:

0 0
So={peR? — <arg(l+p) <}

Proposition A-1. Let 0 €]0, [ be any number. Then there exists an unique com-
plete minimal surface My properly immersed in H?, whose asymptotic boundary is
the boundary of Sg. Moreover this surface 1s a graph over Sy and is invariant under
the homotheties hy x, with fized point ¢ = (—1,0,0), for any A > 0.

Proof. We will construct a solution for problem (P) where Q = Sy and f = 0 on 092.
For this we first provide a supersolution ¢. To fix notations, let us say that the real
ray [—1, 400 is supported by the x;-axis. Let II be the vertical half-plane through
(0,0,0) orthogonal to the z1-axis, that is II = {X € H*, 2; = 0}. Consider the
following C'?-curve on II: ~(t) = (0, r cos(t),a + rsin(t)), t €]0, 7] where @ > 0 is a
real number to be defined later, and r > 0 is a fixed number. Note that the image
of ~ is a vertical semi-circle I' of radius r. Then we choose r big enough so that
the points +(0,7,0) ¢ S and the segment joining those two points intersects Sy.
Let C C H? be the "cone” over T’ with respect to the point ¢ = (—1,0,0). That is
C = Uxsohga(I') where hy x(X) =X - (X +(1,0,0)) +(—1,0,0) for any A > 0 and
every X € H3. Observe that C is a C? surface, and is the graph of a C? function ¢
defined in a sector containing Sy in its interior. In order to compute the hyperbolic
mean curvature Hgy of C we first evaluate its euclidean mean curvature Hg both
in relation to the normal orientation corresponding to increasing z. For this we use
the following parametrization of C = X (]0, 7[x]0, +oc[) where:

X(t,A) = A-[(0,rcos(t),a+ rsin(t)) + (1,0,0)] + (=1,0,0), ¢t €]0,x[, A > 0.
A straightforward calculation shows that the euclidean mean curvature Hg of C is:
1+ 72+ 2ar sin(t) + a?
2Ar [1 + (r + asin(¢))2]/*

Hp(t)\) = —

We have the following identities:

- [ (Do >
Dlg)=vi+IDel ld <\/1+|D¢|2> +45\/1+|D¢|2]
— [QHE + %} 1

T3 ' F3
V1+[Dof?
=2Y—— " Hpy
¢
where D¢ is the euclidean gradient vector of ¢, N3 = m is the third com-
ponent of the upper unit euclidean normal vector field N along C. From which we
infer:

2sin(t) 1+ 7%+ 2ar sin(t) + a?
D
(9) <0 AMa+r sin(t))\/l + (r + asin(t))? M1+ (r + asin(t))2]3/2

& 2sin(t)r[l + (r + asin(t))z] < (a+rsin(t))(1 + r? 4+ 2ar sin(t) + az)
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Clearly, the last inequality will be satisfied if we choose @ > 0 big enough. Therefore,
¢ is a supersolution for problem (P). It follows from Theorem 3-4 that (P) has a
solution ug. It is inferred from Proposition 4-6 that ug is the unique solution of (P).
Let My C H? be the graph of ug. Observe that for any A > 0 the surface i, \(Mp)
is also a minimal graph over Sy with zero boundary value data. Uniqueness of such
a graph yields hy z(My) = My for any A > 0. More precisely, My is invariant under
the homotheties with respect to ¢ = (—1,0,0). O

Proposition A-2. Consider the horizontal open band
B = {(x1,22) € R?, —1 < x5 < 1}. There is an unique connected complete
minimal surface M properly immersed in H? such that:
(i) OsoM = 0B U {0}
(i) M s globally invariant under any horizontal translation leaving B invariant.
More precisely, Ty, (M) = M for every x; € R, where Ty, s the horizontal
translation defined by Ty, (X) = X 4 (21,0,0).

Furthermore, M 1s a vertical graph over the band B.

Proof. Consider the vertical half-plane II = {z; = 0} in H*. Let M C H? be
a complete minimal surface as in Proposition A-2. Observe that II and M are
transverse and IINM is a connected C? curve I'. Now we use the following notations:
y = a2 and z = x3. Let v(¢) = (0,y(¢), 2(¢)), t €]0, 1] be a regular parametrization
of I'. We can assume lim;o y(t) = —1 and limy—; y(¢) = 1. By hypothesis the
surface M is obtained translating horizontally I'. That is M = U,erT,(I") where
T.(X) = X + (2,0,0) for every X € H3. Consider the following parametrization
of M = X(]0,1[xR) where:
X(t,x) = (z,y(t),2(1)), t €]0,1], z € R.
1
Let N(t,z) = N(t) = e (0,—2'(¢),y'(t)) be an unit euclidean normal
y©t+=
vector field along M. The euclidean mean curvature of M with respect to the
normal field N is:
1,1

Hp(t,x) = Hp(t) = 2((2;3/_;;2;/)2 ().

Let Hy be the hyperbolic mean curvature with respect to the normal field N. We

have:

2
z

where N3 is the third component of N. Thus

2Hp = —(Hg — N3),

y/(y’Z + 2’2)
—Z .

Hy=0& 2"y -2y = -2

Observe that the previous differential equation is invariant by homotheties in y
and z coordinates. If we assume that I' is a graph with respect to y, we have

v(y) = (0,y,2(y)). Therefore

(%) Hp=0&2"=-2
z
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Let us show that equation (*) admits a ”complete” solution of the following form:
z=z(y),y € —1,1[, with limy_, 41 2(y) = 0. For this we will use the same technics
as in [SE-To, 2] or [SE-To, 3]. First using Picard theorem we get, for every 7 > 0,
an unique solution z, of () defined on an interval | — yo, yo[ such that z,(0) = 7
and z_(0) = 0. Observe that the function Z() = z(—t) satisfies the same equation
() with same initial conditions. Hence z.(—t) = z.(¢), that is the graph of =z,
is symmetric with respect to the z-axis. Now as z” < 0 on | — yo,yo[ it follows
that z < 0 on ]0,y0[. Thus 2z, and Z;_ has a limit at yo. Clearly z-(yo) €]0, 7.
Suppose that Z;_(yo) = —oco. Let P C H? be the vertical half-plane {y = yo}. Let
I'; be the graph of z;. Let us call M; = Uyer(T,(T'7)) the (minimal) translation
surface generated by I';. Note that P and M, are tangent at (0, yo, z(yo)) and M,
stays in one side of P. This gives a contadiction with the Maximum Principle with
boundary. We deduce that —oco < Z;_(yo) < 0. Using again the Picard theorem
this allows us to extend the solution z, to a larger interval. As we have 2! < 0
we get a solution satisfying: z,(0) = 7, Z;(O) = 0, z, is defined in some interval
| — yr,y-| with lim,_,4, z(y) = 0. Observe that the translation surface M; is a
complete minimal surface in H*, which is a graph over a band B,. Moreover we
have O M, = 0B, U {oc}. At last, using the homothetic curves a - (y, z-(y)),
varying «, we can find an a > 0 such that B; is precisely the band B. This proves
the existence part in the statement of Proposition A-2. Let us call more briefly M
this surface and I' the corresponding curve.

Now we prove uniqueness. Let M; C H? be another surface satisfying the
assumptions of Proposition A-2. Observe that M; N1II is a connected C%-curve I'y
whose boundary points are +(0,1,0) as well as I. Suppose the two curves I' and
Iy are not identical. Then there is a real number o > 0 such that the homothetic
curve a - ' and 'y are tangent at some point. Thus those curves satisfy the same
differential equation (%) with same initial conditions. This gives a contradiction
and shows uniqueness in the statement. O
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