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is C0 convex at p; or the boundary data f vanish at p; and p has a barrier (seeDe�nition 1-6) then the solution given by Perron process is continuous up to p andtakes the given boundary data at p. In particular, in any convex arc � � @
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2 RICARDO SA EARP� & ERIC TOUBIANA�then the solution given by Perron process is continuous up to the boundary andtakes the prescribed boundary value f at p (see Theorem 3-4). We shall infer byPerron process, several existence and uniqueness results for minimal complete andnon complete graphs over C0 unbounded convex and non convex domains, namelycomplete minimal graphs, invariant by a given 1-parameter group of hyperbolicor parabolic isometries of H3 (see Propositions 3-9 and 3-12). We shall also inferfrom Perron process the existence of the Dirichlet problem for the minimal verticalequation over a band, given arbitrary non negative continuous boundary data (seeTheorem 4-1). Theoretically, this result can be viewed as an example of applicationof Perron process. For a convex unbounded domain in a band 
; we shall provethe following uniqueness result: if the prescribed boundary data f is bounded,non negative and uniformly continuous then the Dirichlet problem for the minimalvertical equation admits at most one solution. Moreover, any such a solution isbounded and uniformly continuous. In fact this result holds in higher dimensions(see Corollary 1-11 and Remark 1-9). From Perron process we shall deduce a max-imum principle for domains in a proper sector (see Theorem 4-3) that gives rise toan existence result for the Dirichlet problem (P ) over convex domains in a propersector (see Theorem 4-5 and Remark 4-7). Next, we explain the main tools.Throughout this paper, we use L. Simon interior estimates for mean curvaturetype equations in two variables as a major tool, see [Si], together with the control atthe boundary that we have succeeded (see Theorem 1-7) to establish the mentionedPerron process, see x3, for the minimal vertical equation, Eq. 1-1. Of course, wealso make use of the geometry of hyperbolic space to get some useful boundary andinterior a priori estimates.There are earlier results related to this article that we now mention. Firstly,we must note the pioneer work of Anderson about existence results for completeminimal varieties in hyperbolic space with preassigned asymptotic boundary, see forinstance [An, 1] and [An, 2]. In [An, 1], Anderson solved for a C2 bounded meanconvex domain 
 in Rn; n � 2; the Dirichlet problem for the minimal verticalequation (Problem (P )) with zero boundary data. Secondly, it is worth mentioningthat Lin in [Li, 1] gave a short proof of Anderson's existence result cited above usingPDE methods. He also proved in the same paper uniqueness, and he achieved hismain result about regularity of the solution up to the boundary; that is, if theboundary @
 is smooth then the graph is smooth as @
 up to the boundary. In[Li, 2] Lin studied the asymptotic behavior of area-minimizing locally recti�ablecurrents in hyperbolic space. Recently, the authors have carried out an existenceresult about minimal vertical graphs over an annular domain, see [SE-To, 1].Now, by way of conclusion, we are going to state two open questions arising fromthis work. An interesting question is related to the maximum principle at in�nityfor minimal surfaces in Euclidean space inferred by Langevin and Rosenberg in[La-Ro], Meeks and Rosenberg in [Me-Ro] and Soret in [So]. Is it true that if M1and M2 are two minimal vertical graphs over an unbounded domain 
 such thatdist(@M1;M2) > 0 and dist(@M2;M1) > 0 then dist(M2;M1) > 0 ?Bers showed that the classical minimal surface equation in Euclidean space can-not have an isolated singularity (see [Be]). It is not di�cult to show that if u is asolution of the minimal vertical equation (Eq. 1-1) over a puncture disk then u isbounded from above (on a possible smaller puncture disk) by a positive constant b



MINIMAL GRAPHS IN HYPERBOLIC SPACE 3and bounded from bellow by a positive constant a: The proof of this assertion usesminimal hyperbolic catenoids as suitable barriers. Thus one can naturally ask if uextends smoothly to the puncture ?x1 Basic resultsIn this section we give some technical tools and we prove some basic results thatwe shall need throughout this paper. We choose the half-space model of hyperbolicspace. Namely Hn+1 = f(x1; : : : ; xn+1) 2 Rn+1; xn+1 > 0gequipped with the hyperbolic metricds2 = dx21 + : : : dx2n+1x2n+1 :We are concerned with positive C2 functions u de�ned on domains 
 ofRn = fxn+1 = 0g (considered as asymptotic boundary of Hn+1) whose graphS = f(x1; : : : ; xn; u(x1; : : : ; xn)); (x1; : : : ; xn) 2 
g is a minimal hypersurface ofHn+1. We say that S is a vertical graph. That is, we consider C2 functions u on 
satisfying the following strictly elliptic quasilinear PDE:(Eq.1-1) DDD(u) = nXi;j=1��ij � uiuj(1 + jDuj2)�uij + nu = 0in 
. We will allow that u takes zero value boundary data on a part of @
. Noticethat DDD(u)� nu = 0 is the minimal hypersurface equation in euclidean space Rn+1.Theorem 1-1. Let 
 � Rn be a bounded domain such that @
 2 C2;�. Let� 2 C2;�(
) and let QQQ be a quasilinear strictly elliptic operator in 
. Consider theDirichlet problem(�) QQQu = 0 in 
 and u = � on @
:For t 2 [0; 1] consider the family of Dirichlet problems:Qtu = aij(x; u;Du)Diju+ b(x; u;Du; t) = 0; in 
u = t� on @
satisfying:(i) Q1 =QQQ and b(x; u;Du; 0) = 0;(ii) The operators Qt are strictly elliptic on 
 for all t 2 [0; 1];(iii) The coe�cients aij 2 C1(
�R�Rn); b 2 C�(
�R�Rn) for each t andconsidering as mapping from [0; 1] into C�(
�R�Rn), the function b iscontinuous.



4 RICARDO SA EARP� & ERIC TOUBIANA�Suppose there exists a constant A such that for each t and for each C2;�(
) solutionu of the Dirichlet problem Qtu = 0 in 
 and u = t� on @
, 0 � t � 1, we have :jujC1(
) = sup
 juj+ sup
 jDuj < A;(A independent of u and t). Then the Dirichlet problem (�) is solvable in C2;�(
).The above existence theorem is a consequence of Schauder theory and the globalH�older estimate of Ladyzhensaya and Ural'tseva, see [Gi-Tr, Theorem 13.7], and[Gi-Tr, Theorem 11.8].The next Lemma is an adaptation of a result of L. Simon, see [Si, Theorem 2"].Lemma 1-2. Let 
 � R2 be a domain and let u : 
 !]0;+1[ be a C2 solutionof (Eq. 1-1) (that is the graph of u is a minimal surface in H3). Let p 2 
. Thenthere exists � > 0 such that D�(p) � 
 (where D�(p) is the euclidean open disk ofradius � centered at p), and there exist two real constants c1; c2 depending only of� and infD�(p) u(x) such that:(�) jDu(p)j � c1 exp(c2u(p)� ):Consequently for each compact part K � 
 there exists a real number M > 0depending only of infK(u) and supK (u) such that:jDu(p)j <Mfor each p 2 K.Proof. We are going to use results and notations of L. Simon [Si]. The function usatis�es (Eq.1-1) on 
. For any point (x; z; p) 2 
�R�R2, we de�ne aij (x; z; p) =�ij � pipj=(1 + p21 + p22), i; j = 1; 2. Let � > 0 be such as the conditions (3.2) of[Si] are satis�ed where the functions a�ij are de�ned by (2.1) of [Si]. Note that theyare the same functions which appear in the equation of minimal surface of R3. Letp 2 
 and let r > 0 such that Dr(p) � 
. Let � = infDr(p) u(x), observe that� > 0. Let h : R! R+ be any C1 positive function such that:(1) h(z) = 1z for any z � �,(2) h0 < 0,(3) h < 2� .Then u satis�es on Dr(p) the PDE(��) 1 + u221 + u21 + u22u11�2 u1u21 + u21 + u22u12+ 1 + u211 + u21 + u22u22 = �2h(u) = b(x; u;Du):Now b(x; z; p) is a C1 function on Dr(p) �R �R2 and we can apply Theorem 200of [Si]. For this observe that setting b� = (1 + jpj2)�1=2b, the condition (3.10) of



MINIMAL GRAPHS IN HYPERBOLIC SPACE 5[Si] is satis�ed provide that 2h(u) < �r (since h0 < 0 and @b�@xj = 0; j = 1; 2). Thenfor any positive � � r such that 4� < �� , Theorem 200 of [Si] shows the existence ofconstants c1 and c2 such that (�) holds. Note that the condition (1.3) of [Si] holdson D�(p) with � = 4� . The other assertion follows immediately. �Theorem 1-3. Compactness theorem: Let 
 � R2 be a domain and let (un)n2Nbe a sequence of C2 functions on 
 satisfying (Eq. 1-1). Suppose that for each com-pact part K � 
, there exist two positive real numbers a; b (depending only of K)such that 0 < a < un(x) < b for every x 2 K and every n.Then there exists a subsequence of (un) converging on K, in the C2 topology, toa C2 function u satisfying (Eq.1-1) on K. Consequently there exists a subsequenceof (un) converging on 
, in the C2 topology, to a C2 function u satisfying (Eq.1-1)on 
.Proof. Let K � 
 be a compact part. We infer from Lemma 1-2 the existence of areal numberM > 0 such that jDun(x)j < Mfor every x 2 K and every n. Then using interior H�older estimate of Ladyzhenskayaand Ural'tseva, see Theorem 13.1 of [Gi-Tr], we get uniform C1;� estimate for thesequence un on K. At last, using Schauder theory ([Gi-Tr] Corollary 6.3) we haveuniform C2;� estimate on K. Therefore the sequence un with their �rst and secondderivatives on K give rise to a normal family. Then there exists a subsequenceconverging on K to a C2 function in the C2 topology. By a continuity argument,this function satis�es (Eq.1-1). Considering a compact exhaustion of 
 and usingthe standard diagonal process, we infer the existence of a subsequence convergingon 
 in the C2 topology to a solution of (Eq.1-1). �Now we write down the well-known Maximum Principle.Proposition 1-4 : Maximum Principle. Let 
 � Rn be a bounded domain.Let u, v 2 C2(
) \ C0(
) be two positive functions. Assume that uj@
 � vj@
 andthat DDD(u) �DDD(v) on 
.(i) Interior Maximum Principle: Then we have u � v on 
 and equality occursat an interior point if and only if u = v.(ii) Boundary Maximum Principle: Let p 2 @
 be such that u(p) = v(p). Sup-pose that p lies on the boundary of a round ball contained in 
. Assumethat the outward derivative @(u� v)@� exists at p. Then we have@(u � v)@� (p) > 0unless u = v on 
.



6 RICARDO SA EARP� & ERIC TOUBIANA�Proof. We will proceed the proof for the sake of completeness. A straightforwardcomputation shows that:(1+jDuj2)DDD(u) � (1 + jDvj2)DDD(v) = nXi;j=1 ��ij (1 + jDuj2)� uiuj� (uij � vij)+ nXk=124(uk + vk)(nv + nXi;j=1 �ijvij)� nXi=1(ui + vi)vik35 (uk � vk)� n(1 + jDuj2)uv (u� v):We de�ne a linear operator L setting:L(f) = nXi;j=1 ��ij (1 + jDuj2)� uiuj� fij+ nXk=124(uk + vk)(nv + nXi;j=1 �ijvij)� nXi=1(ui + vi)vik35 fk � n(1 + jDuj2)uv f:for every C2 positive function f on 
. Let us observe that L is an uniformly ellipticlinear operator of the following form: Pi;j aij(x)Dijf+Pk bk(x)Dkf+h(x)f whereh(x) � 0 on 
. It follows that L satis�es the Maximum Principle as stated in [Pr-We, Theorem 6 p.64]. As L(u� v) � 0 on 
 and uj@
 � vj@
 � 0 we conclude thatu� v � 0 on 
 with equality at an interior point if and only if u = v. This showsthe Interior Maximum Principle.Furthermore observe that in the conditions of (ii) we can apply Theorem 8, p.67 in [Pr-We] to infer the Boundary Maximum Principle. �Remark 1-5 .1) In the same way, di�erentiating (Eq.1-1) with respect to xq, we �nd that uqsatis�es an uniformly elliptic linear operator of the following form: Pi;j aij(x)Dijuq+Pk bk(x)Dkuq+h(x)uq where h(x) � 0 on 
. We conclude that juqj and then jDujhas not an interior maximum. In particular if a solution u of (Eq 1-1) is C1 up tothe boundary, the maximum of jDuj, if any, is assumed on @
.2) As a direct consequence we get that, in the same conditions of Proposition1-4, if u = v on @
 and DDD(u) = DDD(v) = 0 on 
 then u = v on 
. That is theDirichlet problem for vertical minimal graph in Hn+1 admits at most one solutionon bounded domains.3) Let 
 � Rn be a compact domain. Consider M1; M2 � Hn+1 two hy-persurfaces which are graph over 
. Suppose that M1 is an euclidean minimalhypersurface,M2 is a hyperbolic minimal hypersurface and @M1 stays below @M2.Then it immediately follows from the Maximum Principle that M1 stays below M2without any interior contact point. Note that @M1 and @M2 can have contact.4) Let 
 � Rn be a C2 domain and consider two positive C2 functions u and von 
 satisfying (Eq.1-1) and such that u � v. Let p 2 @
 be a boundary point suchthat u(p) = v(p), u and v are C1-continuous up to p and such that ui(p) = vi(p)



MINIMAL GRAPHS IN HYPERBOLIC SPACE 7for i = 1; : : : ; n. Then the Boundary Maximum Principle implies that u = v on
. Geometrically this means the following. Let M1; M2 � Hn+1 be two minimalhypersurfaces with C2 boundaries. Assume thatM1 andM2 are C1 up to a commonboundary point p. Suppose that M1 and M2 are tangent at p, M2 stays above M1in a neighborhood V � Hn+1 of p and the tangent spaces of the two boundaries@M1 and @M2 agree at p. Then the two hypersurfaces are equal in a neighborhoodV of p.De�nition 1-6 . Let 
 � Rn be a domain. Let f : @
! [0;+1[ be a continuousfunction. Consider the following Dirichlet problem (P ):(P ) 8>>>><>>>>: nXi;j=1(�ij � uiuj1 + jDuj2 )uij + nu = 0 on 
uj@
 = fu 2 C2(
) \ C0(
)1) Let p 2 @
 be a boundary point. Assume �rst that f(p) > 0. Suppose thatthere is an open neighborhoodN of p inRn such that for anyM > 0 (resp. n 2 N�)there exist a sequence of functions !+k (resp. !�k ) in C2(N \ 
) \C0(N \ 
) suchthat(i) !+k (x)j@
\N � f(x) and !+k (x)j@N\
 �M(resp. !�k (x)j@
\N � f(x) and !�k (x)j@N\
 � 1n )(ii) DDD(!+k ) � 0 (resp. DDD(!�k ) � 0 in the part where !�k > 0) in N \ 
,(iii) limk!+1!+k (p) = f(p) (resp. limk!+1 !�k (p) = f(p)).If f(p) = 0 we substitute !�k (x) for the vanishing function on N .Then we say that p admits a superior (resp. inferior) barrier for the problem(P ). If p admits a superior and an inferior barrier we say more shortly that p admitsa barrier.2) Let u : 
 ! R+ be a solution of the problem (P ), u 2 C2(
) \ C0(
). Wesay that u has a modulus of continuity along @
 if for every " > 0, there is � > 0such that if jp� xj < �, p 2 @
, x 2 
, then ju(p)� u(x)j < ".Theorem 1-7. Let 
 � R2 be a C0 convex domain in a band (a band is a domainbounded by two parallel straight lines of R2). Let f be a non negative and boundedfunction on @
. Then there exist a real number B > 0 such that 0 < u � B on 
for any solution of the problem (P ). Furthermore, if f is also uniformly continuous,then any solution of (P ) has a modulus of continuity along @
.Proof. Let A � 0 be an upper bound for f . Consider a hyperbolic catenoid C inH3such that @1C (which is composed of two circles) has a component on each side ofthe band in R2. Up to a homothety with respect to a point of @1H3 = R2, whichis a hyperbolic isometry, we can assume that the height of C above the boundary ofthe band is greatest than A. Therefore C is above the graph of f along @
. Observe



8 RICARDO SA EARP� & ERIC TOUBIANA�that if v is a C2 function satisfying DDD(v) = 0, then DDD(v + a) < 0 for any a > 0. Bythe Maximum Principle (Proposition 1-4), using euclidean vertical translations onC, we deduce that C is above the graph of any solution of (P ). Using the horizontaltranslations parallel to the band (they are hyperbolic isometries), we conclude thateach translated of C is above the graph of any solution of (P ). Therefore thereexists a real number B > 0 such that u < B for any solution of (P ). Next we willconstruct a barrier at any point of @
 using a construction done in [Ro-SE].Let p 2 @
 and let L be any straight line through p keeping 
 on one side of L.Let " > 0 and let �0 > 0 be such that jf(p)� f(q)j < "=3 if jp� qj < �0, p; q 2 @
.De�ne '(x) = f(p) + "3 + 2B log(1 + jp� xj2)log(1 + �0)We have f � ' on @
 and jD'j, jD2'j are bounded where jD2'j =Pij supx jDij'(x)j.De�ne d(x) = d(x;L) and v(x) =  (d(x)) = 1b log(1 + e2Bb � 1�1 d(x)) where x 2 
and b and �1 are two positive real numbers to be de�ned later. In order to evaluateDDD('+v) we set � = �(x) = 1+ jD'+Dvj2 and aij(x) = �ij��Di('+v)Dj('+v).Note that for any vector � = (�1; �2) and for any C2 function h we have:j�j2 �Xi;j aij�i�j � �j�j2; and Xi;j aijDijh � �jD2hj:De�ne F =Pij aijDivDjv. As ' is C1 bounded and C2 bounded there is �; � > 1such that � < �F and �jD2'j < �F whenever jDvj � 1. Observe that  00( 0)2 = �b,Div =  0(d)Did and Dijv =  00(d)DidDjd since Dijd = 0. From this we infer that�DDD('+ v) =Xi;j aij(x)Dijv +Xi;j aij(x)Dij'+ 2'+ v��Xi;j aij(x)  00( 0)2DivDjv +�jD2'j+ 6"�� (�b+ � + 6�" )Fwhenever jDvj � 1. Now we choose b and �1 such that(1) b � � + 6�" � 1(2) �1b2e2Bb � e2Bb � 1We de�ne N = fx 2 
; d(x) � �1g where �1 is su�ciently small. With those choiceswe have that jDvj =  0jDdj � 1 on N since jDdj = 1 (we have used (1) and (2)).Clearly, taking into account (1), we deduce DDD('+ v) � 0 on N .Let u be any solution of the problem (P ). We get u � '+ v on @N \ 
 (sincev(�1) = 2B) and on N \ @
 we have also u � '+ v because u = f on @
. By theMaximum Principle we deduce that u � '+ v on N \ 
.Now choose � < �0; �1, � > 0, such that:2B log(1 + jp� xj2)log(1 + �0) < "3 and jv(x)j < "3



MINIMAL GRAPHS IN HYPERBOLIC SPACE 9whenever jp� xj < �. Then we get u(x)� u(p) < " whenever jp� xj < �.Consider the function �'(x) = f(p)� "3�2B log(1 + jp� xj2)log(1 + �0) onN\
. Let U be aconnected component ofN\
 where �'�v > 0. Let a > 0 be such that jD2 �'(x)j < afor any x 2 R2. Now set ~aij(x) = �ij(1 + jD �'�Dvj2) �Di( �'� v)Dj ( �'� v). OnU we have:(1 + jD �'�Dvj2)DDD( �'� v) = �Xi;j ~aijDijv +Xi;j ~aijDij �'+ 2(1 + jD �'�Dvj2)�'� v= bXi;j ~aijDivDjv +Xi;j ~aijDij �'+ 2(1 + jD �'�Dvj2)�'� v� bXi;j ~aijDivDjv +Xi;j ~aijDij �'� bjDvj2 � jD2 �'j(1 + jD �'�Dvj2)� bjDvj2 � a(1 + jD �'�Dvj2)� bjDvj2 � a(2jD �'j2 + 2jDvj2 + 1)� (b� 2a)jDvj2 � a(1 + 2jD �'j2):As jD �'j is bounded (on R2), and jDvj � 1 on N we will have DDD( �'� v) � 0 if wechoose b big enough in (1). Therefore the Maximum Principle shows that �'�v � uon U for any solution of (P ). Thus �'�v � u on N\
 for any solution u. Thereforefor any solution u and for any p 2 @
, and any x 2 
 such that jp � xj < � wehave: ju(x)� u(p)j < "and this shows the modulus of continuity as desired. �Corollary 1-8. Consider problem (P ) where 
 � R2 is a convex domain in aband and f is bounded, uniformly continuous and non negative on @
. Then anysolution of (P ) is uniformly continuous on 
.Proof. Let " > 0, then Theorem 1-7 shows the existence of � > 0 such thatju(p) � u(x)j < " for any solution u of (P ), any p 2 @
 and x 2 
 such thatjx � pj < �. On the other hand for any � > 0 the Lemma 1-2 shows that jDuj isbounded on 
� = fx 2 
; d(x; @
) � �g (as u is bounded on 
, see Theorem 1-7).This implies that u is uniformly continuous on 
� for any � > 0. Therefore, u isuniformly continuous on 
. �Remark 1-9 .1) Let us consider again problem (P ) for any domain 
 � R2. Let p 2 @
 andsuppose that @
 is C0 convex at p (that is, there exists a straight line L throughp, L � R2, such that L \ 
 = ;). Then the proof of Theorem 1-7 shows that padmits a barrier.



10 RICARDO SA EARP� & ERIC TOUBIANA�2) In fact the Theorem 1-7 holds for any dimension. More precisely consider anyconvex domain of Rn contained in a slab (that is a domain bounded by two parallelhyperplanes of Rn). Then if f is bounded and uniformly continuous it follows thatany solution of (P ) admits a modulus of continuity. The proof is the same, workingwith n-dimensional hyperbolic catenoids. Also if we just assume that @
 is locallyconvex at p 2 @
 then the proof of Theorem 1-7 shows the existence of a barrierat p.3) Theorem 1-7 does not hold for domain in a proper sector. We will see in theAppendix (Proposition A-1) that there exists a (unique) minimal graph over anyproper sector taking zero value boundary data. Moreover, this graph is invariantunder homotheties with respect to the vertex of the sector. We deduce that thisgraph is neither bounded nor uniformly continuous.Now we state a straightforward generalization of a Phragm�en-Lindel�of type the-orem as founded in 6.1. of [Ro-SE]. The unique di�erence comparing with [Ro-SE]is that our operator has a term in the form "h(x)u" where h � 0. Since the proofthere applies with minor modi�cations we will omit it here.Lemma 1-10. Let 
 � Rn be a domain in a slab. Let L(u) = Pij aij (x)Diju +Pk bk(x)Dku+ h(x)u be a linear elliptic operator on 
 with h � 0.Let ! 2 C0(
) \ C2(
) be a function such that:(1) L(!) � 0 on 
.(2) For each � > 0, � su�ciently small, L is uniformly elliptic on
� = fx 2 
; d(x; @
) > �g, and the coe�cients of L are uniformlybounded on 
�.(3) ! has a modulus of continuity along @
.Then if ! � A on @
 and ! � B on 
 it follows that ! � A on 
.Corollary 1-11. Let 
 � Rn be a convex domain in a slab and let f be a boundedfunction on @
, non negative and uniformly continuous. Then problem (P ) admitsat most one solution.Proof. Let u and v be two solutions of (P ). Observe that u and v are uniformlybounded, see Theorem 1-7. The Theorem 1-7 also shows that u and v have amodulus of continuity. It follows that the function ! = u� v has also a modulus ofcontinuity. Furthermore we have L(!) = 0 where L is the operator de�ned in theproof of the Proposition 1-4. Note that L and ! satisfy the hypothesis of Lemma1-10 with A = 0. It follows that ! = u� v � 0 on 
. Setting now ! = v � u andusing the same argument we get that u = v on 
. �Remark 1-12. Observe that Theorem 1-7 and Corollary 1-8 and 1-11 hold in thecase where 
 is a proper band. In fact they also hold for more general domains.Namely we can consider domains 
 � R2 such that outside a compact partK � R2,
�K is a �nite union of convex domains in a band.



MINIMAL GRAPHS IN HYPERBOLIC SPACE 11x2 Existence and uniqueness of graphs over convex bounded domainsDe�nition 2-1 . Let 
 � Rn be a bounded domain such that @
 is C2. We saythat 
 is strictly convex if for every p 2 @
 all the principal curvatures of @
 at p(with respect to the inward normal orientation) are positive.Theorem 2-2. Let 
 � Rn be a bounded strictly convex domain where @
 is C2;�for some real number � 2]0; 1[. Let f : @
 !]0;+1[ be a C2;� function. Then,problem (P ) is uniquely solvable. More precisely there exists an unique positivefunction u 2 C2;�(
) satisfying (Eq. 1-1) and such that uj@
 = f .Proof. Observe that the Remark 1-5 shows the uniqueness of solutions, if any.Hence it su�ces to prove the existence part in the statement. Let a = inf@
 f(p),we have a > 0. Let h : R! R+ be a C1 function such that:(1) h(z) = 1z + a for z � 0,(2) h0 < 0(3) h < 2aWe wish to use Theorem 1-1, for that we de�ne the following family of Dirichletproblems, parametrized by t 2 [0; 1]:(Pt) 8><>: nXi;j=1(�ij � vivj1 + jDvj2 )vij + tnh(v) = 0 on 
vj@
 = t(f � a)As f admits an euclidean minimal extension (see [Je-Se]) we can suppose thatf 2 C2;�(
). Note that for any t 2 [0; 1], the euclidean mean curvature (withrespect to the upward normal orientation) of the graph of any solution vt of (Pt) isnegative. It follows that for any t 2 [0; 1], any solution vt attains its minimum valueat the boundary and then it is non negative. Note that this also follows from theMaximum Principle (Proposition 1-4). Therefore any solution vt for any t satis�es:nXi;j=1(�ij � vivj1 + jDvj2 )vij + t nv + a = 0 on 
vj@
 = t(f � a)Hence, for t = 1 and for any solution v of (P1) the function u = v + a is a solutionof the problem (P ). Then to �nd a C2;�(
) solution of (P ) it su�ces to �nd aC2;�(
) solution of the problem (P1). To accomplish this note that the family (Pt)satis�es the hypothesis of Theorem 1-1. It follows that to solve (P1) (and then toprove Theorem 2-1) it su�ces to get a real number A > 0 such thatsup
 vt + sup
 jDvtj < A



12 RICARDO SA EARP� & ERIC TOUBIANA�for every t 2 [0; 1] and every C2;�(
) solution vt of (Pt). Observe that for each tand any solution vt of (Pt) we have DDD(vt + a) = (1 � t) nvt + a � 0. Observe alsothat the graph of a+ t(f � a) on @
 stays below the graph of f . Consider now anytotally geodesic hyperplane (more shortly geodesic hyperplane) � of Hn+1 whichstays above the graph of f . Namely � is a hemisphere orthogonal to Rn = @1Hn+1above the graph of f (which is compact). Using the Maximum Principle, we deducethat for every t the graph of vt + a stays below � for any C2;�(
) solution of (Pt).Then using � we get a real number B > 0 such that vt < B for every C2;�(
)solution vt of (Pt) and every t 2 [0; 1].Now we look for C1 apriori estimates. First, note that vtj@
 is C1 uniformlybounded. Moreover, observe that the same argument as used at Remark 1-5shows that for each t 2 [0; 1] and every solution vt of (Pt), the maximum ofjDvtj is achieved at the boundary of 
. Therefore it su�ces to give uniformC1 estimates on the boundary. We begin to give (uniform) lower C1 boundaryestimates. Let C+ be the (half) vertical cylinder over @
. That is we set:C+ = @
 � [0;+1[� Hn+1. Let us call �t the graph of the function t(f � a) + aon @
. Observe that each �t is a C2 hypersurface of C+. Moreover each �t iscontained in the following compact part of Hn+1: C+ \ fa � xn+1 � sup@
 fg.Now consider a point p 2 �t. Let P be the euclidean tangent hyperplane of C+at p. Let Lp be the codimension 2 euclidean plane through p, tangent to �t. Forany � � 0, let us de�ne P� to be the hyperplane P rotated by � with respect to Lp.That is, we require that P� \ C+ stays below the euclidean hyperplane orthogonalto C+ at p containing Lp and the angle between P� and the vertical hyperplane P is�. Observe that when � = 0 we have P0 = P and C+\P is the vertical line throughp. Clearly when j�j is small enough C+ \ P� is a hypersurface of C+ which is avertical graph, over a part of @
, staying below �t. Now as all the hypersurfaces�t; t 2 [0; 1] are uniformly bounded up to the C2 topology, and they stay in acompact part of Hn+1, there exists an uniform � < 0 such that for each t 2 [0; 1]and each p 2 �t we have that C+ \ P� stays below �t and (C+ \ P�) \ �t = fpg.Now we show that for any t 2 [0; 1], for any solution vt of (Pt) and any point p 2 �t,the graph of vt + a stays above the compact part of P� bounded by C+. Then thiswill give a lower C1 estimate of vt at p, independent of p; t and vt. Indeed, chooset; �t and p 2 �t as above and call ut;p the C2 function on 
 such that its graph isprecisely the euclidean hyperplane P�. Observe that we have (vt+a)j@
 � (ut;p)j@
.Suppose it is not true that ut;p � vt + a. Then there exists a real number b > 0such that ut;p � vt + a + b with equality occuring at an interior point of 
. Butthis gives a contradiction with the Maximum Principle since on the part of 
 whereut;p > 0 we have: DDD(ut;p) = nut;p � n(1� t)vt + a+ b = DDD(vt + a + b):Now we look for upper C1 apriori boundary estimates. We begin as before butnow we consider the positive rotated hyperplanes P�, � > 0. That is P�\C+ staysabove �t. The same argument shows there exists � > 0 such that the latter is truefor each t 2 [0; 1], for every solution vt of (Pt) and each p 2 �t. Unfortunately,we cannot apply the Maximum Principe to conclude the proof (because there is no



MINIMAL GRAPHS IN HYPERBOLIC SPACE 13contradiction to the fact that P� stays over the graph of vt+a with a tangent pointof contact). But observe that this situation is not possible substituting (euclidean)hyperplanes by (hyperbolic) geodesic hyperplanes. Observe also that if � > 0is small enough, the euclidean hyperplane P� is almost vertical. Therefore, the(unique) geodesic hyperplane S� of Hn+1 through p 2 �t tangent at P� is C2 closeto P� in a compact part of Hn+1. Now choose a compact part K of Hn+1 includingin its interior the set C+ \ fa � xn+1 � sup@
 fg. That is S� \ C+ is C2 close ofP� \ C+ in K. We infer that if � > 0 is small enough each intersection S� \ C+stays over �t, for each t 2 [0; 1], each solution vt of (Pt) and each p 2 �t. Usingthe Maximum Principle as in the proof of the lower C1 apriori estimates, we getthat the graph of S� over 
 stays over the graph of vt + a, with intersection atthe boundary point p. This gives upper C1 boundary estimates and concludes theproof. �Theorem 2-3. Let 
 � R2 be a compact C0 convex domain and letf : @
 ! [0;+1[ be a continuous function. Then problem (P ) admits an uniquesolution.Proof. When f � 0 the result follows from Theorem 3-4. We will proceed the prooffor f 6� 0: In view of Remark 1-5 it su�ces to prove the existence of a solution. LetF : 
 ! [0;+1[ be the (unique) euclidean minimal extension of f over 
. Notethat the usual maximum principle for minimal surface of R3 shows that F (x) > 0(as Fj@
 = f � 0) for any x 2 
. This can be shown also using the MaximumPrinciple in Proposition 1-4. Consider now a compact exhaustion (Kn); n 2 N; of
 such that for each n, Kn � 
 is a compact part of 
, homeomorphic to a closeddisk, and @Kn is a C3 strictly convex Jordan curve. Let us call un : Kn !]0;+1[the unique hyperbolic minimal extension of Fj@Kn given by the Theorem 2-2. HenceDDD(un) = 0 in Int(Kn) and un = F on @Kn. Moreover the MaximumPrinciple showsthat un > F on Int(Kn) for each n. Let � be any geodesic plane above the graphof f on @
. Namely � is a half-sphere orthogonal to @1H3 = R2 containing thegraph of f in its "interior". Now choose Kn0 where n0 2 N is a �xed integer andconsider the functions un for n > n0. The above observations show the existenceof two positive numbers a; b such that 0 < a < un < b on Kn0 for any n > n0.The Compactness Theorem 1-3 gives rise to a subsequence of (un) converging inthe C2-topology to a positive C2 function u on 
 satisfying (Eq. 1-1). By abuse ofnotation we continue to call (un) this subsequence. It remains to prove that u iscontinuous in 
 and uj@
 = f .Observe that by construction we have F � u on 
. Furthermore, the graph ofu stays below the geodesic plane � as this is true for each un. Let B > 0 be themaximum height of �, then u < B on 
. For each n let Un : 
! [0;+1[ be thecontinuous function de�ned byUn(x) = (un(x) for x 2 KnF (x) for x 2 
�Kn:Clearly Un converges to u on 
. Let p 2 @
 be any �xed point, as @
 isconvex p admits a superior barrier, see Remark 1-9. Therefore there exists an open



14 RICARDO SA EARP� & ERIC TOUBIANA�neighborhoodN of p inR2 and a sequence of functions !+k in C2(N\
)\C0(N \ 
)satisfying conditions (i); (ii) and (iii) of De�nition 1-6, where M is substituted byB. The Maximum Principle implies that !+k � F on (N \ 
)) for each k. Thisproves that !+k � Un onN\@Kn for each k and n. Observe also that !+k � B > Unon @N \Kn. The latter and the Maximum Principle yield !+k � Un on (N \Kn).Finally we get !+k � Un on (N \ 
) for any k and n. Let any x 2 N \ 
, we haveF (x) � u(x) � w+k (x) and then F (x)� f(p) � u(x)� f(p) � w+k (x)� f(p). Whenx converges to p and k ! +1 we get that u(x) converges to f(p). That is u iscontinuous up to p and u(p) = f(p). �The next result shows that the vertical graphs constructed in Theorem 2-3 areunique in the class of minimal surface with the same boundary.Theorem 2-4. Let 
 � Rn be a strictly C2 convex domain and letM �Hn+1 be acompact (hyperbolic) minimal hypersurface continuous up to the boundary. Supposethat � = @M is a continuous vertical graph over @
. Then the whole hypersurfaceM is a C2 vertical graph over 
. Furthermore M is the unique connected andcompact immersed minimal hypersurface whose boundary is �. The same statementhold when n = 2 and @
 is only supposed to be a C0 convex domain.Proof. Let C+ = @
�]0;+1[� Hn+1 be the (half) cylinder over @
. Then � =@M � C+ and by the Maximum Principle the whole hypersurface M stays insidethe solid cylinder bounded by C+, that is in 
�]0;+1[. To see this observe thatthe vertical (euclidean) hyperplanes are geodesic hyperplanes, and then are minimalhypersurfaces of Hn+1. For the same reason, M cannot have any interior point onthe cylinder C+. Let x 2 
 be any point. Consider the �-homotheties, h�, withrespect to x, with � > 0 and recall that they are hyperbolic isometries. Moreprecisely we have h�(X) = �(X � x) + x for any X 2 Hn+1. As @
 is strictlyconvex, � is a radial graph with respect to x, that is h�(�) \� = ; for any positive� 6= 1. We have also that h�(�)\M = ; for any � > 1 since M stays in the convexclosure of C+.Suppose now that M is not a radial graph with respect to x. Hence, there exists� > 1 such that h�(M) \M 6= ;. But the last implies the existence of �0 � �such that h�0(M) and M are tangent at some interior point and h�0(M) stays"above" M in the sense of radial graph (with respect to x). Now the MaximumPrinciple applies to induce that h�0(M) = M which is absurd since �0 > 1 andthen h�0(@M) \ @M = ;. Therefore we conclude that the whole hypersurface is aradial graph with respect to x. In particular, the intersection between M and thevertical line through x is reduced to a single point. Since the previous argumentholds for any x 2 
, we deduce that M is a vertical graph over 
. It remains toprove that this vertical graph is C2. That is M no has interior point with verticaltangent space. Suppose there exists an interior point X 2M such that the tangentspace of M at X is vertical. Let us call x 2 
 the orthogonal projection of X onRn = @1Hn+1. We know that M is a radial graph with respect to x. Considerthe following family �t, t > 0, of geodesic hyperplanes of Hn: for each t > 0, �tis the hemisphere centered to x with (euclidean) radius t. When t is big enough



MINIMAL GRAPHS IN HYPERBOLIC SPACE 15�t no has intersection with M and M stays below �t. When t decreases to 0we get a �rst contact point between M and a hemisphere �t0 . Now we use theAlexandrov re
ection to conclude. Namely for t < t0, we call M+t the part ofM being above �t and M�t the part being below �t. Furthermore we call M�tthe re
ected of M+t with respect to �t. Recall that re
ections with respect tohemispheres orthogonal to @1Hn are hyperbolic isometries. Hence M�t is again ahyperbolic minimal hypersurface. As M is a radial graph (with respect to x) theintersection between M�t and M�t only occurs on their common boundary, that ison �t. It follows from the boundary Maximum Principle (see Remark 1-5 (4)) thatM�t and M�t cannot be tangent on their common boundary. But when we choose�t to be the hemisphere containing X we get:X 2 @M�t \ @M�t ; M�t \M�t = @M�t = @M�t :Furthermore the tangent spaces ofM�t andM�t at X are the same since the tangentspace of M at X is vertical. We deduce from the boundary Maximum Principlethat M�t = M�t , that is M is symmetric with respect to �t. But this is absurdsince @M is not symmetric.The uniqueness of M comes from the uniqueness of vertical graph with �xedcontinuous boundary data, see the Remark 1-5.Clearly the whole construction is valid when n = 2 and @
 is only supposed C0convex. �Remark 2-5 . Note that Theorems 2-3 and 2-4 do not hold any longer if 
 isneither convex neither connected. Indeed, consider two positive real numbers0 < r < 1 < R. Let U � H3 be the region delimited by the two hemispheres(geodesic hyperplanes) centered at 0 whose radius is respectively r and R. It isknown that for r; R properly chosen, the region U contains a family F of hyperboliccatenoids whose axis of rotation is the vertical axis fx1 = x2 = 0g. Furthermoreeach catenoid of this family is symmetric with respect to the hemisphere � centeredat 0 whose radius is 1. For every point P 2 �, P 6= (0; 0; 1), there is a catenoid ofF intersecting orthogonally � at P .Now we choose 
 � R2 = @1H3 to be an annular domain bounded by twocircles centered at 0 with radius r < r1 < 1 < r2 < R. If r1 and r2 are closedenough of 1, one of the catenoid of F contains a part S bounded by two horizontalcircles, one of those circles is a graph over the circle of radius r1 and the other isa graph over the circle of radius r2. But S is not a graph, thus Theorem 2-4 doesnot hold for the domain 
.Now we choose r1 < r < R < r2. Then the Dirichlet problem (P ) with f � 0has no solution. Indeed, suppose M � H3 is a minimal surface, which is a graphover 
 and such that @1M = @
. Then by an argument of continuity, we couldget a catenoid C of F tangent to M and staying below M . But the latter yieldsa contradiction with the Maximum Principle. We conclude that Theorem 2-3 doesnot hold for the domain 
.



16 RICARDO SA EARP� & ERIC TOUBIANA�x3 Perron process, elliptic, hyperbolic and parabolic surfacesNow we describe the Perron process (see [Co-Hi], chapter IV, x4), for minimalsurfaces of H3. The Perron process was applied in the theory of minimal surfacesin R3. See, for instance, [Je-Se, 1], [Je-Se, 2] and [SE-To, 1].De�nition 3-1 . Consider problem (P ) where 
 is any domain of R2 and f isany non negative continuous function on @
.1) Let u : 
! [0;+1[ be a continuous function. Let U � 
 be a closed rounddisk. It follows from Theorem 2-3 that uj@U has an unique minimal extension ~u onU , continuous up to @U . We then de�ne the continuous function MU (u) on 
 by:MU (u)(x) = ( u(x) if x 2 
� U~u(x) if x 2 U2) Let u : 
! [0;+1[ be a continuous function. We say that u is a subsolution(resp. supersolution) of (P ) if:(i) uj@
 � f (resp. uj@
 � f).(ii) For any closed round disk U � 
 we have u �MU (u) (resp. u �MU (u)).Remark 3-2 . We now give some classical facts about subsolutions and superso-lutions, see [Co-Hi].1) It is easily seen that if u is C2 on 
 and if u > 0, the condition (ii) in De�nition3-1 is equivalent to DDD(u) � 0 for subsolution or DDD(u) � 0 for supersolution.2) As usual if u and v are two subsolutions (resp. supersolutions) of (P ) thensup(u; v) (resp. inf(u; v)) again is a subsolution (resp. supersolution).3) Also if u is a subsolution (resp. supersolution) and U � 
 is a closed rounddisk then MU (u) is again a subsolution (resp. supersolution).4) Let 
 � R2 be a bounded domain and let u, v : 
 ! [0;+1[ be twocontinuous functions such that MU (u) � u and MU (v) � v for any closed rounddisk U � 
. Suppose that uj@
 � vj@
, then we have u � v on 
. Roughlyspeaking, a supersolution is greater than a subsolution.Example 3-3 .1) For any domain 
 � R2, if f is any continuous positive function on @
, thenthe vanishing function u � 0 on 
 is a subsolution for (P ). Observe that for everyx 2 
 there exists a subsolution u of (P ) with u(x) > 0. Indeed let � be anyhemisphere centered at x such that @1� � 
. Then � is the graph of a continuousfunction v de�ned on a closed round disk U � 
. Then set u = v on U and u = 0on 
� U . One easily verify that the function u is a subsolution.2) Choose 
 to be a proper sector of R2. That is a region of R2 bounded bytwo rays issue from the same point x 2 R2 and making an angle � 2]0; �[ at x.In the Appendix, Proposition A-1, it is shown that there exists a solution u� forproblem (P ) where f � 0 is the null function. In fact the graph of u� is invariant



MINIMAL GRAPHS IN HYPERBOLIC SPACE 17by any homotheties hx;� with center x and ratio � > 0. More precisely, we haveu�(hx;�(p)) = �:u�(p) for any p 2 
. We deduce that u� is a supersolution for (P )(with f � 0). In fact, we will prove in x4 (Corollary 4-6) that u� is the uniquesolution of (P ).In the same way let 
 be a band of R2. Up to an isometry ofH3, we can supposethat 
 = f(x; y) 2 R2; 0 < y < 1g. Consider problem (P ) where f � 0 is againthe null function. Also in the Appendix, Proposition A-2, it is proved that problem(P ) has a solution uB. Again we deduce that uB is a supersolution for (P ). Infact the graph of uB is invariant under any horizontal translation �xing the band
. That is we have uB(p + (x; 0)) = uB(p) for any p 2 
 and any x 2 R. We willprove that uB is the unique solution of (P ) in x4 (see Corollary 4-2).3) Let 
 � R2 be an unbounded domain in a band. Let f be any non negativeand bounded continuous function on @
. Then using again the hyperbolic catenoidsand the horizontal translations parallel to the band, in the same way as in the proofof Theorem 1-7, we can show that any solution for the problem (P ) is bounded.Therefore, using a well chosen band B containing 
, such that the solution uB(see item 2 above) envolves f , that is such that uBj@
 � f , we get a supersolutionfor problem (P ), invariant under any horizontal translations parallel to the band.Namely, the supersolution is uBj
.4) Now let 
 � R2 be any bounded domain and let f : @
 ! [0;+1[ beany continuous function. It is easy to construct a supersolution for problem (P ).Indeed, let C � H3 be a hyperbolic catenoid such that its orthogonal projection,C0, on R2 has a non empty intersection with 
. Let x 2 
 be an interior point ofC0. Consider the homotheties h�;x with respect to x, � > 0. Clearly, for � > 1 bigenough, a piece of h�;x(C) is a vertical graph v over a domain containing 
 andvj@
 > sup(f). That is, v is a supersolution for (P ).Theorem 3-4: Perron process. Let 
 � R2 be a domain and letf : @
 ! [0;+1[ be a continuous fonction. Suppose that problem (P ) has asupersolution �. Set S� = fu; subsolution of (P ); u � �g. We de�ne for eachx 2 
 v(x) = supu2S� u(x):Then the function v is C2 on 
 and satis�es (Eq. 1-1).Furthermore, consider p 2 @
 and suppose that either one of the following casesholds:(i) @
 is C0-convex at p.(ii) p has a barrier and f � � > 0 on @
.(iii) p has a barrier and f(p) = 0.Then v is continuous up to p and v(p) = f(p). In particular if 
 is C0 convex, thefunction v is continuous up to @
.Proof. First observe that S� 6= ; since the vanishing function belongs to S�. Byconstruction we have v � � on 
. Let u 2 S� and let U � 
 be a closed round disk.Note that MU (u) 2 S�. Indeed we know that MU (u) is a subsolution. Furthermore



18 RICARDO SA EARP� & ERIC TOUBIANA�the graphs of MU (u) and MU (�) over U are two minimal surfaces such that thegraph of MU (u) = u on @U is below the graph of MU (�) = � over @U . TheMaximum Principles induces that MU (u) � MU (�). But by the very de�nition ofsupersolution we have MU (�) � � and then MU (u) � �.Now we show that v is C2 on 
 and satis�es (Eq. 1-1). Let x 2 
 be anypoint. Consider a sequence (un) in S� such that un(x) ! v(x) when n ! +1.Let U � 
 be any closed round disk centered at x. We can assume that for eachn and each y 2 @U we have un(y) > 0. De�ne for each n the function vn(p) =supfu1(p); : : : ; un(p)g, p 2 
. By construction we have also MU (vn)(x) ! v(x)when n ! +1. Set Vn = MU (vn). Therefore Vn is an increasing sequence offunctions bounded above by �, satisfying (Eq. 1-1) on U . We deduce the existenceof two real numbers 0 < a < b such that a < Vn(p) < b for each n and everyp 2 U . Now we get with Theorem 1-3 that a subsequence of (Vn) converges to a C2function V on Int(U) satisfying (Eq. 1-1). Let us call again (Vn) this subsequenceby an abuse of notation. By construction we have V (x) = v(x). It remains to provethat V (p) = v(p) for any p 2 Int(U). Let y 2 Int(U) be a �xed point. Let (�un)in S� such that �un(y) ! v(y) when n! +1. Set �vn = sup(Vn; �un). As above wecan assume that (�vn) is an increasing sequence. Set �Vn =MU (�vn), then there existtwo real numbers 0 < �a < �b such that �a < �Vn(p) < �b for any p 2 U and any n. Itfollows from the Compactness Theorem (Theorem 1-3) that a subsequence of ( �Vn)converges on U in the C2 topology to a C2 function �V on U satisfying (Eq. 1-1).We have �un(y) � �Vn(y) � v(y), we infer that �V (y) = v(y). Also by constructionwe have Vn � �vn � �Vn, the last inequality holds since �vn is a subsolution of (P ).Therefore we get V � �V , from which we deduce �V (x) = v(x) (because �V � v).Now, observe that �V and V are C2 functions on Int(U) satisfying (Eq. 1-1) suchthat V � �V with equality at an interior point x. The Maximum Principle applieshere to deduce that V = �V on Int(U). In particular V (y) = v(y), as this is true forany y 2 Int(U) we conclude that v = V on Int(U). This shows the �rst part of thetheorem.Let p 2 @
 be a boundary point. Observe that for each of the three casesp admits a superior barrier. Therefore, there exist a neighborhood N of p anda sequence of functions !+k , as in De�nition 1-6 where M > 0 is chosen so thatM > sup@N\
(�(x)). For each k and any u 2 S� we have !+k (x) � u(x) for everyx 2 @(N \ 
). We infer that !+k � v on N \ 
 for each k, see Remark 3-2 (4).Now, suppose that case (i) occurs. We de�ne for x 2 
,hk(x) = f(p) � "k3 � log(1 + jp� xj2) � log(1 + e2b � 1�k d(x));where ("k) and (�k) are monotonous sequences of positive real numbers such that:"k ! 0, �k ! 0 when k ! +1, �(x) > f(p) � "k3 if jp � xj < �k and hk(x) < 0if jp � xj � �k. Furthermore, we want that �keb � eb � 1 and DDD(hk) � 0 in thepart where hk(x) > 0 and d(x) < �k, see the proof of Theorem 1-7. Therefore, wecan choose !�k (x) = max(0; hk(x)) for x 2 
. In fact, note that for every k 2 N,we have that !�k (x) < �(x) on 
 and MU (!�k ) � !�k , that is !�k 2 S� for every k.Therefore !�k < v. We infer that!�k (x) � f(p) � v(x) � f(p) � !+k (x) � f(p)



MINIMAL GRAPHS IN HYPERBOLIC SPACE 19for every k and every x 2 N \ 
. When x converges to p and k converges to +1we get that v(x) converges to f(p) as desired.Suppose now that case (ii) holds. In particular p has an inferior barrier. Let Nbe a neighborhood of p and !�k a sequence of functions as in De�nition 1-6, wheren > 0 is choosen so that 1=n < �. Set �k = sup@N\
 !�k (x), we have �k < �since !�k < 1=n on @N \
. We de�ne uk on 
 setting uk(x) =max(!�k (x); �k) forx 2 N \ 
 and uk(x) = �k for x 2 
�N . Observe that uk is a continuous functionon 
 and is a subsolution for problem (P ). We infer that uk � v � !+k on N \ 
for every k 2 N. We deduce that when x converges to p and k converges to +1,then v(x) converges to f(p).Finally assume that case (iii) holds. Consequently, we get 0 � v � !+k on N \
.We conclude that v(x) converges to 0 = f(0) when x converges to p. �The following result is a straightforward consequence of Theorem 3-4.Corollary 3-5. Let 
 � R2 be an unbounded domain and let f be any non negativecontinuous function on @
. Suppose there exists a supersolution � for problem(P ). Let � � @
 be a convex arc, if any, with respect to the interior transversalorientation of @
. Then the solution v of Perron, relative to �, given in Theorem3-4 is continuous up to � and v(p) = f(p) for any p 2 �.Remark 3-6 .1) The same holds for any bounded domain. Namely consider problem (P )where 
 is a bounded domain and f is any non negative function on @
. Note thatproblem (P ) admits always a supersolution �, see Example 3-3 (4). Let � � @
 bea convex arc, if any. Therefore the solution of Perron v relative to � is continuousup to � and v(p) = f(p) for any p 2 �.2) We remark that in order to proof Theorem 3-4 (Perron process), we just needto applied Theorem 2-3 when @
 is a round circle.Now we show that for each type of positive isometry of H3 (namely elliptic,hyperbolic and parabolic isometries), there exists a complete minimal vertical graphin H3 invariant by the action of a discrete group of such isometries of H3.Proposition 3-7: Elliptic Surfaces. Let n 2 N, n > 0, be any integer and set�n = 2�n . Let Rn be the rotation with respect to the x3-axis whose argument is �n.Then there exist a complete and a non complete minimal surfaces in H3 invariantby the rotation Rn.Proof. Recall that Rn(p) = ei�n :p for any p 2 R2. Let �n � R2 be a regularpolygon centered at the origin 0, with n sides. Let 
 � R2 be the domain whoseboundary is �n. Consider f : �n ! [0;+1[ any continuous function invariant byRn. That is f(Rn(p)) = f(p) for every p 2 �n. We know that problem (P ) has asupersolution � (see Example 3-3 (4)). Therefore, as @
 is C0 convex we concludewith Remark 3-6 that the solution of Perron v (relative to �) given in Theorem 3-4is continuous up to the boundary and v(p) = f(p) for any p 2 �n. Furthermore
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 is a bounded domain, the problem (P ) has at most one solution, see Remark1-5 (2). Thus v is invariant under action of Rn. Namely we have v(Rn(x)) = v(x)for every x 2 
. In particular if we choose f � 0 to be the null function, thenthe graph of v will be a complete minimal surface of H3. Note that we could alsoinvoke Theorem 2-3 to insure existence and uniqueness of solution of the problem(P ). �Lemma 3-8. Let 
 � R2 be an unbounded domain. Suppose that @
 is embeddedand there exist a point p 2 @
 and a real number � > 1 such that h�;p(@
) = @
,where h�;p is the homothety with respect to p, of ratio �. Suppose also that 
is contained in a proper sector of R2 whose vertex is p. Consider problem (P )where f � 0 is the null function. Let � be any supersolution for (P ) such that�(h�;p(x)) = � � �(x), x 2 
, see Example 3-3 (2). Assume that the solution ofPerron v of (P ) relative to � is continuous up to the boundary. Then, it follows thatv(h�;p(x)) = � � v(x) for every x 2 
. Consequently, the graph S of v is a completeminimal surface of H3 invariant by the hyperbolic isometry h�;p: h�;p(S) = S.Proof. Observe that v(x) = 0 for each x 2 @
. We can assume that p = 0 and thenh�;p(X) = h�(X) = ��X for everyX 2 H3. Let us call S� the family of subsolutionsu of (P ) such that u � �. By construction we have v(x) = supfu(x); u 2 S�gfor any x 2 
. Now observe that the minimal surface �:S is the vertical graphof the function v�(x) = �v(x� ); x 2 
. By construction we have v�(x) = 0 forany x 2 @
. We deduce that v� is a subsolution for (P ) and v� � � (sincev�(x) = �v(x� ) � ��(x� ) = �(x)). It follows that v�(x) � v(x), x 2 
, from thevery de�nition of v. On the other hand, the same argument applied with 1=� instead� shows that v1=�(x) � v(x), x 2 
. From which we deduce that v�(x) = v(x),x 2 
. �Proposition 3-9: Hyperbolic Surfaces. Let 
 � R2 be an unbounded domainwith @
 embedded. Suppose that:(i) 0 2 @
 and there exists � > 1 such that 
 is invariant by the homothety h�with respect to 0 whose ratio is �.(ii) For any p 2 @
, p 6= 0, there exists a hyperbolic catenoid C such that@1C \ 
 = ;, p 2 @1C and such that the segment joining the centers ofthe two components of @1C intersects 
.(iii) 
 is contained in a proper sector of R2 whose vertex is 0.Consider problem (P ) where f is the vanishing function on @
. Then (P ) has asolution v which is invariant under the homothety h�. Consequently, the graph Sof v is a complete minimal surface of H3 invariant under the discrete group ofhyperbolic isometries fhq�; q 2 Zg.Proof. Observe that as 
 is contained in a proper sector, the problem (P ) admitsa supersolution �, such that �(�x) = � � �(x), x 2 
, see Example 3-3 (2). Fur-thermore the condition (ii) implies that each point p 2 @
, p 6= 0, has a superior



MINIMAL GRAPHS IN HYPERBOLIC SPACE 21barrier (for (P )). As @
 is convex at the origin 0, we know that 0 has a barrier for(P ), see Remark 1-9 (1). Note that the null function is an inferior barrier for anypoint p 2 @
. We conclude that any point p 2 @
 has a barrier for (P ). Therefore,if v is the solution of Perron (relative to �) of (P ) it follows that v is continuous upto the boundary and vj@
 = 0, see Theorem 3-4. Furthermore, Lemma 3-8 showsthat v(� � x) = � � v(x) for any x 2 
. �Remark 3-10. In the context of Proposition 3-9, suppose that 
 is C2. Let R > 0and set � = fp 2 @
; R � jpj � �:Rg. Let k(x) be the euclidean curvature of� with respect to the interior normal orientation. Let � 2]0; �[ be the angle ofany proper sector containing 
 whose vertex is 0. Suppose that � is small enoughso that the condition (ii) is satis�ed for S�. Consequently, the condition (ii) isachieved (for 
) if it is assumed that jk(x)j is small enough.In the same way, we can prove analogous statements for parabolic minimal sur-faces, the arguments are essentially the same. For this reason we just state theresults without give a proof.Lemma 3-11. Let 
 � R2 be an unbounded domain. Suppose that @
 is embeddedand there exists a non null vector � 2 R2 such that T (
) = 
, where T is theeuclidean translation T (x) = x + �, x 2 R2. Suppose also that 
 is contained ina band of R2 invariant under T . Consider problem (P ) where f � 0 is the nullfunction. Let � be any supersolution for (P ) such that �(T (x)) = �(x), x 2 
 (seeExample 3-3 (2) or (3)). Assume that the solution of Perron v of (P ) relative to �is continuous up to the boundary. Then we have v(T (x)) = v(x) for every x 2 
.Consequently, the graph S of v is a complete minimal surface of H3 invariant bythe parabolic isometry T : T (S) = S.Proposition 3-12 : Parabolic Surfaces. Let 
 � R2 be an unbounded domainwith @
 embedded. Suppose that:(i) There exists a non null vector � 2 R2 such that 
 is invariant by thehorizontal translation T (x) = x + �(ii) 
 is contained in a band invariant under T .(iii) For any p 2 @
, p 6= 0, there exists a hyperbolic catenoid C such that@1C \ 
 = ;, p 2 @1C and such that the segment joining the centers ofthe two components of @1C intersects 
.Consider problem (P ) where f is the vanishing function on @
. Then (P ) has asolution v which is invariant under the horizontal translation T . Consequently, thegraph S of v is a complete minimal surface of H3 invariant under the discrete groupof parabolic isometries fT q; q 2 Zg.



22 RICARDO SA EARP� & ERIC TOUBIANA�x4 Graphs over unbounded domainsFor the whole section we design by B the open bandB = f(x; y) 2 R2; 0 < y < 1g. Observe that for any open band C in R2 = @1H3there exists an isometry of H3 sending C on B. Therefore there is no loss ofgenerality in just consider the band B.Theorem 4-1. Let 
 � B be a convex domain. Let f : @
 ! [0;+1[ be a C0function. Then problem (P ) has a solution. That is f admits a minimal extensionon 
.Proof. For any n 2 N set 
n = f(x; y) 2 
;�n < x < ng. Note that 
n is abounded and convex domain. Let fn : @
n ! [0;+1[ be any continuous functionsuch that (fn)j@
 = f . Let us call un the unique minimal extension of fn on 
n,see Theorem 2-3. Consider now a hyperbolic catenoid Cn such that @1Cn hasa component on each side of the band B. Up to a homothety, we can assumethat the vertical projection of Cn on R2 = @1H3, contains 
n in its interior.Observe that there exists a positive number tn such that the vertical translated~Cn = Cn + (0; 0; tn) stays strictly above the graph of f . We deduce with theMaximum Principle that if k >> n is su�ciently big, the graph of uk over 
n staysbelow ~Cn. This gives uniform upper estimate for the sequence (uk) over 
n (atleast for k big enough). Now, for any " > 0 set 
n;" = fp 2 
n; d(p; @
n) > "g.Let p 2 
n;" be any point and let �p be any hemisphere in H3 centered at p suchthat @1�p � 
n;". As �p is a minimal surface in H3, the Maximum Principleshows that the graph of any function uk stays above �p for k >> n big enough.This gives uniform lower C0 estimate for the sequence (uk) on 
n;". As the family
n;" is a compact exhaustion of 
, we infer, according to Theorem 1-3, that thereis a subsequence of (uk) which converges on 
 for the C2 topology to a C2 functionu satisfying (Eq 1-1). As 
 is convex we know that each point of @
 has a barrier,see Remark 1-9 (1). From which we deduce that u is C0 up to @
 and u = f on@
 as in the proof of Theorem 3-4. �Corollary 4-2. Let 
 � B be a convex domain. Let f : @
 ! [0;+1[ be aC0 function. Assume that f is bounded and uniformly continuous. Then problem(P ) admits an unique solution u. Furthermore u is also bounded and uniformlycontinuous on 
.Proof. We know by Theorem 4-1 that problem (P ) admits a solution. The unique-ness arises fromCorollary 1-11. Furthermore, Theorem 1-7 shows that u is bounded.Finally, we deduce from Corollary 1-8 that u is uniformly continuous. �Theorem 4-3: Maximum Principle in a band. Let 
 � B be a domain andlet f : @
 ! [0;+1[ be a continuous function such that f(p) � uB(p) for everyp 2 @
 (see Example 3-3 (2) for the de�nition of uB). Then any minimal extensionF over 
, Fj@
 = f , satis�es F � uB.



MINIMAL GRAPHS IN HYPERBOLIC SPACE 23Proof. Let us consider the following problem (P̂ ):�P̂� 8>>>><>>>>: nXi;j=1(�ij � uiuj1 + jDuj2 )uij + nu = 0 on Buj@B = 0u 2 C2(B) \ C0(B)De�ne v(p) = sup(F (p); uB(p)), p 2 
 and v(p) = uB(p) for any p 2 �B�
. As thegraph of f stays below the graph of uB we deduce that v is a continuous functionon �B with vj@B � 0. It is easy to see that v is a subsolution for problem (P̂ ).Furthermore, using a hyperbolic catenoid as in Example 3-3 (3) we can constructa supersolution � for (P̂ ) whose graph stays above the graphs of uB and F . Wededuce that v � �. Set S� = fu 2 C0( �B); subsolution of (P̂ ); u � �g. As inTheorem 3-4 we get that U(p) = supu2S�fu(p)g is a solution of (P̂ ). As problem(P̂ ) has an unique solution, see Corollary 4-2, we deduce that U � uB. From whichwe conclude that F � uB for any minimal extension F of f on 
. �De�nition 4-4 . For every � 2]0; �[ we will design by S� any open sector ofR2 = @1H3 whose angle at the vertex is �.Theorem 4-5: Maximum Principle in a proper sector. Let u� 2 C0(S�) \C2(S�) be a function satisfying DDD(u�) = 0 and u� � 0 on @S�. Let 
 � S� be adomain and f : @
! [0;+1[ be a continuous function such that f(p) � u�(p) forevery p 2 @
. Then any minimal extension F of f on 
 satis�es F � u�.Proof. We can assume that S� = fp 2 R2; 0 < arg(p) < �g (up to an isometry ofH3). Let p0 2 R2 be any point such that arg(p0) = �2 + �. That is p0 =2 �S� andp0 lies on the median line of S�. Let �0 �H3 be a hemisphere centered at p0 suchthat @1�0 \ �S� = ;. Observe that �0 is a geodesic plane of H3 and that re
ectionwith respect to �0 is an isometry of H3. If N is any part of H3 or R2 we designby N� the re
ected of N with respect to �0.Note that S�� is a compact and C0-convex domain in R2. Let M � H3 be thegraph of u� over S�. Therefore M� is a minimal surface in H3 whose asymptoticboundary (@S��) is compact and convex. We infer from Theorem 2-4 that M� isa vertical graph. Now let N � H3 be the graph of F , where F is any minimalextension of f on 
. It follows from hypothesis that N� is a minimal surface whoseboundary stays in the closure of the "bounded" component of H3 �M�. Suppose,by absurd, that N� does not stay in this bounded component. Let p 2 S�� be anypoint. Consider the homotheties hp;� from p, where � > 0. As M� and N� arecompact inH3 there is a real number � > 1 such that hp;�(M�) andN� are tangentat some point and hp;�(M�) stays above N�. But this gives a contradiction withMaximum Principle since both surfaces are minimal in H3. We deduce that N�stays below M�. Re
ecting with respect to �0 we conclude that F � u� for anyminimal extension F of f on 
. �



24 RICARDO SA EARP� & ERIC TOUBIANA�Proposition 4-6. For every � 2]0; �[, there is at most one connected completeminimal surface M in H3 which is properly immersed such that its asymptoticboundary is @S� [ f1g.In particular if 
 = S� and f � 0 is the null function on @
, the problem (P )has at most one solution.Proof. We use the same notations and constructions as in the proof of Theorem 4-5.Let M and N two minimal surfaces in H3 satisfying the hypothesis of Proposition4-6. We get that M� and N� are graphs over the convex and bounded domain S�� .Then using the homotheties hp;� as in the proof of Theorem 4-5, we can show thatM� stays below and above N�. We deduce that M� = N�. Re
ecting with respectto �0 we get M = N . �Remark 4-7 .1) We will see in the Appendix that it does exist for any � 2]0; �[ a solution u�for problem (P ), where 
 = S� and f � 0 is the null function on @
. It followsfrom Proposition 4-6 that (P ) has an unique solution. Furthermore we will see thatthe graph of u� has an important geometric property.2) Let 
 � S� be a C0-convex domain in a proper sector, � 2]0; �[. Let f : @
![0;+1[ be a continuous function such that f � u� on @
. Observe that u� is asupersolution for problem (P ). We can deduce, using Perron process as in Theorem3-4, that problem (P ) admits a solution. That is f has a minimal extension on 
.Also, let 
 = S� be a proper sector and let f : @S� ! [0;+1[ be a continuousbounded function. Then, there exists a positive constant c such that f � u� + c on@S�. Therefore the function u� + c is a supersolution for the problem (P ) and wededuce in the same way that (P ) admits a solution.3) Consider the limit case where � = �, that is S� is a half-plane. let f : @
![0;+1[ be any continuous function. Then problem (P ) admits no solution. Indeed,let p 2 S� be any point. Let � � H3 be any geodesic plane such that @1� � S�is a circle in S� and p belongs to the open disk bounded by @1�. We get from theMaximum Principle that � stays below any minimal extension F of f . Therefore,as the radius of � can be made as large as we want, we deduce that F (p) = +1for any p 2 S� and any solution F of (P ), which is absurd. In fact, this argumentholds for any dimension.AppendixFor sake of completeness, we give a proof for existence of some minimal surfacesin H3. There were studied in the paper of M. Gomes, J. Ripoll and L. Rodriguezentitled: On surfaces of constant mean curvature in hyperbolic space, preprint 1985,IMPA.From now on, we design by S�, � 2]0; �[, the open sector of R2 whose vertex isq = (�1; 0; 0), with angle � and whose median line is the real ray [�1;+1[.



MINIMAL GRAPHS IN HYPERBOLIC SPACE 25That is: S� = fp 2 R2; ��2 < arg(1 + p) < �2g:Proposition A-1. Let � 2]0; �[ be any number. Then there exists an unique com-plete minimal surface M� properly immersed in H3, whose asymptotic boundary isthe boundary of S�. Moreover this surface is a graph over S� and is invariant underthe homotheties hq;�, with �xed point q = (�1; 0; 0), for any � > 0.Proof. We will construct a solution for problem (P ) where 
 = S� and f � 0 on @
.For this we �rst provide a supersolution �. To �x notations, let us say that the realray [�1;+1[ is supported by the x1-axis. Let � be the vertical half-plane through(0; 0; 0) orthogonal to the x1-axis, that is � = fX 2 H3; x1 = 0g. Consider thefollowing C2-curve on �: 
(t) = (0; r cos(t); a + r sin(t)), t 2]0; �[ where a > 0 is areal number to be de�ned later, and r > 0 is a �xed number. Note that the imageof 
 is a vertical semi-circle � of radius r. Then we choose r big enough so thatthe points �(0; r; 0) =2 S� and the segment joining those two points intersects S�.Let C � H3 be the "cone" over � with respect to the point q = (�1; 0; 0). That isC = [�>0hq;�(�) where hq;�(X) = � � (X + (1; 0; 0)) + (�1; 0; 0) for any � > 0 andevery X 2 H3. Observe that C is a C2 surface, and is the graph of a C2 function �de�ned in a sector containing S� in its interior. In order to compute the hyperbolicmean curvature HH of C we �rst evaluate its euclidean mean curvature HE bothin relation to the normal orientation corresponding to increasing z. For this we usethe following parametrization of C = X(]0; �[�]0;+1[) where:X(t; �) = � � [(0; r cos(t); a + r sin(t)) + (1; 0; 0)] + (�1; 0; 0); t 2]0; �[; � > 0:A straightforward calculation shows that the euclidean mean curvature HE of C is:HE(t; �) = � 1 + r2 + 2ar sin(t) + a22�r [1 + (r + a sin(t))2]3=2 :We have the following identities:DDD(�) =p1 + jD�j2 "div D�p1 + jD�j2!+ 2�p1 + jD�j2 #= �2HE + 2N3x3 � � 1N3= 2p1 + jD�j2� HHwhere D� is the euclidean gradient vector of �, N3 = 1p1+jD�j2 is the third com-ponent of the upper unit euclidean normal vector �eld N along C. From which weinfer:DDD(�) < 0, 2 sin(t)�(a + r sin(t))p1 + (r + a sin(t))2 < 1 + r2 + 2ar sin(t) + a2�r [1 + (r + a sin(t))2]3=2, 2 sin(t)r[1 + (r + a sin(t))2] < (a+ r sin(t))(1 + r2 + 2ar sin(t) + a2)



26 RICARDO SA EARP� & ERIC TOUBIANA�Clearly, the last inequality will be satis�ed if we choose a > 0 big enough. Therefore,� is a supersolution for problem (P ). It follows from Theorem 3-4 that (P ) has asolution u�. It is inferred from Proposition 4-6 that u� is the unique solution of (P ).Let M� � H3 be the graph of u�. Observe that for any � > 0 the surface hq;�(M�)is also a minimal graph over S� with zero boundary value data. Uniqueness of sucha graph yields hq;�(M�) =M� for any � > 0. More precisely,M� is invariant underthe homotheties with respect to q = (�1; 0; 0). �Proposition A-2. Consider the horizontal open bandB = f(x1; x2) 2 R2; �1 < x2 < 1g. There is an unique connected completeminimal surface M properly immersed in H3 such that:(i) @1M = @B [ f1g(ii) M is globally invariant under any horizontal translation leaving B invariant.More precisely, Tx1(M) =M for every x1 2 R, where Tx1 is the horizontaltranslation de�ned by Tx1(X) = X + (x1; 0; 0).Furthermore, M is a vertical graph over the band B.Proof. Consider the vertical half-plane � = fx1 = 0g in H3. Let M � H3 bea complete minimal surface as in Proposition A-2. Observe that � and M aretransverse and �\M is a connected C2 curve �. Now we use the following notations:y = x2 and z = x3. Let 
(t) = (0; y(t); z(t)), t 2]0; 1[ be a regular parametrizationof �. We can assume limt!0 y(t) = �1 and limt!1 y(t) = 1. By hypothesis thesurface M is obtained translating horizontally �. That is M = [x2RTx(�) whereTx(X) = X + (x; 0; 0) for every X 2 H3. Consider the following parametrizationof M = X(]0; 1[�R) where:X(t; x) = (x; y(t); z(t)); t 2]0; 1[; x 2 R:Let N(t; x) = N(t) = 1py02 + z02 � (0;�z0(t); y0(t)) be an unit euclidean normalvector �eld along M . The euclidean mean curvature of M with respect to thenormal �eld N is: HE(t; x) = HE(t) = (z00y0 � z0y00)2(y02 + z02)3=2 (t):Let HH be the hyperbolic mean curvature with respect to the normal �eld N . Wehave: 2HE = 2z (HH �N3);where N3 is the third component of N . ThusHH � 0, z00y0 � z0y00 = �2y0(y02 + z02)z :Observe that the previous di�erential equation is invariant by homotheties in yand z coordinates. If we assume that � is a graph with respect to y, we have
(y) = (0; y; z(y)). Therefore(�) HH � 0, z00 = �2(1 + z02)z :



MINIMAL GRAPHS IN HYPERBOLIC SPACE 27Let us show that equation (�) admits a "complete" solution of the following form:z = z(y), y 2]�1; 1[, with limy!�1 z(y) = 0. For this we will use the same technicsas in [SE-To, 2] or [SE-To, 3]. First using Picard theorem we get, for every � > 0,an unique solution z� of (�) de�ned on an interval ] � y0; y0[ such that z� (0) = �and z0� (0) = 0. Observe that the function Z(t) = z(�t) satis�es the same equation(�) with same initial conditions. Hence z� (�t) = z� (t), that is the graph of z�is symmetric with respect to the z-axis. Now as z00 < 0 on ] � y0; y0[ it followsthat z0 < 0 on ]0; y0[. Thus z� and z0� has a limit at y0. Clearly z� (y0) 2]0; � [.Suppose that z0� (y0) = �1. Let P � H3 be the vertical half-plane fy = y0g. Let�� be the graph of z� . Let us call M� = [x2R(Tx(�� )) the (minimal) translationsurface generated by �� . Note that P and M� are tangent at (0; y0; z(y0)) and M�stays in one side of P . This gives a contadiction with the Maximum Principle withboundary. We deduce that �1 < z0� (y0) < 0. Using again the Picard theoremthis allows us to extend the solution z� to a larger interval. As we have z00� < 0we get a solution satisfying: z� (0) = � , z0� (0) = 0, z� is de�ned in some interval] � y� ; y� [ with limy!�y� z(y) = 0. Observe that the translation surface M� is acomplete minimal surface in H3, which is a graph over a band B� . Moreover wehave @1M� = @B� [ f1g. At last, using the homothetic curves � � (y; z� (y)),varying �, we can �nd an � > 0 such that B� is precisely the band B. This provesthe existence part in the statement of Proposition A-2. Let us call more brie
y Mthis surface and � the corresponding curve.Now we prove uniqueness. Let M1 � H3 be another surface satisfying theassumptions of Proposition A-2. Observe that M1 \ � is a connected C2-curve �1whose boundary points are �(0; 1; 0) as well as �. Suppose the two curves � and�1 are not identical. Then there is a real number � > 0 such that the homotheticcurve � � � and �1 are tangent at some point. Thus those curves satisfy the samedi�erential equation (�) with same initial conditions. This gives a contradictionand shows uniqueness in the statement. �References[An, 1] M. Anderson,Complete minimal varieties in hyperbolic space, Invent. Math. 69 (1982),477{494.[An, 2] M. Anderson, Complete minimal hypersurfaces in hyperbolic n-manifolds, Comment.Math. Helv. 58 (1983), 264{290.[Be] L. Bers, Isolated singularities of minimal surfaces, Ann. of Math. 53 (1952), 364{386.[Co-Hi] R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 2, New-York: Inter-Science, 1962.[Gi-Tr] D. Gilbarg and N.S. Trudinger, second edition, Elliptic Partial Di�erential Equationsof Second Order, Springer-Verlag, 1983.[Je-Se, 1] H. Jenkins and J. Serrin, The Dirichlet problem for the minimal surface equation inhigher dimensions, J. Reine Angew. Math. 229 (1968), 170{187.[Je-Se, 2] H. Jenkins and J. Serrin, Variational problems of minimal surface type. Boundaryvalue problems for the minimal surface equation II, Arch. Rational Mech. Analysis 21(1963), 321{342.
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