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Abstract. In this paper we find many families in the product
space H2 × R of complete embedded, simply connected, minimal
and constant mean curvature surfaces less than or equal to 1/2.
We study complete surfaces invariant either by parabolic or by hy-
perbolic screw motions. We study the notion of isometric asso-
ciate immersions. We exhibit an explicit formula for a Scherk type
minimal surface. We give a one-parameter family of entire verti-
cal graphs of mean curvature 1/2. We prove a generalized Bour’s
lemma that can be applied to H2×R, S2×R, and to Heisenberg’s
space to produce a family of screw motion surfaces isometric to a
given one.

1. Introduction

In a pioneer paper Harold Rosenberg studied minimal surfaces in
M2×R, where M2 is a round sphere, or a complete Riemannian surface
with a metric of non-negative curvature, or M2 = H2, the hyperbolic
plane [17]. He has opened a quite interesting new branch of research
in surface theory stimulating several works on the subject. The main
scope in the present paper is to discover complete embedded minimal
and constant mean curvature surfaces. Now, we briefly summarize our
results, as follows:

We will study minimal and constant mean curvature surfaces in
H2 × R, invariant by parabolic screw motions, i.e invariant by a one-
parameter group of isometries such that each element is given by the
composition of a parabolic translation with a vertical translation. We
will find a two-parameter family of complete embedded, simply con-
nected, minimal surfaces which contains surfaces invariant by parabolic
translations. We also will obtain a one-parameter family of complete,
embedded, simply connected, stable minimal surfaces which contains
the hyperbolic plane H2×{0}. We will then construct a two-parameter
family of complete H-surfaces with constant mean curvature H less
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than 1/2, simply connected and embedded, which contains a surface
invariant by parabolic translations. We will find in this family, explicit
non-parametric formulas for a one-parameter subfamily of complete,
embedded, stable, H-surfaces (4H2 < 1). Furthermore, we will exhibit
a one-parameter family of minimal and constant mean curvature sur-
faces (H = 1/2), invariant by hyperbolic screw motions. We also obtain
minimal and H-surfaces (4H2 < 1) invariant by hyperbolic translations.
Each such surface is complete, embedded, simply connected and sta-
ble. We remark that there are no stable H-surfaces, complete and non
compact, for H > 1/

√
3. This is a result of Barbara Nelli and Harold

Rosenberg [15].
Furthermore, we will derive a explicit simple non-parametric formula

for a Scherk type minimal surface, invariant by hyperbolic translations,
found independently by Uwe Abresch. Abresch and Rosenberg have
applied it as a barrier studying the Dirichlet problem for the minimal
surface equation in H2×R. We will explain their geometric construction
later on in the text. We observe that this Scherk type surface can be
seen as a complete vertical graph over a domain in H2 taking ±∞ value
boundary data on a geodesic and zero (or constant) asymptotic value
boundary data. That is, zero on an arc of the circle at infinity. See the
shadow domain in Figure 1.

0

Figure 1: ball model for H2 × {0}
In a paper with Eric Toubiana the author studied surfaces in H2×R and
S2 × R invariant by standard screw motions, that is a one-parameter
group of isometries such that each element is the composition of a
rotation around the vertical axis with a vertical translation. In that

paper [19] the authors obtained for ` >
1√
2

a complete embedded



SCREW MOTION SURFACES 3

simply connected minimal screw motion surface in H2 × R with pitch
`. If ` = 1, each one has Gaussian curvature K ≡ −1.

The author with Eric Toubiana and Laurent Hauswirth established
an uniqueness theorem in H2 × R, or S2 × R. They proved that the
conformal metric and the related holomorphic Hopf function, arising
from the theory of minimal immersions and conformal mappings, de-
termine a minimal conformal immersion, up to an isometry of ambient
space. They proved an existence theorem that produce the existence
of the minimal associate family as a corollary. They also generalized
a theorem by Krust (see [6], page 118) which state that an associate
surface of a minimal vertical graph on a convex domain is a vertical
graph. These theorem is true in M × R when the Gaussian curvature
satisfies KM ≤ 0. See [11].

Now let us make some more detailed comments about the present
paper. Our idea is simple: We will consider H2 = {x + iy, y > 0}
the upper half-plane model of hyperbolic plane and we will consider
the product space H2×R, with coordinates (x, y, t), endowed with the

metric dσ2 =
dx2

y2
+

dy2

y2
+ dt2. We will search for surfaces invariant

by parabolic screw motions- a parabolic translation is identified with a
horizontal Euclidean translation in this model. That is, we will study
immersions of the form

X(x, y) = (x, y, λ(y) + `x) (1)

Thus we will search for minimal and for constant mean curvature
surfaces generated by applying Euclidean translations to the vertical
graph t = λ(y) lying in the (y, t) vertical plane along the directions
of the vector (1, 0, `). We say ` is the pitch. When ` = 0, we obtain
a surface invariant by parabolic translations. Of course, in this model
this is related with two notions of non-parametric graphs. We will
introduce them now for motivation. First, let us consider prescribed
mean curvature horizontal H-graphs given by y = g(x, t), where g(x, t)
is a positive C2 function. A computation shows that the horizontal
mean curvature equation in H2 × R, is given by

2H

g2

(
g2

t + g2(1 + g2
x)

)3/2

= gxx(g
2 + g2

t ) + gtt(1 + g2
x)− 2gxgtgxt + g(1 + g2

x)

(2)

An interesting question that arises is the Bernstein problem for these
graphs: Are the only entire such H-graphs invariant under parabolic
screw motions ?
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Some classical constant mean curvature surfaces in H2×R that arise
naturally from this non-parametric point of view are related to this
question: Indeed, notice that when g is constant we obtain the vertical
cylinder over a horocyle of mean curvature 2H = 1. If gt ≡ 0, we ob-
tain the minimal vertical cylinder over a geodesic, the constant mean
curvature vertical cylinder over an equidistant curve (2H < 1), and
the constant mean curvature vertical cylinder over a circle (2H > 1) .
If H is constant and gx ≡ 0 we obtain the Abresch-Rosenberg [1] sur-
face with mean curvature 2H < 1 given by y = et/a, a = −2H√

1−4H2 .

Notice that if H = 0 and gx ≡ 0, we can obtain a very simple for-
mula for a one-parameter family of minimal stable complete surfaces
invariant by a parabolic motion y = sin t

d
, d 6= 0. This formula has al-

ready been established by Benôıt Daniel [2] and this surface was known
to Laurent Hauswirth [10]. We will construct a two-parameter family
y = gM(x, t, d, `), d 6= 0 of horizontal minimal graphs, which produces
complete, simply connected and embedded minimal surfaces. If ` = 0,
we rediscover Daniel-Hauswirth minimal surface. Fixing the parameter
d varying ` we get a family of non-isometric deformations of Daniel-
Hauswirth minimal surface, i.e two of them with different pitch ` are
non-isometric.

Let us now turn attention to vertical H-graphs given by a C2 function
t = u(x, y). The vertical mean curvature equation in H2 × R, is given
by the following equation:

divH
(∇Hu

Wu

)
= 2H (3)

where divH, ∇H are the hyperbolic divergence and gradient respec-
tively and Wu =

√
1 + |∇Hu|2H, being | · |H the norm in H2.

Gradient interior estimates and infinite boundary value problems
for H-vertical graphs were inferred by Spruck [21] and Hauswirth-
Rosenberg-Spruck [12].

Consider the halfspace model for H2, with Euclidean coordinates
x, y, y > 0. In such model, the above equation takes the following form

2H

y2

(
1 + y2u2

x + y2u2
y)

)3/2

= (1 + y2u2
x)uyy + (1 + y2u2

y)uxx − 2y2uxuyuxy − yuy(u
2
x + u2

y)
(4)

Of course, on account of (3), the above equation is a second order
quasilinear elliptic equation of divergence form, namely
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div


 ∇u√

1 + y2 |∇u|2


 =

2H

y2
(5)

where ∇u stands for the Euclidean gradient. If t = a ln y, we redis-
cover Abresch-Rosenberg surface given above. Notice that the tilted
Euclidean plane t = `x, y > 0, ` 6= 0 gives rise to a solution of (4). It
turns out that, for ` = 1 we will obtain a conjugate of a Scherk type
minimal surface. If ` = 0, we obtain the totally geodesic hyperbolic
plane H2{0}. Notice that we obtain a one-parameter family of mini-
mal, non-totally geodesic stable complete surface in H2×R foliated by
geodesics of the ambient space (different from the helicoids) invariant
by parabolic screw motions. Varying ` we have a family of non-isometric
deformations of the hyperbolic plane, i.e two elements of this family
with different pitch ` are non-isometric.

We will give an explicit formula of a one-parameter family of vertical
H-graphs, t = uH(x, y, `) in H2×R over the entire H2 with pitch ` and
constant mean curvature 4H2 < 1. Varying ` we obtain a family of
non-isometric simply connected, embedded and stable deformations of
Abresch-Rosenberg surface (` = 0).

In fact, we will construct a two-parameter family of constant mean
curvature 4H2 < 1, horizontal graphs y = gH(x, t, d, `) over the whole
xt plane that contains the above family; by setting d = 0 we get the
family t = uH(x, y, `) mentioned above. Again, fixing d and varying `
we obtain a family of non-isometric deformations.

Moreover, we will obtain vertical minimal and H-graphs (4H2 6 1),
over the entire hyperbolic plane invariant by hyperbolic screw motions
(with pitch `). Incidentally, we will give an explicit, simple, non-
parametric formula, for a family of minimal entire vertical graphs in-
variant by hyperbolic screw motions.

We also exhibit a one-parameter family of entire vertical graphs of
mean curvature 1/2. Harold Rosenberg asked about the question of
the uniqueness of these vertical graphs in the class of all 1/2-entire
graphs. This is the “Bernstein Problem” for 1/2-surfaces in H2 × R.
We notice that very recently Isabel Fernández and Pablo Mira classified
the entire minimal graphs in Heisenberg space Nil3 [9]. This is related
to the Bernstein problem cited before.

We would like to remark that the notions of horizontal and vertical
graphs have appeared in the study of H-surfaces in hyperbolic space
(see, for instance [18]).



6 RICARDO SA EARP

Finally, let M2 be a two dimensional Riemannian manifold. As-
sume the existence of a one-parameter group Γ of isometries acting on
M2. We will say that S is a Γ-screw motion surface, if it is invariant
by successive compositions of an element of Γ with a vertical transla-
tion. If Γ consists of rotations about the vertical axis we say simply
screw motion or standard screw motions, instead of Γ-screw motion.
If M3 = H2 × R, and Γ is the group of parabolic translations we say
parabolic screw motions, if Γ is the group of hyperbolic translations
we say hyperbolic screw motions. We will prove a generalized Bour’s
Lemma which is general enough to be applied to H2×R, S2×R, (and
to Heisenberg space). Given a Γ-screw motion surface S we will obtain
a two-parameter family of isometric Γ-screw motions surfaces to S, say
F(`,m),m 6= 0. In the case of parabolic screw motions in H2 × R this
family contains a parabolic translation. The same is true for hyperbolic
screw motions in H2×R. The case of standard screw motions is treated
in [19]. More precisely, we find natural parameters (s, τ), so that the
metric is of the form dσ2 = ds2 + U2(s) dτ 2, and we are able to de-
scribe entirely any screw motion surface in terms of the parameters `,m
and the metric determined by U2. This can be also applied to Heisen-
berg space. In this paper we will apply the Bour generalized Lemma
to screw motion surfaces in H2 × R, to show that any two minimal
isometric parabolic screw motion immersions are associate; that is the
absolute value of their Hopf functions are equal. The author with Eric
Toubiana proved that this result also holds for standard screw motion
surfaces in H2 × R and S2 × R. Besides, these authors in that paper
proved that in H2 × R, a catenoid is conjugate to a helicoid of pitch
` < 1. In this paper we deduce that if ` = 1 the helicoid is conjugate
to Daniel-Hauswirth minimal surface. Benôıt Daniel has proved this
result by another approach in [2]. It follows from his work that the
helicoid of pitch ` > 1 is conjugate to a surface invariant by hyper-
bolic isometries. We will deduce this fact by outlining an alternative
proof. Furthermore, we show that each such helicoid is associate to a
parabolic screw motion surface. On the other hand, there exist families
of isometric associate hyperbolic screw motion immersions, but there
exist also isometric non-associate hyperbolic screw motion immersions.
Each parabolic screw motion surface is associate to an hyperbolic screw
motion surface. For other relevant papers on this subject the reader
is referred to William Meeks III and Harold Rosenberg [13], Barbara
Nelli and Harold Rosenberg [14], Isabel Fernández and Pablo Mira [8] .
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2. Complete embedded minimal and
constant mean curvature surfaces in H2 × R

invariant by parabolic screw motions

Recall that we will consider the product H2 × R (here H2 is the
upper half plane model) with coordinates (x, y, t), endowed with the

metric dσ2 =
dx2

y2
+

dy2

y2
+ dt2, inner product denoted by <,> and

norm denoted by ‖, ‖. We turn now our attention to non-parametric
vertical graphs X : (x, y) 7→ (x, y, u(x, y)), given by C2 functions

t = u(x, y) over H2. Let ∇̃ be the Riemannian connexion on H2×R. Let
Xx, Xy be the coordinate global frame field to the graph. It is straight-
forward to deduce that the upper unit normal N is given by N =

1√
1 + y2(u2

x + u2
y)

(−uxy
2,−uyy

2, 1
)
. We also easily deduce that the

connexion is determined by the formulas ∇̃Xx Xx = (0, 1/y, uxx), ∇̃Xy Xy =

(0,−1/y, uyy), ∇̃Xy Xx = (−1/y, 0, uxy). We have therefore that the co-

efficients of the second fundamental form l :=< ∇̃Xx Xx, N >, n :=<

∇̃Xy Xy, N > m :=< ∇̃Xy Xx, N > are given by l = −uy/y +uxx√
1+y2(u2

x+u2
y)

, n =

uy/y +uyy√
1+y2(u2

x+u2
y)

,m = ux/y +uxy√
1+y2(u2

x+u2
y)

. Now the Gram-Schmidt orthogonal-

ization process provide a tangent field Y = Xy− < Xy, Xx > Xx

‖Xx‖2

orthogonal to Xx. Let
−→
H the mean curvature vector. Now taking into

account that the mean curvature H defined by
−→
H = HN is given by

2H =
1

‖Xx‖2
< ∇̃Xx Xx, N > +

1

‖Y ‖2
< ∇̃Y Y,N >, we infer the for-

mula for the vertical mean curvature equation in our model written in
the introduction, see equation (4). We observe now that this equation
is of divergence form, given by equation (5).

We observe that any vertical minimal or H-graph is stable. In fact,
vertical translations provide a foliation of an open subset of ambient
space given by H-surfaces, transverse to the Killing vertical vector field,
see [15].

Particularly, we focus now on vertical graphs of the form u(x, y) =
λ(y) + `x; we say t = λ(y) is the generating curve. In view of (4), we
have therefore that the generating curve t = λ(y) of a parabolic screw
motion surface satisfies the following equation:
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Proposition 2.1 (Mean curvature equation). The mean curvature
equation is

2H

y2

(
1 + y2(`2 + λ′2)

)3/2
= (1 + y2`2)λ′′ − yλ′(`2 + λ′2) (6)

Owing to the fact that the mean curvature equation (4) is of diver-
gence form (5), we derive the following crucial formula for parabolic
screw motion surfaces.

Lemma 2.1 (First integral).
(

λ′√
1 + y2(`2 + λ′2)

)′
=

2H(y)

y2
(7)

Particularly, if H constant, we obtain

λ′√
1 + y2(`2 + λ′2)

=
yd− 2H

y
(first integral) (8)

We remark that equations (6) and (8) can be alternatively inferred
using the techniques derived in [19].

At last, we observe that in our model the horizontal mean curva-
ture equation (2), satisfied by a positive smooth function y = g(x, t)
can also be inferred in a similar way. For the readers benefit, we give
now the principal quantities that arise in the derivation of this for-
mula: The unit normal N pointing towards the half-space {y > 0} is

given by N =
1√

g2
t + g2(g2

x + 1)

(−gxg
2, g2,−gt

)
. The coefficients of

the second fundamental form are given by (same notation as before)

l = (gxx + 1/g + g2
x/g) /

√
g2

t + g2(g2
x + 1),

n = (gtt − g2
t /g) /

√
g2

t + g2(g2
x + 1),m = gxt/

√
g2

t + g2(g2
x + 1).

We will see in the next section how these graphs arise in the con-
struction of parabolic screw motion surfaces.

2.1. Complete embedded minimal surfaces. We will now state
the following existence theorem for minimal surfaces in H2×R obtained
by the construction of complete horizontal graphs in our model.

Theorem 2.1 (Existence of embedded minimal surfaces).
A. The tilted Euclidean half-plane

t = `x, y > 0 (9)

gives rise to a one-parameter family of complete embedded simply
connected minimal stable surfaces in H2×R invariant by parabolic screw
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motions. Two such surfaces with different pitch ` are non isometric.
If ` = 0 we get the hyperbolic plane.
B. Let us assume d 6= 0. The generating curve is obtained by gluing

together a convex vertical graph t = λ(y), 0 6 y 6 1/d, vertical at y =
1/d, and its vertical reflection. We obtain a horizontal graph family y =
gM(x, t, d, `), d 6= 0, of complete embedded simply connected minimal
surfaces invariant by parabolic screw motions. Fixing the parameter
d varying ` we get a family of non-isometric deformations of Daniel-
Hauswirth minimal surface, i.e two of them with different pitch ` are
non-isometric.

We will see in Section 5 that, making ` = 1 in (9), we obtain a
conjugate Scherk type minimal surface.

Proof. Observe now that it follows from (8), that λ′ ≡ 0, produces
a solution, hence up to vertical translation or symmetry about the
xy plane, we may assume that λ ≡ 0. Now on account of (1), we
deduce that the tilted Euclidean half-plane t = `x, y > 0 gives rise to
a one-parameter family of complete embedded minimal stable surfaces
in H2 × R invariant by screw motions. On account of Corollary 4.1,
equation (35) (making H = 0), we see that two such immersions with
different pitch ` are non isometric. If ` = 0 we get the hyperbolic plane.
Not let us suppose d 6= 0. Owing to (8), up to vertical translation or
symmetry about the xy plane, we have that the minimal parabolic
screw motion vertical graph t = λ(y) + `x, generated by t = λ(y) =
λ(y, d, `), y 6 1/d is given by

t = d

y∫

0

√
1 + ξ2`2

√
1− ξ2d2

dξ, (d > 0) (10)

Let EllipticE(k) be the complete elliptic integral of second kind. No-
tice now that we get an incomplete elliptic integral of second kind in
(10), since λ(y, d, `) = EllipticE(yd,

√
(−1)`2/d2). Now it is a simple

calculation to deduce that t = λ(y), defined by (10) is increasing and
convex in the interval [0, 1/d), strictly convex in the interval(0, 1/d),
and it is vertical at the point y = 1/d. Another computation shows
that the Euclidean curvature at y = 1/d is finite and that λ(1/d) =

EllipticE(
√
−`2/d2). Hence, by gluing together t = λ(y) with its verti-

cal reflection, say Schwarz reflection, given by 2EllipticE(
√
−`2/d2)−

λ(y), we obtain an embedded curve which is complete in the ambient
space and has “ sinoidal shape” (from the Euclidean view point). Now,
in view of (1), by applying successive screw motion to this curve, which
is tilted Euclidean translation in the direction of the vector (1, 0, `), we
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get the horizontal minimal graph y = gM(x, t, d, `), d 6= 0. More pre-
cisely, this horizontal minimal graph is obtained by gluing together the
vertical graph t = λ(y, d, `) + `x, y 6 1/d, with its Schwarz reflection

given by 2EllipticE(
√
−`2/d2)−λ(y, d, `)+`x. Of course, this construc-

tion yields a complete embedded simply connected minimal surface in-
variant by parabolic screw motions. Now, by fixing the parameter d,
and letting ` vary, we get from Corollary 4.1, equation (36)(making
H = 0) a non-isometric deformation of Daniel-Hauswirth minimal sur-
face (` = 0). This completes the proof of the Theorem, as desired. ¤

Remark 1. (1) Let t = λ(y) = λ(y, d, `), y 6 1/d, d 6= 0 a generating
curve of an embedded minimal surface given by Theorem 2.1. Recall
that by gluing together t = λ(y) with its Schwarz reflection, given by

2EllipticE(
√
−`2/d2) − λ(y), we obtain an embedded curve generating

an embedded minimal surface. Now, for ζ > 0, let us define f(y) :=
λ(ζy), y 6 1/(ζd). It is easy to verify that f(y) satisfies the minimal
equation (8) (H = 0), with pitch ζ` and parameter ζd. Now we observe
that the resulting minimal surface, can be obtained geometrically, by
applying an horizontal translation (horizontal homothety) (x, y, λ(y) +
`x) → (ζx, ζy, λ(y) + `x), to the original surface. Thus, making d = `,
we obtain a foliation of an open set of the yt-vertical plane (y > 0) given
by a one-parameter family of embedded complete curves generating a
one- parameter family of embedded minimal surfaces. Some of these
generating curves are drawn in Figure 2 (d = ` = 4, 2, 1, 2/3, 1/2).

(2) Now let us fix `, say ` = 1, for simplicity. We will see that
varying d in the interval (0,∞), we obtain a foliation of the half yt-
vertical plane (y > 0, t > 0) by generating curves of embedded, minimal,
parabolic screw motion surfaces, producing a foliation of an open set
of ambient space. Consider positive numbers d1, d2 with d2 < d1. No-
tice that λ(y, d1, 1) > λ(y, d2, 1) if y 6 1/d1. Now observe also that

that λ(1/d) = EllipticE(
√
−1/d2), is a strictly decreasing function in

the variable d, satisfying λ(1/d) → ∞, as d → 0, and λ(1/d) → π/2,
as d → ∞, Hence, we deduce that for d2 < d1 the generating curve
obtained by λ(y, d2, 1) and its Schwarz reflection “involves“ (in the
Euclidean sense) entirely the curve determined by λ(y, d1, 1) and its
Schwarz reflection, see Figure 3. Consequently, we infer the desired
foliation of the half-vertical plane. Hence, we get a foliation of an open
set of ambient space by minimal parabolic screw motion surfaces with
pitch ` = 1. In Figure 3 are drawn some generating curves for ` = 1
and d = 1/2, 2/3, 1, 3/2, 2, 10.

(3) Finally, we see that t = λ(y, 1, `), y 6 1 gives the generating
curve of a family of non-isometric deformation of Daniel-Hauswirth
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minimal surface, obtained by fixing the parameter d = 1, and vary-
ing the pitch `. We obtain an embedded minimal surface by gluing
together t = λ(y, 1, `) + `x, y 6 1 and its Schwarz reflection, as we
have explained before. Notice that this family of generating curves
have self-intersections. We draw in Figure 4, some examples for ` =
1/100, 1, 2, 3. We leave to the reader the description of their asymptotic
boundaries.

t

d=2d=4 d=2/3d=1/2d=1

y

1

Figure 2

Generating curves of embedded minimal surfaces

obtained by horizontal translations varying the pitch ` = d

d=10

d=2/3

d=2

(l=1)

d=1/2

d=3/2

d=1

y

0

t

Figure 3

Foliation given by generating curves of embedded minimal

surfaces obtained varying d and fixing the pitch ` = 1
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l=1/100

l=1

l=3

(d=1)

l=2

y

t

Figure 4

Generating curves of embedded minimal

surfaces obtained varying the pitch ` and fixing the parameter d = 1

Figure 5: ball model for H2 × {0}
Non-isometric deformation in H2 × R of hyperbolic plane (` = 1)

Conjugate Scherk type minimal surface
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Figure 6: ball model for H2 × {0}
Non-isometric deformation (d = ` = 1) in H2 × R

of Daniel-Hauswirth minimal surface

Figure 6b: ball model for H2 × {0}
Asymptotic boundary of a non-isometric deformation

of Daniel-Hauswirth minimal surface (d = ` = 1)
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2.2. Complete embedded H-surfaces. We will prove our existence
results for parabolic screw motion H-surfaces in H2 × R, if the mean
curvature satisfies |H| < 1/2. We will construct complete H-surfaces
given by vertical graphs over the entire hyperbolic plane; hence they
are stable. It is an interesting question if there exists a non compact
stable H-surface in H2×R with mean curvature bigger than 1/2. This
is related with results derived by Barbara Nelli and Harold Rosenberg.
These authors proved that in H2 × R, there is no non compact stable
H-surface with H > 1/

√
3, either with compact boundary or without

boundary [15]. Does there exist a complete non compact stable H-
surface with 1

2
< H 6 1√

3
? For H = 1/2 surfaces of revolution provide

examples of complete non compact stable H-surfaces, which have a
simple explicit expression, see [1] or [15]. See also [19]. We will obtain in
the next section examples of entire vertical graphs with mean curvature
H = 1/2. We have the following:

Theorem 2.2 (Existence of embedded H-surfaces). For any H < 0
satisfying 4H2 < 1, there exists a one-parameter explicit family of ver-
tical H-graphs with pitch `, each one is stable and embedded, given by
t = uH(x, y, `) := λ(y, `)+`x over the entire hyperbolic plane H2×{0}.
Varying ` we obtain a family of non-isometric, simply connected and
embedded, stable deformations of Abresch-Rosenberg surface (` = 0).
More precisely, the generating curve t = λ(y, `) is given by

t = λ(y, `) =
−2H√
1− 4H2


ln

(√
1 + `2y2 − 1√
1 + `2y2 + 1

)1/2

+
√

1 + `2y2


 (` 6= 0)

(11)

For any H < 0 satisfying 4H2 < 1, there exists a two-parameter
explicit family of horizontal H-graphs given by y = gH(x, t, d, `) over the
entire xt plane, each one is embedded, that contains the above family : If
d = 0 the generating curve is given by (11). These horizontal H-graphs
are obtained by applying Schwarz reflection to a vertical parabolic screw
motion graph generated by t = λ(y, d, `), 0 < y < (1− 2|H|)/d, and its
vertical reflection at the vertical point y = (1 − 2|H|)/d. Fixing d and
letting ` vary, we obtain a family of non-isometric deformations. Thus,
each such H-surface is a complete simply connected embedded surface,
invariant by parabolic screw motions.

Proof. Owing to (8), up to vertical translation or symmetry about the
xy plane, we have that a screw motion H-vertical graph
t = λ(y, d, `) + `x, with 4H2 < 1, generated by t = λ(y, d, `), is given
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by

t =

y∫

∗

(2|H|+ ξd)
√

1 + ξ2`2

ξ
√

1− (2|H|+ ξd)2
dξ (d > 0) (12)

Letting d = 0 in (12) we infer

t := λ(y, `) =
2|H|√

1− 4H2

y∫

∗

√
1 + ξ2`2

ξ
dξ (13)

The behavior of λ(y, `) can be analyzed as follows. Notice that on
account of (8) we are assuming that 4H2 < 1, with H < 0. Now clearly
λ(y, `) is an increasing function for y > 0. A computation shows that

λ(y, `) is strictly concave. Next, notice that
√

1 + y2`2 = 1 + `2

2
y2 +

o(y2), near y = 0; hence λ(y, `) has a log behavior as y → 0. Clearly at
infinity λ(y, `) has a linear behavior. Thus, uH(x, y, `) := λ(y, `)+`x is
a vertical graph over the entire hyperbolic plane H2×{0}, that yields a
complete horizontal H-graph over the (x, t) plane, as well. We conclude
therefore there exists a one-parameter family of vertical H-graphs, and
each one is stable and embedded. On the other hand, observe that
equation (13) is easily solved by elementary integration techniques: we
therefore obtain the explicit form (11) in the Statement, whose graph,
for H = −1/4, ` = 1, is drawn in Figure 7.

y

t

Figure 7

Generating curve of an embedded H-surface belonging

to the family (d = 0) given by the elementary formula (11)
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t

y

Figure 8

Generating curve of an embedded H-surface (d = ` = 1)

Now, if d 6= 0, we define λ(y d, `) by (12). Clearly, λ(y, d, `) is an
increasing function, vertical at y = (1− 2|H|)/d. An analogous discus-
sion as before ensures that the local behavior of λ(y, d, `) at y = 0 is
log type. Now after a computation we infer that at y = (1 − 2|H|)/d
the Euclidean curvature is finite, hence by vertical reflection at y =
(1−2|H|)/d, we obtain a complete horizontal H-graph y = gH(x, t, d, `)
(4H2 < 1) over the entire (x, t) plane, which is simply connected, em-
bedded and invariant by parabolic screw motions. The generating curve
for H = −1/4, d = ` = 1, is drawn in Figure 8. The fact that fixing
d varying ` the family t = uH(x, y, `) (d = 0) determined by (11), and
the family y = gH(x, t, d, `) is formed by non-isometric H-surfaces fol-
lows from Corollary 4.1. This concludes the proof of the Theorem, as
desired. ¤
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Figure 9: ball model for H2 × {0}
Non-isometric, simply connected and embedded

stable deformation (d = 0, ` = 1) in H2 × R
of Abresch-Rosenberg surface, H = −1/4

Figure 10: ball model for H2 × {0}
Complete embedded H-surface (d = 1, ` = 1) in H2 × R,

invariant by parabolic screw motions, H = −1/4
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3. A generalized Bour’s Lemma

We will now prove a generalized Bour’s Lemma that can be applied to
parabolic and hyperbolic screw motion surfaces in H2 × R, and screw
motion surfaces in Heisenberg’s space. This generalizes a result in
[19]. Javier Ordóñes in his Doctoral Thesis at PUC-Rio [16], following
ideas of Manfredo Do Carmo and Marcos Dajczer [4], proved another
generalization of Bour’s Lemma applied to surfaces invariant by screw
motions in a three dimensional space form. It is reasonable to expect
a general Bour’s Lemma that holds in all situations. But we will not
pursue this task here.

We will now consider the three dimensional Riemannian manifold
M3 given by an open set of the Euclidean three space R3 equipped
with coordinates {(ρ, ϕ, t), ρ > 0} and metric dσ2 given by

dσ2 = Ψ2(ρ) dρ2 + Φ2(ρ) dϕ2 − Λ2(ρ) dt dϕ + dt2 (14)

where Ψ2, Φ2, Λ2, satisfy some further conditions, as we will see in the
sequel. We will call Γ the one-parameter group of isometries acting on
M3 by translation on the ϕ variable.

Definition 3.1. We say that a surface S immersed into M3 is a Γ-
screw motion surface (with vertical axis t), if it is invariant by succes-
sive compositions of a element of Γ with a vertical translation. More
precisely, using coordinates (ρ, ϕ, t), S is given by (ρ, ϕ) 7→ (ρ, ϕ, λ(ρ)+
`ϕ), where ` > 0, is called the pitch. We say that the curve (ρ, λ(ρ))
lying on {ϕ = 0} is the generating curve.

We have studied in [19] the generating curve of standard screw mo-
tion surfaces in H2×R and S2×R. In the previous section, see Section 2,
we studied the generating curve of parabolic screw motion surfaces in
H2 × R.

Next, let us give some motivating examples to see that the metric
given by (14) appears naturally in this context:

Remark 2.

(1) The ambient space is H2 × R.
a) Standard screw motion surfaces. Here we take the ball model H2 =
{(x, y), x2 + y2 < 1} as the hyperbolic plane equipped with the hy-

perbolic metric
4

(1− |z|2)2
| dz|2. The metric in H2 × R using cylin-

drical coordinates (ρ, ϕ, t), (here ρ is the hyperbolic distance measure

from the origin of H2 i.e R = tanh ρ/2, R =
√

x2 + y2 and t is the
height), is given by dσ2 = dρ2 + sinh2 ρ dϕ2 + dt2. Thus we have
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Φ2 = sinh2 ρ, Φ′2 = cosh2 ρ = F1(Φ
2), where F1(u) = 1 +u. Ψ2 ≡ 1 and

Λ ≡ 0.
b) Parabolic screw motions surfaces. We take the upper half plane
model H2 = {(x, y), y > 0} equipped with the hyperbolic metric
dx2

y2
+

dy2

y2
. We set y = ρ and x = ϕ. The metric is given by

dσ2 =
dx2

y2
+

dy2

y2
+ dt2. We have Φ2 = 1/y2, Φ′2 = 1/y4 = F1(Φ

2),

where F1(u) = u2. Ψ2 = G1(Φ
2), where G1(u) = u and Λ ≡ 0.

c) Hyperbolic screw motion surfaces. We take again the upper half
plane model and polar coordinates x = R cos θ, y = R sin θ, 0 < θ <
π, R > 0. In view of (14), we set ρ := θ and eϕ := R. Thus we have
H2 = {(x = eϕ cos ρ, y = eϕ sin ρ), 0 < ρ < π}, equipped with the
hyperbolic metric. The metric in H2 × R using coordinates (ρ, ϕ, t) is

given by dσ2 =
dρ2

sin2 ρ
+

dϕ2

sin2 ρ
+ dt2. We have Φ2 = 1/ sin2 ρ, Φ′2 =

F1(Φ
2) where F1(u) = u2 − u. Ψ2 = G1(Φ

2), where G1(u) = u, and
Λ ≡ 0.

(2) Screw motion surfaces in S2 × R. Now let S2 = C ∪ {∞} be the

sphere equipped with the spherical metric
4

(1 + |z|2)2
| dz|2. The metric

in S2 × R using cylindrical coordinates (ρ, ϕ, t), where ρ is the sphere

distance measure from the origin of S2 i.e R = tan ρ/2, R =
√

x2 + y2

and t is the height, is given by ds2 = dρ2 + sin2 ρ dϕ2 + dt2. We have
Φ2 = sin2 ρ, Φ′2 = F1(Φ

2), where F1(u) = 1− u. Ψ2 ≡ 1 and Λ ≡ 0.

(3) Screw motion surfaces in Heisenberg’s space. Consider R3 equipped

with the metric dσ2 = dx2 + dy2 +
[
dt + 1

2
(y dx− x dy)

]2
. We write

x = 2 sinh(ρ/2) cos ϕ, y = 2 sinh(ρ/2) sin ϕ. The metric using coordi-
nates (ρ, ϕ, t) is given by
dσ2 = cosh2(ρ/2) dρ2 + sinh2ρ dϕ2 − 4 sinh2(ρ/2) dt dϕ + dt2. We have
Φ2 = sinh2 ρ, Φ′2 = F1(Φ

2), where F1(u) = 1 + u. Ψ2 = G1(Φ
2), where

G1(u) = (1 +
√

1 + u)/2. Λ2 = G2(Φ
2), where

G2(u) = 2(
√

1 + u− 1), Λ′2 = G1(Φ
2).

Next, we will prove a central result in this Section. It contains some
apparently complicated formulas but, as we will see afterwards, when
it is specialized to parabolic or hyperbolic screw motions surfaces, the
formulas look much nicer.

Theorem 3.1 (Generalized Bour’s Lemma). Let M3 be the Euclidean
three space endowed with the metric given by (14) and one-parameter
group of isometries Γ. Let us assume Φ2 + `2 > `Λ2 and Φ2 > Λ4/4.
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Then, any surface invariant by Γ-screw motions can be parametrized
locally by natural coordinates s, τ, such that the induced metric dµ2 is
given by

dµ2 = ds2 + U2(s) dτ 2 (15)

Furthermore, assume that Φ2 = f(U2), Φ′2 = F1(Φ
2), Ψ2 = G1(Φ

2), Λ2 =
G2(Φ

2) and Λ′2 = G3(Φ
2), where f(u), F1(u), G1(u), G2(u), G3(u), are

smooth real functions for u > 0. Let S be such a Γ-screw motion sur-
face. Then, there exists a two-parameter family F(m, `),m 6= 0 of
Γ-screw motion surfaces isometric to S, given by

m2U2 = `2 + Φ2 − Λ2`

ρ′2(s) =
`2 + Φ2 − Λ2`

Ψ2 (`2 + Φ2 − Λ2`) + λ′2(ρ)(Φ2 − Λ4/4)

ρ′2(s) =
m4U2U ′2

[√
f(U2)

√
F1(f(U2))− `

√
G2(f(U2))G3(f(U2))

]2

λ◦ρ(s) =

∫
mU[

m2U2 − (
`− G2(f(U2))

2

)2]1/2
·B ds

where

B(s) =


1− m4U2U ′2G1(f(U2))[√

f(U2)F1(f(U2))− `
√

G2(f(U2))G3(f(U2))
]2




1/2

ϕ(s, τ) =
τ

m
−

∫
(λ◦ρ)′

[
`− G2(f(U2))

2

]

m2U2
ds

(16)

Proof. The proof will proceed in the same sprit as in [19]. In view of
(14) and t = λ(ρ) + `ϕ, we deduce that the induced metric dµ2 of a
given screw motion Γ-surface S immersed into M3 is given by

dµ2 =
(
Ψ2 + λ′2

)
dρ2 +

(
Φ2 + `2 − Λ2`

)
dϕ2 +

(
2`λ′ − Λ2λ′

)
dρ dϕ

(17)
Now re-write the above equation to obtain
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dµ2 =

[
Ψ2 +

λ′2 (Φ2 − Λ4/4)

`2 + Φ2 − Λ2`

]
dρ2

︸ ︷︷ ︸
ds2

+
[
`2 + Φ2 − Λ2`

]
︸ ︷︷ ︸

U2

[
dϕ +

(`− Λ2/2)

`2 + Φ2 − Λ2`
dλ◦ρ

]2

︸ ︷︷ ︸
dτ2

(18)

This equation leads to the following system

ds =

√
Ψ2 +

λ′2 (Φ2 − Λ4/4)

`2 + Φ2 − Λ2`2
dρ (19)

dτ = dϕ +
λ′ (`− Λ2/2)

`2 + Φ2 − Λ2`
dρ (20)

By the Implicit Function Theorem (due to the fact ∂(s,τ)
∂(ρ,ϕ)

6= 0), we

define locally natural coordinates s, τ. Notice that ρ and λ do not de-
pend on τ, hence U = U(s) and we deduce (15). Next we search for
an explicit parametrization of an arbitrary screw motion surface (with
pitch denoted by ` for convenience also) isometric to S by natural coor-
dinates s, τ, involving a simple expression in terms of U and parameters
`,m as in the statement. Notice that we may suppose U > 0, since
we assume momentarily ρ > 0 (extension to ρ = 0 or negative requires
some additional argument). In view of (19) we infer the third equation
in the Statement, hence we have

(λ◦ρ)′2 =

(
`2 + Φ2 − Λ2`

Φ2 − Λ4/4

) (
1− ρ′2Ψ2

)
(21)

Now on account of (18) we see that the expression of U2 is given by

U dτ = ±
√

`2 + Φ2 − Λ2`

[
dϕ +

λ′ (`− Λ2/2)

`2 + Φ2 − Λ2`
dρ

]

Thus

∂ϕ

∂τ
= ± U√

`2 + Φ2 − Λ2`
(22)

∂ϕ

∂s
=
−λ′ρ′ (`− Λ2/2)

`2 + Φ2 − Λ2`
(23)
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In view of (22) and (23) we deduce that
∂ϕ

∂τ
, does not depend on s;

hence we obtain the crucial formula

± U√
`2 + Φ2 − Λ2`

=
1

m
, m 6= 0 (24)

Then we derive the second formula in the Statement. Owing to (24)
by performing some calculations we are able to express ρ′2 in terms
of U2, U ′2,m4 and (ΦΦ′ − ΛΛ′`)2. Again taking into account (24) by
substituting Φ, Φ′, Λ, Λ′ in terms of Φ2 = f(U2), in view of(21), we de-
rive the fourth and fifth formula in the Statement. The last formula in
the Statement follows combining (22), (23), (24) with the fifth formula
in the Statement. This concludes the proof of the second part of the
Statement and concludes the proof of the Theorem.

¤

Remark 3. We remark that fromTheorem 3.1, we recover the formulas
given in [19], Theorem 19 and Theorem 20, for screw motions surfaces
in H2×R and S2×R, see Remark 2 example (1)a), (2), above. In fact,
when the ambient space is the product M2 × R, we have Λ ≡ 0 (G2 =
G3 ≡ 0). Moreover, we have Φ2 = f(U2), where f(u) = m2u− `2,
m > 0, ` > 0. Hence, the second and the third formulas in (16) simplify.
The forth and the last two formulas become simpler

ρ′2 =
m4U2U ′2

(m2U2 − `2)F1(m2U2 − `2)

λ◦ρ(s) =

∫
mU[

m2U2 − `2
]1/2

[
1− m4U2U ′2G1(m

2U2 − `2)

(m2U2 − `2)F1(m2U2 − `2)

]1/2

ds

ϕ(s, τ) =
τ

m
− `

∫
(λ◦ρ)′

m2U2
ds

(25)

Now let us turn attention to Heisenberg’s space: In view of Remark 2,
example (3) and Theorem 3.1, if M3 is Heisenberg space, Φ2 = f(U2),
where
f(u) =

(
` +

√
1− 2` + m2u

)2 − 1,m > 0, 0 6 ` 6 1, since Φ2 =

sinh2 ρ and m2U2 = `2 + sinh2 ρ− 4` sinh2(ρ/2), (0 6 ` 6 1). Hence,
we can establish the following formulas for screw motion surfaces in
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Heisenberg’s space.

λ◦ρ(s) =

∫
mU

[(
2(`− 1) + 2

√
1− 2` + m2U2

)
(1− 2` + m2U2)−m4U2U ′2]1/2

2
(√

1− 2` + m2U2 + `− 1
)√

1− 2` + m2U2

ϕ(s, τ) =
τ

m
−

∫
(λ◦ρ)′

[
1−√1− 2` + m2U2

]

m2U2
ds

(26)

We also observe that, in view again of the previous Remark 2, ex-
amples (1)c) and (3) and (25), explicit formulas may be written either
for parabolic or hyperbolic screw motion surfaces in H2 × R.

4. Complete embedded minimal and
constant mean curvature surfaces in H2 × R

invariant by hyperbolic screw motions

Notice that hyperbolic screw motion surfaces in H2×R, can be stud-
ied in the same way as parabolic screw motion surfaces. Recall the
definition: x = eϕ cos ρ, y = eϕ sin ρ, t = λ(ρ) + `ϕ, 0 < ρ < π. Here
we take the upper half-plane model for H× {0}. As in [19], we derive
that the mean curvature equation (with respect to the unit normal

N = (1/
√

1 + sin2 ρ (`2 + λ′2) )(sin2 ρ eϕ+iρ(` + iλ′),−1)[complex nota-
tion]) is the following:

2H
(
1 + `2 sin2 ρ + λ′2 sin2 ρ

)3/2

= −λ′′ sin2 ρ (1 + `2 sin2 ρ) + λ′ cos ρ sin3 ρ (`2 + λ′2)

If H is constant, we deduce:

λ′√
1 + `2 sin2 ρ + λ′2 sin2 ρ

= 2H cot ρ + d ( H is constant) (27)

Notice that in view of (27), we deduce that the generating curve of an
H-hyperbolic screw motion surface is given by ( write θ = ρ)

t = λ(θ) =

∫ θ

∗

√
1 + `2 sin2 ρ (d + 2H cot ρ)√
1− sin2 ρ (d + 2H cot ρ)2

dρ (28)

Now observe that any hyperbolic screw motion surface obtained by
(28) is stable, since it is a vertical graph given by

t = λ(arc cot(x/y)) +
`

2
ln

(
x2 + y2

)

Recall that vertical translations of an H-vertical graph are isomet-
ric deformations of ambient space producing a foliation that ensure
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stability. Notice that if λ ≡ 0 (or d = 0), we obtain a complete,
embedded, simply connected, stable minimal surface in H2 × R, in-
variant by hyperbolic screw motions (with pitch `): Define (R, θ) 7→
(R cos θ, R sin θ, ` ln R), R > 0, 0 < θ < π. In fact , in view of (27) and
(28), just make θ = ρ,R = eϕ. In fact, these one-parameter family of
minimal surfaces, as vertical graphs over the entire hyperbolic plane,
are given by the following explicit non-parametric formula:

t =
`

2
ln(x2 + y2), y > 0 (29)

Notice that we may check that (29) yields a minimal surface, with the
aid of the non-parametric equation (4). Observe now that by making
2H = 1 (downward pointing inner unit normal) and d = 0 in (27) or
(28), we obtain a complete, embedded, simply connected, stable H-
surface in H2 × R, invariant by hyperbolic screw motions (with pitch
`). This surface is a vertical H-graph with H = −1/2 (upward point-
ing inner unit normal), over the entire hyperbolic plane, given by the
following explicit formula:

t = −
√

x2 + y2 + `2y2

y
+ `

[
ln

(√
x2 + y2 + `2y2 + `y

)]
,

y > 0

(30)

Letting ` = 0 in (30) and taking the the symmetric with respect the
horizontal xy-plane, we derive a quite simple formula for a H-vertical
graph, over the entire hyperbolic plane (H = 1/2), invariant by hyper-
bolic translations:

t =

√
x2 + y2

y
, y > 0 (31)

Notice that this entire 1/2-graph (31), invariant by hyperbolic trans-
lations, has the property that the level curve {t = 1} is a geodesic and
the level curves {t = c, c > 1} are equidistant curves in H2.

Of course, using (4) we readily check that (30) or (31) are H-vertical
graphs, indeed. Very recently Isabel Fernández and Pablo Mira [7] gave
a characterization of (31).
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Figure 11: ball model for H2 × {0}
Complete embedded stable minimal surface (d = 0, ` = 1) in H2 × R,

invariant by hyperbolic screw motions

Figure 12: ball model for H2 × {0}
Complete embedded stable H-surface (d = 0, ` = 0) in H2 × R,

invariant by hyperbolic translations, H = 1/2
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Figure 13: ball model for H2 × {0}
Complete embedded stable H-surface (d = 0, ` = 1) in H2 × R,

invariant by hyperbolic screw motions, H = −1/2

Now letting H = 0 and d = 1, ` = 0 in (28), we obtain a Scherk
type minimal surface, invariant by hyperbolic translations, given by
the following explicit formula

t = ln

(√
x2 + y2 + y

x

)
, y > 0, x > 0 (32)

Notice that this function takes infinite boundary value data on the
positive y axis and zero asymptotic value boundary data at the positive
x axis. So by applying an (horizontal) isometry of ambient space, we
have the situation that we have drawn schematically in Figure 1: Scherk
can be seen taking ±∞ value boundary data on a geodesic and zero
(or constant) asymptotic value boundary data.

We remark that formula (32) was used by Pascal Collin and Harold
Rosenberg [5] in the construction of entire minimal graphs in H2 × R
that are conformally the complex plane C, disproving a conjecture by
R. Schoen.
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Figure 14: ball model for H2 × {0}
Part of Scherk type minimal surface (` = 0, d = 1) in H2 × R,

invariant by hyperbolic translations

Again, in view of (4), it is easily verified that (32) yields a minimal sur-
face. Letting H = 0 and ` = 0, d = 1/2 in (28), we obtain a complete,
embedded, stable minimal surface invariant by hyperbolic translations.
Letting H = 1/4, ` = 0, d = 1/2 in (28), yields a complete, embedded,
stable H-surface invariant by hyperbolic translations. The facts that
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these H-surfaces are complete and embedded, follows from the analysis
of the generating curves. Other such surfaces may be constructed in
the same way.

We pause now to say that Scherk type surface (32) (see Figure 14) can
be applied to derive results for the Dirichlet problem for the minimal
equation in H2×R. Very recently, Pascal Collin and Harold Rosenberg
have proved the existence of harmonic diffeomorfism from C to H2 by
studying complete minimal graphs in H2×R. They used formula (32),
as we remarked before [5].

The following remark is due to Harold Rosenberg:

Remark 4. Abresch and Rosenberg studied the asymptotic values of
minimal graphs in H2 × R over domains in H2. In particular, they
observed that there is no minimal graph u in a domain W of H2, taking
infinite asymptotic values on an arc l of the asymptotic boundary of W.
See Figure 17.

Figure 17: ball model for H2 × {0}

This can be seen using the graph S given by (32), see also Figure 1,
with value −∞ on a geodesic arc g inside W, with boundary two points
of l. Choose g so that the assumed solution u (plus infinite on l), is
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positive on the domain U bounded by g and arc of l, see Figure 18.

Figure 18: ball model for H2 × {0}

Clearly the graph of Scherk is bellow u, where Scherk is defined. Now
vertically translate up the graph of Scherk. Then there is a first point
of contact of the graph with the graph of u which is impossible, by the
maximum principle.

Rosenberg conjectured that there is no minimal graph over a domain
in H2 with asymptotic values infinity on a set of positive measure of
the circle at infinity.

We will now establish the following results for further reference.

Theorem 4.1. Any surface invariant by parabolic screw motions in
H2×R can be parametrized locally by natural coordinates s, τ. Let S be
such a parabolic screw motion surface. Then there exists a two parame-
ters family F(m, `),m 6= 0, containing a surface invariant by parabolic
translations, such that each element of the family is a parabolic screw
motion surface isometric to S given by
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m2U2(s) =
1

y2
+ `2

ρ′2(s) =
y2(1 + y2`2)

1 + y2`2 + y2(λ′(y))2

ρ′2(s) =
m4U2U ′2

(m2U2 − `2)3

λ◦ρ(s) =

∫
mU

√
(m2U2 − `2)2 −m4U2U ′2
√

(m2U2 − `2)3
ds

ϕ(s, τ) =
τ

m
− `

∫ √
(m2U2 − `2)2 −m4U2U ′2

mU
√

(m2U2 − `2)3
ds

(33)

Proof. Owing to Remark 2 example (1)b), Theorem 3.1 and Remark 3,
we deduce the formulas (33) in the Statement. To see that the fam-
ily contains a surface invariant by parabolic translations, we argue as
follows. Now looking at equations (33) we see that if these formulas

hold for some pitch ` > 0 then they hold also for a pitch ˜̀ in the in-
terval [0, `] since (m2U2 − `2) > 0 and (m2U2 − `2)2 −m4U2U ′2 > 0.
We obtain thereby a family F(m, `),m 6= 0 of isometric surfaces to S
containing a parabolic translation surface (` = 0). This completes the
proof of the Theorem. ¤

Theorem 4.2. Any surface invariant by hyperbolic screw motions in
H2 × R can be parametrized locally by natural coordinates s, τ. Let S
be such a hyperbolic screw motion surface. Then there exists a two
parameters family F(m, `),m 6= 0, containing a surface invariant by
hyperbolic translations, such that each element of the family is a hyper-
bolic screw motion surface isometric to S given by



SCREW MOTION SURFACES 31

m2U2(s) =
1

sin2 ρ
+ `2

ρ′2(s) =
sin2 ρ (1 + `2 sin2 ρ)

1 + `2 sin2 ρ + sin2 ρ(λ′(ρ))2

ρ′2(s) =
m4U2U ′2

(m2U2 − `2)2 (m2U2 − `2 − 1)

λ◦ρ(s) =

∫
mU

√
(m2U2 − `2) (m2U2 − `2 − 1)−m4U2U ′2

(m2U2 − `2)
√

(m2U2 − `2 − 1)
ds

ϕ(s, τ) =
τ

m
− `

∫ √
(m2U2 − `2) (m2U2 − `2 − 1)−m4U2U ′2

mU (m2U2 − `2)
√

(m2U2 − `2 − 1)
ds

(34)

Proof. The proof is the same as in Theorem 4.1 ¤

We wish now to complete the geometric description of the families of
minimal and constant mean curvature parabolic screw motions surfaces
given in Section 2. Given a constant H satisfying 1−4H2 > 0, we need
to determine explicitly the metric of all such isometric immersions with
the same mean curvature H. This is established by the following result.

Corollary 4.1. Let S be a parabolic screw motion minimal or H-
surface with pitch ` immersed into H2 × R parametrized by natural
coordinates s, τ. Let d be the parameter given by (8). Let us assume
1− 4H2 > 0.

If d = 0, then

m2U2 = e±2
√

1−4H2 (s−s0) +`2 (35)

If d > 0, then

√
m2U2 − `2 =

2|H|d
1− 4H2

+
d

1− 4H2
cosh

(√
1− 4H2 (s− s0)

)
(36)

Proof. Assume 1 − 4H2 > 0, H 6 0. We combine the three first equa-
tions in Theorem 4.1, with the integral formula. After some computa-
tions we obtain the following:

m4U2U ′2−(1−4H2)(m2U2−`2)2+4|H|d(m2U2−`2)3/2+d(m2U2−`2) = 0
(37)
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Now by making the change of variables Z = (m2U2 − `2)1/2, we
deduce the formula

Z ′2 = (1− 4H2)Z2 − 4|H|dZ − d2

Treating separately the cases d = 0 and d 6= 0, using elementary or-
dinary differential equations techniques, we deduce (35) and (36), as
desired. This completes the proof of the Corollary. ¤

We remark that if ` = 0, then the Gaussian curvature K := −U ′′/U,
of a minimal parabolic screw motion immersion is K ≡ −1. Otherwise
K satisfies the inequality −1 < K < 0.

Finally, we give a description of the isometric H-surfaces invariant
by hyperbolic screw motions.

Corollary 4.2. Let S be a hyperbolic screw motion minimal or H-
surface with pitch ` immersed into H2 × R parametrized by natural
coordinates s, τ. Let d be the parameter given by (27).

(1) Assume 1− 4H2 > 0.
(a) If d2 < 1− 4H2 then

√
m2U2 − `2 − 1 = ±

√
1− 4H2 − d2

1− 4H2
sinh

(
(
√

1− 4H2(s− s0)
)
± 2Hd

1− 4H2

(38)
(b) If d2 > 1− 4H2 then

√
m2U2 − `2 − 1 =

√
d2 − (1− 4H2)

1− 4H2
cosh

(√
1− 4H2(s− s0)

)
± 2Hd

1− 4H2

(39)
(c) If d2 = 1− 4H2 then

√
m2U2 − `2 − 1 = e±

√
1−4H2 (s−s0)± 2H√

1− 4H2
(40)

(2) Assume 1− 4H2 = 0.
(a) If d = 0 then

√
m2U2 − `2 − 1 = ±(s− s0)

(b) If 0 < d < 1 then

√
m2U2 − `2 − 1 = ±

[
d

2
(s− s0)

2 − 1− d2

d2

]

(3) Assume 1− 4H2 < 0. Then

√
m2U2 − `2 − 1 = ±

√
d2 + 4H2 − 1

4H2 − 1
sin

(√
4H2 − 1(s− s0)

)
± 2Hd

4H2 − 1
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Proof. As in Corollary 4.1, by applying the relations derived in Theo-
rem 4.2 together with the first integral formula (27), we infer he fol-
lowing differential equation

Z ′2 = Z2(1− 4H2)± 4HdZ + 1− d2

where Z =
√

m2U2 − `2 − 1. Now by working with elementary ordinary
differential equations, we deduce the formulas in the Statement, as
desired. ¤

5. Associate and conjugate parabolic and hyperbolic
screw motion immersions

Let M2 be a two dimensional Riemannian manifold. Let (x, y, t) be
local coordinates in M2×R, where z = x+iy are conformal coordinates
on M2 and t ∈ R. Let σ2| dz|2, be the conformal metric in M2, hence
ds2 = σ2| dz|2+dt2 is the metric in the product space M2×R. Let Ω ⊂
C be a planar domain, w = u+ iv ∈ Ω. We recall that if X : Ω # M2×
R, w 7→ (h(w), f(w)), w ∈ Ω is a conformal minimal immersion with
induced metric ds2 = µ2| dw|2, then h : Ω ⊂ C→ (M2, σ2| dz|2), w 7→
h(w) is a harmonic map, that is, it satisfies

hww + 2
σz

σ
hwhw = 0 (41)

see, for instance, [19]. We recall also that for any harmonic map h :
Ω ⊂ C 7→ M2 there exists a related Hopf holomorphic function given
by

φ = (σ◦h)2 hwhw (42)

see [20], [22]. Eric Toubiana and the author have introduced the no-
tions of associate and conjugate immersions in [19], following a work
in progress with Laurent Hauswirth [11]. Namely, two conformal iso-

metric immersions X, X̃ : Ω # H2 × R are said associate if the Hopf

functions satisfy the relation φ̃ = eiθ φ. If φ̃ = −φ, then the two im-
mersions are said conjugate. Benôıt Daniel gave an alternative and
equivalent definition [2].

As we said in the introduction, Eric Toubiana and the author proved
that any two minimal isometric screw motion immersions in H2 × R
and S2 × R are associate. The same authors proved that in H2 × R, a
catenoid is conjugate to a helicoid of pitch ` < 1.

We will now prove that two minimal isometric parabolic screw mo-
tion immersions are associate.

Theorem 5.1. Any two minimal isometric parabolic screw motion im-
mersions into H2 × R are associate. Furthermore, a helicoid of pitch
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` = 1 is conjugate to a surface invariant by parabolic translations, i.e
it is conjugate to Daniel-Hauswirth minimal surface.

We remark that Benôıt Daniel proved the second part of the above
Statement by another approach in [2].

Proof. Let us now take natural coordinates s, τ so that the induced
metric is given by dµ2 = ds2 + U2 dτ 2, see Theorem 4.1. We have
therefore natural conformal coordinates υ + iτ where υ =

∫
1/U ds. Of

course, the induced metric becomes dµ2 = U2(dυ2+dτ 2). We therefore
may compute the Hopf function φ for parabolic screw motion minimal
immersions. After, a somewhat long computation, working as in [19],
we obtain the relations

4<φ =
1

m2

[
`2 − λ′2

1 + r2(`2 + λ′2)

]

=φ = 0, if ` = 0

4<φ =
`2

m2
− 4m2

`2
(=φ)2 , if ` 6= 0

(43)

Owing to (43) and (8) we deduce that φ is given by

m2φ =
`2

4
− d2

4
+ i

`d

2
, (d > 0)

Thus

16|φ|2 =

(
`2

m2
+

d2

m2

)2

(44)

Now two isometric minimal parabolic screw motion immersions have
the metric given by Corollary 4.1, making H = 0; that is either by

m2U2 = e2(s−s0) +`2 , if d = 0

or

m2U2 =
d2

2
cosh (2(s− s0)) + `2 +

d2

2
, if d 6= 0

(45)

In view of (44) and (45), the absolute value of their Hopf functions
are the same, hence they are associate as well. Now, on account of
[19] the helicoid (d = 0) of pitch ` = 1 has metric given by U2 =
1

m2 cosh2(s − s0), and Hopf function given by φ = 1
4m2 . On the other

hand, in view of Corollary 4.1, Daniel-Hauswirth minimal surface (` =
0,m = 1) has metric given by U2 = d2 cosh2(s−s0), and Hopf function

given by φ = −d2

4
. Thus we have that if d2m2 = 1, they are conjugate,

as desired. This completes the proof of the Theorem.
¤
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Next, we will prove that the non-isometric deformation of the hyper-
bolic plane given by tilted Euclidean plane (9), invariant by parabolic
screw motions with pitch ` = 1, is conjugate to Scherk type minimal
surface, invariant by hyperbolic translations given by (32). See Figures
5 and 14.

Let d be the parameter given in (27).

Theorem 5.2. The conjugate of the Scherk type minimal surface in-
variant by hyperbolic translations is the minimal surface generated by
a horizontal line invariant by parabolic screw motions with pitch ` = 1.
If d2 < 1, any two minimal isometric hyperbolic screw immersions in
this family are associate. The same holds if either d2 = 1 or d2 > 1. To
each minimal hyperbolic screw motion immersion in the family d2 < 1,
there exists a minimal isometric non associate hyperbolic screw motion
immersion in the family d2 > 1. Furthermore, each parabolic screw mo-
tion surface is associate to an hyperbolic screw motion surface. Any
helicoid with pitch ` > 1 is conjugate to a minimal surface invariant by
hyperbolic translations (` = 0 and d2 > 1)

We remark that last part of the Statement (about the helicoid) is a
result of Benôıt Daniel [2]. We will give an alternative proof.

Proof. We first observe that the structure of the proof is the same as in
Theorem 5.1. On account of Theorem 4.2, we can deduce the following
relations

4<φ =
1

m2

[
`2 − λ′2

1 + sin2 ρ (`2 + λ′2)

]

=φ = 0, if ` = 0

4<φ =
`2

m2
− 4m2

`2
(=φ)2 , if ` 6= 0

(46)

Owing to (46) and (27) we deduce that φ is given by

m2φ =
`2

4
− d2

4
+ i

`d

2
, (d > 0)

Hence

16|φ|2 =

(
`2

m2
+

d2

m2

)2

(47)

Now it follows from (40) and from (47) that the metric and the
Hopf function of the Scherk type minimal surface (32) are given by
m2U2 = e2(s−s0) +1, φ = − 1

4m2 , respectively. On the other hand, owing
to (35) and (44) the metric and the Hopf function of the non-isometric
minimal deformation of hyperbolic plane (9) with pitch ` = 1, are given
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by m2U2 = e2(s−s0) +1, φ = 1
4m2 , respectively. Hence the immersions are

conjugate. This proves the first part of the Statement.
Let us first assume that d2 < 1. According to (38) the metric of two

isometric minimal immersions are given by

m2U2 = (1− d2) sinh2(s− s0) + `2 + 1

= (1− d2) cosh2(s− s0) + d2 + `2
(48)

Thus on account of (47), any two such isometric immersions are
associate. Secondly, if d2 = 1, we infer from (40) and (47) the same
result. Analogously, if d2 > 1, since the metric is given by

m2U2 =
d2 − 1

2
cosh (2(s− s0)) + `2 +

d2 + 1

2
= (d2 − 1) cosh2(s− s0) + `2 + 1

(49)

Now take a minimal hyperbolic screw motion immersion in the first
family (d2 < 1), setting m = m~1 , d = d~1 , ` = `~1 in (48). We see that
there exists a minimal hyperbolic screw motion immersion (m, d, `) in
the third family (d2 > 1), see (49), by setting

d2 − 1

m2
=

1− d2~1
m2~1

,
`2 + 1

m2
=

d2~1 + `2~1
m2~1

(50)

Let φ~1 and φ be their Hopf’s functions, respectively. Notice that
owing to (47) and (50), we deduce the sctrict inequality |φ~1| < |φ|,
hence these isometric immersions are non associate.

Notice that any minimal parabolic screw motion immersion S =
S(dP ,mP , `P), with d2

P 6= 0, has metric given by (36), setting H = 0.
In view of (49), (44) and (47), by setting

d2 − 1

m2
=

d2
P

m2
P

,
`2 + 1

m2
=

`2
P

m2
P

(51)

we obtain a minimal hyperbolic screw motion surface in the third family
associate to S. In the same way, we obtain that any minimal parabolic
screw motion immersion (dP ,mP , `P), with d2

P = 0, is associate to a
minimal hyperbolic screw motion surface in the second family (d2 =
1). Therefore, we conclude that each parabolic screw motion surface is
associate to an hyperbolic screw motion surface.

Finally, consider a minimal surface invariant by hyperbolic transla-
tions with parameters (d2 > 1,m~, ` = 0), metric given by (39) or (49)

(with m = m~, ` = 0, d2 > 1), and Hopf function given by φ~ = − d2

4m2~
·

Owing to [19] the helicoid with pitch `H has metric given by

m2
HU2 =

1

2
cosh (2(s− s0)) + `2

H −
1

2
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and Hopf function given by φ =
`2H

4m2
H

. Therefore, if d2−1
2m2~

= 1
2m2

H
, and

d2+1
2m2~

=
2`2H−1

2m2
H

, we deduce that any helicoid of pitch `H > 1 is conjugate

to a minimal surface invariant by hyperbolic translations, as desired.
This completes the proof of the Theorem. ¤
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